Home | History | Annotate | Download | only in Headers
      1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
      2  *
      3  * Permission is hereby granted, free of charge, to any person obtaining a copy
      4  * of this software and associated documentation files (the "Software"), to deal
      5  * in the Software without restriction, including without limitation the rights
      6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      7  * copies of the Software, and to permit persons to whom the Software is
      8  * furnished to do so, subject to the following conditions:
      9  *
     10  * The above copyright notice and this permission notice shall be included in
     11  * all copies or substantial portions of the Software.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     19  * THE SOFTWARE.
     20  *
     21  *===-----------------------------------------------------------------------===
     22  */
     23 
     24 #ifndef __IMMINTRIN_H
     25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
     26 #endif
     27 
     28 #ifndef __AVXINTRIN_H
     29 #define __AVXINTRIN_H
     30 
     31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
     32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
     33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
     34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
     35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
     36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
     37 
     38 /* Unsigned types */
     39 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
     40 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
     41 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
     42 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
     43 
     44 /* We need an explicitly signed variant for char. Note that this shouldn't
     45  * appear in the interface though. */
     46 typedef signed char __v32qs __attribute__((__vector_size__(32)));
     47 
     48 typedef float __m256 __attribute__ ((__vector_size__ (32)));
     49 typedef double __m256d __attribute__((__vector_size__(32)));
     50 typedef long long __m256i __attribute__((__vector_size__(32)));
     51 
     52 /* Define the default attributes for the functions in this file. */
     53 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
     54 
     55 /* Arithmetic */
     56 /// \brief Adds two 256-bit vectors of [4 x double].
     57 ///
     58 /// \headerfile <x86intrin.h>
     59 ///
     60 /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
     61 ///
     62 /// \param __a
     63 ///    A 256-bit vector of [4 x double] containing one of the source operands.
     64 /// \param __b
     65 ///    A 256-bit vector of [4 x double] containing one of the source operands.
     66 /// \returns A 256-bit vector of [4 x double] containing the sums of both
     67 ///    operands.
     68 static __inline __m256d __DEFAULT_FN_ATTRS
     69 _mm256_add_pd(__m256d __a, __m256d __b)
     70 {
     71   return (__m256d)((__v4df)__a+(__v4df)__b);
     72 }
     73 
     74 /// \brief Adds two 256-bit vectors of [8 x float].
     75 ///
     76 /// \headerfile <x86intrin.h>
     77 ///
     78 /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
     79 ///
     80 /// \param __a
     81 ///    A 256-bit vector of [8 x float] containing one of the source operands.
     82 /// \param __b
     83 ///    A 256-bit vector of [8 x float] containing one of the source operands.
     84 /// \returns A 256-bit vector of [8 x float] containing the sums of both
     85 ///    operands.
     86 static __inline __m256 __DEFAULT_FN_ATTRS
     87 _mm256_add_ps(__m256 __a, __m256 __b)
     88 {
     89   return (__m256)((__v8sf)__a+(__v8sf)__b);
     90 }
     91 
     92 /// \brief Subtracts two 256-bit vectors of [4 x double].
     93 ///
     94 /// \headerfile <x86intrin.h>
     95 ///
     96 /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
     97 ///
     98 /// \param __a
     99 ///    A 256-bit vector of [4 x double] containing the minuend.
    100 /// \param __b
    101 ///    A 256-bit vector of [4 x double] containing the subtrahend.
    102 /// \returns A 256-bit vector of [4 x double] containing the differences between
    103 ///    both operands.
    104 static __inline __m256d __DEFAULT_FN_ATTRS
    105 _mm256_sub_pd(__m256d __a, __m256d __b)
    106 {
    107   return (__m256d)((__v4df)__a-(__v4df)__b);
    108 }
    109 
    110 /// \brief Subtracts two 256-bit vectors of [8 x float].
    111 ///
    112 /// \headerfile <x86intrin.h>
    113 ///
    114 /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
    115 ///
    116 /// \param __a
    117 ///    A 256-bit vector of [8 x float] containing the minuend.
    118 /// \param __b
    119 ///    A 256-bit vector of [8 x float] containing the subtrahend.
    120 /// \returns A 256-bit vector of [8 x float] containing the differences between
    121 ///    both operands.
    122 static __inline __m256 __DEFAULT_FN_ATTRS
    123 _mm256_sub_ps(__m256 __a, __m256 __b)
    124 {
    125   return (__m256)((__v8sf)__a-(__v8sf)__b);
    126 }
    127 
    128 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
    129 ///    two 256-bit vectors of [4 x double].
    130 ///
    131 /// \headerfile <x86intrin.h>
    132 ///
    133 /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
    134 ///
    135 /// \param __a
    136 ///    A 256-bit vector of [4 x double] containing the left source operand.
    137 /// \param __b
    138 ///    A 256-bit vector of [4 x double] containing the right source operand.
    139 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
    140 ///    and differences between both operands.
    141 static __inline __m256d __DEFAULT_FN_ATTRS
    142 _mm256_addsub_pd(__m256d __a, __m256d __b)
    143 {
    144   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
    145 }
    146 
    147 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
    148 ///    two 256-bit vectors of [8 x float].
    149 ///
    150 /// \headerfile <x86intrin.h>
    151 ///
    152 /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
    153 ///
    154 /// \param __a
    155 ///    A 256-bit vector of [8 x float] containing the left source operand.
    156 /// \param __b
    157 ///    A 256-bit vector of [8 x float] containing the right source operand.
    158 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
    159 ///    differences between both operands.
    160 static __inline __m256 __DEFAULT_FN_ATTRS
    161 _mm256_addsub_ps(__m256 __a, __m256 __b)
    162 {
    163   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
    164 }
    165 
    166 /// \brief Divides two 256-bit vectors of [4 x double].
    167 ///
    168 /// \headerfile <x86intrin.h>
    169 ///
    170 /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
    171 ///
    172 /// \param __a
    173 ///    A 256-bit vector of [4 x double] containing the dividend.
    174 /// \param __b
    175 ///    A 256-bit vector of [4 x double] containing the divisor.
    176 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
    177 ///    operands.
    178 static __inline __m256d __DEFAULT_FN_ATTRS
    179 _mm256_div_pd(__m256d __a, __m256d __b)
    180 {
    181   return (__m256d)((__v4df)__a/(__v4df)__b);
    182 }
    183 
    184 /// \brief Divides two 256-bit vectors of [8 x float].
    185 ///
    186 /// \headerfile <x86intrin.h>
    187 ///
    188 /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
    189 ///
    190 /// \param __a
    191 ///    A 256-bit vector of [8 x float] containing the dividend.
    192 /// \param __b
    193 ///    A 256-bit vector of [8 x float] containing the divisor.
    194 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
    195 ///    operands.
    196 static __inline __m256 __DEFAULT_FN_ATTRS
    197 _mm256_div_ps(__m256 __a, __m256 __b)
    198 {
    199   return (__m256)((__v8sf)__a/(__v8sf)__b);
    200 }
    201 
    202 /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
    203 ///    of each pair of values.
    204 ///
    205 /// \headerfile <x86intrin.h>
    206 ///
    207 /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
    208 ///
    209 /// \param __a
    210 ///    A 256-bit vector of [4 x double] containing one of the operands.
    211 /// \param __b
    212 ///    A 256-bit vector of [4 x double] containing one of the operands.
    213 /// \returns A 256-bit vector of [4 x double] containing the maximum values
    214 ///    between both operands.
    215 static __inline __m256d __DEFAULT_FN_ATTRS
    216 _mm256_max_pd(__m256d __a, __m256d __b)
    217 {
    218   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
    219 }
    220 
    221 /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
    222 ///    of each pair of values.
    223 ///
    224 /// \headerfile <x86intrin.h>
    225 ///
    226 /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
    227 ///
    228 /// \param __a
    229 ///    A 256-bit vector of [8 x float] containing one of the operands.
    230 /// \param __b
    231 ///    A 256-bit vector of [8 x float] containing one of the operands.
    232 /// \returns A 256-bit vector of [8 x float] containing the maximum values
    233 ///    between both operands.
    234 static __inline __m256 __DEFAULT_FN_ATTRS
    235 _mm256_max_ps(__m256 __a, __m256 __b)
    236 {
    237   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
    238 }
    239 
    240 /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
    241 ///    of each pair of values.
    242 ///
    243 /// \headerfile <x86intrin.h>
    244 ///
    245 /// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
    246 ///
    247 /// \param __a
    248 ///    A 256-bit vector of [4 x double] containing one of the operands.
    249 /// \param __b
    250 ///    A 256-bit vector of [4 x double] containing one of the operands.
    251 /// \returns A 256-bit vector of [4 x double] containing the minimum values
    252 ///    between both operands.
    253 static __inline __m256d __DEFAULT_FN_ATTRS
    254 _mm256_min_pd(__m256d __a, __m256d __b)
    255 {
    256   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
    257 }
    258 
    259 /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
    260 ///    of each pair of values.
    261 ///
    262 /// \headerfile <x86intrin.h>
    263 ///
    264 /// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
    265 ///
    266 /// \param __a
    267 ///    A 256-bit vector of [8 x float] containing one of the operands.
    268 /// \param __b
    269 ///    A 256-bit vector of [8 x float] containing one of the operands.
    270 /// \returns A 256-bit vector of [8 x float] containing the minimum values
    271 ///    between both operands.
    272 static __inline __m256 __DEFAULT_FN_ATTRS
    273 _mm256_min_ps(__m256 __a, __m256 __b)
    274 {
    275   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
    276 }
    277 
    278 /// \brief Multiplies two 256-bit vectors of [4 x double].
    279 ///
    280 /// \headerfile <x86intrin.h>
    281 ///
    282 /// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
    283 ///
    284 /// \param __a
    285 ///    A 256-bit vector of [4 x double] containing one of the operands.
    286 /// \param __b
    287 ///    A 256-bit vector of [4 x double] containing one of the operands.
    288 /// \returns A 256-bit vector of [4 x double] containing the products of both
    289 ///    operands.
    290 static __inline __m256d __DEFAULT_FN_ATTRS
    291 _mm256_mul_pd(__m256d __a, __m256d __b)
    292 {
    293   return (__m256d)((__v4df)__a * (__v4df)__b);
    294 }
    295 
    296 /// \brief Multiplies two 256-bit vectors of [8 x float].
    297 ///
    298 /// \headerfile <x86intrin.h>
    299 ///
    300 /// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
    301 ///
    302 /// \param __a
    303 ///    A 256-bit vector of [8 x float] containing one of the operands.
    304 /// \param __b
    305 ///    A 256-bit vector of [8 x float] containing one of the operands.
    306 /// \returns A 256-bit vector of [8 x float] containing the products of both
    307 ///    operands.
    308 static __inline __m256 __DEFAULT_FN_ATTRS
    309 _mm256_mul_ps(__m256 __a, __m256 __b)
    310 {
    311   return (__m256)((__v8sf)__a * (__v8sf)__b);
    312 }
    313 
    314 /// \brief Calculates the square roots of the values in a 256-bit vector of
    315 ///    [4 x double].
    316 ///
    317 /// \headerfile <x86intrin.h>
    318 ///
    319 /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
    320 ///
    321 /// \param __a
    322 ///    A 256-bit vector of [4 x double].
    323 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
    324 ///    values in the operand.
    325 static __inline __m256d __DEFAULT_FN_ATTRS
    326 _mm256_sqrt_pd(__m256d __a)
    327 {
    328   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
    329 }
    330 
    331 /// \brief Calculates the square roots of the values in a 256-bit vector of
    332 ///    [8 x float].
    333 ///
    334 /// \headerfile <x86intrin.h>
    335 ///
    336 /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
    337 ///
    338 /// \param __a
    339 ///    A 256-bit vector of [8 x float].
    340 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
    341 ///    values in the operand.
    342 static __inline __m256 __DEFAULT_FN_ATTRS
    343 _mm256_sqrt_ps(__m256 __a)
    344 {
    345   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
    346 }
    347 
    348 /// \brief Calculates the reciprocal square roots of the values in a 256-bit
    349 ///    vector of [8 x float].
    350 ///
    351 /// \headerfile <x86intrin.h>
    352 ///
    353 /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
    354 ///
    355 /// \param __a
    356 ///    A 256-bit vector of [8 x float].
    357 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
    358 ///    roots of the values in the operand.
    359 static __inline __m256 __DEFAULT_FN_ATTRS
    360 _mm256_rsqrt_ps(__m256 __a)
    361 {
    362   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
    363 }
    364 
    365 /// \brief Calculates the reciprocals of the values in a 256-bit vector of
    366 ///    [8 x float].
    367 ///
    368 /// \headerfile <x86intrin.h>
    369 ///
    370 /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
    371 ///
    372 /// \param __a
    373 ///    A 256-bit vector of [8 x float].
