Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "vp8/common/header.h"
     12 #include "encodemv.h"
     13 #include "vp8/common/entropymode.h"
     14 #include "vp8/common/findnearmv.h"
     15 #include "mcomp.h"
     16 #include "vp8/common/systemdependent.h"
     17 #include <assert.h>
     18 #include <stdio.h>
     19 #include <limits.h>
     20 #include "vpx/vpx_encoder.h"
     21 #include "vpx_mem/vpx_mem.h"
     22 #include "vpx_ports/system_state.h"
     23 #include "bitstream.h"
     24 
     25 #include "defaultcoefcounts.h"
     26 #include "vp8/common/common.h"
     27 
     28 const int vp8cx_base_skip_false_prob[128] = {
     29   255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
     30   255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
     31   255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
     32   255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 251, 248, 244, 240,
     33   236, 232, 229, 225, 221, 217, 213, 208, 204, 199, 194, 190, 187, 183, 179,
     34   175, 172, 168, 164, 160, 157, 153, 149, 145, 142, 138, 134, 130, 127, 124,
     35   120, 117, 114, 110, 107, 104, 101, 98,  95,  92,  89,  86,  83,  80,  77,
     36   74,  71,  68,  65,  62,  59,  56,  53,  50,  47,  44,  41,  38,  35,  32,
     37   30,  28,  26,  24,  22,  20,  18,  16,
     38 };
     39 
     40 #if defined(SECTIONBITS_OUTPUT)
     41 unsigned __int64 Sectionbits[500];
     42 #endif
     43 
     44 #ifdef MODE_STATS
     45 int count_mb_seg[4] = { 0, 0, 0, 0 };
     46 #endif
     47 
     48 static void update_mode(vp8_writer *const w, int n, vp8_token tok[/* n */],
     49                         vp8_tree tree, vp8_prob Pnew[/* n-1 */],
     50                         vp8_prob Pcur[/* n-1 */],
     51                         unsigned int bct[/* n-1 */][2],
     52                         const unsigned int num_events[/* n */]) {
     53   unsigned int new_b = 0, old_b = 0;
     54   int i = 0;
     55 
     56   vp8_tree_probs_from_distribution(n--, tok, tree, Pnew, bct, num_events, 256,
     57                                    1);
     58 
     59   do {
     60     new_b += vp8_cost_branch(bct[i], Pnew[i]);
     61     old_b += vp8_cost_branch(bct[i], Pcur[i]);
     62   } while (++i < n);
     63 
     64   if (new_b + (n << 8) < old_b) {
     65     int j = 0;
     66 
     67     vp8_write_bit(w, 1);
     68 
     69     do {
     70       const vp8_prob p = Pnew[j];
     71 
     72       vp8_write_literal(w, Pcur[j] = p ? p : 1, 8);
     73     } while (++j < n);
     74   } else
     75     vp8_write_bit(w, 0);
     76 }
     77 
     78 static void update_mbintra_mode_probs(VP8_COMP *cpi) {
     79   VP8_COMMON *const x = &cpi->common;
     80 
     81   vp8_writer *const w = cpi->bc;
     82 
     83   {
     84     vp8_prob Pnew[VP8_YMODES - 1];
     85     unsigned int bct[VP8_YMODES - 1][2];
     86 
     87     update_mode(w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew,
     88                 x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count);
     89   }
     90   {
     91     vp8_prob Pnew[VP8_UV_MODES - 1];
     92     unsigned int bct[VP8_UV_MODES - 1][2];
     93 
     94     update_mode(w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew,
     95                 x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count);
     96   }
     97 }
     98 
     99 static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
    100   vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
    101 }
    102 
    103 static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
    104   vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
    105 }
    106 
    107 static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) {
    108   vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
    109 }
    110 
    111 static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) {
    112   vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
    113 }
    114 
    115 static void write_split(vp8_writer *bc, int x) {
    116   vp8_write_token(bc, vp8_mbsplit_tree, vp8_mbsplit_probs,
    117                   vp8_mbsplit_encodings + x);
    118 }
    119 
    120 void vp8_pack_tokens(vp8_writer *w, const TOKENEXTRA *p, int xcount) {
    121   const TOKENEXTRA *stop = p + xcount;
    122   unsigned int split;
    123   int shift;
    124   int count = w->count;
    125   unsigned int range = w->range;
    126   unsigned int lowvalue = w->lowvalue;
    127 
    128   while (p < stop) {
    129     const int t = p->Token;
    130     vp8_token *a = vp8_coef_encodings + t;
    131     const vp8_extra_bit_struct *b = vp8_extra_bits + t;
    132     int i = 0;
    133     const unsigned char *pp = p->context_tree;
    134     int v = a->value;
    135     int n = a->Len;
    136 
    137     if (p->skip_eob_node) {
    138       n--;
    139       i = 2;
    140     }
    141 
    142     do {
    143       const int bb = (v >> --n) & 1;
    144       split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
    145       i = vp8_coef_tree[i + bb];
    146 
    147       if (bb) {
    148         lowvalue += split;
    149         range = range - split;
    150       } else {
    151         range = split;
    152       }
    153 
    154       shift = vp8_norm[range];
    155       range <<= shift;
    156       count += shift;
    157 
    158       if (count >= 0) {
    159         int offset = shift - count;
    160 
    161         if ((lowvalue << (offset - 1)) & 0x80000000) {
    162           int x = w->pos - 1;
    163 
    164           while (x >= 0 && w->buffer[x] == 0xff) {
    165             w->buffer[x] = (unsigned char)0;
    166             x--;
    167           }
    168 
    169           w->buffer[x] += 1;
    170         }
    171 
    172         validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
    173 
    174         w->buffer[w->pos++] = (lowvalue >> (24 - offset));
    175         lowvalue <<= offset;
    176         shift = count;
    177         lowvalue &= 0xffffff;
    178         count -= 8;
    179       }
    180 
    181       lowvalue <<= shift;
    182     } while (n);
    183 
    184     if (b->base_val) {
    185       const int e = p->Extra, L = b->Len;
    186 
    187       if (L) {
    188         const unsigned char *proba = b->prob;
    189         const int v2 = e >> 1;
    190         int n2 = L; /* number of bits in v2, assumed nonzero */
    191         i = 0;
    192 
