Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some templates that are useful if you are working with the
     11 // STL at all.
     12 //
     13 // No library is required when using these functions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_STLEXTRAS_H
     18 #define LLVM_ADT_STLEXTRAS_H
     19 
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/iterator.h"
     23 #include "llvm/ADT/iterator_range.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include <algorithm>
     26 #include <cassert>
     27 #include <cstddef>
     28 #include <cstdint>
     29 #include <cstdlib>
     30 #include <functional>
     31 #include <initializer_list>
     32 #include <iterator>
     33 #include <limits>
     34 #include <memory>
     35 #include <tuple>
     36 #include <type_traits>
     37 #include <utility>
     38 
     39 #ifdef EXPENSIVE_CHECKS
     40 #include <random> // for std::mt19937
     41 #endif
     42 
     43 namespace llvm {
     44 
     45 // Only used by compiler if both template types are the same.  Useful when
     46 // using SFINAE to test for the existence of member functions.
     47 template <typename T, T> struct SameType;
     48 
     49 namespace detail {
     50 
     51 template <typename RangeT>
     52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
     53 
     54 template <typename RangeT>
     55 using ValueOfRange = typename std::remove_reference<decltype(
     56     *std::begin(std::declval<RangeT &>()))>::type;
     57 
     58 } // end namespace detail
     59 
     60 //===----------------------------------------------------------------------===//
     61 //     Extra additions to <type_traits>
     62 //===----------------------------------------------------------------------===//
     63 
     64 template <typename T>
     65 struct negation : std::integral_constant<bool, !bool(T::value)> {};
     66 
     67 template <typename...> struct conjunction : std::true_type {};
     68 template <typename B1> struct conjunction<B1> : B1 {};
     69 template <typename B1, typename... Bn>
     70 struct conjunction<B1, Bn...>
     71     : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
     72 
     73 //===----------------------------------------------------------------------===//
     74 //     Extra additions to <functional>
     75 //===----------------------------------------------------------------------===//
     76 
     77 template <class Ty> struct identity {
     78   using argument_type = Ty;
     79 
     80   Ty &operator()(Ty &self) const {
     81     return self;
     82   }
     83   const Ty &operator()(const Ty &self) const {
     84     return self;
     85   }
     86 };
     87 
     88 template <class Ty> struct less_ptr {
     89   bool operator()(const Ty* left, const Ty* right) const {
     90     return *left < *right;
     91   }
     92 };
     93 
     94 template <class Ty> struct greater_ptr {
     95   bool operator()(const Ty* left, const Ty* right) const {
     96     return *right < *left;
     97   }
     98 };
     99 
    100 /// An efficient, type-erasing, non-owning reference to a callable. This is
    101 /// intended for use as the type of a function parameter that is not used
    102 /// after the function in question returns.
    103 ///
    104 /// This class does not own the callable, so it is not in general safe to store
    105 /// a function_ref.
    106 template<typename Fn> class function_ref;
    107 
    108 template<typename Ret, typename ...Params>
    109 class function_ref<Ret(Params...)> {
    110   Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
    111   intptr_t callable;
    112 
    113   template<typename Callable>
    114   static Ret callback_fn(intptr_t callable, Params ...params) {
    115     return (*reinterpret_cast<Callable*>(callable))(
    116         std::forward<Params>(params)...);
    117   }
    118 
    119 public:
    120   function_ref() = default;
    121   function_ref(std::nullptr_t) {}
    122 
    123   template <typename Callable>
    124   function_ref(Callable &&callable,
    125                typename std::enable_if<
    126                    !std::is_same<typename std::remove_reference<Callable>::type,
    127                                  function_ref>::value>::type * = nullptr)
    128       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
    129         callable(reinterpret_cast<intptr_t>(&callable)) {}
    130 
    131   Ret operator()(Params ...params) const {
    132     return callback(callable, std::forward<Params>(params)...);
    133   }
    134 
    135   operator bool() const { return callback; }
    136 };
    137 
    138 // deleter - Very very very simple method that is used to invoke operator
    139 // delete on something.  It is used like this:
    140 //
    141 //   for_each(V.begin(), B.end(), deleter<Interval>);
    142 template <class T>
    143 inline void deleter(T *Ptr) {
    144   delete Ptr;
    145 }
    146 
    147 //===----------------------------------------------------------------------===//
    148 //     Extra additions to <iterator>
    149 //===----------------------------------------------------------------------===//
    150 
    151 namespace adl_detail {
    152 
    153 using std::begin;
    154 
    155 template <typename ContainerTy>
    156 auto adl_begin(ContainerTy &&container)
    157     -> decltype(begin(std::forward<ContainerTy>(container))) {
    158   return begin(std::forward<ContainerTy>(container));
    159 }
    160 
    161 using std::end;
    162 
    163 template <typename ContainerTy>
    164 auto adl_end(ContainerTy &&container)
    165     -> decltype(end(std::forward<ContainerTy>(container))) {
    166   return end(std::forward<ContainerTy>(container));
    167 }
    168 
    169 using std::swap;
    170 
    171 template <typename T>
    172 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
    173                                                        std::declval<T>()))) {
    174   swap(std::forward<T>(lhs), std::forward<T>(rhs));
    175 }
    176 
    177 } // end namespace adl_detail
    178 
    179 template <typename ContainerTy>
    180 auto adl_begin(ContainerTy &&container)
    181     -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
    182   return adl_detail::adl_begin(std::forward<ContainerTy>(container));
    183 }
    184 
    185 template <typename ContainerTy>
    186 auto adl_end(ContainerTy &&container)
    187     -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
    188   return adl_detail::adl_end(std::forward<ContainerTy>(container));
    189 }
    190 
    191 template <typename T>
    192 void adl_swap(T &&lhs, T &&rhs) noexcept(
    193     noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
    194   adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
    195 }
    196 
    197 // mapped_iterator - This is a simple iterator adapter that causes a function to
    198 // be applied whenever operator* is invoked on the iterator.
