Home | History | Annotate | Download | only in gifencoder
      1 package com.bumptech.glide.gifencoder;
      2 
      3 /*
      4  * NeuQuant Neural-Net Quantization Algorithm
      5  * ------------------------------------------
      6  *
      7  * Copyright (c) 1994 Anthony Dekker
      8  *
      9  * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
     10  * "Kohonen neural networks for optimal colour quantization" in "Network:
     11  * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
     12  * the algorithm.
     13  *
     14  * Any party obtaining a copy of these files from the author, directly or
     15  * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
     16  * world-wide, paid up, royalty-free, nonexclusive right and license to deal in
     17  * this software and documentation files (the "Software"), including without
     18  * limitation the rights to use, copy, modify, merge, publish, distribute,
     19  * sublicense, and/or sell copies of the Software, and to permit persons who
     20  * receive copies from any such party to do so, with the only requirement being
     21  * that this copyright notice remain intact.
     22  */
     23 
     24 // Ported to Java 12/00 K Weiner
     25 class NeuQuant {
     26 
     27     protected static final int netsize = 256; /* number of colours used */
     28 
     29     /* four primes near 500 - assume no image has a length so large */
     30   /* that it is divisible by all four primes */
     31     protected static final int prime1 = 499;
     32 
     33     protected static final int prime2 = 491;
     34 
     35     protected static final int prime3 = 487;
     36 
     37     protected static final int prime4 = 503;
     38 
     39     protected static final int minpicturebytes = (3 * prime4);
     40 
     41   /* minimum size for input image */
     42 
     43   /*
     44    * Program Skeleton ---------------- [select samplefac in range 1..30] [read
     45    * image from input file] pic = (unsigned char*) malloc(3*width*height);
     46    * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
     47    * image header, using writecolourmap(f)] inxbuild(); write output image using
     48    * inxsearch(b,g,r)
     49    */
     50 
     51   /*
     52    * Network Definitions -------------------
     53    */
     54 
     55     protected static final int maxnetpos = (netsize - 1);
     56 
     57     protected static final int netbiasshift = 4; /* bias for colour values */
     58 
     59     protected static final int ncycles = 100; /* no. of learning cycles */
     60 
     61     /* defs for freq and bias */
     62     protected static final int intbiasshift = 16; /* bias for fractions */
     63 
     64     protected static final int intbias = (((int) 1) << intbiasshift);
     65 
     66     protected static final int gammashift = 10; /* gamma = 1024 */
     67 
     68     protected static final int gamma = (((int) 1) << gammashift);
     69 
     70     protected static final int betashift = 10;
     71 
     72     protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
     73 
     74     protected static final int betagamma = (intbias << (gammashift - betashift));
     75 
     76     /* defs for decreasing radius factor */
     77     protected static final int initrad = (netsize >> 3); /*
     78                                                          * for 256 cols, radius
     79                                                          * starts
     80                                                          */
     81 
     82     protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
     83 
     84     protected static final int radiusbias = (((int) 1) << radiusbiasshift);
     85 
     86     protected static final int initradius = (initrad * radiusbias); /*
     87                                                                    * and
     88                                                                    * decreases
     89                                                                    * by a
     90                                                                    */
     91 
     92     protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
     93 
     94     /* defs for decreasing alpha factor */
     95     protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
     96 
     97     protected static final int initalpha = (((int) 1) << alphabiasshift);
     98 
     99     protected int alphadec; /* biased by 10 bits */
    100 
    101     /* radbias and alpharadbias used for radpower calculation */
    102     protected static final int radbiasshift = 8;
    103 
    104     protected static final int radbias = (((int) 1) << radbiasshift);
    105 
    106     protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
    107 
    108     protected static final int alpharadbias = (((int) 1) << alpharadbshift);
    109 
    110   /*
    111    * Types and Global Variables --------------------------