    374 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
    375 ///    values in the operand.
    376 static __inline __m256 __DEFAULT_FN_ATTRS
    377 _mm256_rcp_ps(__m256 __a)
    378 {
    379   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
    380 }
    381 
    382 /// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
    383 ///    by the byte operand. The source values are rounded to integer values and
    384 ///    returned as 64-bit double-precision floating-point values.
    385 ///
    386 /// \headerfile <x86intrin.h>
    387 ///
    388 /// \code
    389 /// __m256d _mm256_round_pd(__m256d V, const int M);
    390 /// \endcode
    391 ///
    392 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    393 ///
    394 /// \param V
    395 ///    A 256-bit vector of [4 x double].
    396 /// \param M
    397 ///    An integer value that specifies the rounding operation.
    398 ///    Bits [7:4] are reserved.
    399 ///    Bit [3] is a precision exception value:
    400 ///    0: A normal PE exception is used.
    401 ///    1: The PE field is not updated.
    402 ///    Bit [2] is the rounding control source:
    403 ///    0: Use bits [1:0] of M.
    404 ///    1: Use the current MXCSR setting.
    405 ///    Bits [1:0] contain the rounding control definition:
    406 ///    00: Nearest.
    407 ///    01: Downward (toward negative infinity).
    408 ///    10: Upward (toward positive infinity).
    409 ///    11: Truncated.
    410 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
    411 #define _mm256_round_pd(V, M) __extension__ ({ \
    412     (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
    413 
    414 /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
    415 ///    specified by the byte operand. The source values are rounded to integer
    416 ///    values and returned as floating-point values.
    417 ///
    418 /// \headerfile <x86intrin.h>
    419 ///
    420 /// \code
    421 /// __m256 _mm256_round_ps(__m256 V, const int M);
    422 /// \endcode
    423 ///
    424 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    425 ///
    426 /// \param V
    427 ///    A 256-bit vector of [8 x float].
    428 /// \param M
    429 ///    An integer value that specifies the rounding operation.
    430 ///    Bits [7:4] are reserved.
    431 ///    Bit [3] is a precision exception value:
    432 ///    0: A normal PE exception is used.
    433 ///    1: The PE field is not updated.
    434 ///    Bit [2] is the rounding control source:
    435 ///    0: Use bits [1:0] of M.
    436 ///    1: Use the current MXCSR setting.
    437 ///    Bits [1:0] contain the rounding control definition:
    438 ///    00: Nearest.
    439 ///    01: Downward (toward negative infinity).
    440 ///    10: Upward (toward positive infinity).
    441 ///    11: Truncated.
    442 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
    443 #define _mm256_round_ps(V, M) __extension__ ({ \
    444   (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
    445 
    446 /// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
    447 ///    source values are rounded up to integer values and returned as 64-bit
    448 ///    double-precision floating-point values.
    449 ///
    450 /// \headerfile <x86intrin.h>
    451 ///
    452 /// \code
    453 /// __m256d _mm256_ceil_pd(__m256d V);
    454 /// \endcode
    455 ///
    456 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    457 ///
    458 /// \param V
    459 ///    A 256-bit vector of [4 x double].
    460 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
    461 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
    462 
    463 /// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
    464 ///    The source values are rounded down to integer values and returned as
    465 ///    64-bit double-precision floating-point values.
    466 ///
    467 /// \headerfile <x86intrin.h>
    468 ///
    469 /// \code
    470 /// __m256d _mm256_floor_pd(__m256d V);
    471 /// \endcode
    472 ///
    473 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    474 ///
    475 /// \param V
    476 ///    A 256-bit vector of [4 x double].
    477 /// \returns A 256-bit vector of [4 x double] containing the rounded down
    478 ///    values.
    479 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
    480 
    481 /// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
    482 ///    source values are rounded up to integer values and returned as
    483 ///    floating-point values.
    484 ///
    485 /// \headerfile <x86intrin.h>
    486 ///
    487 /// \code
    488 /// __m256 _mm256_ceil_ps(__m256 V);
    489 /// \endcode
    490 ///
    491 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    492 ///
    493 /// \param V
    494 ///    A 256-bit vector of [8 x float].
    495 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
    496 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
    497 
    498 /// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
    499 ///    source values are rounded down to integer values and returned as
    500 ///    floating-point values.
    501 ///
    502 /// \headerfile <x86intrin.h>
    503 ///
    504 /// \code
    505 /// __m256 _mm256_floor_ps(__m256 V);
    506 /// \endcode
    507 ///
    508 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    509 ///
    510 /// \param V
    511 ///    A 256-bit vector of [8 x float].
    512 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
    513 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
    514 
    515 /* Logical */
    516 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
    517 ///
    518 /// \headerfile <x86intrin.h>
    519 ///
    520 /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
    521 ///
    522 /// \param __a
    523 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    524 /// \param __b
    525 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    526 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
    527 ///    values between both operands.
    528 static __inline __m256d __DEFAULT_FN_ATTRS
    529 _mm256_and_pd(__m256d __a, __m256d __b)
    530 {
    531   return (__m256d)((__v4du)__a & (__v4du)__b);
    532 }
    533 
    534 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
    535 ///
    536 /// \headerfile <x86intrin.h>
    537 ///
    538 /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
    539 ///
    540 /// \param __a
    541 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    542 /// \param __b
    543 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    544 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
    545 ///    values between both operands.
    546 static __inline __m256 __DEFAULT_FN_ATTRS
    547 _mm256_and_ps(__m256 __a, __m256 __b)
    548 {
    549   return (__m256)((__v8su)__a & (__v8su)__b);
    550 }
    551 
    552 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
    553 ///    the one's complement of the values contained in the first source operand.
    554 ///
    555 /// \headerfile <x86intrin.h>
    556 ///
    557 /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
    558 ///
    559 /// \param __a
    560 ///    A 256-bit vector of [4 x double] containing the left source operand. The
    561 ///    one's complement of this value is used in the bitwise AND.
    562 /// \param __b
    563 ///    A 256-bit vector of [4 x double] containing the right source operand.
    564 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
    565 ///    values of the second operand and the one's complement of the first
    566 ///    operand.
    567 static __inline __m256d __DEFAULT_FN_ATTRS
    568 _mm256_andnot_pd(__m256d __a, __m256d __b)
    569 {
    570   return (__m256d)(~(__v4du)__a & (__v4du)__b);
    571 }
    572 
    573 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
    574 ///    the one's complement of the values contained in the first source operand.
    575 ///
    576 /// \headerfile <x86intrin.h>
    577 ///
    578 /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
    579 ///
    580 /// \param __a
    581 ///    A 256-bit vector of [8 x float] containing the left source operand. The
    582 ///    one's complement of this value is used in the bitwise AND.
    583 /// \param __b
    584 ///    A 256-bit vector of [8 x float] containing the right source operand.
    585 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
    586 ///    values of the second operand and the one's complement of the first
    587 ///    operand.
    588 static __inline __m256 __DEFAULT_FN_ATTRS
    589 _mm256_andnot_ps(__m256 __a, __m256 __b)
    590 {
    591   return (__m256)(~(__v8su)__a & (__v8su)__b);
    592 }
    593 
    594 /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
    595 ///
    596 /// \headerfile <x86intrin.h>
    597 ///
    598 /// This intrinsic corresponds to the \c VORPD / ORPD instruction.
    599 ///
    600 /// \param __a
    601 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    602 /// \param __b
    603 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    604 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
    605 ///    values between both operands.
    606 static __inline __m256d __DEFAULT_FN_ATTRS
    607 _mm256_or_pd(__m256d __a, __m256d __b)
    608 {
    609   return (__m256d)((__v4du)__a | (__v4du)__b);
    610 }
    611 
    612 /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
    613 ///
    614 /// \headerfile <x86intrin.h>
    615 ///
    616 /// This intrinsic corresponds to the \c VORPS / ORPS instruction.
    617 ///
    618 /// \param __a
    619 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    620 /// \param __b
    621 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    622 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
    623 ///    values between both operands.
    624 static __inline __m256 __DEFAULT_FN_ATTRS
    625 _mm256_or_ps(__m256 __a, __m256 __b)
    626 {
    627   return (__m256)((__v8su)__a | (__v8su)__b);
    628 }
    629 
    630 /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
    631 ///
    632 /// \headerfile <x86intrin.h>
    633 ///
    634 /// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
    635 ///
    636 /// \param __a
    637 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    638 /// \param __b
    639 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    640 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
    641 ///    values between both operands.
    642 static __inline __m256d __DEFAULT_FN_ATTRS
    643 _mm256_xor_pd(__m256d __a, __m256d __b)
    644 {
    645   return (__m256d)((__v4du)__a ^ (__v4du)__b);
    646 }
    647 
    648 /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
    649 ///
    650 /// \headerfile <x86intrin.h>
    651 ///
    652 /// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
    653 ///
    654 /// \param __a
    655 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    656 /// \param __b
    657 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    658 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
    659 ///    values between both operands.
    660 static __inline __m256 __DEFAULT_FN_ATTRS
    661 _mm256_xor_ps(__m256 __a, __m256 __b)
    662 {
    663   return (__m256)((__v8su)__a ^ (__v8su)__b);
    664 }
    665 
    666 /* Horizontal arithmetic */
    667 /// \brief Horizontally adds the adjacent pairs of values contained in two
    668 ///    256-bit vectors of [4 x double].
    669 ///
    670 /// \headerfile <x86intrin.h>
    671 ///
    672 /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
    673 ///
    674 /// \param __a
    675 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    676 ///    The horizontal sums of the values are returned in the even-indexed
    677 ///    elements of a vector of [4 x double].
    678 /// \param __b
    679 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    680 ///    The horizontal sums of the values are returned in the odd-indexed
    681 ///    elements of a vector of [4 x double].
    682 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
    683 ///    both operands.
    684 static __inline __m256d __DEFAULT_FN_ATTRS
    685 _mm256_hadd_pd(__m256d __a, __m256d __b)
    686 {
    687   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
    688 }
    689 
    690 /// \brief Horizontally adds the adjacent pairs of values contained in two
    691 ///    256-bit vectors of [8 x float].
    692 ///
    693 /// \headerfile <x86intrin.h>
    694 ///
    695 /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
    696 ///
    697 /// \param __a
    698 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    699 ///    The horizontal sums of the values are returned in the elements with
    700 ///    index 0, 1, 4, 5 of a vector of [8 x float].
    701 /// \param __b
    702 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    703 ///    The horizontal sums of the values are returned in the elements with
    704 ///    index 2, 3, 6, 7 of a vector of [8 x float].
    705 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
    706 ///    both operands.
    707 static __inline __m256 __DEFAULT_FN_ATTRS
    708 _mm256_hadd_ps(__m256 __a, __m256 __b)
    709 {
    710   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
    711 }
    712 
    713 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
    714 ///    256-bit vectors of [4 x double].
    715 ///
    716 /// \headerfile <x86intrin.h>
    717 ///
    718 /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
    719 ///
    720 /// \param __a
    721 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    722 ///    The horizontal differences between the values are returned in the
    723 ///    even-indexed elements of a vector of [4 x double].
    724 /// \param __b
    725 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    726 ///    The horizontal differences between the values are returned in the
    727 ///    odd-indexed elements of a vector of [4 x double].
    728 /// \returns A 256-bit vector of [4 x double] containing the horizontal
    729 ///    differences of both operands.
    730 static __inline __m256d __DEFAULT_FN_ATTRS
    731 _mm256_hsub_pd(__m256d __a, __m256d __b)
    732 {
    733   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
    734 }
    735 
    736 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
    737 ///    256-bit vectors of [8 x float].
    738 ///
    739 /// \headerfile <x86intrin.h>
    740 ///
    741 /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
    742 ///
    743 /// \param __a
    744 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    745 ///    The horizontal differences between the values are returned in the
    746 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
    747 /// \param __b
    748 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    749 ///    The horizontal differences between the values are returned in the
    750 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
    751 /// \returns A 256-bit vector of [8 x float] containing the horizontal
    752 ///    differences of both operands.
    753 static __inline __m256 __DEFAULT_FN_ATTRS
    754 _mm256_hsub_ps(__m256 __a, __m256 __b)
    755 {
    756   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
    757 }
    758 
    759 /* Vector permutations */
    760 /// \brief Copies the values in a 128-bit vector of [2 x double] as specified
    761 ///    by the 128-bit integer vector operand.
    762 ///
    763 /// \headerfile <x86intrin.h>
    764 ///
    765 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    766 ///
    767 /// \param __a
    768 ///    A 128-bit vector of [2 x double].
    769 /// \param __c
    770 ///    A 128-bit integer vector operand specifying how the values are to be
    771 ///    copied.