    199 
    200 template <typename ItTy, typename FuncTy,
    201           typename FuncReturnTy =
    202             decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
    203 class mapped_iterator
    204     : public iterator_adaptor_base<
    205              mapped_iterator<ItTy, FuncTy>, ItTy,
    206              typename std::iterator_traits<ItTy>::iterator_category,
    207              typename std::remove_reference<FuncReturnTy>::type> {
    208 public:
    209   mapped_iterator(ItTy U, FuncTy F)
    210     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
    211 
    212   ItTy getCurrent() { return this->I; }
    213 
    214   FuncReturnTy operator*() { return F(*this->I); }
    215 
    216 private:
    217   FuncTy F;
    218 };
    219 
    220 // map_iterator - Provide a convenient way to create mapped_iterators, just like
    221 // make_pair is useful for creating pairs...
    222 template <class ItTy, class FuncTy>
    223 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
    224   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
    225 }
    226 
    227 /// Helper to determine if type T has a member called rbegin().
    228 template <typename Ty> class has_rbegin_impl {
    229   using yes = char[1];
    230   using no = char[2];
    231 
    232   template <typename Inner>
    233   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
    234 
    235   template <typename>
    236   static no& test(...);
    237 
    238 public:
    239   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
    240 };
    241 
    242 /// Metafunction to determine if T& or T has a member called rbegin().
    243 template <typename Ty>
    244 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
    245 };
    246 
    247 // Returns an iterator_range over the given container which iterates in reverse.
    248 // Note that the container must have rbegin()/rend() methods for this to work.
    249 template <typename ContainerTy>
    250 auto reverse(ContainerTy &&C,
    251              typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
    252                  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
    253   return make_range(C.rbegin(), C.rend());
    254 }
    255 
    256 // Returns a std::reverse_iterator wrapped around the given iterator.
    257 template <typename IteratorTy>
    258 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
    259   return std::reverse_iterator<IteratorTy>(It);
    260 }
    261 
    262 // Returns an iterator_range over the given container which iterates in reverse.
    263 // Note that the container must have begin()/end() methods which return
    264 // bidirectional iterators for this to work.
    265 template <typename ContainerTy>
    266 auto reverse(
    267     ContainerTy &&C,
    268     typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
    269     -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
    270                            llvm::make_reverse_iterator(std::begin(C)))) {
    271   return make_range(llvm::make_reverse_iterator(std::end(C)),
    272                     llvm::make_reverse_iterator(std::begin(C)));
    273 }
    274 
    275 /// An iterator adaptor that filters the elements of given inner iterators.
    276 ///
    277 /// The predicate parameter should be a callable object that accepts the wrapped
    278 /// iterator's reference type and returns a bool. When incrementing or
    279 /// decrementing the iterator, it will call the predicate on each element and
    280 /// skip any where it returns false.
    281 ///
    282 /// \code
    283 ///   int A[] = { 1, 2, 3, 4 };
    284 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
    285 ///   // R contains { 1, 3 }.
    286 /// \endcode
    287 ///
    288 /// Note: filter_iterator_base implements support for forward iteration.
    289 /// filter_iterator_impl exists to provide support for bidirectional iteration,
    290 /// conditional on whether the wrapped iterator supports it.
    291 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
    292 class filter_iterator_base
    293     : public iterator_adaptor_base<
    294           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
    295           WrappedIteratorT,
    296           typename std::common_type<
    297               IterTag, typename std::iterator_traits<
    298                            WrappedIteratorT>::iterator_category>::type> {
    299   using BaseT = iterator_adaptor_base<
    300       filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
    301       WrappedIteratorT,
    302       typename std::common_type<
    303           IterTag, typename std::iterator_traits<
    304                        WrappedIteratorT>::iterator_category>::type>;
    305 
    306 protected:
    307   WrappedIteratorT End;
    308   PredicateT Pred;
    309 
    310   void findNextValid() {
    311     while (this->I != End && !Pred(*this->I))
    312       BaseT::operator++();
    313   }
    314 
    315   // Construct the iterator. The begin iterator needs to know where the end
    316   // is, so that it can properly stop when it gets there. The end iterator only
    317   // needs the predicate to support bidirectional iteration.
    318   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
    319                        PredicateT Pred)
    320       : BaseT(Begin), End(End), Pred(Pred) {
    321     findNextValid();
    322   }
    323 
    324 public:
    325   using BaseT::operator++;
    326 
    327   filter_iterator_base &operator++() {
    328     BaseT::operator++();
    329     findNextValid();
    330     return *this;
    331   }
    332 };
    333 
    334 /// Specialization of filter_iterator_base for forward iteration only.
    335 template <typename WrappedIteratorT, typename PredicateT,
    336           typename IterTag = std::forward_iterator_tag>
    337 class filter_iterator_impl
    338     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
    339   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
    340 
    341 public:
    342   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
    343                        PredicateT Pred)
    344       : BaseT(Begin, End, Pred) {}
    345 };
    346 
    347 /// Specialization of filter_iterator_base for bidirectional iteration.
