Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright  2009,2012 Intel Corporation
      3  * Copyright  1988-2004 Keith Packard and Bart Massey.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining a
      6  * copy of this software and associated documentation files (the "Software"),
      7  * to deal in the Software without restriction, including without limitation
      8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      9  * and/or sell copies of the Software, and to permit persons to whom the
     10  * Software is furnished to do so, subject to the following conditions:
     11  *
     12  * The above copyright notice and this permission notice (including the next
     13  * paragraph) shall be included in all copies or substantial portions of the
     14  * Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     22  * IN THE SOFTWARE.
     23  *
     24  * Except as contained in this notice, the names of the authors
     25  * or their institutions shall not be used in advertising or
     26  * otherwise to promote the sale, use or other dealings in this
     27  * Software without prior written authorization from the
     28  * authors.
     29  *
     30  * Authors:
     31  *    Eric Anholt <eric (at) anholt.net>
     32  *    Keith Packard <keithp (at) keithp.com>
     33  */
     34 
     35 /**
     36  * Implements an open-addressing, linear-reprobing hash table.
     37  *
     38  * For more information, see:
     39  *
     40  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
     41  */
     42 
     43 #include <stdlib.h>
     44 #include <string.h>
     45 #include <assert.h>
     46 
     47 #include "hash_table.h"
     48 #include "ralloc.h"
     49 #include "macros.h"
     50 #include "main/hash.h"
     51 
     52 static const uint32_t deleted_key_value;
     53 
     54 /**
     55  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
     56  * p and p-2 are both prime.  These tables are sized to have an extra 10%
     57  * free to avoid exponential performance degradation as the hash table fills
     58  */
     59 static const struct {
     60    uint32_t max_entries, size, rehash;
     61 } hash_sizes[] = {
     62    { 2,			5,		3	  },
     63    { 4,			7,		5	  },
     64    { 8,			13,		11	  },
     65    { 16,		19,		17	  },
     66    { 32,		43,		41        },
     67    { 64,		73,		71        },
     68    { 128,		151,		149       },
     69    { 256,		283,		281       },
     70    { 512,		571,		569       },
     71    { 1024,		1153,		1151      },
     72    { 2048,		2269,		2267      },
     73    { 4096,		4519,		4517      },
     74    { 8192,		9013,		9011      },
     75    { 16384,		18043,		18041     },
     76    { 32768,		36109,		36107     },
     77    { 65536,		72091,		72089     },
     78    { 131072,		144409,		144407    },
     79    { 262144,		288361,		288359    },
     80    { 524288,		576883,		576881    },
     81    { 1048576,		1153459,	1153457   },
     82    { 2097152,		2307163,	2307161   },
     83    { 4194304,		4613893,	4613891   },
     84    { 8388608,		9227641,	9227639   },
     85    { 16777216,		18455029,	18455027  },
     86    { 33554432,		36911011,	36911009  },
     87    { 67108864,		73819861,	73819859  },
     88    { 134217728,		147639589,	147639587 },
     89    { 268435456,		295279081,	295279079 },
     90    { 536870912,		590559793,	590559791 },
     91    { 1073741824,	1181116273,	1181116271},
     92    { 2147483648ul,	2362232233ul,	2362232231ul}
     93 };
     94 
     95 static int
     96 entry_is_free(const struct hash_entry *entry)
     97 {
     98    return entry->key == NULL;
     99 }
    100 
    101 static int
    102 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
    103 {
    104    return entry->key == ht->deleted_key;
    105 }
    106 
    107 static int
    108 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
    109 {
    110    return entry->key != NULL && entry->key != ht->deleted_key;
    111 }
    112 
    113 struct hash_table *
    114 _mesa_hash_table_create(void *mem_ctx,
    115                         uint32_t (*key_hash_function)(const void *key),
    116                         bool (*key_equals_function)(const void *a,
    117                                                     const void *b))
    118 {
    119    struct hash_table *ht;
    120 
    121    ht = ralloc(mem_ctx, struct hash_table);
    122    if (ht == NULL)
    123       return NULL;
    124 
    125    ht->size_index = 0;
    126    ht->size = hash_sizes[ht->size_index].size;
    127    ht->rehash = hash_sizes[ht->size_index].rehash;
    128    ht->max_entries = hash_sizes[ht->size_index].max_entries;
    129    ht->key_hash_function = key_hash_function;
    130    ht->key_equals_function = key_equals_function;
    131    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
    132    ht->entries = 0;
    133    ht->deleted_entries = 0;
    134    ht->deleted_key = &deleted_key_value;
    135 
    136    if (ht->table == NULL) {
    137       ralloc_free(ht);
    138       return NULL;
    139    }
    140 
    141    return ht;
    142 }
    143 
    144 /**
    145  * Frees the given hash table.