    772 ///    Bit [1]:
    773 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    774 ///    returned vector.
    775 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    776 ///    returned vector.
    777 ///    Bit [65]:
    778 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    779 ///    returned vector.
    780 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    781 ///    returned vector.
    782 /// \returns A 128-bit vector of [2 x double] containing the copied values.
    783 static __inline __m128d __DEFAULT_FN_ATTRS
    784 _mm_permutevar_pd(__m128d __a, __m128i __c)
    785 {
    786   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
    787 }
    788 
    789 /// \brief Copies the values in a 256-bit vector of [4 x double] as
    790 ///    specified by the 256-bit integer vector operand.
    791 ///
    792 /// \headerfile <x86intrin.h>
    793 ///
    794 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    795 ///
    796 /// \param __a
    797 ///    A 256-bit vector of [4 x double].
    798 /// \param __c
    799 ///    A 256-bit integer vector operand specifying how the values are to be
    800 ///    copied.
    801 ///    Bit [1]:
    802 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    803 ///    returned vector.
    804 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    805 ///    returned vector.
    806 ///    Bit [65]:
    807 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    808 ///    returned vector.
    809 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    810 ///    returned vector.
    811 ///    Bit [129]:
    812 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
    813 ///    returned vector.
    814 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
    815 ///    returned vector.
    816 ///    Bit [193]:
    817 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
    818 ///    returned vector.
    819 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
    820 ///    returned vector.
    821 /// \returns A 256-bit vector of [4 x double] containing the copied values.
    822 static __inline __m256d __DEFAULT_FN_ATTRS
    823 _mm256_permutevar_pd(__m256d __a, __m256i __c)
    824 {
    825   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
    826 }
    827 
    828 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
    829 ///    specified by the 128-bit integer vector operand.
    830 ///
    831 /// \headerfile <x86intrin.h>
    832 ///
    833 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
    834 ///
    835 /// \param __a
    836 ///    A 128-bit vector of [4 x float].
    837 /// \param __c
    838 ///    A 128-bit integer vector operand specifying how the values are to be
    839 ///    copied.
    840 ///    Bits [1:0]:
    841 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
    842 ///    returned vector.
    843 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
    844 ///    returned vector.
    845 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
    846 ///    returned vector.
    847 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
    848 ///    returned vector.
    849 ///    Bits [33:32]:
    850 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
    851 ///    returned vector.
    852 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
    853 ///    returned vector.
    854 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
    855 ///    returned vector.
    856 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
    857 ///    returned vector.
    858 ///    Bits [65:64]:
    859 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
    860 ///    returned vector.
    861 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
    862 ///    returned vector.
    863 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
    864 ///    returned vector.
    865 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
    866 ///    returned vector.
    867 ///    Bits [97:96]:
    868 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
    869 ///    returned vector.
    870 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
    871 ///    returned vector.
    872 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
    873 ///    returned vector.
    874 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
    875 ///    returned vector.
    876 /// \returns A 128-bit vector of [4 x float] containing the copied values.
    877 static __inline __m128 __DEFAULT_FN_ATTRS
    878 _mm_permutevar_ps(__m128 __a, __m128i __c)
    879 {
    880   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
    881 }
    882 
    883 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
    884 ///    specified by the 256-bit integer vector operand.
    885 ///
    886 /// \headerfile <x86intrin.h>
    887 ///
    888 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
    889 ///
    890 /// \param __a
    891 ///    A 256-bit vector of [8 x float].
    892 /// \param __c
    893 ///    A 256-bit integer vector operand specifying how the values are to be
    894 ///    copied.
    895 ///    Bits [1:0]:
    896 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
    897 ///    returned vector.
    898 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
    899 ///    returned vector.
    900 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
    901 ///    returned vector.
    902 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
    903 ///    returned vector.
    904 ///    Bits [33:32]:
    905 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
    906 ///    returned vector.
    907 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
    908 ///    returned vector.
    909 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
    910 ///    returned vector.
    911 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
    912 ///    returned vector.
    913 ///    Bits [65:64]:
    914 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
    915 ///    returned vector.
    916 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
    917 ///    returned vector.
    918 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
    919 ///    returned vector.
    920 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
    921 ///    returned vector.
    922 ///    Bits [97:96]:
    923 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
    924 ///    returned vector.
    925 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
    926 ///    returned vector.
    927 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
    928 ///    returned vector.
    929 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
    930 ///    returned vector.
    931 ///    Bits [129:128]:
    932 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
    933 ///    returned vector.
    934 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
    935 ///    returned vector.
    936 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
    937 ///    returned vector.
    938 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
    939 ///    returned vector.
    940 ///    Bits [161:160]:
    941 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
    942 ///    returned vector.
    943 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
    944 ///    returned vector.
    945 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
    946 ///    returned vector.
    947 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
    948 ///    returned vector.
    949 ///    Bits [193:192]:
    950 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
    951 ///    returned vector.
    952 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
    953 ///    returned vector.
    954 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
    955 ///    returned vector.
    956 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
    957 ///    returned vector.
    958 ///    Bits [225:224]:
    959 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
    960 ///    returned vector.
    961 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
    962 ///    returned vector.
    963 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
    964 ///    returned vector.
    965 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
    966 ///    returned vector.
    967 /// \returns A 256-bit vector of [8 x float] containing the copied values.
    968 static __inline __m256 __DEFAULT_FN_ATTRS
    969 _mm256_permutevar_ps(__m256 __a, __m256i __c)
    970 {
    971   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
    972 }
    973 
    974 /// \brief Copies the values in a 128-bit vector of [2 x double] as
    975 ///    specified by the immediate integer operand.
    976 ///
    977 /// \headerfile <x86intrin.h>
    978 ///
    979 /// \code
    980 /// __m128d _mm_permute_pd(__m128d A, const int C);
    981 /// \endcode
    982 ///
    983 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    984 ///
    985 /// \param A
    986 ///    A 128-bit vector of [2 x double].
    987 /// \param C
    988 ///    An immediate integer operand specifying how the values are to be copied.
    989 ///    Bit [0]:
    990 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    991 ///    returned vector.
    992 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    993 ///    returned vector.
    994 ///    Bit [1]:
    995 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    996 ///    returned vector.
    997 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    998 ///    returned vector.
    999 /// \returns A 128-bit vector of [2 x double] containing the copied values.
   1000 #define _mm_permute_pd(A, C) __extension__ ({ \
   1001   (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
   1002                                    (__v2df)_mm_undefined_pd(), \
   1003                                    ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })
   1004 
   1005 /// \brief Copies the values in a 256-bit vector of [4 x double] as
   1006 ///    specified by the immediate integer operand.
   1007 ///
   1008 /// \headerfile <x86intrin.h>
   1009 ///
   1010 /// \code
   1011 /// __m256d _mm256_permute_pd(__m256d A, const int C);
   1012 /// \endcode
   1013 ///
   1014 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
   1015 ///
   1016 /// \param A
   1017 ///    A 256-bit vector of [4 x double].
   1018 /// \param C
   1019 ///    An immediate integer operand specifying how the values are to be copied.
   1020 ///    Bit [0]:
   1021 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
   1022 ///    returned vector.
   1023 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
   1024 ///    returned vector.
   1025 ///    Bit [1]:
   1026 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
   1027 ///    returned vector.
   1028 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
   1029 ///    returned vector.
   1030 ///    Bit [2]:
   1031 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
   1032 ///    returned vector.
   1033 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
   1034 ///    returned vector.
   1035 ///    Bit [3]:
   1036 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
   1037 ///    returned vector.
   1038 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
   1039 ///    returned vector.
   1040 /// \returns A 256-bit vector of [4 x double] containing the copied values.
   1041 #define _mm256_permute_pd(A, C) __extension__ ({ \
   1042   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
   1043                                    (__v4df)_mm256_undefined_pd(), \
   1044                                    0 + (((C) >> 0) & 0x1), \
   1045                                    0 + (((C) >> 1) & 0x1), \
   1046                                    2 + (((C) >> 2) & 0x1), \
   1047                                    2 + (((C) >> 3) & 0x1)); })
   1048 
   1049 /// \brief Copies the values in a 128-bit vector of [4 x float] as
   1050 ///    specified by the immediate integer operand.
   1051 ///
   1052 /// \headerfile <x86intrin.h>
   1053 ///
   1054 /// \code
   1055 /// __m128 _mm_permute_ps(__m128 A, const int C);
   1056 /// \endcode
   1057 ///
   1058 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
   1059 ///
   1060 /// \param A
   1061 ///    A 128-bit vector of [4 x float].
   1062 /// \param C
   1063 ///    An immediate integer operand specifying how the values are to be copied.
   1064 ///    Bits [1:0]:
   1065 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
   1066 ///    returned vector.
   1067 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
   1068 ///    returned vector.
   1069 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
   1070 ///    returned vector.
   1071 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
   1072 ///    returned vector.
   1073 ///    Bits [3:2]:
   1074 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
   1075 ///    returned vector.
   1076 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
   1077 ///    returned vector.
   1078 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
   1079 ///    returned vector.
   1080 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
   1081 ///    returned vector.
   1082 ///    Bits [5:4]:
   1083 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
   1084 ///    returned vector.
   1085 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
   1086 ///    returned vector.
   1087 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
   1088 ///    returned vector.
   1089 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
   1090 ///    returned vector.
   1091 ///    Bits [7:6]:
   1092 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
   1093 ///    returned vector.
   1094 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
   1095 ///    returned vector.
   1096 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
   1097 ///    returned vector.
   1098 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
   1099 ///    returned vector.
   1100 /// \returns A 128-bit vector of [4 x float] containing the copied values.
   1101 #define _mm_permute_ps(A, C) __extension__ ({ \
   1102   (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
   1103                                   (__v4sf)_mm_undefined_ps(), \
   1104                                   ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
   1105                                   ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })
   1106 
   1107 /// \brief Copies the values in a 256-bit vector of [8 x float] as
   1108 ///    specified by the immediate integer operand.
   1109 ///
   1110 /// \headerfile <x86intrin.h>
   1111 ///
   1112 /// \code
   1113 /// __m256 _mm256_permute_ps(__m256 A, const int C);
   1114 /// \endcode
   1115 ///
   1116 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
   1117 ///
   1118 /// \param A
   1119 ///    A 256-bit vector of [8 x float].
   1120 /// \param C
   1121 ///    An immediate integer operand specifying how the values are to be copied.
   1122 ///    Bits [1:0]:
   1123 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
   1124 ///    returned vector.
   1125 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
   1126 ///    returned vector.
   1127 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
   1128 ///    returned vector.
   1129 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
   1130 ///    returned vector.
   1131 ///    Bits [3:2]:
   1132 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
   1133 ///    returned vector.
   1134 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
   1135 ///    returned vector.
   1136 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
   1137 ///    returned vector.
   1138 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
   1139 ///    returned vector.
   1140 ///    Bits [5:4]:
   1141 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
   1142 ///    returned vector.
   1143 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
   1144 ///    returned vector.
   1145 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
   1146 ///    returned vector.
   1147 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
   1148 ///    returned vector.
   1149 ///    Bits [7:6]:
   1150 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
   1151 ///    returned vector.
   1152 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
   1153 ///    returned vector.
   1154 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
   1155 ///    returned vector.
   1156 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
   1157 ///    returned vector.
   1158 ///    Bits [1:0]:
   1159 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
   1160 ///    returned vector.
   1161 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
   1162 ///    returned vector.
   1163 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
   1164 ///    returned vector.
   1165 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
   1166 ///    returned vector.
   1167 ///    Bits [3:2]:
   1168 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
   1169 ///    returned vector.
   1170 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
   1171 ///    returned vector.
   1172 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
   1173 ///    returned vector.
   1174 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
   1175 ///    returned vector.
   1176 ///    Bits [5:4]:
   1177 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
   1178 ///    returned vector.
   1179 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
   1180 ///    returned vector.
   1181 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
   1182 ///    returned vector.
   1183 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
   1184 ///    returned vector.
   1185 ///    Bits [7:6]:
   1186 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
   1187 ///    returned vector.
   1188 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
   1189 ///    returned vector.
   1190 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
   1191 ///    returned vector.
   1192 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
   1193 ///    returned vector.
   1194 /// \returns A 256-bit vector of [8 x float] containing the copied values.
