Home | History | Annotate | Download | only in src
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      3  *
      4  * Copyright (c) 2005 Bruce D. Evans and Steven G. Kargl
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice unmodified, this list of conditions, and the following
     12  *    disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Hyperbolic cosine of a complex argument z = x + i y.
     31  *
     32  * cosh(z) = cosh(x+iy)
     33  *         = cosh(x) cos(y) + i sinh(x) sin(y).
     34  *
     35  * Exceptional values are noted in the comments within the source code.
     36  * These values and the return value were taken from n1124.pdf.
     37  * The sign of the result for some exceptional values is unspecified but
     38  * must satisfy both cosh(conj(z)) == conj(cosh(z)) and cosh(-z) == cosh(z).
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __FBSDID("$FreeBSD: head/lib/msun/src/s_ccosh.c 336362 2018-07-17 07:42:14Z bde $");
     43 
     44 #include <complex.h>
     45 #include <math.h>
     46 
     47 #include "math_private.h"
     48 
     49 static const double huge = 0x1p1023;
     50 
     51 double complex
     52 ccosh(double complex z)
     53 {
     54 	double x, y, h;
     55 	int32_t hx, hy, ix, iy, lx, ly;
     56 
     57 	x = creal(z);
     58 	y = cimag(z);
     59 
     60 	EXTRACT_WORDS(hx, lx, x);
     61 	EXTRACT_WORDS(hy, ly, y);
     62 
     63 	ix = 0x7fffffff & hx;
     64 	iy = 0x7fffffff & hy;
     65 
     66 	/* Handle the nearly-non-exceptional cases where x and y are finite. */
     67 	if (ix < 0x7ff00000 && iy < 0x7ff00000) {
     68 		if ((iy | ly) == 0)
     69 			return (CMPLX(cosh(x), x * y));
     70 		if (ix < 0x40360000)	/* |x| < 22: normal case */
     71 			return (CMPLX(cosh(x) * cos(y), sinh(x) * sin(y)));
     72 
     73 		/* |x| >= 22, so cosh(x) ~= exp(|x|) */
     74 		if (ix < 0x40862e42) {
     75 			/* x < 710: exp(|x|) won't overflow */
     76 			h = exp(fabs(x)) * 0.5;
     77 			return (CMPLX(h * cos(y), copysign(h, x) * sin(y)));
     78 		} else if (ix < 0x4096bbaa) {
     79 			/* x < 1455: scale to avoid overflow */
     80 			z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
     81 			return (CMPLX(creal(z), cimag(z) * copysign(1, x)));
     82 		} else {
     83 			/* x >= 1455: the result always overflows */
     84 			h = huge * x;
     85 			return (CMPLX(h * h * cos(y), h * sin(y)));
     86 		}
     87 	}
     88 
     89 	/*
     90 	 * cosh(+-0 +- I Inf) = dNaN + I (+-)(+-)0.
     91 	 * The sign of 0 in the result is unspecified.  Choice = product
     92 	 * of the signs of the argument.  Raise the invalid floating-point
     93 	 * exception.
     94 	 *
     95 	 * cosh(+-0 +- I NaN) = d(NaN) + I (+-)(+-)0.
     96 	 * The sign of 0 in the result is unspecified.  Choice = product
     97 	 * of the signs of the argument.
     98 	 */
     99 	if ((ix | lx) == 0)		/* && iy >= 0x7ff00000 */
    100 		return (CMPLX(y - y, x * copysign(0, y)));
    101 
    102 	/*
    103 	 * cosh(+-Inf +- I 0) = +Inf + I (+-)(+-)0.
    104 	 *
    105 	 * cosh(NaN +- I 0)   = d(NaN) + I (+-)(+-)0.
    106 	 * The sign of 0 in the result is unspecified.  Choice = product
    107 	 * of the signs of the argument.
    108 	 */
    109 	if ((iy | ly) == 0)		/* && ix >= 0x7ff00000 */
    110 		return (CMPLX(x * x, copysign(0, x) * y));
    111 
    112 	/*
    113 	 * cosh(x +- I Inf) = dNaN + I dNaN.
    114 	 * Raise the invalid floating-point exception for finite nonzero x.
    115 	 *
    116 	 * cosh(x + I NaN) = d(NaN) + I d(NaN).
    117 	 * Optionally raises the invalid floating-point exception for finite
    118 	 * nonzero x.  Choice = don't raise (except for signaling NaNs).
    119 	 */
    120 	if (ix < 0x7ff00000)		/* && iy >= 0x7ff00000 */
    121 		return (CMPLX(y - y, x * (y - y)));
    122 
    123 	/*
    124 	 * cosh(+-Inf + I NaN)  = +Inf + I d(NaN).
    125 	 *
    126 	 * cosh(+-Inf +- I Inf) = +Inf + I dNaN.
    127 	 * The sign of Inf in the result is unspecified.  Choice = always +.
    128 	 * Raise the invalid floating-point exception.
    129 	 *
    130 	 * cosh(+-Inf + I y)   = +Inf cos(y) +- I Inf sin(y)
    131 	 */
    132 	if (ix == 0x7ff00000 && lx == 0) {
    133 		if (iy >= 0x7ff00000)
    134 			return (CMPLX(INFINITY, x * (y - y)));
    135 		return (CMPLX(INFINITY * cos(y), x * sin(y)));
    136 	}
    137 
    138 	/*
    139 	 * cosh(NaN + I NaN)  = d(NaN) + I d(NaN).
    140 	 *
    141 	 * cosh(NaN +- I Inf) = d(NaN) + I d(NaN).
    142 	 * Optionally raises the invalid floating-point exception.
    143 	 * Choice = raise.
    144 	 *
    145 	 * cosh(NaN + I y)    = d(NaN) + I d(NaN).
    146 	 * Optionally raises the invalid floating-point exception for finite
    147 	 * nonzero y.  Choice = don't raise (except for signaling NaNs).
    148 	 */
    149 	return (CMPLX(((long double)x * x) * (y - y),
    150 	    ((long double)x + x) * (y - y)));
    151 }
    152 
    153 double complex
    154 ccos(double complex z)
    155 {
    156 
    157 	/* ccos(z) = ccosh(I * z) */
    158 	return (ccosh(CMPLX(-cimag(z), creal(z))));
    159 }
    160