Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <assert.h>
     60 #include <limits.h>
     61 
     62 #include <openssl/err.h>
     63 
     64 #include "internal.h"
     65 
     66 
     67 #if !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM)
     68 // bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
     69 // which must fit in a |BN_ULONG|.
     70 static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
     71   BN_ULONG dh, dl, q, ret = 0, th, tl, t;
     72   int i, count = 2;
     73 
     74   if (d == 0) {
     75     return BN_MASK2;
     76   }
     77 
     78   i = BN_num_bits_word(d);
     79   assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
     80 
     81   i = BN_BITS2 - i;
     82   if (h >= d) {
     83     h -= d;
     84   }
     85 
     86   if (i) {
     87     d <<= i;
     88     h = (h << i) | (l >> (BN_BITS2 - i));
     89     l <<= i;
     90   }
     91   dh = (d & BN_MASK2h) >> BN_BITS4;
     92   dl = (d & BN_MASK2l);
     93   for (;;) {
     94     if ((h >> BN_BITS4) == dh) {
     95       q = BN_MASK2l;
     96     } else {
     97       q = h / dh;
     98     }
     99 
    100     th = q * dh;
    101     tl = dl * q;
    102     for (;;) {
    103       t = h - th;
    104       if ((t & BN_MASK2h) ||
    105           ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
    106         break;
    107       }
    108       q--;
    109       th -= dh;
    110       tl -= dl;
    111     }
    112     t = (tl >> BN_BITS4);
    113     tl = (tl << BN_BITS4) & BN_MASK2h;
    114     th += t;
    115 
    116     if (l < tl) {
    117       th++;
    118     }
    119     l -= tl;
    120     if (h < th) {
    121       h += d;
    122       q--;
    123     }
    124     h -= th;
    125 
    126     if (--count == 0) {
    127       break;
    128     }
    129 
    130     ret = q << BN_BITS4;
    131     h = (h << BN_BITS4) | (l >> BN_BITS4);
    132     l = (l & BN_MASK2l) << BN_BITS4;
    133   }
    134 
    135   ret |= q;
    136   return ret;
    137 }
    138 #endif  // !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM)
    139 
    140 static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
    141                                     BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
    142   // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
    143   // the |BN_ULLONG|-based C code is used.
    144   //
    145   // GCC bugs:
    146   //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
    147   //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
    148   //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
    149   //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
    150   //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
    151   //
    152   // Clang bugs:
    153   //   * https://llvm.org/bugs/show_bug.cgi?id=6397
    154   //   * https://llvm.org/bugs/show_bug.cgi?id=12418
    155   //
    156   // These issues aren't specific to x86 and x86_64, so it might be worthwhile
    157   // to add more assembly language implementations.
    158 #if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
    159   __asm__ volatile("divl %4"
    160                    : "=a"(*quotient_out), "=d"(*rem_out)
    161                    : "a"(n1), "d"(n0), "rm"(d0)
    162                    : "cc");
    163 #elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
    164   __asm__ volatile("divq %4"
    165                    : "=a"(*quotient_out), "=d"(*rem_out)
    166                    : "a"(n1), "d"(n0), "rm"(d0)
    167                    : "cc");
    168 #else
    169 #if defined(BN_CAN_DIVIDE_ULLONG)
    170   BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
    171   *quotient_out = (BN_ULONG)(n / d0);
    172 #else
    173   *quotient_out = bn_div_words(n0, n1, d0);
    174 #endif
    175   *rem_out = n1 - (*quotient_out * d0);
    176 #endif
    177 }
    178 
    179 // BN_div computes "quotient := numerator / divisor", rounding towards zero,
    180 // and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
    181 //
    182 // Thus:
    183 //
    184 //     quotient->neg == numerator->neg ^ divisor->neg
    185 //        (unless the result is zero)
    186 //     rem->neg == numerator->neg
    187 //        (unless the remainder is zero)
    188 //
    189 // If |quotient| or |rem| is NULL, the respective value is not returned.
    190 //
    191 // This was specifically designed to contain fewer branches that may leak
    192 // sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
    193 // and Necessary Software Countermeasures" by Onur Acmez, Shay Gueron, and
    194 // Jean-Pierre Seifert.
    195 int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
    196            const BIGNUM *divisor, BN_CTX *ctx) {
    197   int norm_shift, loop;
    198   BIGNUM wnum;
    199   BN_ULONG *resp, *wnump;
    200   BN_ULONG d0, d1;
    201   int num_n, div_n;
    202 
    203   // This function relies on the historical minimal-width |BIGNUM| invariant.
