Home | History | Annotate | Download | only in ubifs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * This file is part of UBIFS.
      4  *
      5  * Copyright (C) 2006-2008 Nokia Corporation
      6  *
      7  * Authors: Artem Bityutskiy ( )
      8  *          Adrian Hunter
      9  */
     10 
     11 /*
     12  * This file implements most of the debugging stuff which is compiled in only
     13  * when it is enabled. But some debugging check functions are implemented in
     14  * corresponding subsystem, just because they are closely related and utilize
     15  * various local functions of those subsystems.
     16  */
     17 
     18 #include <hexdump.h>
     19 
     20 #ifndef __UBOOT__
     21 #include <linux/module.h>
     22 #include <linux/debugfs.h>
     23 #include <linux/math64.h>
     24 #include <linux/uaccess.h>
     25 #include <linux/random.h>
     26 #else
     27 #include <linux/compat.h>
     28 #include <linux/err.h>
     29 #endif
     30 #include "ubifs.h"
     31 
     32 #ifndef __UBOOT__
     33 static DEFINE_SPINLOCK(dbg_lock);
     34 #endif
     35 
     36 static const char *get_key_fmt(int fmt)
     37 {
     38 	switch (fmt) {
     39 	case UBIFS_SIMPLE_KEY_FMT:
     40 		return "simple";
     41 	default:
     42 		return "unknown/invalid format";
     43 	}
     44 }
     45 
     46 static const char *get_key_hash(int hash)
     47 {
     48 	switch (hash) {
     49 	case UBIFS_KEY_HASH_R5:
     50 		return "R5";
     51 	case UBIFS_KEY_HASH_TEST:
     52 		return "test";
     53 	default:
     54 		return "unknown/invalid name hash";
     55 	}
     56 }
     57 
     58 static const char *get_key_type(int type)
     59 {
     60 	switch (type) {
     61 	case UBIFS_INO_KEY:
     62 		return "inode";
     63 	case UBIFS_DENT_KEY:
     64 		return "direntry";
     65 	case UBIFS_XENT_KEY:
     66 		return "xentry";
     67 	case UBIFS_DATA_KEY:
     68 		return "data";
     69 	case UBIFS_TRUN_KEY:
     70 		return "truncate";
     71 	default:
     72 		return "unknown/invalid key";
     73 	}
     74 }
     75 
     76 #ifndef __UBOOT__
     77 static const char *get_dent_type(int type)
     78 {
     79 	switch (type) {
     80 	case UBIFS_ITYPE_REG:
     81 		return "file";
     82 	case UBIFS_ITYPE_DIR:
     83 		return "dir";
     84 	case UBIFS_ITYPE_LNK:
     85 		return "symlink";
     86 	case UBIFS_ITYPE_BLK:
     87 		return "blkdev";
     88 	case UBIFS_ITYPE_CHR:
     89 		return "char dev";
     90 	case UBIFS_ITYPE_FIFO:
     91 		return "fifo";
     92 	case UBIFS_ITYPE_SOCK:
     93 		return "socket";
     94 	default:
     95 		return "unknown/invalid type";
     96 	}
     97 }
     98 #endif
     99 
    100 const char *dbg_snprintf_key(const struct ubifs_info *c,
    101 			     const union ubifs_key *key, char *buffer, int len)
    102 {
    103 	char *p = buffer;
    104 	int type = key_type(c, key);
    105 
    106 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
    107 		switch (type) {
    108 		case UBIFS_INO_KEY:
    109 			len -= snprintf(p, len, "(%lu, %s)",
    110 					(unsigned long)key_inum(c, key),
    111 					get_key_type(type));
    112 			break;
    113 		case UBIFS_DENT_KEY:
    114 		case UBIFS_XENT_KEY:
    115 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
    116 					(unsigned long)key_inum(c, key),
    117 					get_key_type(type), key_hash(c, key));
    118 			break;
    119 		case UBIFS_DATA_KEY:
    120 			len -= snprintf(p, len, "(%lu, %s, %u)",
    121 					(unsigned long)key_inum(c, key),
    122 					get_key_type(type), key_block(c, key));
    123 			break;
    124 		case UBIFS_TRUN_KEY:
    125 			len -= snprintf(p, len, "(%lu, %s)",
    126 					(unsigned long)key_inum(c, key),
    127 					get_key_type(type));
    128 			break;
    129 		default:
    130 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
    131 					key->u32[0], key->u32[1]);
    132 		}
    133 	} else
    134 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
    135 	ubifs_assert(len > 0);
    136 	return p;
    137 }
    138 
    139 const char *dbg_ntype(int type)
    140 {
    141 	switch (type) {
    142 	case UBIFS_PAD_NODE:
    143 		return "padding node";
    144 	case UBIFS_SB_NODE:
    145 		return "superblock node";
    146 	case UBIFS_MST_NODE:
    147 		return "master node";
    148 	case UBIFS_REF_NODE:
    149 		return "reference node";
    150 	case UBIFS_INO_NODE:
    151 		return "inode node";
    152 	case UBIFS_DENT_NODE:
    153 		return "direntry node";
    154 	case UBIFS_XENT_NODE:
    155 		return "xentry node";