   1195 #define _mm256_permute_ps(A, C) __extension__ ({ \
   1196   (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
   1197                                   (__v8sf)_mm256_undefined_ps(), \
   1198                                   0 + (((C) >> 0) & 0x3), \
   1199                                   0 + (((C) >> 2) & 0x3), \
   1200                                   0 + (((C) >> 4) & 0x3), \
   1201                                   0 + (((C) >> 6) & 0x3), \
   1202                                   4 + (((C) >> 0) & 0x3), \
   1203                                   4 + (((C) >> 2) & 0x3), \
   1204                                   4 + (((C) >> 4) & 0x3), \
   1205                                   4 + (((C) >> 6) & 0x3)); })
   1206 
   1207 /// \brief Permutes 128-bit data values stored in two 256-bit vectors of
   1208 ///    [4 x double], as specified by the immediate integer operand.
   1209 ///
   1210 /// \headerfile <x86intrin.h>
   1211 ///
   1212 /// \code
   1213 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
   1214 /// \endcode
   1215 ///
   1216 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
   1217 ///
   1218 /// \param V1
   1219 ///    A 256-bit vector of [4 x double].
   1220 /// \param V2
   1221 ///    A 256-bit vector of [4 x double.
   1222 /// \param M
   1223 ///    An immediate integer operand specifying how the values are to be
   1224 ///    permuted.
   1225 ///    Bits [1:0]:
   1226 ///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
   1227 ///    destination.
   1228 ///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
   1229 ///    destination.
   1230 ///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
   1231 ///    destination.
   1232 ///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
   1233 ///    destination.
   1234 ///    Bits [5:4]:
   1235 ///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
   1236 ///    destination.
   1237 ///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
   1238 ///    destination.
   1239 ///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
   1240 ///    destination.
   1241 ///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
   1242 ///    destination.
   1243 /// \returns A 256-bit vector of [4 x double] containing the copied values.
   1244 #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
   1245   (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
   1246                                            (__v4df)(__m256d)(V2), (M)); })
   1247 
   1248 /// \brief Permutes 128-bit data values stored in two 256-bit vectors of
   1249 ///    [8 x float], as specified by the immediate integer operand.
   1250 ///
   1251 /// \headerfile <x86intrin.h>
   1252 ///
   1253 /// \code
   1254 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
   1255 /// \endcode
   1256 ///
   1257 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
   1258 ///
   1259 /// \param V1
   1260 ///    A 256-bit vector of [8 x float].
   1261 /// \param V2
   1262 ///    A 256-bit vector of [8 x float].
   1263 /// \param M
   1264 ///    An immediate integer operand specifying how the values are to be
   1265 ///    permuted.
   1266 ///    Bits [1:0]:
   1267 ///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
   1268 ///    destination.
   1269 ///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
   1270 ///    destination.
   1271 ///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
   1272 ///    destination.
   1273 ///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
   1274 ///    destination.
   1275 ///    Bits [5:4]:
   1276 ///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
   1277 ///    destination.
   1278 ///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
   1279 ///    destination.
   1280 ///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
   1281 ///    destination.
   1282 ///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
   1283 ///    destination.
   1284 /// \returns A 256-bit vector of [8 x float] containing the copied values.
   1285 #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
   1286   (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
   1287                                           (__v8sf)(__m256)(V2), (M)); })
   1288 
   1289 /// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
   1290 ///    as specified by the immediate integer operand.
   1291 ///
   1292 /// \headerfile <x86intrin.h>
   1293 ///
   1294 /// \code
   1295 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
   1296 /// \endcode
   1297 ///
   1298 /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
   1299 ///
   1300 /// \param V1
   1301 ///    A 256-bit integer vector.
   1302 /// \param V2
   1303 ///    A 256-bit integer vector.
   1304 /// \param M
   1305 ///    An immediate integer operand specifying how the values are to be copied.
   1306 ///    Bits [1:0]:
   1307 ///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
   1308 ///    destination.
   1309 ///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
   1310 ///    destination.
   1311 ///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
   1312 ///    destination.
   1313 ///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
   1314 ///    destination.
   1315 ///    Bits [5:4]:
   1316 ///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
   1317 ///    destination.
   1318 ///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
   1319 ///    destination.
   1320 ///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
   1321 ///    destination.
   1322 ///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
   1323 ///    destination.
   1324 /// \returns A 256-bit integer vector containing the copied values.
   1325 #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
   1326   (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
   1327                                            (__v8si)(__m256i)(V2), (M)); })
   1328 
   1329 /* Vector Blend */
   1330 /// \brief Merges 64-bit double-precision data values stored in either of the
   1331 ///    two 256-bit vectors of [4 x double], as specified by the immediate
   1332 ///    integer operand.
   1333 ///
   1334 /// \headerfile <x86intrin.h>
   1335 ///
   1336 /// \code
   1337 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
   1338 /// \endcode
   1339 ///
   1340 /// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
   1341 ///
   1342 /// \param V1
   1343 ///    A 256-bit vector of [4 x double].
   1344 /// \param V2
   1345 ///    A 256-bit vector of [4 x double].
   1346 /// \param M
   1347 ///    An immediate integer operand, with mask bits [3:0] specifying how the
   1348 ///    values are to be copied. The position of the mask bit corresponds to the
   1349 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
   1350 ///    element in operand V1 is copied to the same position in the destination.
   1351 ///    When a mask bit is 1, the corresponding 64-bit element in operand V2 is
   1352 ///    copied to the same position in the destination.
   1353 /// \returns A 256-bit vector of [4 x double] containing the copied values.
   1354 #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
   1355   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
   1356                                    (__v4df)(__m256d)(V2), \
   1357                                    (((M) & 0x01) ? 4 : 0), \
   1358                                    (((M) & 0x02) ? 5 : 1), \
   1359                                    (((M) & 0x04) ? 6 : 2), \
   1360                                    (((M) & 0x08) ? 7 : 3)); })
   1361 
   1362 /// \brief Merges 32-bit single-precision data values stored in either of the
   1363 ///    two 256-bit vectors of [8 x float], as specified by the immediate
   1364 ///    integer operand.
   1365 ///
   1366 /// \headerfile <x86intrin.h>
   1367 ///
   1368 /// \code
   1369 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
   1370 /// \endcode
   1371 ///
   1372 /// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
   1373 ///
   1374 /// \param V1
   1375 ///    A 256-bit vector of [8 x float].
   1376 /// \param V2
   1377 ///    A 256-bit vector of [8 x float].
   1378 /// \param M
   1379 ///    An immediate integer operand, with mask bits [7:0] specifying how the
   1380 ///    values are to be copied. The position of the mask bit corresponds to the
   1381 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
   1382 ///    element in operand V1 is copied to the same position in the destination.
   1383 ///    When a mask bit is 1, the corresponding 32-bit element in operand V2 is
   1384 ///    copied to the same position in the destination.
   1385 /// \returns A 256-bit vector of [8 x float] containing the copied values.
   1386 #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
   1387   (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
   1388                                   (__v8sf)(__m256)(V2), \
   1389                                   (((M) & 0x01) ?  8 : 0), \
   1390                                   (((M) & 0x02) ?  9 : 1), \
   1391                                   (((M) & 0x04) ? 10 : 2), \
   1392                                   (((M) & 0x08) ? 11 : 3), \
   1393                                   (((M) & 0x10) ? 12 : 4), \
   1394                                   (((M) & 0x20) ? 13 : 5), \
   1395                                   (((M) & 0x40) ? 14 : 6), \
   1396                                   (((M) & 0x80) ? 15 : 7)); })
   1397 
   1398 /// \brief Merges 64-bit double-precision data values stored in either of the
   1399 ///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
   1400 ///    operand.
   1401 ///
   1402 /// \headerfile <x86intrin.h>
   1403 ///
   1404 /// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
   1405 ///
   1406 /// \param __a
   1407 ///    A 256-bit vector of [4 x double].
   1408 /// \param __b
   1409 ///    A 256-bit vector of [4 x double].
   1410 /// \param __c
   1411 ///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
   1412 ///    how the values are to be copied. The position of the mask bit corresponds
   1413 ///    to the most significant bit of a copied value. When a mask bit is 0, the
   1414 ///    corresponding 64-bit element in operand __a is copied to the same
   1415 ///    position in the destination. When a mask bit is 1, the corresponding
   1416 ///    64-bit element in operand __b is copied to the same position in the
   1417 ///    destination.
   1418 /// \returns A 256-bit vector of [4 x double] containing the copied values.
   1419 static __inline __m256d __DEFAULT_FN_ATTRS
   1420 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
   1421 {
   1422   return (__m256d)__builtin_ia32_blendvpd256(
   1423     (__v4df)__a, (__v4df)__b, (__v4df)__c);
   1424 }
   1425 
   1426 /// \brief Merges 32-bit single-precision data values stored in either of the
   1427 ///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
   1428 ///    operand.
   1429 ///
   1430 /// \headerfile <x86intrin.h>
   1431 ///
   1432 /// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
   1433 ///
   1434 /// \param __a
   1435 ///    A 256-bit vector of [8 x float].
   1436 /// \param __b
   1437 ///    A 256-bit vector of [8 x float].
   1438 /// \param __c
   1439 ///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
   1440 ///    and 31 specifying how the values are to be copied. The position of the
   1441 ///    mask bit corresponds to the most significant bit of a copied value. When
   1442 ///    a mask bit is 0, the corresponding 32-bit element in operand __a is
   1443 ///    copied to the same position in the destination. When a mask bit is 1, the
   1444 ///    corresponding 32-bit element in operand __b is copied to the same
   1445 ///    position in the destination.
   1446 /// \returns A 256-bit vector of [8 x float] containing the copied values.
   1447 static __inline __m256 __DEFAULT_FN_ATTRS
   1448 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
   1449 {
   1450   return (__m256)__builtin_ia32_blendvps256(
   1451     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
   1452 }
   1453 
   1454 /* Vector Dot Product */
   1455 /// \brief Computes two dot products in parallel, using the lower and upper
   1456 ///    halves of two [8 x float] vectors as input to the two computations, and
   1457 ///    returning the two dot products in the lower and upper halves of the
   1458 ///    [8 x float] result. The immediate integer operand controls which
   1459 ///    input elements will contribute to the dot product, and where the final
   1460 ///    results are returned. In general, for each dot product, the four
   1461 ///    corresponding elements of the input vectors are multiplied; the first
   1462 ///    two and second two products are summed, then the two sums are added to
   1463 ///    form the final result.
   1464 ///
   1465 /// \headerfile <x86intrin.h>
   1466 ///
   1467 /// \code
   1468 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
   1469 /// \endcode
   1470 ///
   1471 /// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
   1472 ///
   1473 /// \param V1
   1474 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
   1475 /// \param V2
   1476 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
   1477 /// \param M
   1478 ///    An immediate integer argument. Bits [7:4] determine which elements of
   1479 ///    the input vectors are used, with bit [4] corresponding to the lowest
   1480 ///    element and bit [7] corresponding to the highest element of each [4 x
   1481 ///    float] subvector. If a bit is set, the corresponding elements from the
   1482 ///    two input vectors are used as an input for dot product; otherwise that
   1483 ///    input is treated as zero. Bits [3:0] determine which elements of the
   1484 ///    result will receive a copy of the final dot product, with bit [0]
   1485 ///    corresponding to the lowest element and bit [3] corresponding to the
   1486 ///    highest element of each [4 x float] subvector. If a bit is set, the dot
   1487 ///    product is returned in the corresponding element; otherwise that element
   1488 ///    is set to zero. The bitmask is applied in the same way to each of the
   1489 ///    two parallel dot product computations.
   1490 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
   1491 #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
   1492   (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
   1493                                  (__v8sf)(__m256)(V2), (M)); })
   1494 
   1495 /* Vector shuffle */
   1496 /// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
   1497 ///    specified by the immediate value operand. The four selected elements in
   1498 ///    each operand are copied to the destination according to the bits
   1499 ///    specified in the immediate operand. The selected elements from the first
   1500 ///    256-bit operand are copied to bits [63:0] and bits [191:128] of the
   1501 ///    destination, and the selected elements from the second 256-bit operand
   1502 ///    are copied to bits [127:64] and bits [255:192] of the destination. For
   1503 ///    example, if bits [7:0] of the immediate operand contain a value of 0xFF,
   1504 ///    the 256-bit destination vector would contain the following values: b[7],
   1505 ///    b[7], a[7], a[7], b[3], b[3], a[3], a[3].
   1506 ///
   1507 /// \headerfile <x86intrin.h>
   1508 ///
   1509 /// \code
   1510 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
   1511 /// \endcode
   1512 ///
   1513 /// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
   1514 ///
   1515 /// \param a
   1516 ///    A 256-bit vector of [8 x float]. The four selected elements in this
   1517 ///    operand are copied to bits [63:0] and bits [191:128] in the destination,
   1518 ///    according to the bits specified in the immediate operand.
   1519 /// \param b
   1520 ///    A 256-bit vector of [8 x float]. The four selected elements in this
   1521 ///    operand are copied to bits [127:64] and bits [255:192] in the
   1522 ///    destination, according to the bits specified in the immediate operand.