    348 template <typename WrappedIteratorT, typename PredicateT>
    349 class filter_iterator_impl<WrappedIteratorT, PredicateT,
    350                            std::bidirectional_iterator_tag>
    351     : public filter_iterator_base<WrappedIteratorT, PredicateT,
    352                                   std::bidirectional_iterator_tag> {
    353   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
    354                                      std::bidirectional_iterator_tag>;
    355   void findPrevValid() {
    356     while (!this->Pred(*this->I))
    357       BaseT::operator--();
    358   }
    359 
    360 public:
    361   using BaseT::operator--;
    362 
    363   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
    364                        PredicateT Pred)
    365       : BaseT(Begin, End, Pred) {}
    366 
    367   filter_iterator_impl &operator--() {
    368     BaseT::operator--();
    369     findPrevValid();
    370     return *this;
    371   }
    372 };
    373 
    374 namespace detail {
    375 
    376 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
    377   using type = std::forward_iterator_tag;
    378 };
    379 
    380 template <> struct fwd_or_bidi_tag_impl<true> {
    381   using type = std::bidirectional_iterator_tag;
    382 };
    383 
    384 /// Helper which sets its type member to forward_iterator_tag if the category
    385 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
    386 /// bidirectional_iterator_tag otherwise.
    387 template <typename IterT> struct fwd_or_bidi_tag {
    388   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
    389       std::bidirectional_iterator_tag,
    390       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
    391 };
    392 
    393 } // namespace detail
    394 
    395 /// Defines filter_iterator to a suitable specialization of
    396 /// filter_iterator_impl, based on the underlying iterator's category.
    397 template <typename WrappedIteratorT, typename PredicateT>
    398 using filter_iterator = filter_iterator_impl<
    399     WrappedIteratorT, PredicateT,
    400     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
    401 
    402 /// Convenience function that takes a range of elements and a predicate,
    403 /// and return a new filter_iterator range.
    404 ///
    405 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
    406 /// lifetime of that temporary is not kept by the returned range object, and the
    407 /// temporary is going to be dropped on the floor after the make_iterator_range
    408 /// full expression that contains this function call.
    409 template <typename RangeT, typename PredicateT>
    410 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
    411 make_filter_range(RangeT &&Range, PredicateT Pred) {
    412   using FilterIteratorT =
    413       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
    414   return make_range(
    415       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
    416                       std::end(std::forward<RangeT>(Range)), Pred),
    417       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
    418                       std::end(std::forward<RangeT>(Range)), Pred));
    419 }
    420 
    421 // forward declarations required by zip_shortest/zip_first
    422 template <typename R, typename UnaryPredicate>
    423 bool all_of(R &&range, UnaryPredicate P);
    424 
    425 template <size_t... I> struct index_sequence;
    426 
    427 template <class... Ts> struct index_sequence_for;
    428 
    429 namespace detail {
    430 
    431 using std::declval;
    432 
    433 // We have to alias this since inlining the actual type at the usage site
    434 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
    435 template<typename... Iters> struct ZipTupleType {
    436   using type = std::tuple<decltype(*declval<Iters>())...>;
    437 };
    438 
    439 template <typename ZipType, typename... Iters>
    440 using zip_traits = iterator_facade_base<
    441     ZipType, typename std::common_type<std::bidirectional_iterator_tag,
    442                                        typename std::iterator_traits<
    443                                            Iters>::iterator_category...>::type,
    444     // ^ TODO: Implement random access methods.
    445     typename ZipTupleType<Iters...>::type,
    446     typename std::iterator_traits<typename std::tuple_element<
    447         0, std::tuple<Iters...>>::type>::difference_type,
    448     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
    449     // inner iterators have the same difference_type. It would fail if, for
    450     // instance, the second field's difference_type were non-numeric while the
    451     // first is.