    156 	case UBIFS_DATA_NODE:
    157 		return "data node";
    158 	case UBIFS_TRUN_NODE:
    159 		return "truncate node";
    160 	case UBIFS_IDX_NODE:
    161 		return "indexing node";
    162 	case UBIFS_CS_NODE:
    163 		return "commit start node";
    164 	case UBIFS_ORPH_NODE:
    165 		return "orphan node";
    166 	default:
    167 		return "unknown node";
    168 	}
    169 }
    170 
    171 static const char *dbg_gtype(int type)
    172 {
    173 	switch (type) {
    174 	case UBIFS_NO_NODE_GROUP:
    175 		return "no node group";
    176 	case UBIFS_IN_NODE_GROUP:
    177 		return "in node group";
    178 	case UBIFS_LAST_OF_NODE_GROUP:
    179 		return "last of node group";
    180 	default:
    181 		return "unknown";
    182 	}
    183 }
    184 
    185 const char *dbg_cstate(int cmt_state)
    186 {
    187 	switch (cmt_state) {
    188 	case COMMIT_RESTING:
    189 		return "commit resting";
    190 	case COMMIT_BACKGROUND:
    191 		return "background commit requested";
    192 	case COMMIT_REQUIRED:
    193 		return "commit required";
    194 	case COMMIT_RUNNING_BACKGROUND:
    195 		return "BACKGROUND commit running";
    196 	case COMMIT_RUNNING_REQUIRED:
    197 		return "commit running and required";
    198 	case COMMIT_BROKEN:
    199 		return "broken commit";
    200 	default:
    201 		return "unknown commit state";
    202 	}
    203 }
    204 
    205 const char *dbg_jhead(int jhead)
    206 {
    207 	switch (jhead) {
    208 	case GCHD:
    209 		return "0 (GC)";
    210 	case BASEHD:
    211 		return "1 (base)";
    212 	case DATAHD:
    213 		return "2 (data)";
    214 	default:
    215 		return "unknown journal head";
    216 	}
    217 }
    218 
    219 static void dump_ch(const struct ubifs_ch *ch)
    220 {
    221 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
    222 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
    223 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
    224 	       dbg_ntype(ch->node_type));
    225 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
    226 	       dbg_gtype(ch->group_type));
    227 	pr_err("\tsqnum          %llu\n",
    228 	       (unsigned long long)le64_to_cpu(ch->sqnum));
    229 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
    230 }
    231 
    232 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
    233 {
    234 #ifndef __UBOOT__
    235 	const struct ubifs_inode *ui = ubifs_inode(inode);
    236 	struct qstr nm = { .name = NULL };
    237 	union ubifs_key key;
    238 	struct ubifs_dent_node *dent, *pdent = NULL;
    239 	int count = 2;
    240 
    241 	pr_err("Dump in-memory inode:");
    242 	pr_err("\tinode          %lu\n", inode->i_ino);
    243 	pr_err("\tsize           %llu\n",
    244 	       (unsigned long long)i_size_read(inode));
    245 	pr_err("\tnlink          %u\n", inode->i_nlink);
    246 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
    247 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
    248 	pr_err("\tatime          %u.%u\n",
    249 	       (unsigned int)inode->i_atime.tv_sec,
    250 	       (unsigned int)inode->i_atime.tv_nsec);
    251 	pr_err("\tmtime          %u.%u\n",
    252 	       (unsigned int)inode->i_mtime.tv_sec,
    253 	       (unsigned int)inode->i_mtime.tv_nsec);
    254 	pr_err("\tctime          %u.%u\n",
    255 	       (unsigned int)inode->i_ctime.tv_sec,
    256 	       (unsigned int)inode->i_ctime.tv_nsec);
    257 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
    258 	pr_err("\txattr_size     %u\n", ui->xattr_size);
    259 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
    260 	pr_err("\txattr_names    %u\n", ui->xattr_names);
    261 	pr_err("\tdirty          %u\n", ui->dirty);
    262 	pr_err("\txattr          %u\n", ui->xattr);
    263 	pr_err("\tbulk_read      %u\n", ui->xattr);
    264 	pr_err("\tsynced_i_size  %llu\n",
    265 	       (unsigned long long)ui->synced_i_size);
    266 	pr_err("\tui_size        %llu\n",
    267 	       (unsigned long long)ui->ui_size);
    268 	pr_err("\tflags          %d\n", ui->flags);
    269 	pr_err("\tcompr_type     %d\n", ui->compr_type);
    270 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
    271 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
    272 	pr_err("\tdata_len       %d\n", ui->data_len);
    273 
    274 	if (!S_ISDIR(inode->i_mode))
    275 		return;
    276 
    277 	pr_err("List of directory entries:\n");
    278 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
    279 
    280 	lowest_dent_key(c, &key, inode->i_ino);
    281 	while (1) {
    282 		dent = ubifs_tnc_next_ent(c, &key, &nm);