   1523 /// \param mask
   1524 ///    An immediate value containing an 8-bit value specifying which elements to
   1525 ///    copy from a and b. Bits [3:0] specify the values copied from operand a.
   1526 ///    Bits [7:4] specify the values copied from operand b.
   1527 ///    The destinations within the 256-bit destination are assigned values as
   1528 ///    follows, according to the bit value assignments described below:
   1529 ///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
   1530 ///    destination.
   1531 ///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
   1532 ///    destination.
   1533 ///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
   1534 ///    destination.
   1535 ///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
   1536 ///    the destination.
   1537 ///    Bit value assignments:
   1538 ///    00: Bits [31:0] and [159:128] are copied from the selected operand.
   1539 ///    01: Bits [63:32] and [191:160] are copied from the selected operand.
   1540 ///    10: Bits [95:64] and [223:192] are copied from the selected operand.
   1541 ///    11: Bits [127:96] and [255:224] are copied from the selected operand.
   1542 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
   1543 #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
   1544   (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
   1545                                   (__v8sf)(__m256)(b), \
   1546                                   0  + (((mask) >> 0) & 0x3), \
   1547                                   0  + (((mask) >> 2) & 0x3), \
   1548                                   8  + (((mask) >> 4) & 0x3), \
   1549                                   8  + (((mask) >> 6) & 0x3), \
   1550                                   4  + (((mask) >> 0) & 0x3), \
   1551                                   4  + (((mask) >> 2) & 0x3), \
   1552                                   12 + (((mask) >> 4) & 0x3), \
   1553                                   12 + (((mask) >> 6) & 0x3)); })
   1554 
   1555 /// \brief Selects four double-precision values from the 256-bit operands of
   1556 ///    [4 x double], as specified by the immediate value operand. The selected
   1557 ///    elements from the first 256-bit operand are copied to bits [63:0] and
   1558 ///    bits [191:128] in the destination, and the selected elements from the
   1559 ///    second 256-bit operand are copied to bits [127:64] and bits [255:192] in
   1560 ///    the destination. For example, if bits [3:0] of the immediate operand
   1561 ///    contain a value of 0xF, the 256-bit destination vector would contain the
   1562 ///    following values: b[3], a[3], b[1], a[1].
   1563 ///
   1564 /// \headerfile <x86intrin.h>
   1565 ///
   1566 /// \code
   1567 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
   1568 /// \endcode
   1569 ///
   1570 /// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
   1571 ///
   1572 /// \param a
   1573 ///    A 256-bit vector of [4 x double].
   1574 /// \param b
   1575 ///    A 256-bit vector of [4 x double].
   1576 /// \param mask
   1577 ///    An immediate value containing 8-bit values specifying which elements to
   1578 ///    copy from a and b:
   1579 ///    Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
   1580 ///    destination.
   1581 ///    Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
   1582 ///    destination.
   1583 ///    Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
   1584 ///    destination.
   1585 ///    Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
   1586 ///    destination.
   1587 ///    Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
   1588 ///    destination.
   1589 ///    Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
   1590 ///    destination.
   1591 ///    Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
   1592 ///    destination.
   1593 ///    Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
   1594 ///    destination.
   1595 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
   1596 #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
   1597   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
   1598                                    (__v4df)(__m256d)(b), \
   1599                                    0 + (((mask) >> 0) & 0x1), \
   1600                                    4 + (((mask) >> 1) & 0x1), \
   1601                                    2 + (((mask) >> 2) & 0x1), \
   1602                                    6 + (((mask) >> 3) & 0x1)); })
   1603 
   1604 /* Compare */
   1605 #define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
   1606 #define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
   1607 #define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
   1608 #define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
   1609 #define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
   1610 #define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
   1611 #define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
   1612 #define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
   1613 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
   1614 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
   1615 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
   1616 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
   1617 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
   1618 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
   1619 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
   1620 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
   1621 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
   1622 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
   1623 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
   1624 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
   1625 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
   1626 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
   1627 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
   1628 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
   1629 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
   1630 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
   1631 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
   1632 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
   1633 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
   1634 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
   1635 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
   1636 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
   1637 
   1638 /// \brief Compares each of the corresponding double-precision values of two
   1639 ///    128-bit vectors of [2 x double], using the operation specified by the
   1640 ///    immediate integer operand. Returns a [2 x double] vector consisting of
   1641 ///    two doubles corresponding to the two comparison results: zero if the
   1642 ///    comparison is false, and all 1's if the comparison is true.
   1643 ///
   1644 /// \headerfile <x86intrin.h>
   1645 ///
   1646 /// \code
   1647 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
   1648 /// \endcode
   1649 ///
   1650 /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
   1651 ///
   1652 /// \param a
   1653 ///    A 128-bit vector of [2 x double].
   1654 /// \param b
   1655 ///    A 128-bit vector of [2 x double].
   1656 /// \param c
   1657 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1658 ///    operation to use:
   1659 ///    00h, 08h, 10h, 18h: Equal
   1660 ///    01h, 09h, 11h, 19h: Less than
   1661 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1662 ///                        operands)
   1663 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1664 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1665 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1666 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1667 ///                        (swapped operands)
   1668 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1669 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
   1670 #define _mm_cmp_pd(a, b, c) __extension__ ({ \
   1671   (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
   1672                                 (__v2df)(__m128d)(b), (c)); })
   1673 
   1674 /// \brief Compares each of the corresponding values of two 128-bit vectors of
   1675 ///    [4 x float], using the operation specified by the immediate integer
   1676 ///    operand. Returns a [4 x float] vector consisting of four floats
   1677 ///    corresponding to the four comparison results: zero if the comparison is
   1678 ///    false, and all 1's if the comparison is true.
   1679 ///
   1680 /// \headerfile <x86intrin.h>
   1681 ///
   1682 /// \code
   1683 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
   1684 /// \endcode
   1685 ///
   1686 /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
   1687 ///
   1688 /// \param a
   1689 ///    A 128-bit vector of [4 x float].
   1690 /// \param b
   1691 ///    A 128-bit vector of [4 x float].
   1692 /// \param c
   1693 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1694 ///    operation to use:
   1695 ///    00h, 08h, 10h, 18h: Equal
   1696 ///    01h, 09h, 11h, 19h: Less than
   1697 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1698 ///                        operands)
   1699 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1700 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1701 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1702 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1703 ///                       (swapped operands)
   1704 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1705 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
   1706 #define _mm_cmp_ps(a, b, c) __extension__ ({ \
   1707   (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
   1708                                (__v4sf)(__m128)(b), (c)); })
   1709 
   1710 /// \brief Compares each of the corresponding double-precision values of two
   1711 ///    256-bit vectors of [4 x double], using the operation specified by the
   1712 ///    immediate integer operand. Returns a [4 x double] vector consisting of
   1713 ///    four doubles corresponding to the four comparison results: zero if the
   1714 ///    comparison is false, and all 1's if the comparison is true.
   1715 ///
   1716 /// \headerfile <x86intrin.h>
   1717 ///
   1718 /// \code
   1719 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
   1720 /// \endcode
   1721 ///
   1722 /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
   1723 ///
   1724 /// \param a
   1725 ///    A 256-bit vector of [4 x double].
   1726 /// \param b
   1727 ///    A 256-bit vector of [4 x double].
   1728 /// \param c
   1729 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1730 ///    operation to use:
   1731 ///    00h, 08h, 10h, 18h: Equal
   1732 ///    01h, 09h, 11h, 19h: Less than
   1733 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1734 ///                        operands)
   1735 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1736 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1737 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1738 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1739 ///                        (swapped operands)
   1740 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1741 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
   1742 #define _mm256_cmp_pd(a, b, c) __extension__ ({ \
   1743   (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
   1744                                    (__v4df)(__m256d)(b), (c)); })
   1745 
   1746 /// \brief Compares each of the corresponding values of two 256-bit vectors of
   1747 ///    [8 x float], using the operation specified by the immediate integer
   1748 ///    operand. Returns a [8 x float] vector consisting of eight floats
   1749 ///    corresponding to the eight comparison results: zero if the comparison is
   1750 ///    false, and all 1's if the comparison is true.
   1751 ///
   1752 /// \headerfile <x86intrin.h>
   1753 ///
   1754 /// \code
   1755 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
   1756 /// \endcode
   1757 ///
   1758 /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
   1759 ///
   1760 /// \param a
   1761 ///    A 256-bit vector of [8 x float].
   1762 /// \param b
   1763 ///    A 256-bit vector of [8 x float].
   1764 /// \param c
   1765 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1766 ///    operation to use:
   1767 ///    00h, 08h, 10h, 18h: Equal
   1768 ///    01h, 09h, 11h, 19h: Less than
   1769 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1770 ///                        operands)
   1771 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1772 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1773 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1774 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1775 ///                       (swapped operands)
   1776 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1777 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
   1778 #define _mm256_cmp_ps(a, b, c) __extension__ ({ \
   1779   (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
   1780                                   (__v8sf)(__m256)(b), (c)); })
   1781 
   1782 /// \brief Compares each of the corresponding scalar double-precision values of
   1783 ///    two 128-bit vectors of [2 x double], using the operation specified by the
   1784 ///    immediate integer operand. If the result is true, all 64 bits of the
   1785 ///    destination vector are set; otherwise they are cleared.
   1786 ///
   1787 /// \headerfile <x86intrin.h>
   1788 ///
   1789 /// \code
   1790 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
   1791 /// \endcode
   1792 ///
   1793 /// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
   1794 ///
   1795 /// \param a
   1796 ///    A 128-bit vector of [2 x double].
   1797 /// \param b
   1798 ///    A 128-bit vector of [2 x double].
   1799 /// \param c
   1800 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1801 ///    operation to use:
   1802 ///    00h, 08h, 10h, 18h: Equal
   1803 ///    01h, 09h, 11h, 19h: Less than
   1804 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1805 ///                        operands)
   1806 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1807 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1808 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1809 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1810 ///                       (swapped operands)
   1811 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1812 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
   1813 #define _mm_cmp_sd(a, b, c) __extension__ ({ \
   1814   (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
   1815                                 (__v2df)(__m128d)(b), (c)); })
   1816 
   1817 /// \brief Compares each of the corresponding scalar values of two 128-bit
   1818 ///    vectors of [4 x float], using the operation specified by the immediate
   1819 ///    integer operand. If the result is true, all 32 bits of the destination
   1820 ///    vector are set; otherwise they are cleared.
   1821 ///
   1822 /// \headerfile <x86intrin.h>
   1823 ///
   1824 /// \code
   1825 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
   1826 /// \endcode
   1827 ///
   1828 /// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
   1829 ///
   1830 /// \param a
   1831 ///    A 128-bit vector of [4 x float].
   1832 /// \param b
   1833 ///    A 128-bit vector of [4 x float].
   1834 /// \param c
   1835 ///    An immediate integer operand, with bits [4:0] specifying which comparison
   1836 ///    operation to use:
   1837 ///    00h, 08h, 10h, 18h: Equal
   1838 ///    01h, 09h, 11h, 19h: Less than
   1839 ///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
   1840 ///                        operands)
   1841 ///    03h, 0Bh, 13h, 1Bh: Unordered
   1842 ///    04h, 0Ch, 14h, 1Ch: Not equal
   1843 ///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
   1844 ///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
   1845 ///                       (swapped operands)
   1846 ///    07h, 0Fh, 17h, 1Fh: Ordered
   1847 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
   1848 #define _mm_cmp_ss(a, b, c) __extension__ ({ \
   1849   (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
   1850                                (__v4sf)(__m128)(b), (c)); })
   1851 
   1852 /// \brief Takes a [8 x i32] vector and returns the vector element value
   1853 ///    indexed by the immediate constant operand.
   1854 ///
   1855 /// \headerfile <x86intrin.h>
   1856 ///
   1857 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
   1858 ///   EXTRACTF128+COMPOSITE instruction.
   1859 ///
   1860 /// \param __a
   1861 ///    A 256-bit vector of [8 x i32].
   1862 /// \param __imm
   1863 ///    An immediate integer operand with bits [2:0] determining which vector
   1864 ///    element is extracted and returned.
   1865 /// \returns A 32-bit integer containing the extracted 32 bits of extended
   1866 ///    packed data.
   1867 static __inline int __DEFAULT_FN_ATTRS
   1868 _mm256_extract_epi32(__m256i __a, const int __imm)
   1869 {
   1870   __v8si __b = (__v8si)__a;
   1871   return __b[__imm & 7];
   1872 }
   1873 
   1874 /// \brief Takes a [16 x i16] vector and returns the vector element value
   1875 ///    indexed by the immediate constant operand.