    204   // It is already not constant-time (constant-time reductions should use
    205   // Montgomery logic), so we shrink all inputs and intermediate values to
    206   // retain the previous behavior.
    207 
    208   // Invalid zero-padding would have particularly bad consequences.
    209   int numerator_width = bn_minimal_width(numerator);
    210   int divisor_width = bn_minimal_width(divisor);
    211   if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
    212       (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
    213     OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
    214     return 0;
    215   }
    216 
    217   if (BN_is_zero(divisor)) {
    218     OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
    219     return 0;
    220   }
    221 
    222   BN_CTX_start(ctx);
    223   BIGNUM *tmp = BN_CTX_get(ctx);
    224   BIGNUM *snum = BN_CTX_get(ctx);
    225   BIGNUM *sdiv = BN_CTX_get(ctx);
    226   BIGNUM *res = NULL;
    227   if (quotient == NULL) {
    228     res = BN_CTX_get(ctx);
    229   } else {
    230     res = quotient;
    231   }
    232   if (sdiv == NULL || res == NULL) {
    233     goto err;
    234   }
    235 
    236   // First we normalise the numbers
    237   norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
    238   if (!BN_lshift(sdiv, divisor, norm_shift)) {
    239     goto err;
    240   }
    241   bn_set_minimal_width(sdiv);
    242   sdiv->neg = 0;
    243   norm_shift += BN_BITS2;
    244   if (!BN_lshift(snum, numerator, norm_shift)) {
    245     goto err;
    246   }
    247   bn_set_minimal_width(snum);
    248   snum->neg = 0;
    249 
    250   // Since we don't want to have special-case logic for the case where snum is
    251   // larger than sdiv, we pad snum with enough zeroes without changing its
    252   // value.
    253   if (snum->width <= sdiv->width + 1) {
    254     if (!bn_wexpand(snum, sdiv->width + 2)) {
    255       goto err;
    256     }
    257     for (int i = snum->width; i < sdiv->width + 2; i++) {
    258       snum->d[i] = 0;
    259     }
    260     snum->width = sdiv->width + 2;
    261   } else {
    262     if (!bn_wexpand(snum, snum->width + 1)) {
    263       goto err;
    264     }
    265     snum->d[snum->width] = 0;
    266     snum->width++;
    267   }
    268 
    269   div_n = sdiv->width;
    270   num_n = snum->width;
    271   loop = num_n - div_n;
    272   // Lets setup a 'window' into snum
    273   // This is the part that corresponds to the current
    274   // 'area' being divided
    275   wnum.neg = 0;
    276   wnum.d = &(snum->d[loop]);
    277   wnum.width = div_n;
    278   // only needed when BN_ucmp messes up the values between width and max
    279   wnum.dmax = snum->dmax - loop;  // so we don't step out of bounds
    280 
    281   // Get the top 2 words of sdiv
    282   // div_n=sdiv->width;
    283   d0 = sdiv->d[div_n - 1];
    284   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
    285 
    286   // pointer to the 'top' of snum
    287   wnump = &(snum->d[num_n - 1]);
    288 
    289   // Setup to 'res'
    290   res->neg = (numerator->neg ^ divisor->neg);
    291   if (!bn_wexpand(res, loop + 1)) {
    292     goto err;
    293   }
    294   res->width = loop - 1;
    295   resp = &(res->d[loop - 1]);
    296 
    297   // space for temp
    298   if (!bn_wexpand(tmp, div_n + 1)) {
    299     goto err;
    300   }
    301 
    302   // if res->width == 0 then clear the neg value otherwise decrease
    303   // the resp pointer
    304   if (res->width == 0) {
    305     res->neg = 0;
    306   } else {
    307     resp--;
    308   }
    309 
    310   for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
    311     BN_ULONG q, l0;
    312     // the first part of the loop uses the top two words of snum and sdiv to
    313     // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
    314     BN_ULONG n0, n1, rm = 0;
    315 
    316     n0 = wnump[0];
    317     n1 = wnump[-1];
    318     if (n0 == d0) {
    319       q = BN_MASK2;
    320     } else {
    321       // n0 < d0
    322       bn_div_rem_words(&q, &rm, n0, n1, d0);
    323 
    324 #ifdef BN_ULLONG
    325       BN_ULLONG t2 = (BN_ULLONG)d1 * q;
    326       for (;;) {
    327         if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
    328           break;
    329         }
    330         q--;
    331         rm += d0;
    332         if (rm < d0) {
    333           break;  // don't let rm overflow
    334         }
    335         t2 -= d1;
    336       }
    337 #else  // !BN_ULLONG
    338       BN_ULONG t2l, t2h;
    339       BN_UMULT_LOHI(t2l, t2h, d1, q);
    340       for (;;) {
    341         if (t2h < rm ||
    342             (t2h == rm && t2l <= wnump[-2])) {
    343           break;
    344         }
    345         q--;
    346         rm += d0;