    193         do {
    194           const int bb = (v2 >> --n2) & 1;
    195           split = 1 + (((range - 1) * proba[i >> 1]) >> 8);
    196           i = b->tree[i + bb];
    197 
    198           if (bb) {
    199             lowvalue += split;
    200             range = range - split;
    201           } else {
    202             range = split;
    203           }
    204 
    205           shift = vp8_norm[range];
    206           range <<= shift;
    207           count += shift;
    208 
    209           if (count >= 0) {
    210             int offset = shift - count;
    211 
    212             if ((lowvalue << (offset - 1)) & 0x80000000) {
    213               int x = w->pos - 1;
    214 
    215               while (x >= 0 && w->buffer[x] == 0xff) {
    216                 w->buffer[x] = (unsigned char)0;
    217                 x--;
    218               }
    219 
    220               w->buffer[x] += 1;
    221             }
    222 
    223             validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
    224 
    225             w->buffer[w->pos++] = (lowvalue >> (24 - offset));
    226             lowvalue <<= offset;
    227             shift = count;
    228             lowvalue &= 0xffffff;
    229             count -= 8;
    230           }
    231 
    232           lowvalue <<= shift;
    233         } while (n2);
    234       }
    235 
    236       {
    237         split = (range + 1) >> 1;
    238 
    239         if (e & 1) {
    240           lowvalue += split;
    241           range = range - split;
    242         } else {
    243           range = split;
    244         }
    245 
    246         range <<= 1;
    247 
    248         if ((lowvalue & 0x80000000)) {
    249           int x = w->pos - 1;
    250 
    251           while (x >= 0 && w->buffer[x] == 0xff) {
    252             w->buffer[x] = (unsigned char)0;
    253             x--;
    254           }
    255 
    256           w->buffer[x] += 1;
    257         }
    258 
    259         lowvalue <<= 1;
    260 
    261         if (!++count) {
    262           count = -8;
    263 
    264           validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
    265 
    266           w->buffer[w->pos++] = (lowvalue >> 24);
    267           lowvalue &= 0xffffff;
    268         }
    269       }
    270     }
    271 
    272     ++p;
    273   }
    274 
    275   w->count = count;
    276   w->lowvalue = lowvalue;
    277   w->range = range;
    278 }
    279 
    280 static void write_partition_size(unsigned char *cx_data, int size) {
    281   signed char csize;
    282 
    283   csize = size & 0xff;
    284   *cx_data = csize;
    285   csize = (size >> 8) & 0xff;
    286   *(cx_data + 1) = csize;
    287   csize = (size >> 16) & 0xff;
    288   *(cx_data + 2) = csize;
    289 }
    290 
    291 static void pack_tokens_into_partitions(VP8_COMP *cpi, unsigned char *cx_data,
    292                                         unsigned char *cx_data_end,
    293                                         int num_part) {
    294   int i;
    295   unsigned char *ptr = cx_data;
    296   unsigned char *ptr_end = cx_data_end;
    297   vp8_writer *w;
    298 
    299   for (i = 0; i < num_part; ++i) {
    300     int mb_row;
    301 
    302     w = cpi->bc + i + 1;
    303 
    304     vp8_start_encode(w, ptr, ptr_end);
    305 
    306     for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part) {
    307       const TOKENEXTRA *p = cpi->tplist[mb_row].start;
    308       const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
    309       int tokens = (int)(stop - p);
    310 
    311       vp8_pack_tokens(w, p, tokens);
    312     }
    313 
    314     vp8_stop_encode(w);
    315     ptr += w->pos;
    316   }
    317 }
    318 
    319 #if CONFIG_MULTITHREAD
    320 static void pack_mb_row_tokens(VP8_COMP *cpi, vp8_writer *w) {
    321   int mb_row;
    322 
    323   for (mb_row = 0; mb_row < cpi->common.mb_rows; ++mb_row) {
    324     const TOKENEXTRA *p = cpi->tplist[mb_row].start;
    325     const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
    326     int tokens = (int)(stop - p);
    327 
    328     vp8_pack_tokens(w, p, tokens);
    329   }
    330 }
    331 #endif  // CONFIG_MULTITHREAD
    332 
    333 static void write_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m,
    334                          const vp8_prob *p) {
    335   assert(NEARESTMV <= m && m <= SPLITMV);
    336   vp8_write_token(w, vp8_mv_ref_tree, p,
    337                   vp8_mv_ref_encoding_array + (m - NEARESTMV));
    338 }
    339 
    340 static void write_sub_mv_ref(vp8_writer *w, B_PREDICTION_MODE m,
    341                              const vp8_prob *p) {
    342   assert(LEFT4X4 <= m && m <= NEW4X4);
    343   vp8_write_token(w, vp8_sub_mv_ref_tree, p,
    344                   vp8_sub_mv_ref_encoding_array + (m - LEFT4X4));
    345 }
    346 
    347 static void write_mv(vp8_writer *w, const MV *mv, const int_mv *ref,
    348                      const MV_CONTEXT *mvc) {
    349   MV e;
    350   e.row = mv->row - ref->as_mv.row;
    351   e.col = mv->col - ref->as_mv.col;
    352 
    353   vp8_encode_motion_vector(w, &e, mvc);
    354 }
    355 
    356 static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi,
    357                               const MACROBLOCKD *x) {
    358   /* Encode the MB segment id. */
    359   if (x->segmentation_enabled && x->update_mb_segmentation_map) {
    360     switch (mi->segment_id) {
    361       case 0:
    362         vp8_write(w, 0, x->mb_segment_tree_probs[0]);
    363         vp8_write(w, 0, x->mb_segment_tree_probs[1]);
    364         break;
    365       case 1:
    366         vp8_write(w, 0, x->mb_segment_tree_probs[0]);
    367         vp8_write(w, 1, x->mb_segment_tree_probs[1]);
    368         break;
    369       case 2:
    370         vp8_write(w, 1, x->mb_segment_tree_probs[0]);
    371         vp8_write(w, 0, x->mb_segment_tree_probs[2]);
    372         break;
    373       case 3:
    374         vp8_write(w, 1, x->mb_segment_tree_probs[0]);
    375         vp8_write(w, 1, x->mb_segment_tree_probs[2]);
    376         break;
    377 
    378       /* TRAP.. This should not happen */
    379       default:
    380         vp8_write(w, 0, x->mb_segment_tree_probs[0]);
    381         vp8_write(w, 0, x->mb_segment_tree_probs[1]);
    382         break;
    383     }
    384   }
    385 }