    146  *
    147  * If delete_function is passed, it gets called on each entry present before
    148  * freeing.
    149  */
    150 void
    151 _mesa_hash_table_destroy(struct hash_table *ht,
    152                          void (*delete_function)(struct hash_entry *entry))
    153 {
    154    if (!ht)
    155       return;
    156 
    157    if (delete_function) {
    158       struct hash_entry *entry;
    159 
    160       hash_table_foreach(ht, entry) {
    161          delete_function(entry);
    162       }
    163    }
    164    ralloc_free(ht);
    165 }
    166 
    167 /**
    168  * Deletes all entries of the given hash table without deleting the table
    169  * itself or changing its structure.
    170  *
    171  * If delete_function is passed, it gets called on each entry present.
    172  */
    173 void
    174 _mesa_hash_table_clear(struct hash_table *ht,
    175                        void (*delete_function)(struct hash_entry *entry))
    176 {
    177    struct hash_entry *entry;
    178 
    179    for (entry = ht->table; entry != ht->table + ht->size; entry++) {
    180       if (entry->key == NULL)
    181          continue;
    182 
    183       if (delete_function != NULL && entry->key != ht->deleted_key)
    184          delete_function(entry);
    185 
    186       entry->key = NULL;
    187    }
    188 
    189    ht->entries = 0;
    190    ht->deleted_entries = 0;
    191 }
    192 
    193 /** Sets the value of the key pointer used for deleted entries in the table.
    194  *
    195  * The assumption is that usually keys are actual pointers, so we use a
    196  * default value of a pointer to an arbitrary piece of storage in the library.
    197  * But in some cases a consumer wants to store some other sort of value in the
    198  * table, like a uint32_t, in which case that pointer may conflict with one of
    199  * their valid keys.  This lets that user select a safe value.
    200  *
    201  * This must be called before any keys are actually deleted from the table.
    202  */
    203 void
    204 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
    205 {
    206    ht->deleted_key = deleted_key;
    207 }
    208 
    209 static struct hash_entry *
    210 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
    211 {
    212    uint32_t start_hash_address = hash % ht->size;
    213    uint32_t hash_address = start_hash_address;
    214 
    215    do {
    216       uint32_t double_hash;
    217 
    218       struct hash_entry *entry = ht->table + hash_address;
    219 
    220       if (entry_is_free(entry)) {
    221          return NULL;
    222       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
    223          if (ht->key_equals_function(key, entry->key)) {
    224             return entry;
    225          }
    226       }
    227 
    228       double_hash = 1 + hash % ht->rehash;
    229 
    230       hash_address = (hash_address + double_hash) % ht->size;
    231    } while (hash_address != start_hash_address);
    232 
    233    return NULL;
    234 }
    235 
    236 /**
    237  * Finds a hash table entry with the given key and hash of that key.
    238  *
    239  * Returns NULL if no entry is found.  Note that the data pointer may be
    240  * modified by the user.