    347         if (rm < d0) {
    348           break;  // don't let rm overflow
    349         }
    350         if (t2l < d1) {
    351           t2h--;
    352         }
    353         t2l -= d1;
    354       }
    355 #endif  // !BN_ULLONG
    356     }
    357 
    358     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
    359     tmp->d[div_n] = l0;
    360     wnum.d--;
    361     // ingore top values of the bignums just sub the two
    362     // BN_ULONG arrays with bn_sub_words
    363     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
    364       // Note: As we have considered only the leading
    365       // two BN_ULONGs in the calculation of q, sdiv * q
    366       // might be greater than wnum (but then (q-1) * sdiv
    367       // is less or equal than wnum)
    368       q--;
    369       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
    370         // we can't have an overflow here (assuming
    371         // that q != 0, but if q == 0 then tmp is
    372         // zero anyway)
    373         (*wnump)++;
    374       }
    375     }
    376     // store part of the result
    377     *resp = q;
    378   }
    379 
    380   bn_set_minimal_width(snum);
    381 
    382   if (rem != NULL) {
    383     // Keep a copy of the neg flag in numerator because if |rem| == |numerator|
    384     // |BN_rshift| will overwrite it.
    385     int neg = numerator->neg;
    386     if (!BN_rshift(rem, snum, norm_shift)) {
    387       goto err;
    388     }
    389     if (!BN_is_zero(rem)) {
    390       rem->neg = neg;
    391     }
    392   }
    393 
    394   bn_set_minimal_width(res);
    395   BN_CTX_end(ctx);
    396   return 1;
    397 
    398 err:
    399   BN_CTX_end(ctx);
    400   return 0;
    401 }
    402 
    403 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
    404   if (!(BN_mod(r, m, d, ctx))) {
    405     return 0;
    406   }
    407   if (!r->neg) {
    408     return 1;
    409   }
    410 
    411   // now -|d| < r < 0, so we have to set r := r + |d|.
    412   return (d->neg ? BN_sub : BN_add)(r, r, d);
    413 }
    414 
    415 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
    416                         const BN_ULONG *m, size_t num) {
    417   assert(r != a);
    418   // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
    419   // then we apply the borrow to |carry|.
    420   carry -= bn_sub_words(r, a, m, num);
    421   // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
    422   //
    423   // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
    424   // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
    425   // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
    426   // cases, |carry| is a suitable input to |bn_select_words|.
    427   //
    428   // Although |carry| may be one if it was one on input and |bn_sub_words|
    429   // returns zero, this would give |r| > |m|, violating our input assumptions.
    430   assert(carry == 0 || carry == (BN_ULONG)-1);
    431   bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
    432   return carry;
    433 }
    434 
    435 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
    436                                  BN_ULONG *tmp, size_t num) {
    437   // See |bn_reduce_once| for why this logic works.
    438   carry -= bn_sub_words(tmp, r, m, num);
    439   assert(carry == 0 || carry == (BN_ULONG)-1);
    440   bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
    441   return carry;
    442 }
    443 
    444 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
    445                       const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
    446   // r = a - b
    447   BN_ULONG borrow = bn_sub_words(r, a, b, num);
    448   // tmp = a - b + m
    449   bn_add_words(tmp, r, m, num);
    450   bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
    451 }
    452 
    453 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
    454                       const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
    455   BN_ULONG carry = bn_add_words(r, a, b, num);
    456   bn_reduce_once_in_place(r, carry, m, tmp, num);
    457 }
    458 
    459 int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
    460                      const BIGNUM *numerator, const BIGNUM *divisor,
    461                      BN_CTX *ctx) {
    462   if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
    463     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
    464     return 0;
    465   }
    466   if (BN_is_zero(divisor)) {
    467     OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
    468     return 0;
    469   }
    470 
    471   // This function implements long division in binary. It is not very efficient,
    472   // but it is simple, easy to make constant-time, and performant enough for RSA
    473   // key generation.