    452     typename ZipTupleType<Iters...>::type *,
    453     typename ZipTupleType<Iters...>::type>;
    454 
    455 template <typename ZipType, typename... Iters>
    456 struct zip_common : public zip_traits<ZipType, Iters...> {
    457   using Base = zip_traits<ZipType, Iters...>;
    458   using value_type = typename Base::value_type;
    459 
    460   std::tuple<Iters...> iterators;
    461 
    462 protected:
    463   template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
    464     return value_type(*std::get<Ns>(iterators)...);
    465   }
    466 
    467   template <size_t... Ns>
    468   decltype(iterators) tup_inc(index_sequence<Ns...>) const {
    469     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
    470   }
    471 
    472   template <size_t... Ns>
    473   decltype(iterators) tup_dec(index_sequence<Ns...>) const {
    474     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
    475   }
    476 
    477 public:
    478   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
    479 
    480   value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
    481 
    482   const value_type operator*() const {
    483     return deref(index_sequence_for<Iters...>{});
    484   }
    485 
    486   ZipType &operator++() {
    487     iterators = tup_inc(index_sequence_for<Iters...>{});
    488     return *reinterpret_cast<ZipType *>(this);
    489   }
    490 
    491   ZipType &operator--() {
    492     static_assert(Base::IsBidirectional,
    493                   "All inner iterators must be at least bidirectional.");
    494     iterators = tup_dec(index_sequence_for<Iters...>{});
    495     return *reinterpret_cast<ZipType *>(this);
    496   }
    497 };
    498 
    499 template <typename... Iters>
    500 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
    501   using Base = zip_common<zip_first<Iters...>, Iters...>;
    502 
    503   bool operator==(const zip_first<Iters...> &other) const {
    504     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
    505   }
    506 
    507   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
    508 };
    509 
    510 template <typename... Iters>
    511 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
    512   template <size_t... Ns>
    513   bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
    514     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
    515                                               std::get<Ns>(other.iterators)...},
    516                   identity<bool>{});
    517   }
    518 
    519 public:
    520   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
    521 
    522   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
    523 
    524   bool operator==(const zip_shortest<Iters...> &other) const {
    525     return !test(other, index_sequence_for<Iters...>{});
    526   }
    527 };
    528 
    529 template <template <typename...> class ItType, typename... Args> class zippy {
    530 public:
    531   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
    532   using iterator_category = typename iterator::iterator_category;
    533   using value_type = typename iterator::value_type;
    534   using difference_type = typename iterator::difference_type;
    535   using pointer = typename iterator::pointer;
    536   using reference = typename iterator::reference;
    537 
    538 private:
    539   std::tuple<Args...> ts;
    540 
    541   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
    542     return iterator(std::begin(std::get<Ns>(ts))...);
    543   }
    544   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
    545     return iterator(std::end(std::get<Ns>(ts))...);
    546   }
    547 
    548 public:
    549   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
    550 
    551   iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
    552   iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
    553 };
    554 
    555 } // end namespace detail
    556 
    557 /// zip iterator for two or more iteratable types.
    558 template <typename T, typename U, typename... Args>
    559 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
    560                                                        Args &&... args) {
    561   return detail::zippy<detail::zip_shortest, T, U, Args...>(
    562       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
    563 }
    564 
    565 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
    566 /// be the shortest.
    567 template <typename T, typename U, typename... Args>
    568 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
    569                                                           Args &&... args) {
    570   return detail::zippy<detail::zip_first, T, U, Args...>(
    571       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
    572 }
    573 
    574 /// Iterator wrapper that concatenates sequences together.
    575 ///
    576 /// This can concatenate different iterators, even with different types, into
    577 /// a single iterator provided the value types of all the concatenated
    578 /// iterators expose `reference` and `pointer` types that can be converted to
    579 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
    580 /// interesting/customized pointer or reference types.
    581 ///
    582 /// Currently this only supports forward or higher iterator categories as
    583 /// inputs and always exposes a forward iterator interface.
    584 template <typename ValueT, typename... IterTs>
    585 class concat_iterator
    586     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
    587                                   std::forward_iterator_tag, ValueT> {
    588   using BaseT = typename concat_iterator::iterator_facade_base;
    589 
    590   /// We store both the current and end iterators for each concatenated
    591   /// sequence in a tuple of pairs.
    592   ///
    593   /// Note that something like iterator_range seems nice at first here, but the
    594   /// range properties are of little benefit and end up getting in the way
    595   /// because we need to do mutation on the current iterators.
    596   std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
    597 
    598   /// Attempts to increment a specific iterator.
    599   ///
    600   /// Returns true if it was able to increment the iterator. Returns false if
    601   /// the iterator is already at the end iterator.
    602   template <size_t Index> bool incrementHelper() {
    603     auto &IterPair = std::get<Index>(IterPairs);
    604     if (IterPair.first == IterPair.second)
    605       return false;
    606 
    607     ++IterPair.first;
    608     return true;
    609   }
    610 
    611   /// Increments the first non-end iterator.
    612   ///
    613   /// It is an error to call this with all iterators at the end.
    614   template <size_t... Ns> void increment(index_sequence<Ns...>) {
    615     // Build a sequence of functions to increment each iterator if possible.
    616     bool (concat_iterator::*IncrementHelperFns[])() = {
    617         &concat_iterator::incrementHelper<Ns>...};
    618 
    619     // Loop over them, and stop as soon as we succeed at incrementing one.
    620     for (auto &IncrementHelperFn : IncrementHelperFns)
    621       if ((this->*IncrementHelperFn)())
    622         return;
    623 
    624     llvm_unreachable("Attempted to increment an end concat iterator!");
    625   }
    626 
    627   /// Returns null if the specified iterator is at the end. Otherwise,
    628   /// dereferences the iterator and returns the address of the resulting
    629   /// reference.
    630   template <size_t Index> ValueT *getHelper() const {
    631     auto &IterPair = std::get<Index>(IterPairs);
    632     if (IterPair.first == IterPair.second)
    633       return nullptr;
    634 
    635     return &*IterPair.first;
    636   }
    637 
    638   /// Finds the first non-end iterator, dereferences, and returns the resulting
    639   /// reference.
    640   ///
    641   /// It is an error to call this with all iterators at the end.
    642   template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
    643     // Build a sequence of functions to get from iterator if possible.
    644     ValueT *(concat_iterator::*GetHelperFns[])() const = {
    645         &concat_iterator::getHelper<Ns>...};
    646 
    647     // Loop over them, and return the first result we find.
    648     for (auto &GetHelperFn : GetHelperFns)
    649       if (ValueT *P = (this->*GetHelperFn)())
    650         return *P;
    651 
    652     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
    653   }
    654 
    655 public:
    656   /// Constructs an iterator from a squence of ranges.
    657   ///
    658   /// We need the full range to know how to switch between each of the
    659   /// iterators.