    241  */
    242 struct hash_entry *
    243 _mesa_hash_table_search(struct hash_table *ht, const void *key)
    244 {
    245    assert(ht->key_hash_function);
    246    return hash_table_search(ht, ht->key_hash_function(key), key);
    247 }
    248 
    249 struct hash_entry *
    250 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
    251                                   const void *key)
    252 {
    253    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
    254    return hash_table_search(ht, hash, key);
    255 }
    256 
    257 static struct hash_entry *
    258 hash_table_insert(struct hash_table *ht, uint32_t hash,
    259                   const void *key, void *data);
    260 
    261 static void
    262 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
    263 {
    264    struct hash_table old_ht;
    265    struct hash_entry *table, *entry;
    266 
    267    if (new_size_index >= ARRAY_SIZE(hash_sizes))
    268       return;
    269 
    270    table = rzalloc_array(ht, struct hash_entry,
    271                          hash_sizes[new_size_index].size);
    272    if (table == NULL)
    273       return;
    274 
    275    old_ht = *ht;
    276 
    277    ht->table = table;
    278    ht->size_index = new_size_index;
    279    ht->size = hash_sizes[ht->size_index].size;
    280    ht->rehash = hash_sizes[ht->size_index].rehash;
    281    ht->max_entries = hash_sizes[ht->size_index].max_entries;
    282    ht->entries = 0;
    283    ht->deleted_entries = 0;
    284 
    285    hash_table_foreach(&old_ht, entry) {
    286       hash_table_insert(ht, entry->hash, entry->key, entry->data);
    287    }
    288 
    289    ralloc_free(old_ht.table);
    290 }
    291 
    292 static struct hash_entry *
    293 hash_table_insert(struct hash_table *ht, uint32_t hash,
    294                   const void *key, void *data)
    295 {
    296    uint32_t start_hash_address, hash_address;
    297    struct hash_entry *available_entry = NULL;
    298 
    299    assert(key != NULL);
    300 
    301    if (ht->entries >= ht->max_entries) {
    302       _mesa_hash_table_rehash(ht, ht->size_index + 1);
    303    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
    304       _mesa_hash_table_rehash(ht, ht->size_index);
    305    }
    306 
    307    start_hash_address = hash % ht->size;
    308    hash_address = start_hash_address;
    309    do {
    310       struct hash_entry *entry = ht->table + hash_address;
    311       uint32_t double_hash;
    312 
    313       if (!entry_is_present(ht, entry)) {
    314          /* Stash the first available entry we find */
    315          if (available_entry == NULL)
    316             available_entry = entry;
    317          if (entry_is_free(entry))
    318             break;
    319       }
    320 
    321       /* Implement replacement when another insert happens
    322        * with a matching key.  This is a relatively common
    323        * feature of hash tables, with the alternative
    324        * generally being "insert the new value as well, and
    325        * return it first when the key is searched for".
    326        *
    327        * Note that the hash table doesn't have a delete
    328        * callback.  If freeing of old data pointers is
    329        * required to avoid memory leaks, perform a search
    330        * before inserting.
    331        */
    332       if (!entry_is_deleted(ht, entry) &&
    333           entry->hash == hash &&
    334           ht->key_equals_function(key, entry->key)) {
    335          entry->key = key;
    336          entry->data = data;
    337          return entry;
    338       }
    339 
    340 
    341       double_hash = 1 + hash % ht->rehash;
    342 
    343       hash_address = (hash_address + double_hash) % ht->size;
    344    } while (hash_address != start_hash_address);
    345 
    346    if (available_entry) {
    347       if (entry_is_deleted(ht, available_entry))
    348          ht->deleted_entries--;
    349       available_entry->hash = hash;
    350       available_entry->key = key;
    351       available_entry->data = data;
    352       ht->entries++;
    353       return available_entry;
    354    }
    355 
    356    /* We could hit here if a required resize failed. An unchecked-malloc
    357     * application could ignore this result.
    358     */
    359    return NULL;
    360 }
    361 
    362 /**
    363  * Inserts the key with the given hash into the table.
    364  *
    365  * Note that insertion may rearrange the table on a resize or rehash,
    366  * so previously found hash_entries are no longer valid after this function.