    474 
    475   int ret = 0;
    476   BN_CTX_start(ctx);
    477   BIGNUM *q = quotient, *r = remainder;
    478   if (quotient == NULL || quotient == numerator || quotient == divisor) {
    479     q = BN_CTX_get(ctx);
    480   }
    481   if (remainder == NULL || remainder == numerator || remainder == divisor) {
    482     r = BN_CTX_get(ctx);
    483   }
    484   BIGNUM *tmp = BN_CTX_get(ctx);
    485   if (q == NULL || r == NULL || tmp == NULL ||
    486       !bn_wexpand(q, numerator->width) ||
    487       !bn_wexpand(r, divisor->width) ||
    488       !bn_wexpand(tmp, divisor->width)) {
    489     goto err;
    490   }
    491 
    492   OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
    493   q->width = numerator->width;
    494   q->neg = 0;
    495 
    496   OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
    497   r->width = divisor->width;
    498   r->neg = 0;
    499 
    500   // Incorporate |numerator| into |r|, one bit at a time, reducing after each
    501   // step. At the start of each loop iteration, |r| < |divisor|
    502   for (int i = numerator->width - 1; i >= 0; i--) {
    503     for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
    504       // Incorporate the next bit of the numerator, by computing
    505       // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
    506       // extra word in |carry|.
    507       BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
    508       r->d[0] |= (numerator->d[i] >> bit) & 1;
    509       // |r| was previously fully-reduced, so we know:
    510       //      2*0 <= r <= 2*(divisor-1) + 1
    511       //        0 <= r <= 2*divisor - 1 < 2*divisor.
    512       // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
    513       BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
    514                                                     tmp->d, divisor->width);
    515       // The corresponding bit of the quotient is set iff we needed to subtract.
    516       q->d[i] |= (~subtracted & 1) << bit;
    517     }
    518   }
    519 
    520   if ((quotient != NULL && !BN_copy(quotient, q)) ||
    521       (remainder != NULL && !BN_copy(remainder, r))) {
    522     goto err;
    523   }
    524 
    525   ret = 1;
    526 
    527 err:
    528   BN_CTX_end(ctx);
    529   return ret;
    530 }
    531 
    532 static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
    533   BIGNUM *ret = BN_CTX_get(ctx);
    534   if (ret == NULL ||
    535       !bn_wexpand(ret, width)) {
    536     return NULL;
    537   }
    538   ret->neg = 0;
    539   ret->width = width;
    540   return ret;
    541 }
    542 
    543 // bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
    544 // error. This is so it may be used with low-level "words" functions. If
    545 // necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
    546 // in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
    547 // |width| words.
    548 static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
    549                                          BN_CTX *ctx) {
    550   if ((size_t)bn->width >= width) {
    551     // Any excess words must be zero.
    552     assert(bn_fits_in_words(bn, width));
    553     return bn;
    554   }
    555   BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
    556   if (ret == NULL ||
    557       !BN_copy(ret, bn) ||
    558       !bn_resize_words(ret, width)) {
    559     return NULL;
    560   }
    561   return ret;
    562 }
    563 
    564 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    565                BN_CTX *ctx) {
    566   if (!BN_add(r, a, b)) {
    567     return 0;
    568   }
    569   return BN_nnmod(r, r, m, ctx);
    570 }
    571 
    572 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    573                      const BIGNUM *m) {
    574   BN_CTX *ctx = BN_CTX_new();
    575   int ok = ctx != NULL &&
    576            bn_mod_add_consttime(r, a, b, m, ctx);
    577   BN_CTX_free(ctx);
    578   return ok;
    579 }
    580 
    581 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    582                          const BIGNUM *m, BN_CTX *ctx) {
    583   BN_CTX_start(ctx);
    584   a = bn_resized_from_ctx(a, m->width, ctx);
    585   b = bn_resized_from_ctx(b, m->width, ctx);
    586   BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
    587   int ok = a != NULL && b != NULL && tmp != NULL &&
    588            bn_wexpand(r, m->width);
    589   if (ok) {