    386 void vp8_convert_rfct_to_prob(VP8_COMP *const cpi) {
    387   const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
    388   const int rf_intra = rfct[INTRA_FRAME];
    389   const int rf_inter =
    390       rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
    391 
    392   /* Calculate the probabilities used to code the ref frame based on usage */
    393   if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter))) {
    394     cpi->prob_intra_coded = 1;
    395   }
    396 
    397   cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
    398 
    399   if (!cpi->prob_last_coded) cpi->prob_last_coded = 1;
    400 
    401   cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
    402                            ? (rfct[GOLDEN_FRAME] * 255) /
    403                                  (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
    404                            : 128;
    405 
    406   if (!cpi->prob_gf_coded) cpi->prob_gf_coded = 1;
    407 }
    408 
    409 static void pack_inter_mode_mvs(VP8_COMP *const cpi) {
    410   VP8_COMMON *const pc = &cpi->common;
    411   vp8_writer *const w = cpi->bc;
    412   const MV_CONTEXT *mvc = pc->fc.mvc;
    413 
    414   MODE_INFO *m = pc->mi;
    415   const int mis = pc->mode_info_stride;
    416   int mb_row = -1;
    417 
    418   int prob_skip_false = 0;
    419 
    420   cpi->mb.partition_info = cpi->mb.pi;
    421 
    422   vp8_convert_rfct_to_prob(cpi);
    423 
    424   if (pc->mb_no_coeff_skip) {
    425     int total_mbs = pc->mb_rows * pc->mb_cols;
    426 
    427     prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs;
    428 
    429     if (prob_skip_false <= 1) prob_skip_false = 1;
    430 
    431     if (prob_skip_false > 255) prob_skip_false = 255;
    432 
    433     cpi->prob_skip_false = prob_skip_false;
    434     vp8_write_literal(w, prob_skip_false, 8);
    435   }
    436 
    437   vp8_write_literal(w, cpi->prob_intra_coded, 8);
    438   vp8_write_literal(w, cpi->prob_last_coded, 8);
    439   vp8_write_literal(w, cpi->prob_gf_coded, 8);
    440 
    441   update_mbintra_mode_probs(cpi);
    442 
    443   vp8_write_mvprobs(cpi);
    444 
    445   while (++mb_row < pc->mb_rows) {
    446     int mb_col = -1;
    447 
    448     while (++mb_col < pc->mb_cols) {
    449       const MB_MODE_INFO *const mi = &m->mbmi;
    450       const MV_REFERENCE_FRAME rf = mi->ref_frame;
    451       const MB_PREDICTION_MODE mode = mi->mode;
    452 
    453       MACROBLOCKD *xd = &cpi->mb.e_mbd;
    454 
    455       /* Distance of Mb to the various image edges.
    456        * These specified to 8th pel as they are always compared to MV
    457        * values that are in 1/8th pel units
    458        */
    459       xd->mb_to_left_edge = -((mb_col * 16) << 3);
    460       xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
    461       xd->mb_to_top_edge = -((mb_row * 16) << 3);
    462       xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
    463 
    464       if (cpi->mb.e_mbd.update_mb_segmentation_map) {
    465         write_mb_features(w, mi, &cpi->mb.e_mbd);
    466       }
    467 
    468       if (pc->mb_no_coeff_skip) {
    469         vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false);
    470       }
    471 
    472       if (rf == INTRA_FRAME) {
    473         vp8_write(w, 0, cpi->prob_intra_coded);
    474         write_ymode(w, mode, pc->fc.ymode_prob);
    475 
    476         if (mode == B_PRED) {
    477           int j = 0;
    478 
    479           do {
    480             write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
    481           } while (++j < 16);
    482         }
    483 
    484         write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
    485       } else { /* inter coded */
    486         int_mv best_mv;
    487         vp8_prob mv_ref_p[VP8_MVREFS - 1];
    488 
    489         vp8_write(w, 1, cpi->prob_intra_coded);
    490 
    491         if (rf == LAST_FRAME)
    492           vp8_write(w, 0, cpi->prob_last_coded);
    493         else {
    494           vp8_write(w, 1, cpi->prob_last_coded);
    495           vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded);
    496         }
    497 
    498         {
    499           int_mv n1, n2;
    500           int ct[4];
    501 
    502           vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf,
    503                             cpi->common.ref_frame_sign_bias);
    504           vp8_clamp_mv2(&best_mv, xd);
    505 
    506           vp8_mv_ref_probs(mv_ref_p, ct);
    507         }
    508 
    509         write_mv_ref(w, mode, mv_ref_p);
    510 
    511         switch (mode) /* new, split require MVs */
    512         {
    513           case NEWMV: write_mv(w, &mi->mv.as_mv, &best_mv, mvc); break;
    514 
    515           case SPLITMV: {
    516             int j = 0;
    517 
    518 #ifdef MODE_STATS
    519             ++count_mb_seg[mi->partitioning];
    520 #endif
    521 
    522             write_split(w, mi->partitioning);
    523 
    524             do {
    525               B_PREDICTION_MODE blockmode;
    526               int_mv blockmv;
    527               const int *const L = vp8_mbsplits[mi->partitioning];
    528               int k = -1; /* first block in subset j */
    529               int mv_contz;
    530               int_mv leftmv, abovemv;
    531 
    532               blockmode = cpi->mb.partition_info->bmi[j].mode;
    533               blockmv = cpi->mb.partition_info->bmi[j].mv;
    534               while (j != L[++k]) {
    535                 assert(k < 16);
    536               }
    537               leftmv.as_int = left_block_mv(m, k);
    538               abovemv.as_int = above_block_mv(m, k, mis);
    539               mv_contz = vp8_mv_cont(&leftmv, &abovemv);
    540 
    541               write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2[mv_contz]);
    542 
    543               if (blockmode == NEW4X4) {
    544                 write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *)mvc);
    545               }
    546             } while (++j < cpi->mb.partition_info->count);
    547             break;
    548           }
    549           default: break;
    550         }
    551       }
    552 
    553       ++m;
    554       cpi->mb.partition_info++;
    555     }
    556 
    557     ++m; /* skip L prediction border */
    558     cpi->mb.partition_info++;