   1876 ///
   1877 /// \headerfile <x86intrin.h>
   1878 ///
   1879 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
   1880 ///    EXTRACTF128+COMPOSITE instruction.
   1881 ///
   1882 /// \param __a
   1883 ///    A 256-bit integer vector of [16 x i16].
   1884 /// \param __imm
   1885 ///    An immediate integer operand with bits [3:0] determining which vector
   1886 ///    element is extracted and returned.
   1887 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
   1888 ///    packed data.
   1889 static __inline int __DEFAULT_FN_ATTRS
   1890 _mm256_extract_epi16(__m256i __a, const int __imm)
   1891 {
   1892   __v16hi __b = (__v16hi)__a;
   1893   return (unsigned short)__b[__imm & 15];
   1894 }
   1895 
   1896 /// \brief Takes a [32 x i8] vector and returns the vector element value
   1897 ///    indexed by the immediate constant operand.
   1898 ///
   1899 /// \headerfile <x86intrin.h>
   1900 ///
   1901 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
   1902 ///    EXTRACTF128+COMPOSITE instruction.
   1903 ///
   1904 /// \param __a
   1905 ///    A 256-bit integer vector of [32 x i8].
   1906 /// \param __imm
   1907 ///    An immediate integer operand with bits [4:0] determining which vector
   1908 ///    element is extracted and returned.
   1909 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
   1910 ///    packed data.
   1911 static __inline int __DEFAULT_FN_ATTRS
   1912 _mm256_extract_epi8(__m256i __a, const int __imm)
   1913 {
   1914   __v32qi __b = (__v32qi)__a;
   1915   return (unsigned char)__b[__imm & 31];
   1916 }
   1917 
   1918 #ifdef __x86_64__
   1919 /// \brief Takes a [4 x i64] vector and returns the vector element value
   1920 ///    indexed by the immediate constant operand.
   1921 ///
   1922 /// \headerfile <x86intrin.h>
   1923 ///
   1924 /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
   1925 ///    EXTRACTF128+COMPOSITE instruction.
   1926 ///
   1927 /// \param __a
   1928 ///    A 256-bit integer vector of [4 x i64].
   1929 /// \param __imm
   1930 ///    An immediate integer operand with bits [1:0] determining which vector
   1931 ///    element is extracted and returned.
   1932 /// \returns A 64-bit integer containing the extracted 64 bits of extended
   1933 ///    packed data.
   1934 static __inline long long  __DEFAULT_FN_ATTRS
   1935 _mm256_extract_epi64(__m256i __a, const int __imm)
   1936 {
   1937   __v4di __b = (__v4di)__a;
   1938   return __b[__imm & 3];
   1939 }
   1940 #endif
   1941 
   1942 /// \brief Takes a [8 x i32] vector and replaces the vector element value
   1943 ///    indexed by the immediate constant operand by a new value. Returns the
   1944 ///    modified vector.
   1945 ///
   1946 /// \headerfile <x86intrin.h>
   1947 ///
   1948 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
   1949 ///    INSERTF128+COMPOSITE instruction.
   1950 ///
   1951 /// \param __a
   1952 ///    A vector of [8 x i32] to be used by the insert operation.
   1953 /// \param __b
   1954 ///    An integer value. The replacement value for the insert operation.
   1955 /// \param __imm
   1956 ///    An immediate integer specifying the index of the vector element to be
   1957 ///    replaced.
   1958 /// \returns A copy of vector __a, after replacing its element indexed by __imm
   1959 ///     with __b.
   1960 static __inline __m256i __DEFAULT_FN_ATTRS
   1961 _mm256_insert_epi32(__m256i __a, int __b, int const __imm)
   1962 {
   1963   __v8si __c = (__v8si)__a;
   1964   __c[__imm & 7] = __b;
   1965   return (__m256i)__c;
   1966 }
   1967 
   1968 
   1969 /// \brief Takes a [16 x i16] vector and replaces the vector element value
   1970 ///    indexed by the immediate constant operand with a new value. Returns the
   1971 ///    modified vector.
   1972 ///
   1973 /// \headerfile <x86intrin.h>
   1974 ///
   1975 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
   1976 ///    INSERTF128+COMPOSITE instruction.
   1977 ///
   1978 /// \param __a
   1979 ///    A vector of [16 x i16] to be used by the insert operation.
   1980 /// \param __b
   1981 ///    An i16 integer value. The replacement value for the insert operation.
   1982 /// \param __imm
   1983 ///    An immediate integer specifying the index of the vector element to be
   1984 ///    replaced.
   1985 /// \returns A copy of vector __a, after replacing its element indexed by __imm
   1986 ///     with __b.
   1987 static __inline __m256i __DEFAULT_FN_ATTRS
   1988 _mm256_insert_epi16(__m256i __a, int __b, int const __imm)
   1989 {
   1990   __v16hi __c = (__v16hi)__a;
   1991   __c[__imm & 15] = __b;
   1992   return (__m256i)__c;
   1993 }
   1994 
   1995 /// \brief Takes a [32 x i8] vector and replaces the vector element value
   1996 ///    indexed by the immediate constant operand with a new value. Returns the
   1997 ///    modified vector.
   1998 ///
   1999 /// \headerfile <x86intrin.h>
   2000 ///
   2001 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
   2002 ///    INSERTF128+COMPOSITE instruction.
   2003 ///
   2004 /// \param __a
   2005 ///    A vector of [32 x i8] to be used by the insert operation.
   2006 /// \param __b
   2007 ///    An i8 integer value. The replacement value for the insert operation.
   2008 /// \param __imm
   2009 ///    An immediate integer specifying the index of the vector element to be
   2010 ///    replaced.
   2011 /// \returns A copy of vector __a, after replacing its element indexed by __imm
   2012 ///    with __b.
   2013 static __inline __m256i __DEFAULT_FN_ATTRS
   2014 _mm256_insert_epi8(__m256i __a, int __b, int const __imm)
   2015 {
   2016   __v32qi __c = (__v32qi)__a;
   2017   __c[__imm & 31] = __b;
   2018   return (__m256i)__c;
   2019 }
   2020 
   2021 #ifdef __x86_64__
   2022 /// \brief Takes a [4 x i64] vector and replaces the vector element value
   2023 ///    indexed by the immediate constant operand with a new value. Returns the
   2024 ///    modified vector.
   2025 ///
   2026 /// \headerfile <x86intrin.h>
   2027 ///
   2028 /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
   2029 ///    INSERTF128+COMPOSITE instruction.
   2030 ///
   2031 /// \param __a
   2032 ///    A vector of [4 x i64] to be used by the insert operation.
   2033 /// \param __b
   2034 ///    A 64-bit integer value. The replacement value for the insert operation.
   2035 /// \param __imm
   2036 ///    An immediate integer specifying the index of the vector element to be
   2037 ///    replaced.
   2038 /// \returns A copy of vector __a, after replacing its element indexed by __imm
   2039 ///     with __b.
   2040 static __inline __m256i __DEFAULT_FN_ATTRS
   2041 _mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
   2042 {
   2043   __v4di __c = (__v4di)__a;
   2044   __c[__imm & 3] = __b;
   2045   return (__m256i)__c;
   2046 }
   2047 #endif
   2048 
   2049 /* Conversion */
   2050 /// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
   2051 ///
   2052 /// \headerfile <x86intrin.h>
   2053 ///
   2054 /// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
   2055 ///
   2056 /// \param __a
   2057 ///    A 128-bit integer vector of [4 x i32].
   2058 /// \returns A 256-bit vector of [4 x double] containing the converted values.
   2059 static __inline __m256d __DEFAULT_FN_ATTRS
   2060 _mm256_cvtepi32_pd(__m128i __a)
   2061 {
   2062   return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
   2063 }
   2064 
   2065 /// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
   2066 ///
   2067 /// \headerfile <x86intrin.h>
   2068 ///
   2069 /// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
   2070 ///
   2071 /// \param __a
   2072 ///    A 256-bit integer vector.
   2073 /// \returns A 256-bit vector of [8 x float] containing the converted values.
   2074 static __inline __m256 __DEFAULT_FN_ATTRS
   2075 _mm256_cvtepi32_ps(__m256i __a)
   2076 {
   2077   return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
   2078 }
   2079 
   2080 /// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
   2081 ///    [4 x float].
   2082 ///
   2083 /// \headerfile <x86intrin.h>
   2084 ///
   2085 /// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
   2086 ///
   2087 /// \param __a
   2088 ///    A 256-bit vector of [4 x double].
   2089 /// \returns A 128-bit vector of [4 x float] containing the converted values.
   2090 static __inline __m128 __DEFAULT_FN_ATTRS
   2091 _mm256_cvtpd_ps(__m256d __a)
   2092 {
   2093   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
   2094 }
   2095 
   2096 /// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
   2097 ///
   2098 /// \headerfile <x86intrin.h>
   2099 ///
   2100 /// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
   2101 ///
   2102 /// \param __a
   2103 ///    A 256-bit vector of [8 x float].
   2104 /// \returns A 256-bit integer vector containing the converted values.