    112    */
    113 
    114     protected byte[] thepicture; /* the input image itself */
    115 
    116     protected int lengthcount; /* lengthcount = H*W*3 */
    117 
    118     protected int samplefac; /* sampling factor 1..30 */
    119 
    120     // typedef int pixel[4]; /* BGRc */
    121     protected int[][] network; /* the network itself - [netsize][4] */
    122 
    123     protected int[] netindex = new int[256];
    124 
    125   /* for network lookup - really 256 */
    126 
    127     protected int[] bias = new int[netsize];
    128 
    129     /* bias and freq arrays for learning */
    130     protected int[] freq = new int[netsize];
    131 
    132     protected int[] radpower = new int[initrad];
    133 
    134   /* radpower for precomputation */
    135 
    136     /*
    137      * Initialise network in range (0,0,0) to (255,255,255) and set parameters
    138      * -----------------------------------------------------------------------
    139      */
    140     public NeuQuant(byte[] thepic, int len, int sample) {
    141 
    142         int i;
    143         int[] p;
    144 
    145         thepicture = thepic;
    146         lengthcount = len;
    147         samplefac = sample;
    148 
    149         network = new int[netsize][];
    150         for (i = 0; i < netsize; i++) {
    151             network[i] = new int[4];
    152             p = network[i];
    153             p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
    154             freq[i] = intbias / netsize; /* 1/netsize */
    155             bias[i] = 0;
    156         }
    157     }
    158 
    159     public byte[] colorMap() {
    160         byte[] map = new byte[3 * netsize];
    161         int[] index = new int[netsize];
    162         for (int i = 0; i < netsize; i++)
    163             index[network[i][3]] = i;
    164         int k = 0;
    165         for (int i = 0; i < netsize; i++) {
    166             int j = index[i];
    167             map[k++] = (byte) (network[j][0]);
    168             map[k++] = (byte) (network[j][1]);
    169             map[k++] = (byte) (network[j][2]);
    170         }
    171         return map;
    172     }
    173 
    174     /*
    175      * Insertion sort of network and building of netindex[0..255] (to do after
    176      * unbias)
    177      * -------------------------------------------------------------------------------
    178      */
    179     public void inxbuild() {
    180 
    181         int i, j, smallpos, smallval;
    182         int[] p;
    183         int[] q;
    184         int previouscol, startpos;
    185 
    186         previouscol = 0;
    187         startpos = 0;
    188         for (i = 0; i < netsize; i++) {
    189             p = network[i];
    190             smallpos = i;
    191             smallval = p[1]; /* index on g */
    192       /* find smallest in i..netsize-1 */
    193             for (j = i + 1; j < netsize; j++) {
    194                 q = network[j];
    195                 if (q[1] < smallval) { /* index on g */
    196                     smallpos = j;
    197                     smallval = q[1]; /* index on g */
    198                 }
    199             }
    200             q = network[smallpos];
    201       /* swap p (i) and q (smallpos) entries */
    202             if (i != smallpos) {
    203                 j = q[0];
    204                 q[0] = p[0];
    205                 p[0] = j;
    206                 j = q[1];
    207                 q[1] = p[1];
    208                 p[1] = j;
    209                 j = q[2];
    210                 q[2] = p[2];
    211                 p[2] = j;
    212                 j = q[3];
    213                 q[3] = p[3];
    214                 p[3] = j;
    215             }
    216       /* smallval entry is now in position i */
    217             if (smallval != previouscol) {
    218                 netindex[previouscol] = (startpos + i) >> 1;
    219                 for (j = previouscol + 1; j < smallval; j++)
    220                     netindex[j] = i;
    221                 previouscol = smallval;
    222                 startpos = i;
    223             }
    224         }
    225         netindex[previouscol] = (startpos + maxnetpos) >> 1;
    226         for (j = previouscol + 1; j < 256; j++)
    227             netindex[j] = maxnetpos; /* really 256 */
    228     }
    229 
    230     /*
    231      * Main Learning Loop ------------------
    232      */
    233     public void learn() {
    234 
    235         int i, j, b, g, r;
    236         int radius, rad, alpha, step, delta, samplepixels;
    237         byte[] p;
    238         int pix, lim;
    239 
    240         if (lengthcount < minpicturebytes)
    241             samplefac = 1;
    242         alphadec = 30 + ((samplefac - 1) / 3);
    243         p = thepicture;
    244         pix = 0;
    245         lim = lengthcount;