    559   }
    560 }
    561 
    562 static void write_kfmodes(VP8_COMP *cpi) {
    563   vp8_writer *const bc = cpi->bc;
    564   const VP8_COMMON *const c = &cpi->common;
    565   /* const */
    566   MODE_INFO *m = c->mi;
    567 
    568   int mb_row = -1;
    569   int prob_skip_false = 0;
    570 
    571   if (c->mb_no_coeff_skip) {
    572     int total_mbs = c->mb_rows * c->mb_cols;
    573 
    574     prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs;
    575 
    576     if (prob_skip_false <= 1) prob_skip_false = 1;
    577 
    578     if (prob_skip_false >= 255) prob_skip_false = 255;
    579 
    580     cpi->prob_skip_false = prob_skip_false;
    581     vp8_write_literal(bc, prob_skip_false, 8);
    582   }
    583 
    584   while (++mb_row < c->mb_rows) {
    585     int mb_col = -1;
    586 
    587     while (++mb_col < c->mb_cols) {
    588       const int ym = m->mbmi.mode;
    589 
    590       if (cpi->mb.e_mbd.update_mb_segmentation_map) {
    591         write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd);
    592       }
    593 
    594       if (c->mb_no_coeff_skip) {
    595         vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
    596       }
    597 
    598       kfwrite_ymode(bc, ym, vp8_kf_ymode_prob);
    599 
    600       if (ym == B_PRED) {
    601         const int mis = c->mode_info_stride;
    602         int i = 0;
    603 
    604         do {
    605           const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
    606           const B_PREDICTION_MODE L = left_block_mode(m, i);
    607           const int bm = m->bmi[i].as_mode;
    608 
    609           write_bmode(bc, bm, vp8_kf_bmode_prob[A][L]);
    610         } while (++i < 16);
    611       }
    612 
    613       write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob);
    614     }
    615 
    616     m++; /* skip L prediction border */
    617   }
    618 }
    619 
    620 #if 0
    621 /* This function is used for debugging probability trees. */
    622 static void print_prob_tree(vp8_prob
    623      coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
    624 {
    625     /* print coef probability tree */
    626     int i,j,k,l;
    627     FILE* f = fopen("enc_tree_probs.txt", "a");
    628     fprintf(f, "{\n");
    629     for (i = 0; i < BLOCK_TYPES; ++i)
    630     {
    631         fprintf(f, "  {\n");
    632         for (j = 0; j < COEF_BANDS; ++j)
    633         {
    634             fprintf(f, "    {\n");
    635             for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
    636             {
    637                 fprintf(f, "      {");
    638                 for (l = 0; l < ENTROPY_NODES; ++l)
    639                 {
    640                     fprintf(f, "%3u, ",
    641                             (unsigned int)(coef_probs [i][j][k][l]));
    642                 }
    643                 fprintf(f, " }\n");
    644             }
    645             fprintf(f, "    }\n");
    646         }
    647         fprintf(f, "  }\n");
    648     }
    649     fprintf(f, "}\n");
    650     fclose(f);
    651 }
    652 #endif
    653 
    654 static void sum_probs_over_prev_coef_context(
    655     const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
    656     unsigned int *out) {
    657   int i, j;
    658   for (i = 0; i < MAX_ENTROPY_TOKENS; ++i) {
    659     for (j = 0; j < PREV_COEF_CONTEXTS; ++j) {
    660       const unsigned int tmp = out[i];
    661       out[i] += probs[j][i];
    662       /* check for wrap */
    663       if (out[i] < tmp) out[i] = UINT_MAX;
    664     }
    665   }
    666 }
    667 
    668 static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp,
    669                                const vp8_prob newp, const vp8_prob upd) {
    670   const int old_b = vp8_cost_branch(ct, oldp);
    671   const int new_b = vp8_cost_branch(ct, newp);
    672   const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
    673 
    674   return old_b - new_b - update_b;
    675 }
    676 
    677 static int independent_coef_context_savings(VP8_COMP *cpi) {
    678   MACROBLOCK *const x = &cpi->mb;
    679   int savings = 0;
    680   int i = 0;
    681   do {
    682     int j = 0;
    683     do {
    684       int k = 0;
    685       unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = { 0 };
    686       int prev_coef_savings[MAX_ENTROPY_TOKENS] = { 0 };
    687       const unsigned int(*probs)[MAX_ENTROPY_TOKENS];
    688       /* Calculate new probabilities given the constraint that
    689        * they must be equal over the prev coef contexts
    690        */
    691 
    692       probs = (const unsigned int(*)[MAX_ENTROPY_TOKENS])x->coef_counts[i][j];
    693 
    694       /* Reset to default probabilities at key frames */
    695       if (cpi->common.frame_type == KEY_FRAME) {
    696         probs = default_coef_counts[i][j];
    697       }
    698 
    699       sum_probs_over_prev_coef_context(probs, prev_coef_count_sum);
    700 
    701       do {
    702         /* at every context */
    703 
    704         /* calc probs and branch cts for this frame only */
    705         int t = 0; /* token/prob index */
    706 
    707         vp8_tree_probs_from_distribution(
    708             MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
    709             cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k],
    710             prev_coef_count_sum, 256, 1);
    711 
    712         do {
    713           const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
    714           const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
    715           const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
    716           const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
    717           const int s = prob_update_savings(ct, oldp, newp, upd);
    718 
    719           if (cpi->common.frame_type != KEY_FRAME ||
    720               (cpi->common.frame_type == KEY_FRAME && newp != oldp)) {
    721             prev_coef_savings[t] += s;
    722           }
    723         } while (++t < ENTROPY_NODES);
    724       } while (++k < PREV_COEF_CONTEXTS);
    725       k = 0;
    726       do {
    727         /* We only update probabilities if we can save bits, except
    728          * for key frames where we have to update all probabilities
    729          * to get the equal probabilities across the prev coef
    730          * contexts.