   2105 static __inline __m256i __DEFAULT_FN_ATTRS
   2106 _mm256_cvtps_epi32(__m256 __a)
   2107 {
   2108   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
   2109 }
   2110 
   2111 static __inline __m256d __DEFAULT_FN_ATTRS
   2112 _mm256_cvtps_pd(__m128 __a)
   2113 {
   2114   return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
   2115 }
   2116 
   2117 static __inline __m128i __DEFAULT_FN_ATTRS
   2118 _mm256_cvttpd_epi32(__m256d __a)
   2119 {
   2120   return (__m128i)__builtin_convertvector((__v4df) __a, __v4si);
   2121 }
   2122 
   2123 static __inline __m128i __DEFAULT_FN_ATTRS
   2124 _mm256_cvtpd_epi32(__m256d __a)
   2125 {
   2126   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
   2127 }
   2128 
   2129 static __inline __m256i __DEFAULT_FN_ATTRS
   2130 _mm256_cvttps_epi32(__m256 __a)
   2131 {
   2132   return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si);
   2133 }
   2134 
   2135 static __inline double __DEFAULT_FN_ATTRS
   2136 _mm256_cvtsd_f64(__m256d __a)
   2137 {
   2138  return __a[0];
   2139 }
   2140 
   2141 static __inline int __DEFAULT_FN_ATTRS
   2142 _mm256_cvtsi256_si32(__m256i __a)
   2143 {
   2144  __v8si __b = (__v8si)__a;
   2145  return __b[0];
   2146 }
   2147 
   2148 static __inline float __DEFAULT_FN_ATTRS
   2149 _mm256_cvtss_f32(__m256 __a)
   2150 {
   2151  return __a[0];
   2152 }
   2153 
   2154 /* Vector replicate */
   2155 static __inline __m256 __DEFAULT_FN_ATTRS
   2156 _mm256_movehdup_ps(__m256 __a)
   2157 {
   2158   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
   2159 }
   2160 
   2161 static __inline __m256 __DEFAULT_FN_ATTRS
   2162 _mm256_moveldup_ps(__m256 __a)
   2163 {
   2164   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
   2165 }
   2166 
   2167 static __inline __m256d __DEFAULT_FN_ATTRS
   2168 _mm256_movedup_pd(__m256d __a)
   2169 {
   2170   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
   2171 }
   2172 
   2173 /* Unpack and Interleave */
   2174 static __inline __m256d __DEFAULT_FN_ATTRS
   2175 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
   2176 {
   2177   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
   2178 }
   2179 
   2180 static __inline __m256d __DEFAULT_FN_ATTRS
   2181 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
   2182 {
   2183   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
   2184 }
   2185 
   2186 static __inline __m256 __DEFAULT_FN_ATTRS
   2187 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
   2188 {
   2189   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
   2190 }
   2191 
   2192 static __inline __m256 __DEFAULT_FN_ATTRS
   2193 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
   2194 {
   2195   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
   2196 }
   2197 
   2198 /* Bit Test */
   2199 static __inline int __DEFAULT_FN_ATTRS
   2200 _mm_testz_pd(__m128d __a, __m128d __b)
   2201 {
   2202   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
   2203 }
   2204 
   2205 static __inline int __DEFAULT_FN_ATTRS
   2206 _mm_testc_pd(__m128d __a, __m128d __b)
   2207 {
   2208   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
   2209 }
   2210 
   2211 static __inline int __DEFAULT_FN_ATTRS
   2212 _mm_testnzc_pd(__m128d __a, __m128d __b)
   2213 {
   2214   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
   2215 }
   2216 
   2217 static __inline int __DEFAULT_FN_ATTRS
   2218 _mm_testz_ps(__m128 __a, __m128 __b)
   2219 {
   2220   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
   2221 }
   2222 
   2223 static __inline int __DEFAULT_FN_ATTRS
   2224 _mm_testc_ps(__m128 __a, __m128 __b)
   2225 {
   2226   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
   2227 }
   2228 
   2229 static __inline int __DEFAULT_FN_ATTRS
   2230 _mm_testnzc_ps(__m128 __a, __m128 __b)
   2231 {
   2232   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
   2233 }
   2234 
   2235 static __inline int __DEFAULT_FN_ATTRS
   2236 _mm256_testz_pd(__m256d __a, __m256d __b)
   2237 {
   2238   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
   2239 }
   2240 
   2241 static __inline int __DEFAULT_FN_ATTRS
   2242 _mm256_testc_pd(__m256d __a, __m256d __b)
   2243 {
   2244   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
   2245 }
   2246 
   2247 static __inline int __DEFAULT_FN_ATTRS
   2248 _mm256_testnzc_pd(__m256d __a, __m256d __b)
   2249 {
   2250   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
   2251 }
   2252 
   2253 static __inline int __DEFAULT_FN_ATTRS
   2254 _mm256_testz_ps(__m256 __a, __m256 __b)
   2255 {
   2256   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
   2257 }
   2258 
   2259 static __inline int __DEFAULT_FN_ATTRS
   2260 _mm256_testc_ps(__m256 __a, __m256 __b)
   2261 {
   2262   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
   2263 }
   2264 
   2265 static __inline int __DEFAULT_FN_ATTRS
   2266 _mm256_testnzc_ps(__m256 __a, __m256 __b)
   2267 {
   2268   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
   2269 }
   2270 
   2271 static __inline int __DEFAULT_FN_ATTRS
   2272 _mm256_testz_si256(__m256i __a, __m256i __b)
   2273 {
   2274   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
   2275 }
   2276 
   2277 static __inline int __DEFAULT_FN_ATTRS
   2278 _mm256_testc_si256(__m256i __a, __m256i __b)
   2279 {
   2280   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
   2281 }
   2282 
   2283 static __inline int __DEFAULT_FN_ATTRS
   2284 _mm256_testnzc_si256(__m256i __a, __m256i __b)
   2285 {
   2286   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
   2287 }
   2288 
   2289 /* Vector extract sign mask */
   2290 static __inline int __DEFAULT_FN_ATTRS
   2291 _mm256_movemask_pd(__m256d __a)
   2292 {
   2293   return __builtin_ia32_movmskpd256((__v4df)__a);
   2294 }
   2295 
   2296 static __inline int __DEFAULT_FN_ATTRS
   2297 _mm256_movemask_ps(__m256 __a)
   2298 {
   2299   return __builtin_ia32_movmskps256((__v8sf)__a);
   2300 }
   2301 
   2302 /* Vector __zero */
   2303 static __inline void __DEFAULT_FN_ATTRS
   2304 _mm256_zeroall(void)
   2305 {
   2306   __builtin_ia32_vzeroall();
   2307 }
   2308 
   2309 static __inline void __DEFAULT_FN_ATTRS
   2310 _mm256_zeroupper(void)
   2311 {
   2312   __builtin_ia32_vzeroupper();
   2313 }
   2314 
   2315 /* Vector load with broadcast */
   2316 static __inline __m128 __DEFAULT_FN_ATTRS
   2317 _mm_broadcast_ss(float const *__a)
   2318 {
   2319   float __f = *__a;
   2320   return (__m128)(__v4sf){ __f, __f, __f, __f };
   2321 }
   2322 
   2323 static __inline __m256d __DEFAULT_FN_ATTRS
   2324 _mm256_broadcast_sd(double const *__a)
   2325 {
   2326   double __d = *__a;
   2327   return (__m256d)(__v4df){ __d, __d, __d, __d };
   2328 }
   2329 
   2330 static __inline __m256 __DEFAULT_FN_ATTRS
   2331 _mm256_broadcast_ss(float const *__a)
   2332 {
   2333   float __f = *__a;
   2334   return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
   2335 }
   2336 
   2337 static __inline __m256d __DEFAULT_FN_ATTRS
   2338 _mm256_broadcast_pd(__m128d const *__a)
   2339 {
   2340   return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
   2341 }
   2342 
   2343 static __inline __m256 __DEFAULT_FN_ATTRS
   2344 _mm256_broadcast_ps(__m128 const *__a)
   2345 {
   2346   return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
   2347 }
   2348 
   2349 /* SIMD load ops */
   2350 static __inline __m256d __DEFAULT_FN_ATTRS
   2351 _mm256_load_pd(double const *__p)
   2352 {
   2353   return *(__m256d *)__p;
   2354 }
   2355 
   2356 static __inline __m256 __DEFAULT_FN_ATTRS
   2357 _mm256_load_ps(float const *__p)
   2358 {
   2359   return *(__m256 *)__p;
   2360 }
   2361 
   2362 static __inline __m256d __DEFAULT_FN_ATTRS
   2363 _mm256_loadu_pd(double const *__p)
   2364 {
   2365   struct __loadu_pd {
   2366     __m256d __v;
   2367   } __attribute__((__packed__, __may_alias__));
   2368   return ((struct __loadu_pd*)__p)->__v;
   2369 }
   2370 
   2371 static __inline __m256 __DEFAULT_FN_ATTRS
   2372 _mm256_loadu_ps(float const *__p)
   2373 {
   2374   struct __loadu_ps {
   2375     __m256 __v;
   2376   } __attribute__((__packed__, __may_alias__));
   2377   return ((struct __loadu_ps*)__p)->__v;
   2378 }
   2379 
   2380 static __inline __m256i __DEFAULT_FN_ATTRS
   2381 _mm256_load_si256(__m256i const *__p)
   2382 {
   2383   return *__p;
   2384 }
   2385 
   2386 static __inline __m256i __DEFAULT_FN_ATTRS
   2387 _mm256_loadu_si256(__m256i const *__p)
   2388 {
   2389   struct __loadu_si256 {
   2390     __m256i __v;
   2391   } __attribute__((__packed__, __may_alias__));
   2392   return ((struct __loadu_si256*)__p)->__v;
   2393 }
   2394 
   2395 static __inline __m256i __DEFAULT_FN_ATTRS
   2396 _mm256_lddqu_si256(__m256i const *__p)
   2397 {
   2398   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
   2399 }
   2400 
   2401 /* SIMD store ops */
   2402 static __inline void __DEFAULT_FN_ATTRS
   2403 _mm256_store_pd(double *__p, __m256d __a)
   2404 {
   2405   *(__m256d *)__p = __a;
   2406 }
   2407 
   2408 static __inline void __DEFAULT_FN_ATTRS
   2409 _mm256_store_ps(float *__p, __m256 __a)
   2410 {
   2411   *(__m256 *)__p = __a;
   2412 }
   2413 
   2414 static __inline void __DEFAULT_FN_ATTRS
   2415 _mm256_storeu_pd(double *__p, __m256d __a)
   2416 {
   2417   struct __storeu_pd {
   2418     __m256d __v;
   2419   } __attribute__((__packed__, __may_alias__));
   2420   ((struct __storeu_pd*)__p)->__v = __a;
   2421 }
   2422 
   2423 static __inline void __DEFAULT_FN_ATTRS
   2424 _mm256_storeu_ps(float *__p, __m256 __a)
   2425 {
   2426   struct __storeu_ps {
   2427     __m256 __v;
   2428   } __attribute__((__packed__, __may_alias__));
   2429   ((struct __storeu_ps*)__p)->__v = __a;
   2430 }
   2431 
   2432 static __inline void __DEFAULT_FN_ATTRS
   2433 _mm256_store_si256(__m256i *__p, __m256i __a)
   2434 {
   2435   *__p = __a;
   2436 }
   2437 
   2438 static __inline void __DEFAULT_FN_ATTRS
   2439 _mm256_storeu_si256(__m256i *__p, __m256i __a)
   2440 {
   2441   struct __storeu_si256 {
   2442     __m256i __v;
   2443   } __attribute__((__packed__, __may_alias__));
   2444   ((struct __storeu_si256*)__p)->__v = __a;
   2445 }
   2446 
   2447 /* Conditional load ops */
   2448 static __inline __m128d __DEFAULT_FN_ATTRS
   2449 _mm_maskload_pd(double const *__p, __m128i __m)
   2450 {
   2451   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
   2452 }
   2453 
   2454 static __inline __m256d __DEFAULT_FN_ATTRS
   2455 _mm256_maskload_pd(double const *__p, __m256i __m)
   2456 {
   2457   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
   2458                                                (__v4di)__m);
   2459 }
   2460 
   2461 static __inline __m128 __DEFAULT_FN_ATTRS
   2462 _mm_maskload_ps(float const *__p, __m128i __m)
   2463 {
   2464   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
   2465 }
   2466 
   2467 static __inline __m256 __DEFAULT_FN_ATTRS
   2468 _mm256_maskload_ps(float const *__p, __m256i __m)
   2469 {
   2470   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
   2471 }
   2472 
   2473 /* Conditional store ops */
   2474 static __inline void __DEFAULT_FN_ATTRS
   2475 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
   2476 {
   2477   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
   2478 }
   2479 
   2480 static __inline void __DEFAULT_FN_ATTRS
   2481 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
   2482 {
   2483   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
   2484 }
   2485 
   2486 static __inline void __DEFAULT_FN_ATTRS
   2487 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
   2488 {
   2489   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
   2490 }
   2491 
   2492 static __inline void __DEFAULT_FN_ATTRS
   2493 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
   2494 {
   2495   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
   2496 }
   2497 
   2498 /* Cacheability support ops */
   2499 static __inline void __DEFAULT_FN_ATTRS
   2500 _mm256_stream_si256(__m256i *__a, __m256i __b)
   2501 {
   2502   __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
   2503 }
   2504 
   2505 static __inline void __DEFAULT_FN_ATTRS
   2506 _mm256_stream_pd(double *__a, __m256d __b)
   2507 {
   2508   __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
   2509 }
   2510 
   2511 static __inline void __DEFAULT_FN_ATTRS
   2512 _mm256_stream_ps(float *__p, __m256 __a)
   2513 {
   2514   __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
   2515 }
   2516 
   2517 /* Create vectors */
   2518 static __inline__ __m256d __DEFAULT_FN_ATTRS
   2519 _mm256_undefined_pd(void)
   2520 {
   2521   return (__m256d)__builtin_ia32_undef256();
   2522 }
   2523 
   2524 static __inline__ __m256 __DEFAULT_FN_ATTRS
   2525 _mm256_undefined_ps(void)
   2526 {
   2527   return (__m256)__builtin_ia32_undef256();
   2528 }
   2529 
   2530 static __inline__ __m256i __DEFAULT_FN_ATTRS
   2531 _mm256_undefined_si256(void)
   2532 {
   2533   return (__m256i)__builtin_ia32_undef256();
   2534 }
   2535 
   2536 static __inline __m256d __DEFAULT_FN_ATTRS
   2537 _mm256_set_pd(double __a, double __b, double __c, double __d)
   2538 {
   2539   return (__m256d){ __d, __c, __b, __a };
   2540 }
   2541 
   2542 static __inline __m256 __DEFAULT_FN_ATTRS
   2543 _mm256_set_ps(float __a, float __b, float __c, float __d,
   2544               float __e, float __f, float __g, float __h)
   2545 {
   2546   return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
   2547 }
   2548 
   2549 static __inline __m256i __DEFAULT_FN_ATTRS
   2550 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