    246         samplepixels = lengthcount / (3 * samplefac);
    247         delta = samplepixels / ncycles;
    248         alpha = initalpha;
    249         radius = initradius;
    250 
    251         rad = radius >> radiusbiasshift;
    252         if (rad <= 1)
    253             rad = 0;
    254         for (i = 0; i < rad; i++)
    255             radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
    256 
    257         // fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
    258 
    259         if (lengthcount < minpicturebytes)
    260             step = 3;
    261         else if ((lengthcount % prime1) != 0)
    262             step = 3 * prime1;
    263         else {
    264             if ((lengthcount % prime2) != 0)
    265                 step = 3 * prime2;
    266             else {
    267                 if ((lengthcount % prime3) != 0)
    268                     step = 3 * prime3;
    269                 else
    270                     step = 3 * prime4;
    271             }
    272         }
    273 
    274         i = 0;
    275         while (i < samplepixels) {
    276             b = (p[pix + 0] & 0xff) << netbiasshift;
    277             g = (p[pix + 1] & 0xff) << netbiasshift;
    278             r = (p[pix + 2] & 0xff) << netbiasshift;
    279             j = contest(b, g, r);
    280 
    281             altersingle(alpha, j, b, g, r);
    282             if (rad != 0)
    283                 alterneigh(rad, j, b, g, r); /* alter neighbours */
    284 
    285             pix += step;
    286             if (pix >= lim)
    287                 pix -= lengthcount;
    288 
    289             i++;
    290             if (delta == 0)
    291                 delta = 1;
    292             if (i % delta == 0) {
    293                 alpha -= alpha / alphadec;
    294                 radius -= radius / radiusdec;
    295                 rad = radius >> radiusbiasshift;
    296                 if (rad <= 1)
    297                     rad = 0;
    298                 for (j = 0; j < rad; j++)
    299                     radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
    300             }
    301         }
    302         // fprintf(stderr,"finished 1D learning: final alpha=%f
    303         // !\n",((float)alpha)/initalpha);
    304     }
    305 
    306     /*
    307      * Search for BGR values 0..255 (after net is unbiased) and return colour
    308      * index
    309      * ----------------------------------------------------------------------------
    310      */
    311     public int map(int b, int g, int r) {
    312 
    313         int i, j, dist, a, bestd;
    314         int[] p;
    315         int best;
    316 
    317         bestd = 1000; /* biggest possible dist is 256*3 */
    318         best = -1;
    319         i = netindex[g]; /* index on g */
    320         j = i - 1; /* start at netindex[g] and work outwards */
    321 
    322         while ((i < netsize) || (j >= 0)) {
    323             if (i < netsize) {
    324                 p = network[i];
    325                 dist = p[1] - g; /* inx key */
    326                 if (dist >= bestd)
    327                     i = netsize; /* stop iter */
    328                 else {
    329                     i++;
    330                     if (dist < 0)
    331                         dist = -dist;
    332                     a = p[0] - b;
    333                     if (a < 0)
    334                         a = -a;
    335                     dist += a;
    336                     if (dist < bestd) {
    337                         a = p[2] - r;
    338                         if (a < 0)
    339                             a = -a;
    340                         dist += a;
    341                         if (dist < bestd) {
    342                             bestd = dist;
    343                             best = p[3];
    344                         }
    345                     }
    346                 }
    347             }
    348             if (j >= 0) {
    349                 p = network[j];
    350                 dist = g - p[1]; /* inx key - reverse dif */
    351                 if (dist >= bestd)
    352                     j = -1; /* stop iter */
    353                 else {
    354                     j--;
    355                     if (dist < 0)
    356                         dist = -dist;
    357                     a = p[0] - b;
    358                     if (a < 0)
    359                         a = -a;
    360                     dist += a;
    361                     if (dist < bestd) {
    362                         a = p[2] - r;
    363                         if (a < 0)
    364                             a = -a;
    365                         dist += a;
    366                         if (dist < bestd) {
    367                             bestd = dist;
    368                             best = p[3];
    369                         }