    731          */
    732         if (prev_coef_savings[k] > 0 || cpi->common.frame_type == KEY_FRAME) {
    733           savings += prev_coef_savings[k];
    734         }
    735       } while (++k < ENTROPY_NODES);
    736     } while (++j < COEF_BANDS);
    737   } while (++i < BLOCK_TYPES);
    738   return savings;
    739 }
    740 
    741 static int default_coef_context_savings(VP8_COMP *cpi) {
    742   MACROBLOCK *const x = &cpi->mb;
    743   int savings = 0;
    744   int i = 0;
    745   do {
    746     int j = 0;
    747     do {
    748       int k = 0;
    749       do {
    750         /* at every context */
    751 
    752         /* calc probs and branch cts for this frame only */
    753         int t = 0; /* token/prob index */
    754 
    755         vp8_tree_probs_from_distribution(
    756             MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
    757             cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k],
    758             x->coef_counts[i][j][k], 256, 1);
    759 
    760         do {
    761           const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
    762           const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
    763           const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
    764           const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
    765           const int s = prob_update_savings(ct, oldp, newp, upd);
    766 
    767           if (s > 0) {
    768             savings += s;
    769           }
    770         } while (++t < ENTROPY_NODES);
    771       } while (++k < PREV_COEF_CONTEXTS);
    772     } while (++j < COEF_BANDS);
    773   } while (++i < BLOCK_TYPES);
    774   return savings;
    775 }
    776 
    777 void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra,
    778                               int prob_last, int prob_garf) {
    779   assert(prob_intra >= 0);
    780   assert(prob_intra <= 255);
    781   assert(prob_last >= 0);
    782   assert(prob_last <= 255);
    783   assert(prob_garf >= 0);
    784   assert(prob_garf <= 255);
    785   ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra);
    786   ref_frame_cost[LAST_FRAME] =
    787       vp8_cost_one(prob_intra) + vp8_cost_zero(prob_last);
    788   ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra) +
    789                                  vp8_cost_one(prob_last) +
    790                                  vp8_cost_zero(prob_garf);
    791   ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra) +
    792                                  vp8_cost_one(prob_last) +
    793                                  vp8_cost_one(prob_garf);
    794 }
    795 
    796 int vp8_estimate_entropy_savings(VP8_COMP *cpi) {
    797   int savings = 0;
    798 
    799   const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
    800   const int rf_intra = rfct[INTRA_FRAME];
    801   const int rf_inter =
    802       rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
    803   int new_intra, new_last, new_garf, oldtotal, newtotal;
    804   int ref_frame_cost[MAX_REF_FRAMES];
    805 
    806   vpx_clear_system_state();
    807 
    808   if (cpi->common.frame_type != KEY_FRAME) {
    809     if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter))) new_intra = 1;
    810 
    811     new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
    812 
    813     new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
    814                    ? (rfct[GOLDEN_FRAME] * 255) /
    815                          (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
    816                    : 128;
    817 
    818     vp8_calc_ref_frame_costs(ref_frame_cost, new_intra, new_last, new_garf);
    819 
    820     newtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
    821                rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
    822                rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
    823                rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
    824 
    825     /* old costs */
    826     vp8_calc_ref_frame_costs(ref_frame_cost, cpi->prob_intra_coded,
    827                              cpi->prob_last_coded, cpi->prob_gf_coded);
    828 
    829     oldtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
    830                rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
    831                rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
    832                rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
    833 
    834     savings += (oldtotal - newtotal) / 256;
    835   }
    836 
    837   if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
    838     savings += independent_coef_context_savings(cpi);
    839   } else {
    840     savings += default_coef_context_savings(cpi);
    841   }
    842 
    843   return savings;
    844 }
    845 
    846 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
    847 int vp8_update_coef_context(VP8_COMP *cpi) {
    848   int savings = 0;
    849 
    850   if (cpi->common.frame_type == KEY_FRAME) {
    851     /* Reset to default counts/probabilities at key frames */
    852     vp8_copy(cpi->mb.coef_counts, default_coef_counts);
    853   }
    854 
    855   if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
    856     savings += independent_coef_context_savings(cpi);
    857   else
    858     savings += default_coef_context_savings(cpi);
    859 
    860   return savings;
    861 }
    862 #endif
    863 
    864 void vp8_update_coef_probs(VP8_COMP *cpi) {
    865   int i = 0;
    866 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
    867   vp8_writer *const w = cpi->bc;
    868 #endif
    869   int savings = 0;
    870 
    871   vpx_clear_system_state();
    872 
    873   do {
    874     int j = 0;
    875 
    876     do {
    877       int k = 0;
    878       int prev_coef_savings[ENTROPY_NODES] = { 0 };
    879       if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
    880         for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
    881           int t; /* token/prob index */
    882           for (t = 0; t < ENTROPY_NODES; ++t) {
    883             const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
    884             const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
    885             const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
    886             const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
    887 
    888             prev_coef_savings[t] += prob_update_savings(ct, oldp, newp, upd);
    889           }
    890         }
    891         k = 0;
    892       }
    893       do {
    894         /* note: use result from vp8_estimate_entropy_savings, so no
    895          * need to call vp8_tree_probs_from_distribution here.