    590     bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
    591     r->width = m->width;
    592     r->neg = 0;
    593   }
    594   BN_CTX_end(ctx);
    595   return ok;
    596 }
    597 
    598 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    599                BN_CTX *ctx) {
    600   if (!BN_sub(r, a, b)) {
    601     return 0;
    602   }
    603   return BN_nnmod(r, r, m, ctx);
    604 }
    605 
    606 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    607                          const BIGNUM *m, BN_CTX *ctx) {
    608   BN_CTX_start(ctx);
    609   a = bn_resized_from_ctx(a, m->width, ctx);
    610   b = bn_resized_from_ctx(b, m->width, ctx);
    611   BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
    612   int ok = a != NULL && b != NULL && tmp != NULL &&
    613            bn_wexpand(r, m->width);
    614   if (ok) {
    615     bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
    616     r->width = m->width;
    617     r->neg = 0;
    618   }
    619   BN_CTX_end(ctx);
    620   return ok;
    621 }
    622 
    623 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    624                      const BIGNUM *m) {
    625   BN_CTX *ctx = BN_CTX_new();
    626   int ok = ctx != NULL &&
    627            bn_mod_sub_consttime(r, a, b, m, ctx);
    628   BN_CTX_free(ctx);
    629   return ok;
    630 }
    631 
    632 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    633                BN_CTX *ctx) {
    634   BIGNUM *t;
    635   int ret = 0;
    636 
    637   BN_CTX_start(ctx);
    638   t = BN_CTX_get(ctx);
    639   if (t == NULL) {
    640     goto err;
    641   }
    642 
    643   if (a == b) {
    644     if (!BN_sqr(t, a, ctx)) {
    645       goto err;
    646     }
    647   } else {
    648     if (!BN_mul(t, a, b, ctx)) {
    649       goto err;
    650     }
    651   }
    652 
    653   if (!BN_nnmod(r, t, m, ctx)) {
    654     goto err;
    655   }
    656 
    657   ret = 1;
    658 
    659 err:
    660   BN_CTX_end(ctx);
    661   return ret;
    662 }
    663 
    664 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    665   if (!BN_sqr(r, a, ctx)) {
    666     return 0;
    667   }
    668 
    669   // r->neg == 0,  thus we don't need BN_nnmod
    670   return BN_mod(r, r, m, ctx);
    671 }
    672 
    673 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
    674                   BN_CTX *ctx) {
    675   BIGNUM *abs_m = NULL;
    676   int ret;
    677 
    678   if (!BN_nnmod(r, a, m, ctx)) {
    679     return 0;
    680   }
    681 
    682   if (m->neg) {
    683     abs_m = BN_dup(m);
    684     if (abs_m == NULL) {
    685       return 0;
    686     }
    687     abs_m->neg = 0;
    688   }
    689 
    690   ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
    691 
    692   BN_free(abs_m);
    693   return ret;
    694 }
    695 
    696 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
    697                             BN_CTX *ctx) {
    698   if (!BN_copy(r, a)) {
    699     return 0;
    700   }
    701   for (int i = 0; i < n; i++) {
    702     if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
    703       return 0;
    704     }
    705   }
    706   return 1;
    707 }
    708 
    709 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
    710   BN_CTX *ctx = BN_CTX_new();
    711   int ok = ctx != NULL &&
    712            bn_mod_lshift_consttime(r, a, n, m, ctx);
    713   BN_CTX_free(ctx);
    714   return ok;
    715 }
    716 
    717 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    718   if (!BN_lshift1(r, a)) {
    719     return 0;
    720   }
    721 
    722   return BN_nnmod(r, r, m, ctx);
    723 }
    724 
    725 int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    726                              BN_CTX *ctx) {
    727   return bn_mod_add_consttime(r, a, a, m, ctx);
    728 }
    729 
    730 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
    731   BN_CTX *ctx = BN_CTX_new();
    732   int ok = ctx != NULL &&
    733            bn_mod_lshift1_consttime(r, a, m, ctx);
    734   BN_CTX_free(ctx);
    735   return ok;
    736 }
    737 
    738 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
    739   BN_ULONG ret = 0;
    740   int i, j;
    741 
    742   if (!w) {
    743     // actually this an error (division by zero)
    744     return (BN_ULONG) - 1;
    745   }
    746 
    747   if (a->width == 0) {
    748     return 0;
    749   }
    750 
    751   // normalize input for |bn_div_rem_words|.