    660   template <typename... RangeTs>
    661   explicit concat_iterator(RangeTs &&... Ranges)
    662       : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
    663 
    664   using BaseT::operator++;
    665 
    666   concat_iterator &operator++() {
    667     increment(index_sequence_for<IterTs...>());
    668     return *this;
    669   }
    670 
    671   ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
    672 
    673   bool operator==(const concat_iterator &RHS) const {
    674     return IterPairs == RHS.IterPairs;
    675   }
    676 };
    677 
    678 namespace detail {
    679 
    680 /// Helper to store a sequence of ranges being concatenated and access them.
    681 ///
    682 /// This is designed to facilitate providing actual storage when temporaries
    683 /// are passed into the constructor such that we can use it as part of range
    684 /// based for loops.
    685 template <typename ValueT, typename... RangeTs> class concat_range {
    686 public:
    687   using iterator =
    688       concat_iterator<ValueT,
    689                       decltype(std::begin(std::declval<RangeTs &>()))...>;
    690 
    691 private:
    692   std::tuple<RangeTs...> Ranges;
    693 
    694   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
    695     return iterator(std::get<Ns>(Ranges)...);
    696   }
    697   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
    698     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
    699                                std::end(std::get<Ns>(Ranges)))...);
    700   }
    701 
    702 public:
    703   concat_range(RangeTs &&... Ranges)
    704       : Ranges(std::forward<RangeTs>(Ranges)...) {}
    705 
    706   iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
    707   iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
    708 };
    709 
    710 } // end namespace detail
    711 
    712 /// Concatenated range across two or more ranges.
    713 ///
    714 /// The desired value type must be explicitly specified.
    715 template <typename ValueT, typename... RangeTs>
    716 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
    717   static_assert(sizeof...(RangeTs) > 1,
    718                 "Need more than one range to concatenate!");
    719   return detail::concat_range<ValueT, RangeTs...>(
    720       std::forward<RangeTs>(Ranges)...);
    721 }
    722 
    723 //===----------------------------------------------------------------------===//
    724 //     Extra additions to <utility>
    725 //===----------------------------------------------------------------------===//
    726 
    727 /// Function object to check whether the first component of a std::pair
    728 /// compares less than the first component of another std::pair.
    729 struct less_first {
    730   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    731     return lhs.first < rhs.first;
    732   }
    733 };
    734 
    735 /// Function object to check whether the second component of a std::pair
    736 /// compares less than the second component of another std::pair.
    737 struct less_second {
    738   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    739     return lhs.second < rhs.second;
    740   }
    741 };
    742 
    743 // A subset of N3658. More stuff can be added as-needed.
    744 
    745 /// Represents a compile-time sequence of integers.
    746 template <class T, T... I> struct integer_sequence {
    747   using value_type = T;
    748 
    749   static constexpr size_t size() { return sizeof...(I); }
    750 };
    751 
    752 /// Alias for the common case of a sequence of size_ts.
    753 template <size_t... I>
    754 struct index_sequence : integer_sequence<std::size_t, I...> {};
    755 
    756 template <std::size_t N, std::size_t... I>
    757 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
    758 template <std::size_t... I>
    759 struct build_index_impl<0, I...> : index_sequence<I...> {};
    760 
    761 /// Creates a compile-time integer sequence for a parameter pack.
    762 template <class... Ts>
    763 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
    764 
    765 /// Utility type to build an inheritance chain that makes it easy to rank
    766 /// overload candidates.
    767 template <int N> struct rank : rank<N - 1> {};
    768 template <> struct rank<0> {};
    769 
    770 /// traits class for checking whether type T is one of any of the given
    771 /// types in the variadic list.
    772 template <typename T, typename... Ts> struct is_one_of {
    773   static const bool value = false;
    774 };
    775 
    776 template <typename T, typename U, typename... Ts>
    777 struct is_one_of<T, U, Ts...> {
    778   static const bool value =
    779       std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
    780 };
    781 
    782 /// traits class for checking whether type T is a base class for all
    783 ///  the given types in the variadic list.
    784 template <typename T, typename... Ts> struct are_base_of {
    785   static const bool value = true;
    786 };
    787 
    788 template <typename T, typename U, typename... Ts>
    789 struct are_base_of<T, U, Ts...> {
    790   static const bool value =
    791       std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
    792 };
    793 
    794 //===----------------------------------------------------------------------===//
    795 //     Extra additions for arrays
    796 //===----------------------------------------------------------------------===//
    797 
    798 /// Find the length of an array.
    799 template <class T, std::size_t N>
    800 constexpr inline size_t array_lengthof(T (&)[N]) {
    801   return N;
    802 }
    803 
    804 /// Adapt std::less<T> for array_pod_sort.
    805 template<typename T>
    806 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
    807   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
    808                      *reinterpret_cast<const T*>(P2)))
    809     return -1;
    810   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
    811                      *reinterpret_cast<const T*>(P1)))
    812     return 1;
    813   return 0;
    814 }
    815 
    816 /// get_array_pod_sort_comparator - This is an internal helper function used to
    817 /// get type deduction of T right.
    818 template<typename T>
    819 inline int (*get_array_pod_sort_comparator(const T &))
    820              (const void*, const void*) {
    821   return array_pod_sort_comparator<T>;
    822 }
    823 
    824 /// array_pod_sort - This sorts an array with the specified start and end
    825 /// extent.  This is just like std::sort, except that it calls qsort instead of
    826 /// using an inlined template.  qsort is slightly slower than std::sort, but
    827 /// most sorts are not performance critical in LLVM and std::sort has to be
    828 /// template instantiated for each type, leading to significant measured code
    829 /// bloat.  This function should generally be used instead of std::sort where
    830 /// possible.