    896          */
    897 
    898         /* at every context */
    899 
    900         /* calc probs and branch cts for this frame only */
    901         int t = 0; /* token/prob index */
    902 
    903         do {
    904           const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
    905 
    906           vp8_prob *Pold = cpi->common.fc.coef_probs[i][j][k] + t;
    907           const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
    908 
    909           int s = prev_coef_savings[t];
    910           int u = 0;
    911 
    912           if (!(cpi->oxcf.error_resilient_mode &
    913                 VPX_ERROR_RESILIENT_PARTITIONS)) {
    914             s = prob_update_savings(cpi->frame_branch_ct[i][j][k][t], *Pold,
    915                                     newp, upd);
    916           }
    917 
    918           if (s > 0) u = 1;
    919 
    920           /* Force updates on key frames if the new is different,
    921            * so that we can be sure we end up with equal probabilities
    922            * over the prev coef contexts.
    923            */
    924           if ((cpi->oxcf.error_resilient_mode &
    925                VPX_ERROR_RESILIENT_PARTITIONS) &&
    926               cpi->common.frame_type == KEY_FRAME && newp != *Pold) {
    927             u = 1;
    928           }
    929 
    930 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
    931           cpi->update_probs[i][j][k][t] = u;
    932 #else
    933           vp8_write(w, u, upd);
    934 #endif
    935 
    936           if (u) {
    937             /* send/use new probability */
    938 
    939             *Pold = newp;
    940 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
    941             vp8_write_literal(w, newp, 8);
    942 #endif
    943 
    944             savings += s;
    945           }
    946 
    947         } while (++t < ENTROPY_NODES);
    948 
    949       } while (++k < PREV_COEF_CONTEXTS);
    950     } while (++j < COEF_BANDS);
    951   } while (++i < BLOCK_TYPES);
    952 }
    953 
    954 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
    955 static void pack_coef_probs(VP8_COMP *cpi) {
    956   int i = 0;
    957   vp8_writer *const w = cpi->bc;
    958 
    959   do {
    960     int j = 0;
    961 
    962     do {
    963       int k = 0;
    964 
    965       do {
    966         int t = 0; /* token/prob index */
    967 
    968         do {
    969           const vp8_prob newp = cpi->common.fc.coef_probs[i][j][k][t];
    970           const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
    971 
    972           const char u = cpi->update_probs[i][j][k][t];
    973 
    974           vp8_write(w, u, upd);
    975 
    976           if (u) {
    977             /* send/use new probability */
    978             vp8_write_literal(w, newp, 8);
    979           }
    980         } while (++t < ENTROPY_NODES);
    981       } while (++k < PREV_COEF_CONTEXTS);
    982     } while (++j < COEF_BANDS);
    983   } while (++i < BLOCK_TYPES);
    984 }
    985 #endif
    986 
    987 #ifdef PACKET_TESTING
    988 FILE *vpxlogc = 0;
    989 #endif
    990 
    991 static void put_delta_q(vp8_writer *bc, int delta_q) {
    992   if (delta_q != 0) {
    993     vp8_write_bit(bc, 1);
    994     vp8_write_literal(bc, abs(delta_q), 4);
    995 
    996     if (delta_q < 0)
    997       vp8_write_bit(bc, 1);
    998     else
    999       vp8_write_bit(bc, 0);
   1000   } else
   1001     vp8_write_bit(bc, 0);
   1002 }
   1003 
   1004 void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest,
   1005                         unsigned char *dest_end, size_t *size) {
   1006   int i, j;
   1007   VP8_HEADER oh;
   1008   VP8_COMMON *const pc = &cpi->common;
   1009   vp8_writer *const bc = cpi->bc;
   1010   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   1011   int extra_bytes_packed = 0;
   1012 
   1013   unsigned char *cx_data = dest;
   1014   unsigned char *cx_data_end = dest_end;
   1015   const int *mb_feature_data_bits;
   1016 
   1017   oh.show_frame = (int)pc->show_frame;
   1018   oh.type = (int)pc->frame_type;
   1019   oh.version = pc->version;
   1020   oh.first_partition_length_in_bytes = 0;
   1021 
   1022   mb_feature_data_bits = vp8_mb_feature_data_bits;
   1023 
   1024   bc[0].error = &pc->error;
   1025 
   1026   validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error);
   1027   cx_data += 3;
   1028 
   1029 #if defined(SECTIONBITS_OUTPUT)
   1030   Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
   1031 #endif
   1032 
   1033   /* every keyframe send startcode, width, height, scale factor, clamp
   1034    * and color type
   1035    */
   1036   if (oh.type == KEY_FRAME) {
   1037     int v;
   1038 
   1039     validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error);
   1040 
   1041     /* Start / synch code */
   1042     cx_data[0] = 0x9D;
   1043     cx_data[1] = 0x01;
   1044     cx_data[2] = 0x2a;
   1045 
   1046     v = (pc->horiz_scale << 14) | pc->Width;
   1047     cx_data[3] = v;
   1048     cx_data[4] = v >> 8;
   1049 
   1050     v = (pc->vert_scale << 14) | pc->Height;
   1051     cx_data[5] = v;
   1052     cx_data[6] = v >> 8;
   1053 
   1054     extra_bytes_packed = 7;
   1055     cx_data += extra_bytes_packed;
   1056 
   1057     vp8_start_encode(bc, cx_data, cx_data_end);
   1058 
   1059     /* signal clr type */
   1060     vp8_write_bit(bc, 0);