    367  */
    368 struct hash_entry *
    369 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
    370 {
    371    assert(ht->key_hash_function);
    372    return hash_table_insert(ht, ht->key_hash_function(key), key, data);
    373 }
    374 
    375 struct hash_entry *
    376 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
    377                                    const void *key, void *data)
    378 {
    379    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
    380    return hash_table_insert(ht, hash, key, data);
    381 }
    382 
    383 /**
    384  * This function deletes the given hash table entry.
    385  *
    386  * Note that deletion doesn't otherwise modify the table, so an iteration over
    387  * the table deleting entries is safe.
    388  */
    389 void
    390 _mesa_hash_table_remove(struct hash_table *ht,
    391                         struct hash_entry *entry)
    392 {
    393    if (!entry)
    394       return;
    395 
    396    entry->key = ht->deleted_key;
    397    ht->entries--;
    398    ht->deleted_entries++;
    399 }
    400 
    401 /**
    402  * This function is an iterator over the hash table.
    403  *
    404  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
    405  * an iteration over the table is O(table_size) not O(entries).
    406  */
    407 struct hash_entry *
    408 _mesa_hash_table_next_entry(struct hash_table *ht,
    409                             struct hash_entry *entry)
    410 {
    411    if (entry == NULL)
    412       entry = ht->table;
    413    else
    414       entry = entry + 1;
    415 
    416    for (; entry != ht->table + ht->size; entry++) {
    417       if (entry_is_present(ht, entry)) {
    418          return entry;
    419       }
    420    }
    421 
    422    return NULL;
    423 }
    424 
    425 /**
    426  * Returns a random entry from the hash table.
    427  *
    428  * This may be useful in implementing random replacement (as opposed
    429  * to just removing everything) in caches based on this hash table
    430  * implementation.  @predicate may be used to filter entries, or may
    431  * be set to NULL for no filtering.
    432  */
    433 struct hash_entry *
    434 _mesa_hash_table_random_entry(struct hash_table *ht,
    435                               bool (*predicate)(struct hash_entry *entry))
    436 {
    437    struct hash_entry *entry;
    438    uint32_t i = rand() % ht->size;
    439 
    440    if (ht->entries == 0)
    441       return NULL;
    442 
    443    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
    444       if (entry_is_present(ht, entry) &&
    445           (!predicate || predicate(entry))) {
    446          return entry;
    447       }
    448    }
    449 
    450    for (entry = ht->table; entry != ht->table + i; entry++) {
    451       if (entry_is_present(ht, entry) &&
    452           (!predicate || predicate(entry))) {
    453          return entry;
    454       }
    455    }
    456 
    457    return NULL;
    458 }
    459 
    460 
    461 /**
    462  * Quick FNV-1a hash implementation based on:
    463  * http://www.isthe.com/chongo/tech/comp/fnv/
    464  *
    465  * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
    466  * to be quite good, and it probably beats FNV.  But FNV has the advantage
    467  * that it involves almost no code.  For an improvement on both, see Paul
    468  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
    469  */
    470 uint32_t
    471 _mesa_hash_data(const void *data, size_t size)
    472 {
    473    return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
    474                                           data, size);
    475 }
    476 
    477 /** FNV-1a string hash implementation */
    478 uint32_t
    479 _mesa_hash_string(const void *_key)
    480 {
    481    uint32_t hash = _mesa_fnv32_1a_offset_bias;
    482    const char *key = _key;
    483 
    484    while (*key != 0) {
    485       hash = _mesa_fnv32_1a_accumulate(hash, *key);
    486       key++;
    487    }
    488 
    489    return hash;
    490 }
    491 
    492 /**
    493  * String compare function for use as the comparison callback in
    494  * _mesa_hash_table_create().
    495  */
    496 bool
    497 _mesa_key_string_equal(const void *a, const void *b)
    498 {
    499    return strcmp(a, b) == 0;
    500 }
    501 
    502 bool
    503 _mesa_key_pointer_equal(const void *a, const void *b)
    504 {
    505    return a == b;
    506 }
    507 
    508 /**
    509  * Hash table wrapper which supports 64-bit keys.