    831 ///
    832 /// This function assumes that you have simple POD-like types that can be
    833 /// compared with std::less and can be moved with memcpy.  If this isn't true,
    834 /// you should use std::sort.
    835 ///
    836 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
    837 /// default to std::less.
    838 template<class IteratorTy>
    839 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
    840   // Don't inefficiently call qsort with one element or trigger undefined
    841   // behavior with an empty sequence.
    842   auto NElts = End - Start;
    843   if (NElts <= 1) return;
    844 #ifdef EXPENSIVE_CHECKS
    845   std::mt19937 Generator(std::random_device{}());
    846   std::shuffle(Start, End, Generator);
    847 #endif
    848   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
    849 }
    850 
    851 template <class IteratorTy>
    852 inline void array_pod_sort(
    853     IteratorTy Start, IteratorTy End,
    854     int (*Compare)(
    855         const typename std::iterator_traits<IteratorTy>::value_type *,
    856         const typename std::iterator_traits<IteratorTy>::value_type *)) {
    857   // Don't inefficiently call qsort with one element or trigger undefined
    858   // behavior with an empty sequence.
    859   auto NElts = End - Start;
    860   if (NElts <= 1) return;
    861 #ifdef EXPENSIVE_CHECKS
    862   std::mt19937 Generator(std::random_device{}());
    863   std::shuffle(Start, End, Generator);
    864 #endif
    865   qsort(&*Start, NElts, sizeof(*Start),
    866         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
    867 }
    868 
    869 // Provide wrappers to std::sort which shuffle the elements before sorting
    870 // to help uncover non-deterministic behavior (PR35135).
    871 template <typename IteratorTy>
    872 inline void sort(IteratorTy Start, IteratorTy End) {
    873 #ifdef EXPENSIVE_CHECKS
    874   std::mt19937 Generator(std::random_device{}());
    875   std::shuffle(Start, End, Generator);
    876 #endif
    877   std::sort(Start, End);
    878 }
    879 
    880 template <typename IteratorTy, typename Compare>
    881 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
    882 #ifdef EXPENSIVE_CHECKS
    883   std::mt19937 Generator(std::random_device{}());
    884   std::shuffle(Start, End, Generator);
    885 #endif
    886   std::sort(Start, End, Comp);
    887 }
    888 
    889 //===----------------------------------------------------------------------===//
    890 //     Extra additions to <algorithm>
    891 //===----------------------------------------------------------------------===//
    892 
    893 /// For a container of pointers, deletes the pointers and then clears the
    894 /// container.
    895 template<typename Container>
    896 void DeleteContainerPointers(Container &C) {
    897   for (auto V : C)
    898     delete V;
    899   C.clear();
    900 }
    901 
    902 /// In a container of pairs (usually a map) whose second element is a pointer,
    903 /// deletes the second elements and then clears the container.
    904 template<typename Container>
    905 void DeleteContainerSeconds(Container &C) {
    906   for (auto &V : C)
    907     delete V.second;
    908   C.clear();
    909 }
    910 
    911 /// Provide wrappers to std::for_each which take ranges instead of having to
    912 /// pass begin/end explicitly.
    913 template <typename R, typename UnaryPredicate>
    914 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
    915   return std::for_each(adl_begin(Range), adl_end(Range), P);
    916 }
    917 
    918 /// Provide wrappers to std::all_of which take ranges instead of having to pass
    919 /// begin/end explicitly.
    920 template <typename R, typename UnaryPredicate>
    921 bool all_of(R &&Range, UnaryPredicate P) {
    922   return std::all_of(adl_begin(Range), adl_end(Range), P);
    923 }
    924 
    925 /// Provide wrappers to std::any_of which take ranges instead of having to pass
    926 /// begin/end explicitly.
    927 template <typename R, typename UnaryPredicate>
    928 bool any_of(R &&Range, UnaryPredicate P) {
    929   return std::any_of(adl_begin(Range), adl_end(Range), P);
    930 }
    931 
    932 /// Provide wrappers to std::none_of which take ranges instead of having to pass
    933 /// begin/end explicitly.
    934 template <typename R, typename UnaryPredicate>
    935 bool none_of(R &&Range, UnaryPredicate P) {
    936   return std::none_of(adl_begin(Range), adl_end(Range), P);
    937 }
    938 
    939 /// Provide wrappers to std::find which take ranges instead of having to pass
    940 /// begin/end explicitly.
    941 template <typename R, typename T>
    942 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
    943   return std::find(adl_begin(Range), adl_end(Range), Val);
    944 }
    945 
    946 /// Provide wrappers to std::find_if which take ranges instead of having to pass
    947 /// begin/end explicitly.
    948 template <typename R, typename UnaryPredicate>
    949 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
    950   return std::find_if(adl_begin(Range), adl_end(Range), P);
    951 }
    952 
    953 template <typename R, typename UnaryPredicate>
    954 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
    955   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
    956 }
    957 
    958 /// Provide wrappers to std::remove_if which take ranges instead of having to
    959 /// pass begin/end explicitly.