   1061     vp8_write_bit(bc, pc->clamp_type);
   1062 
   1063   } else {
   1064     vp8_start_encode(bc, cx_data, cx_data_end);
   1065   }
   1066 
   1067   /* Signal whether or not Segmentation is enabled */
   1068   vp8_write_bit(bc, xd->segmentation_enabled);
   1069 
   1070   /*  Indicate which features are enabled */
   1071   if (xd->segmentation_enabled) {
   1072     /* Signal whether or not the segmentation map is being updated. */
   1073     vp8_write_bit(bc, xd->update_mb_segmentation_map);
   1074     vp8_write_bit(bc, xd->update_mb_segmentation_data);
   1075 
   1076     if (xd->update_mb_segmentation_data) {
   1077       signed char Data;
   1078 
   1079       vp8_write_bit(bc, xd->mb_segement_abs_delta);
   1080 
   1081       /* For each segmentation feature (Quant and loop filter level) */
   1082       for (i = 0; i < MB_LVL_MAX; ++i) {
   1083         /* For each of the segments */
   1084         for (j = 0; j < MAX_MB_SEGMENTS; ++j) {
   1085           Data = xd->segment_feature_data[i][j];
   1086 
   1087           /* Frame level data */
   1088           if (Data) {
   1089             vp8_write_bit(bc, 1);
   1090 
   1091             if (Data < 0) {
   1092               Data = -Data;
   1093               vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
   1094               vp8_write_bit(bc, 1);
   1095             } else {
   1096               vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
   1097               vp8_write_bit(bc, 0);
   1098             }
   1099           } else
   1100             vp8_write_bit(bc, 0);
   1101         }
   1102       }
   1103     }
   1104 
   1105     if (xd->update_mb_segmentation_map) {
   1106       /* Write the probs used to decode the segment id for each mb */
   1107       for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) {
   1108         int Data = xd->mb_segment_tree_probs[i];
   1109 
   1110         if (Data != 255) {
   1111           vp8_write_bit(bc, 1);
   1112           vp8_write_literal(bc, Data, 8);
   1113         } else
   1114           vp8_write_bit(bc, 0);
   1115       }
   1116     }
   1117   }
   1118 
   1119   vp8_write_bit(bc, pc->filter_type);
   1120   vp8_write_literal(bc, pc->filter_level, 6);
   1121   vp8_write_literal(bc, pc->sharpness_level, 3);
   1122 
   1123   /* Write out loop filter deltas applied at the MB level based on mode
   1124    * or ref frame (if they are enabled).
   1125    */
   1126   vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled);
   1127 
   1128   if (xd->mode_ref_lf_delta_enabled) {
   1129     /* Do the deltas need to be updated */
   1130     int send_update =
   1131         xd->mode_ref_lf_delta_update || cpi->oxcf.error_resilient_mode;
   1132 
   1133     vp8_write_bit(bc, send_update);
   1134     if (send_update) {
   1135       int Data;
   1136 
   1137       /* Send update */
   1138       for (i = 0; i < MAX_REF_LF_DELTAS; ++i) {
   1139         Data = xd->ref_lf_deltas[i];
   1140 
   1141         /* Frame level data */
   1142         if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i] ||
   1143             cpi->oxcf.error_resilient_mode) {
   1144           xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
   1145           vp8_write_bit(bc, 1);
   1146 
   1147           if (Data > 0) {
   1148             vp8_write_literal(bc, (Data & 0x3F), 6);
   1149             vp8_write_bit(bc, 0); /* sign */
   1150           } else {
   1151             Data = -Data;
   1152             vp8_write_literal(bc, (Data & 0x3F), 6);
   1153             vp8_write_bit(bc, 1); /* sign */
   1154           }
   1155         } else
   1156           vp8_write_bit(bc, 0);
   1157       }
   1158 
   1159       /* Send update */
   1160       for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) {
   1161         Data = xd->mode_lf_deltas[i];
   1162 
   1163         if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i] ||
   1164             cpi->oxcf.error_resilient_mode) {
   1165           xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
   1166           vp8_write_bit(bc, 1);
   1167 
   1168           if (Data > 0) {
   1169             vp8_write_literal(bc, (Data & 0x3F), 6);
   1170             vp8_write_bit(bc, 0); /* sign */
   1171           } else {
   1172             Data = -Data;
   1173             vp8_write_literal(bc, (Data & 0x3F), 6);
   1174             vp8_write_bit(bc, 1); /* sign */
   1175           }
   1176         } else
   1177           vp8_write_bit(bc, 0);
   1178       }
   1179     }
   1180   }
   1181 
   1182   /* signal here is multi token partition is enabled */
   1183   vp8_write_literal(bc, pc->multi_token_partition, 2);
   1184 
   1185   /* Frame Qbaseline quantizer index */
   1186   vp8_write_literal(bc, pc->base_qindex, 7);
   1187 
   1188   /* Transmit Dc, Second order and Uv quantizer delta information */
   1189   put_delta_q(bc, pc->y1dc_delta_q);
   1190   put_delta_q(bc, pc->y2dc_delta_q);
   1191   put_delta_q(bc, pc->y2ac_delta_q);
   1192   put_delta_q(bc, pc->uvdc_delta_q);
   1193   put_delta_q(bc, pc->uvac_delta_q);
   1194 
   1195   /* When there is a key frame all reference buffers are updated using
   1196    * the new key frame
   1197    */
   1198   if (pc->frame_type != KEY_FRAME) {
   1199     /* Should the GF or ARF be updated using the transmitted frame
   1200      * or buffer
   1201      */
   1202     vp8_write_bit(bc, pc->refresh_golden_frame);