    510  *
    511  * TODO: unify all hash table implementations.
    512  */
    513 
    514 struct hash_key_u64 {
    515    uint64_t value;
    516 };
    517 
    518 static uint32_t
    519 key_u64_hash(const void *key)
    520 {
    521    return _mesa_hash_data(key, sizeof(struct hash_key_u64));
    522 }
    523 
    524 static bool
    525 key_u64_equals(const void *a, const void *b)
    526 {
    527    const struct hash_key_u64 *aa = a;
    528    const struct hash_key_u64 *bb = b;
    529 
    530    return aa->value == bb->value;
    531 }
    532 
    533 struct hash_table_u64 *
    534 _mesa_hash_table_u64_create(void *mem_ctx)
    535 {
    536    struct hash_table_u64 *ht;
    537 
    538    ht = CALLOC_STRUCT(hash_table_u64);
    539    if (!ht)
    540       return NULL;
    541 
    542    if (sizeof(void *) == 8) {
    543       ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
    544                                           _mesa_key_pointer_equal);
    545    } else {
    546       ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
    547                                           key_u64_equals);
    548    }
    549 
    550    if (ht->table)
    551       _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));
    552 
    553    return ht;
    554 }
    555 
    556 void
    557 _mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
    558                              void (*delete_function)(struct hash_entry *entry))
    559 {
    560    if (!ht)
    561       return;
    562 
    563    if (ht->deleted_key_data) {
    564       if (delete_function) {
    565          struct hash_table *table = ht->table;
    566          struct hash_entry deleted_entry;
    567 
    568          /* Create a fake entry for the delete function. */
    569          deleted_entry.hash = table->key_hash_function(table->deleted_key);
    570          deleted_entry.key = table->deleted_key;
    571          deleted_entry.data = ht->deleted_key_data;
    572 
    573          delete_function(&deleted_entry);
    574       }
    575       ht->deleted_key_data = NULL;
    576    }
    577 
    578    _mesa_hash_table_destroy(ht->table, delete_function);
    579    free(ht);
    580 }
    581 
    582 void
    583 _mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
    584                             void *data)
    585 {
    586    if (key == DELETED_KEY_VALUE) {
    587       ht->deleted_key_data = data;
    588       return;
    589    }
    590 
    591    if (sizeof(void *) == 8) {
    592       _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
    593    } else {
    594       struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);
    595 
    596       if (!_key)
    597          return;
    598       _key->value = key;
    599 
    600       _mesa_hash_table_insert(ht->table, _key, data);
    601    }
    602 }
    603 
    604 static struct hash_entry *
    605 hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
    606 {
    607    if (sizeof(void *) == 8) {
    608       return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
    609    } else {
    610       struct hash_key_u64 _key = { .value = key };
    611       return _mesa_hash_table_search(ht->table, &_key);
    612    }
    613 }
    614 
    615 void *
    616 _mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
    617 {
    618    struct hash_entry *entry;
    619 
    620    if (key == DELETED_KEY_VALUE)
    621       return ht->deleted_key_data;
    622 
    623    entry = hash_table_u64_search(ht, key);
    624    if (!entry)
    625       return NULL;
    626 
    627    return entry->data;
    628 }
    629 
    630 void
    631 _mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
    632 {
    633    struct hash_entry *entry;
    634 
    635    if (key == DELETED_KEY_VALUE) {
    636       ht->deleted_key_data = NULL;
    637       return;
    638    }
    639 
    640    entry = hash_table_u64_search(ht, key);
    641    if (!entry)
    642       return;
    643 
    644    if (sizeof(void *) == 8) {
    645       _mesa_hash_table_remove(ht->table, entry);
    646    } else {
    647       struct hash_key *_key = (struct hash_key *)entry->key;
    648 
    649       _mesa_hash_table_remove(ht->table, entry);
    650       free(_key);
    651    }
    652 }
    653