    960 template <typename R, typename UnaryPredicate>
    961 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
    962   return std::remove_if(adl_begin(Range), adl_end(Range), P);
    963 }
    964 
    965 /// Provide wrappers to std::copy_if which take ranges instead of having to
    966 /// pass begin/end explicitly.
    967 template <typename R, typename OutputIt, typename UnaryPredicate>
    968 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
    969   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
    970 }
    971 
    972 template <typename R, typename OutputIt>
    973 OutputIt copy(R &&Range, OutputIt Out) {
    974   return std::copy(adl_begin(Range), adl_end(Range), Out);
    975 }
    976 
    977 /// Wrapper function around std::find to detect if an element exists
    978 /// in a container.
    979 template <typename R, typename E>
    980 bool is_contained(R &&Range, const E &Element) {
    981   return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
    982 }
    983 
    984 /// Wrapper function around std::count to count the number of times an element
    985 /// \p Element occurs in the given range \p Range.
    986 template <typename R, typename E>
    987 auto count(R &&Range, const E &Element) ->
    988     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
    989   return std::count(adl_begin(Range), adl_end(Range), Element);
    990 }
    991 
    992 /// Wrapper function around std::count_if to count the number of times an
    993 /// element satisfying a given predicate occurs in a range.
    994 template <typename R, typename UnaryPredicate>
    995 auto count_if(R &&Range, UnaryPredicate P) ->
    996     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
    997   return std::count_if(adl_begin(Range), adl_end(Range), P);
    998 }
    999 
   1000 /// Wrapper function around std::transform to apply a function to a range and
   1001 /// store the result elsewhere.
   1002 template <typename R, typename OutputIt, typename UnaryPredicate>
   1003 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
   1004   return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
   1005 }
   1006 
   1007 /// Provide wrappers to std::partition which take ranges instead of having to
   1008 /// pass begin/end explicitly.
   1009 template <typename R, typename UnaryPredicate>
   1010 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
   1011   return std::partition(adl_begin(Range), adl_end(Range), P);
   1012 }
   1013 
   1014 /// Provide wrappers to std::lower_bound which take ranges instead of having to
   1015 /// pass begin/end explicitly.
   1016 template <typename R, typename ForwardIt>
   1017 auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
   1018   return std::lower_bound(adl_begin(Range), adl_end(Range), I);
   1019 }
   1020 
   1021 /// Given a range of type R, iterate the entire range and return a
   1022 /// SmallVector with elements of the vector.  This is useful, for example,
   1023 /// when you want to iterate a range and then sort the results.
   1024 template <unsigned Size, typename R>
   1025 SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
   1026 to_vector(R &&Range) {
   1027   return {adl_begin(Range), adl_end(Range)};
   1028 }
   1029 
   1030 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
   1031 /// `erase_if` which is equivalent to:
   1032 ///
   1033 ///   C.erase(remove_if(C, pred), C.end());
   1034 ///
   1035 /// This version works for any container with an erase method call accepting
   1036 /// two iterators.
   1037 template <typename Container, typename UnaryPredicate>
   1038 void erase_if(Container &C, UnaryPredicate P) {
   1039   C.erase(remove_if(C, P), C.end());
   1040 }
   1041 
   1042 /// Get the size of a range. This is a wrapper function around std::distance
   1043 /// which is only enabled when the operation is O(1).
   1044 template <typename R>
   1045 auto size(R &&Range, typename std::enable_if<
   1046                          std::is_same<typename std::iterator_traits<decltype(
   1047                                           Range.begin())>::iterator_category,
   1048                                       std::random_access_iterator_tag>::value,
   1049                          void>::type * = nullptr)
   1050     -> decltype(std::distance(Range.begin(), Range.end())) {
   1051   return std::distance(Range.begin(), Range.end());
   1052 }
   1053 
   1054 //===----------------------------------------------------------------------===//
   1055 //     Extra additions to <memory>
   1056 //===----------------------------------------------------------------------===//
   1057 
   1058 // Implement make_unique according to N3656.
   1059 
   1060 /// Constructs a `new T()` with the given args and returns a
   1061 ///        `unique_ptr<T>` which owns the object.
   1062 ///
   1063 /// Example:
   1064 ///
   1065 ///     auto p = make_unique<int>();
   1066 ///     auto p = make_unique<std::tuple<int, int>>(0, 1);
   1067 template <class T, class... Args>
   1068 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
   1069 make_unique(Args &&... args) {
   1070   return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
   1071 }
   1072 
   1073 /// Constructs a `new T[n]` with the given args and returns a
   1074 ///        `unique_ptr<T[]>` which owns the object.
   1075 ///
   1076 /// \param n size of the new array.
   1077 ///
   1078 /// Example:
   1079 ///
   1080 ///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
   1081 template <class T>
   1082 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
   1083                         std::unique_ptr<T>>::type
   1084 make_unique(size_t n) {
   1085   return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
   1086 }
   1087 
   1088 /// This function isn't used and is only here to provide better compile errors.
   1089 template <class T, class... Args>
   1090 typename std::enable_if<std::extent<T>::value != 0>::type
   1091 make_unique(Args &&...) = delete;
   1092 
   1093 struct FreeDeleter {
   1094   void operator()(void* v) {
   1095     ::free(v);
   1096   }
   1097 };
   1098 
   1099 template<typename First, typename Second>
   1100 struct pair_hash {
   1101   size_t operator()(const std::pair<First, Second> &P) const {
   1102     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
   1103   }
   1104 };
   1105 
   1106 /// A functor like C++14's std::less<void> in its absence.