   1203     vp8_write_bit(bc, pc->refresh_alt_ref_frame);
   1204 
   1205     /* If not being updated from current frame should either GF or ARF
   1206      * be updated from another buffer
   1207      */
   1208     if (!pc->refresh_golden_frame)
   1209       vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
   1210 
   1211     if (!pc->refresh_alt_ref_frame)
   1212       vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
   1213 
   1214     /* Indicate reference frame sign bias for Golden and ARF frames
   1215      * (always 0 for last frame buffer)
   1216      */
   1217     vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
   1218     vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
   1219   }
   1220 
   1221 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
   1222   if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
   1223     if (pc->frame_type == KEY_FRAME) {
   1224       pc->refresh_entropy_probs = 1;
   1225     } else {
   1226       pc->refresh_entropy_probs = 0;
   1227     }
   1228   }
   1229 #endif
   1230 
   1231   vp8_write_bit(bc, pc->refresh_entropy_probs);
   1232 
   1233   if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame);
   1234 
   1235   vpx_clear_system_state();
   1236 
   1237 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
   1238   pack_coef_probs(cpi);
   1239 #else
   1240   if (pc->refresh_entropy_probs == 0) {
   1241     /* save a copy for later refresh */
   1242     memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
   1243   }
   1244 
   1245   vp8_update_coef_probs(cpi);
   1246 #endif
   1247 
   1248   /* Write out the mb_no_coeff_skip flag */
   1249   vp8_write_bit(bc, pc->mb_no_coeff_skip);
   1250 
   1251   if (pc->frame_type == KEY_FRAME) {
   1252     write_kfmodes(cpi);
   1253   } else {
   1254     pack_inter_mode_mvs(cpi);
   1255   }
   1256 
   1257   vp8_stop_encode(bc);
   1258 
   1259   cx_data += bc->pos;
   1260 
   1261   oh.first_partition_length_in_bytes = cpi->bc->pos;
   1262 
   1263   /* update frame tag */
   1264   {
   1265     int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) |
   1266             (oh.version << 1) | oh.type;
   1267 
   1268     dest[0] = v;
   1269     dest[1] = v >> 8;
   1270     dest[2] = v >> 16;
   1271   }
   1272 
   1273   *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos;
   1274 
   1275   cpi->partition_sz[0] = (unsigned int)*size;
   1276 
   1277 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
   1278   {
   1279     const int num_part = (1 << pc->multi_token_partition);
   1280     unsigned char *dp = cpi->partition_d[0] + cpi->partition_sz[0];
   1281 
   1282     if (num_part > 1) {
   1283       /* write token part sizes (all but last) if more than 1 */
   1284       validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0],
   1285                       &pc->error);
   1286 
   1287       cpi->partition_sz[0] += 3 * (num_part - 1);
   1288 
   1289       for (i = 1; i < num_part; ++i) {
   1290         write_partition_size(dp, cpi->partition_sz[i]);
   1291         dp += 3;
   1292       }
   1293     }
   1294 
   1295     if (!cpi->output_partition) {
   1296       /* concatenate partition buffers */
   1297       for (i = 0; i < num_part; ++i) {
   1298         memmove(dp, cpi->partition_d[i + 1], cpi->partition_sz[i + 1]);
   1299         cpi->partition_d[i + 1] = dp;
   1300         dp += cpi->partition_sz[i + 1];
   1301       }
   1302     }
   1303 
   1304     /* update total size */
   1305     *size = 0;
   1306     for (i = 0; i < num_part + 1; ++i) {
   1307       *size += cpi->partition_sz[i];
   1308     }
   1309   }
   1310 #else
   1311   if (pc->multi_token_partition != ONE_PARTITION) {
   1312     int num_part = 1 << pc->multi_token_partition;
   1313 
   1314     /* partition size table at the end of first partition */
   1315     cpi->partition_sz[0] += 3 * (num_part - 1);
   1316     *size += 3 * (num_part - 1);
   1317 
   1318     validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end, &pc->error);
   1319 
   1320     for (i = 1; i < num_part + 1; ++i) {
   1321       cpi->bc[i].error = &pc->error;
   1322     }
   1323 
   1324     pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1), cx_data_end,
   1325                                 num_part);
   1326 
   1327     for (i = 1; i < num_part; ++i) {
   1328       cpi->partition_sz[i] = cpi->bc[i].pos;
   1329       write_partition_size(cx_data, cpi->partition_sz[i]);
   1330       cx_data += 3;
   1331       *size += cpi->partition_sz[i]; /* add to total */
   1332     }
   1333 
   1334     /* add last partition to total size */
   1335     cpi->partition_sz[i] = cpi->bc[i].pos;
   1336     *size += cpi->partition_sz[i];
   1337   } else {
   1338     bc[1].error = &pc->error;
   1339 
   1340     vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end);
   1341 
   1342 #if CONFIG_MULTITHREAD
   1343     if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
   1344       pack_mb_row_tokens(cpi, &cpi->bc[1]);
   1345     } else {
   1346       vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
   1347     }
   1348 #else
   1349     vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
   1350 #endif  // CONFIG_MULTITHREAD
   1351 
   1352     vp8_stop_encode(&cpi->bc[1]);
   1353 
   1354     *size += cpi->bc[1].pos;
   1355     cpi->partition_sz[1] = cpi->bc[1].pos;
   1356   }
   1357 #endif
   1358 }
   1359