    752   j = BN_BITS2 - BN_num_bits_word(w);
    753   w <<= j;
    754   if (!BN_lshift(a, a, j)) {
    755     return (BN_ULONG) - 1;
    756   }
    757 
    758   for (i = a->width - 1; i >= 0; i--) {
    759     BN_ULONG l = a->d[i];
    760     BN_ULONG d;
    761     BN_ULONG unused_rem;
    762     bn_div_rem_words(&d, &unused_rem, ret, l, w);
    763     ret = l - (d * w);
    764     a->d[i] = d;
    765   }
    766 
    767   bn_set_minimal_width(a);
    768   ret >>= j;
    769   return ret;
    770 }
    771 
    772 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
    773 #ifndef BN_CAN_DIVIDE_ULLONG
    774   BN_ULONG ret = 0;
    775 #else
    776   BN_ULLONG ret = 0;
    777 #endif
    778   int i;
    779 
    780   if (w == 0) {
    781     return (BN_ULONG) -1;
    782   }
    783 
    784 #ifndef BN_CAN_DIVIDE_ULLONG
    785   // If |w| is too long and we don't have |BN_ULLONG| division then we need to
    786   // fall back to using |BN_div_word|.
    787   if (w > ((BN_ULONG)1 << BN_BITS4)) {
    788     BIGNUM *tmp = BN_dup(a);
    789     if (tmp == NULL) {
    790       return (BN_ULONG)-1;
    791     }
    792     ret = BN_div_word(tmp, w);
    793     BN_free(tmp);
    794     return ret;
    795   }
    796 #endif
    797 
    798   for (i = a->width - 1; i >= 0; i--) {
    799 #ifndef BN_CAN_DIVIDE_ULLONG
    800     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
    801     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
    802 #else
    803     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
    804 #endif
    805   }
    806   return (BN_ULONG)ret;
    807 }
    808 
    809 int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
    810   if (e == 0 || a->width == 0) {
    811     BN_zero(r);
    812     return 1;
    813   }
    814 
    815   size_t num_words = 1 + ((e - 1) / BN_BITS2);
    816 
    817   // If |a| definitely has less than |e| bits, just BN_copy.
    818   if ((size_t) a->width < num_words) {
    819     return BN_copy(r, a) != NULL;
    820   }
    821 
    822   // Otherwise, first make sure we have enough space in |r|.
    823   // Note that this will fail if num_words > INT_MAX.
    824   if (!bn_wexpand(r, num_words)) {
    825     return 0;
    826   }
    827 
    828   // Copy the content of |a| into |r|.
    829   OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
    830 
    831   // If |e| isn't word-aligned, we have to mask off some of our bits.
    832   size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
    833   if (top_word_exponent != 0) {
    834     r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
    835   }
    836 
    837   // Fill in the remaining fields of |r|.
    838   r->neg = a->neg;
    839   r->width = (int) num_words;
    840   bn_set_minimal_width(r);
    841   return 1;
    842 }
    843 
    844 int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
    845   if (!BN_mod_pow2(r, a, e)) {
    846     return 0;
    847   }
    848 
    849   // If the returned value was non-negative, we're done.
    850   if (BN_is_zero(r) || !r->neg) {
    851     return 1;
    852   }
    853 
    854   size_t num_words = 1 + (e - 1) / BN_BITS2;
    855 
    856   // Expand |r| to the size of our modulus.
    857   if (!bn_wexpand(r, num_words)) {
    858     return 0;
    859   }
    860 
    861   // Clear the upper words of |r|.
    862   OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
    863 
    864   // Set parameters of |r|.
    865   r->neg = 0;
    866   r->width = (int) num_words;
    867 
    868   // Now, invert every word. The idea here is that we want to compute 2^e-|x|,
    869   // which is actually equivalent to the twos-complement representation of |x|
    870   // in |e| bits, which is -x = ~x + 1.
    871   for (int i = 0; i < r->width; i++) {
    872     r->d[i] = ~r->d[i];
    873   }
    874 
    875   // If our exponent doesn't span the top word, we have to mask the rest.
    876   size_t top_word_exponent = e % BN_BITS2;
    877   if (top_word_exponent != 0) {
    878     r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
    879   }
    880 
    881   // Keep the minimal-width invariant for |BIGNUM|.
    882   bn_set_minimal_width(r);
    883 
    884   // Finally, add one, for the reason described above.
    885   return BN_add(r, r, BN_value_one());
    886 }
    887