   1107 struct less {
   1108   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
   1109     return std::forward<A>(a) < std::forward<B>(b);
   1110   }
   1111 };
   1112 
   1113 /// A functor like C++14's std::equal<void> in its absence.
   1114 struct equal {
   1115   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
   1116     return std::forward<A>(a) == std::forward<B>(b);
   1117   }
   1118 };
   1119 
   1120 /// Binary functor that adapts to any other binary functor after dereferencing
   1121 /// operands.
   1122 template <typename T> struct deref {
   1123   T func;
   1124 
   1125   // Could be further improved to cope with non-derivable functors and
   1126   // non-binary functors (should be a variadic template member function
   1127   // operator()).
   1128   template <typename A, typename B>
   1129   auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
   1130     assert(lhs);
   1131     assert(rhs);
   1132     return func(*lhs, *rhs);
   1133   }
   1134 };
   1135 
   1136 namespace detail {
   1137 
   1138 template <typename R> class enumerator_iter;
   1139 
   1140 template <typename R> struct result_pair {
   1141   friend class enumerator_iter<R>;
   1142 
   1143   result_pair() = default;
   1144   result_pair(std::size_t Index, IterOfRange<R> Iter)
   1145       : Index(Index), Iter(Iter) {}
   1146 
   1147   result_pair<R> &operator=(const result_pair<R> &Other) {
   1148     Index = Other.Index;
   1149     Iter = Other.Iter;
   1150     return *this;
   1151   }
   1152 
   1153   std::size_t index() const { return Index; }
   1154   const ValueOfRange<R> &value() const { return *Iter; }
   1155   ValueOfRange<R> &value() { return *Iter; }
   1156 
   1157 private:
   1158   std::size_t Index = std::numeric_limits<std::size_t>::max();
   1159   IterOfRange<R> Iter;
   1160 };
   1161 
   1162 template <typename R>
   1163 class enumerator_iter
   1164     : public iterator_facade_base<
   1165           enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
   1166           typename std::iterator_traits<IterOfRange<R>>::difference_type,
   1167           typename std::iterator_traits<IterOfRange<R>>::pointer,
   1168           typename std::iterator_traits<IterOfRange<R>>::reference> {
   1169   using result_type = result_pair<R>;
   1170 
   1171 public:
   1172   explicit enumerator_iter(IterOfRange<R> EndIter)
   1173       : Result(std::numeric_limits<size_t>::max(), EndIter) {}
   1174 
   1175   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
   1176       : Result(Index, Iter) {}
   1177 
   1178   result_type &operator*() { return Result; }
   1179   const result_type &operator*() const { return Result; }
   1180 
   1181   enumerator_iter<R> &operator++() {
   1182     assert(Result.Index != std::numeric_limits<size_t>::max());
   1183     ++Result.Iter;
   1184     ++Result.Index;
   1185     return *this;
   1186   }
   1187 
   1188   bool operator==(const enumerator_iter<R> &RHS) const {
   1189     // Don't compare indices here, only iterators.  It's possible for an end
   1190     // iterator to have different indices depending on whether it was created
   1191     // by calling std::end() versus incrementing a valid iterator.
   1192     return Result.Iter == RHS.Result.Iter;
   1193   }
   1194 
   1195   enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
   1196     Result = Other.Result;
   1197     return *this;
   1198   }
   1199 
   1200 private:
   1201   result_type Result;
   1202 };
   1203 
   1204 template <typename R> class enumerator {
   1205 public:
   1206   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
   1207 
   1208   enumerator_iter<R> begin() {
   1209     return enumerator_iter<R>(0, std::begin(TheRange));
   1210   }
   1211 
   1212   enumerator_iter<R> end() {
   1213     return enumerator_iter<R>(std::end(TheRange));
   1214   }
   1215 
   1216 private:
   1217   R TheRange;
   1218 };
   1219 
   1220 } // end namespace detail
   1221 
   1222 /// Given an input range, returns a new range whose values are are pair (A,B)
   1223 /// such that A is the 0-based index of the item in the sequence, and B is
   1224 /// the value from the original sequence.  Example:
   1225 ///
   1226 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
   1227 /// for (auto X : enumerate(Items)) {
   1228 ///   printf("Item %d - %c\n", X.index(), X.value());
   1229 /// }
   1230 ///
   1231 /// Output:
   1232 ///   Item 0 - A
   1233 ///   Item 1 - B
   1234 ///   Item 2 - C
   1235 ///   Item 3 - D
   1236 ///
   1237 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
   1238   return detail::enumerator<R>(std::forward<R>(TheRange));
   1239 }
   1240 
   1241 namespace detail {
   1242 
   1243 template <typename F, typename Tuple, std::size_t... I>
   1244 auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
   1245     -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
   1246   return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
   1247 }
   1248 
   1249 } // end namespace detail
   1250 
   1251 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
   1252 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
   1253 /// return the result.
   1254 template <typename F, typename Tuple>
   1255 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
   1256     std::forward<F>(f), std::forward<Tuple>(t),
   1257     build_index_impl<
   1258         std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
   1259   using Indices = build_index_impl<
   1260       std::tuple_size<typename std::decay<Tuple>::type>::value>;
   1261 
   1262   return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
   1263                                   Indices{});
   1264 }
   1265 
   1266 } // end namespace llvm
   1267 
   1268 #endif // LLVM_ADT_STLEXTRAS_H
   1269