   2551                  int __i4, int __i5, int __i6, int __i7)
   2552 {
   2553   return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
   2554 }
   2555 
   2556 static __inline __m256i __DEFAULT_FN_ATTRS
   2557 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
   2558                  short __w11, short __w10, short __w09, short __w08,
   2559                  short __w07, short __w06, short __w05, short __w04,
   2560                  short __w03, short __w02, short __w01, short __w00)
   2561 {
   2562   return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
   2563     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
   2564 }
   2565 
   2566 static __inline __m256i __DEFAULT_FN_ATTRS
   2567 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
   2568                 char __b27, char __b26, char __b25, char __b24,
   2569                 char __b23, char __b22, char __b21, char __b20,
   2570                 char __b19, char __b18, char __b17, char __b16,
   2571                 char __b15, char __b14, char __b13, char __b12,
   2572                 char __b11, char __b10, char __b09, char __b08,
   2573                 char __b07, char __b06, char __b05, char __b04,
   2574                 char __b03, char __b02, char __b01, char __b00)
   2575 {
   2576   return (__m256i)(__v32qi){
   2577     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
   2578     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
   2579     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
   2580     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
   2581   };
   2582 }
   2583 
   2584 static __inline __m256i __DEFAULT_FN_ATTRS
   2585 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
   2586 {
   2587   return (__m256i)(__v4di){ __d, __c, __b, __a };
   2588 }
   2589 
   2590 /* Create vectors with elements in reverse order */
   2591 static __inline __m256d __DEFAULT_FN_ATTRS
   2592 _mm256_setr_pd(double __a, double __b, double __c, double __d)
   2593 {
   2594   return (__m256d){ __a, __b, __c, __d };
   2595 }
   2596 
   2597 static __inline __m256 __DEFAULT_FN_ATTRS
   2598 _mm256_setr_ps(float __a, float __b, float __c, float __d,
   2599                float __e, float __f, float __g, float __h)
   2600 {
   2601   return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
   2602 }
   2603 
   2604 static __inline __m256i __DEFAULT_FN_ATTRS
   2605 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
   2606                   int __i4, int __i5, int __i6, int __i7)
   2607 {
   2608   return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
   2609 }
   2610 
   2611 static __inline __m256i __DEFAULT_FN_ATTRS
   2612 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
   2613        short __w11, short __w10, short __w09, short __w08,
   2614        short __w07, short __w06, short __w05, short __w04,
   2615        short __w03, short __w02, short __w01, short __w00)
   2616 {
   2617   return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
   2618     __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
   2619 }
   2620 
   2621 static __inline __m256i __DEFAULT_FN_ATTRS
   2622 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
   2623                  char __b27, char __b26, char __b25, char __b24,
   2624                  char __b23, char __b22, char __b21, char __b20,
   2625                  char __b19, char __b18, char __b17, char __b16,
   2626                  char __b15, char __b14, char __b13, char __b12,
   2627                  char __b11, char __b10, char __b09, char __b08,
   2628                  char __b07, char __b06, char __b05, char __b04,
   2629                  char __b03, char __b02, char __b01, char __b00)
   2630 {
   2631   return (__m256i)(__v32qi){
   2632     __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
   2633     __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
   2634     __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
   2635     __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
   2636 }
   2637 
   2638 static __inline __m256i __DEFAULT_FN_ATTRS
   2639 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
   2640 {
   2641   return (__m256i)(__v4di){ __a, __b, __c, __d };
   2642 }
   2643 
   2644 /* Create vectors with repeated elements */
   2645 static __inline __m256d __DEFAULT_FN_ATTRS
   2646 _mm256_set1_pd(double __w)
   2647 {
   2648   return (__m256d){ __w, __w, __w, __w };
   2649 }
   2650 
   2651 static __inline __m256 __DEFAULT_FN_ATTRS
   2652 _mm256_set1_ps(float __w)
   2653 {
   2654   return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
   2655 }
   2656 
   2657 static __inline __m256i __DEFAULT_FN_ATTRS
   2658 _mm256_set1_epi32(int __i)
   2659 {
   2660   return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
   2661 }
   2662 
   2663 static __inline __m256i __DEFAULT_FN_ATTRS
   2664 _mm256_set1_epi16(short __w)
   2665 {
   2666   return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
   2667     __w, __w, __w, __w, __w, __w };
   2668 }
   2669 
   2670 static __inline __m256i __DEFAULT_FN_ATTRS
   2671 _mm256_set1_epi8(char __b)
   2672 {
   2673   return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
   2674     __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
   2675     __b, __b, __b, __b, __b, __b, __b };
   2676 }
   2677 
   2678 static __inline __m256i __DEFAULT_FN_ATTRS
   2679 _mm256_set1_epi64x(long long __q)
   2680 {
   2681   return (__m256i)(__v4di){ __q, __q, __q, __q };
   2682 }
   2683 
   2684 /* Create __zeroed vectors */
   2685 static __inline __m256d __DEFAULT_FN_ATTRS
   2686 _mm256_setzero_pd(void)
   2687 {
   2688   return (__m256d){ 0, 0, 0, 0 };
   2689 }
   2690 
   2691 static __inline __m256 __DEFAULT_FN_ATTRS
   2692 _mm256_setzero_ps(void)
   2693 {
   2694   return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
   2695 }
   2696 
   2697 static __inline __m256i __DEFAULT_FN_ATTRS
   2698 _mm256_setzero_si256(void)
   2699 {
   2700   return (__m256i){ 0LL, 0LL, 0LL, 0LL };
   2701 }
   2702 
   2703 /* Cast between vector types */
   2704 static __inline __m256 __DEFAULT_FN_ATTRS
   2705 _mm256_castpd_ps(__m256d __a)
   2706 {
   2707   return (__m256)__a;
   2708 }
   2709 
   2710 static __inline __m256i __DEFAULT_FN_ATTRS
   2711 _mm256_castpd_si256(__m256d __a)
   2712 {
   2713   return (__m256i)__a;
   2714 }
   2715 
   2716 static __inline __m256d __DEFAULT_FN_ATTRS
   2717 _mm256_castps_pd(__m256 __a)
   2718 {
   2719   return (__m256d)__a;
   2720 }
   2721 
   2722 static __inline __m256i __DEFAULT_FN_ATTRS
   2723 _mm256_castps_si256(__m256 __a)
   2724 {
   2725   return (__m256i)__a;
   2726 }
   2727 
   2728 static __inline __m256 __DEFAULT_FN_ATTRS
   2729 _mm256_castsi256_ps(__m256i __a)
   2730 {
   2731   return (__m256)__a;
   2732 }
   2733 
   2734 static __inline __m256d __DEFAULT_FN_ATTRS
   2735 _mm256_castsi256_pd(__m256i __a)
   2736 {
   2737   return (__m256d)__a;
   2738 }
   2739 
   2740 static __inline __m128d __DEFAULT_FN_ATTRS
   2741 _mm256_castpd256_pd128(__m256d __a)
   2742 {
   2743   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
   2744 }
   2745 
   2746 static __inline __m128 __DEFAULT_FN_ATTRS
   2747 _mm256_castps256_ps128(__m256 __a)
   2748 {
   2749   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
   2750 }
   2751 
   2752 static __inline __m128i __DEFAULT_FN_ATTRS
   2753 _mm256_castsi256_si128(__m256i __a)
   2754 {
   2755   return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
   2756 }
   2757 
   2758 static __inline __m256d __DEFAULT_FN_ATTRS
   2759 _mm256_castpd128_pd256(__m128d __a)
   2760 {
   2761   return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
   2762 }
   2763 
   2764 static __inline __m256 __DEFAULT_FN_ATTRS
   2765 _mm256_castps128_ps256(__m128 __a)
   2766 {
   2767   return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
   2768 }
   2769 
   2770 static __inline __m256i __DEFAULT_FN_ATTRS
   2771 _mm256_castsi128_si256(__m128i __a)
   2772 {
   2773   return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
   2774 }
   2775 
   2776 /*
   2777    Vector insert.
   2778    We use macros rather than inlines because we only want to accept
   2779    invocations where the immediate M is a constant expression.
   2780 */
   2781 #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
   2782   (__m256)__builtin_shufflevector( \
   2783     (__v8sf)(__m256)(V1), \
   2784     (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
   2785     (((M) & 1) ?  0 :  8), \
   2786     (((M) & 1) ?  1 :  9), \
   2787     (((M) & 1) ?  2 : 10), \
   2788     (((M) & 1) ?  3 : 11), \
   2789     (((M) & 1) ?  8 :  4), \
   2790     (((M) & 1) ?  9 :  5), \
   2791     (((M) & 1) ? 10 :  6), \
   2792     (((M) & 1) ? 11 :  7) );})
   2793 
   2794 #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
   2795   (__m256d)__builtin_shufflevector( \
   2796     (__v4df)(__m256d)(V1), \
   2797     (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
   2798     (((M) & 1) ? 0 : 4), \
   2799     (((M) & 1) ? 1 : 5), \
   2800     (((M) & 1) ? 4 : 2), \
   2801     (((M) & 1) ? 5 : 3) );})
   2802 
   2803 #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
   2804   (__m256i)__builtin_shufflevector( \
   2805     (__v4di)(__m256i)(V1), \
   2806     (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
   2807     (((M) & 1) ? 0 : 4), \
   2808     (((M) & 1) ? 1 : 5), \
   2809     (((M) & 1) ? 4 : 2), \
   2810     (((M) & 1) ? 5 : 3) );})
   2811 
   2812 /*
   2813    Vector extract.
   2814    We use macros rather than inlines because we only want to accept
   2815    invocations where the immediate M is a constant expression.
   2816 */
   2817 #define _mm256_extractf128_ps(V, M) __extension__ ({ \
   2818   (__m128)__builtin_shufflevector( \
   2819     (__v8sf)(__m256)(V), \
   2820     (__v8sf)(_mm256_undefined_ps()), \
   2821     (((M) & 1) ? 4 : 0), \
   2822     (((M) & 1) ? 5 : 1), \
   2823     (((M) & 1) ? 6 : 2), \
   2824     (((M) & 1) ? 7 : 3) );})
   2825 
   2826 #define _mm256_extractf128_pd(V, M) __extension__ ({ \
   2827   (__m128d)__builtin_shufflevector( \
   2828     (__v4df)(__m256d)(V), \
   2829     (__v4df)(_mm256_undefined_pd()), \
   2830     (((M) & 1) ? 2 : 0), \
   2831     (((M) & 1) ? 3 : 1) );})
   2832 
   2833 #define _mm256_extractf128_si256(V, M) __extension__ ({ \
   2834   (__m128i)__builtin_shufflevector( \
   2835     (__v4di)(__m256i)(V), \
   2836     (__v4di)(_mm256_undefined_si256()), \
   2837     (((M) & 1) ? 2 : 0), \
   2838     (((M) & 1) ? 3 : 1) );})
   2839 
   2840 /* SIMD load ops (unaligned) */
   2841 static __inline __m256 __DEFAULT_FN_ATTRS
   2842 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
   2843 {
   2844   __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
   2845   return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
   2846 }
   2847 
   2848 static __inline __m256d __DEFAULT_FN_ATTRS
   2849 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
   2850 {
   2851   __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
   2852   return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
   2853 }
   2854 
   2855 static __inline __m256i __DEFAULT_FN_ATTRS
   2856 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
   2857 {
   2858   __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
   2859   return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
   2860 }
   2861 
   2862 /* SIMD store ops (unaligned) */
   2863 static __inline void __DEFAULT_FN_ATTRS
   2864 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
   2865 {
   2866   __m128 __v128;
   2867 
   2868   __v128 = _mm256_castps256_ps128(__a);
   2869   _mm_storeu_ps(__addr_lo, __v128);
   2870   __v128 = _mm256_extractf128_ps(__a, 1);
   2871   _mm_storeu_ps(__addr_hi, __v128);
   2872 }
   2873 
   2874 static __inline void __DEFAULT_FN_ATTRS
   2875 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
   2876 {
   2877   __m128d __v128;
   2878 
   2879   __v128 = _mm256_castpd256_pd128(__a);
   2880   _mm_storeu_pd(__addr_lo, __v128);
   2881   __v128 = _mm256_extractf128_pd(__a, 1);
   2882   _mm_storeu_pd(__addr_hi, __v128);
   2883 }
   2884 
   2885 static __inline void __DEFAULT_FN_ATTRS
   2886 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
   2887 {
   2888   __m128i __v128;
   2889 
   2890   __v128 = _mm256_castsi256_si128(__a);
   2891   _mm_storeu_si128(__addr_lo, __v128);
   2892   __v128 = _mm256_extractf128_si256(__a, 1);
   2893   _mm_storeu_si128(__addr_hi, __v128);
   2894 }
   2895 
   2896 static __inline __m256 __DEFAULT_FN_ATTRS
   2897 _mm256_set_m128 (__m128 __hi, __m128 __lo) {
   2898   return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
   2899 }
   2900 
   2901 static __inline __m256d __DEFAULT_FN_ATTRS
   2902 _mm256_set_m128d (__m128d __hi, __m128d __lo) {
   2903   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2904 }
   2905 
   2906 static __inline __m256i __DEFAULT_FN_ATTRS
   2907 _mm256_set_m128i (__m128i __hi, __m128i __lo) {
   2908   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2909 }
   2910 
   2911 static __inline __m256 __DEFAULT_FN_ATTRS
   2912 _mm256_setr_m128 (__m128 __lo, __m128 __hi) {
   2913   return _mm256_set_m128(__hi, __lo);
   2914 }
   2915 
   2916 static __inline __m256d __DEFAULT_FN_ATTRS
   2917 _mm256_setr_m128d (__m128d __lo, __m128d __hi) {
   2918   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2919 }
   2920 
   2921 static __inline __m256i __DEFAULT_FN_ATTRS
   2922 _mm256_setr_m128i (__m128i __lo, __m128i __hi) {
   2923   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2924 }
   2925 
   2926 #undef __DEFAULT_FN_ATTRS
   2927 
   2928 #endif /* __AVXINTRIN_H */
   2929