    370                     }
    371                 }
    372             }
    373         }
    374         return (best);
    375     }
    376 
    377     public byte[] process() {
    378         learn();
    379         unbiasnet();
    380         inxbuild();
    381         return colorMap();
    382     }
    383 
    384     /*
    385      * Unbias network to give byte values 0..255 and record position i to prepare
    386      * for sort
    387      * -----------------------------------------------------------------------------------
    388      */
    389     public void unbiasnet() {
    390 
    391         int i, j;
    392 
    393         for (i = 0; i < netsize; i++) {
    394             network[i][0] >>= netbiasshift;
    395             network[i][1] >>= netbiasshift;
    396             network[i][2] >>= netbiasshift;
    397             network[i][3] = i; /* record colour no */
    398         }
    399     }
    400 
    401     /*
    402      * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
    403      * radpower[|i-j|]
    404      * ---------------------------------------------------------------------------------
    405      */
    406     protected void alterneigh(int rad, int i, int b, int g, int r) {
    407 
    408         int j, k, lo, hi, a, m;
    409         int[] p;
    410 
    411         lo = i - rad;
    412         if (lo < -1)
    413             lo = -1;
    414         hi = i + rad;
    415         if (hi > netsize)
    416             hi = netsize;
    417 
    418         j = i + 1;
    419         k = i - 1;
    420         m = 1;
    421         while ((j < hi) || (k > lo)) {
    422             a = radpower[m++];
    423             if (j < hi) {
    424                 p = network[j++];
    425                 try {
    426                     p[0] -= (a * (p[0] - b)) / alpharadbias;
    427                     p[1] -= (a * (p[1] - g)) / alpharadbias;
    428                     p[2] -= (a * (p[2] - r)) / alpharadbias;
    429                 } catch (Exception e) {
    430                 } // prevents 1.3 miscompilation
    431             }
    432             if (k > lo) {
    433                 p = network[k--];
    434                 try {
    435                     p[0] -= (a * (p[0] - b)) / alpharadbias;
    436                     p[1] -= (a * (p[1] - g)) / alpharadbias;
    437                     p[2] -= (a * (p[2] - r)) / alpharadbias;
    438                 } catch (Exception e) {
    439                 }
    440             }
    441         }
    442     }
    443 
    444     /*
    445      * Move neuron i towards biased (b,g,r) by factor alpha
    446      * ----------------------------------------------------
    447      */
    448     protected void altersingle(int alpha, int i, int b, int g, int r) {
    449 
    450     /* alter hit neuron */
    451         int[] n = network[i];
    452         n[0] -= (alpha * (n[0] - b)) / initalpha;
    453         n[1] -= (alpha * (n[1] - g)) / initalpha;
    454         n[2] -= (alpha * (n[2] - r)) / initalpha;
    455     }
    456 
    457     /*
    458      * Search for biased BGR values ----------------------------
    459      */
    460     protected int contest(int b, int g, int r) {
    461 
    462     /* finds closest neuron (min dist) and updates freq */
    463     /* finds best neuron (min dist-bias) and returns position */
    464     /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
    465     /* bias[i] = gamma*((1/netsize)-freq[i]) */
    466 
    467         int i, dist, a, biasdist, betafreq;
    468         int bestpos, bestbiaspos, bestd, bestbiasd;
    469         int[] n;
    470 
    471         bestd = ~(((int) 1) << 31);
    472         bestbiasd = bestd;
    473         bestpos = -1;
    474         bestbiaspos = bestpos;
    475 
    476         for (i = 0; i < netsize; i++) {
    477             n = network[i];
    478             dist = n[0] - b;
    479             if (dist < 0)
    480                 dist = -dist;
    481             a = n[1] - g;
    482             if (a < 0)
    483                 a = -a;
    484             dist += a;
    485             a = n[2] - r;
    486             if (a < 0)
    487                 a = -a;
    488             dist += a;
    489             if (dist < bestd) {
    490                 bestd = dist;
    491                 bestpos = i;
    492             }
    493             biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
    494             if (biasdist < bestbiasd) {
    495                 bestbiasd = biasdist;
    496                 bestbiaspos = i;
    497             }
    498             betafreq = (freq[i] >> betashift);
    499             freq[i] -= betafreq;
    500             bias[i] += (betafreq << gammashift);
    501         }
    502         freq[bestpos] += beta;
    503         bias[bestpos] -= betagamma;
    504         return (bestbiaspos);
    505     }
    506 }
    507