    283 		if (IS_ERR(dent)) {
    284 			if (PTR_ERR(dent) != -ENOENT)
    285 				pr_err("error %ld\n", PTR_ERR(dent));
    286 			break;
    287 		}
    288 
    289 		pr_err("\t%d: %s (%s)\n",
    290 		       count++, dent->name, get_dent_type(dent->type));
    291 
    292 		nm.name = dent->name;
    293 		nm.len = le16_to_cpu(dent->nlen);
    294 		kfree(pdent);
    295 		pdent = dent;
    296 		key_read(c, &dent->key, &key);
    297 	}
    298 	kfree(pdent);
    299 #endif
    300 }
    301 
    302 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
    303 {
    304 	int i, n;
    305 	union ubifs_key key;
    306 	const struct ubifs_ch *ch = node;
    307 	char key_buf[DBG_KEY_BUF_LEN];
    308 
    309 	/* If the magic is incorrect, just hexdump the first bytes */
    310 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
    311 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
    312 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
    313 			       (void *)node, UBIFS_CH_SZ, 1);
    314 		return;
    315 	}
    316 
    317 	spin_lock(&dbg_lock);
    318 	dump_ch(node);
    319 
    320 	switch (ch->node_type) {
    321 	case UBIFS_PAD_NODE:
    322 	{
    323 		const struct ubifs_pad_node *pad = node;
    324 
    325 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
    326 		break;
    327 	}
    328 	case UBIFS_SB_NODE:
    329 	{
    330 		const struct ubifs_sb_node *sup = node;
    331 		unsigned int sup_flags = le32_to_cpu(sup->flags);
    332 
    333 		pr_err("\tkey_hash       %d (%s)\n",
    334 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
    335 		pr_err("\tkey_fmt        %d (%s)\n",
    336 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
    337 		pr_err("\tflags          %#x\n", sup_flags);
    338 		pr_err("\tbig_lpt        %u\n",
    339 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
    340 		pr_err("\tspace_fixup    %u\n",
    341 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
    342 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
    343 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
    344 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
    345 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
    346 		pr_err("\tmax_bud_bytes  %llu\n",
    347 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
    348 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
    349 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
    350 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
    351 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
    352 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
    353 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
    354 		pr_err("\tdefault_compr  %u\n",
    355 		       (int)le16_to_cpu(sup->default_compr));
    356 		pr_err("\trp_size        %llu\n",
    357 		       (unsigned long long)le64_to_cpu(sup->rp_size));
    358 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
    359 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
    360 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
    361 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
    362 		pr_err("\tUUID           %pUB\n", sup->uuid);
    363 		break;
    364 	}
    365 	case UBIFS_MST_NODE:
    366 	{
    367 		const struct ubifs_mst_node *mst = node;
    368 
    369 		pr_err("\thighest_inum   %llu\n",
    370 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
    371 		pr_err("\tcommit number  %llu\n",
    372 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
    373 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
    374 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
    375 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
    376 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
    377 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
    378 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
    379 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
    380 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
    381 		pr_err("\tindex_size     %llu\n",
    382 		       (unsigned long long)le64_to_cpu(mst->index_size));
    383 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
    384 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
    385 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
    386 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
    387 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
    388 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
    389 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
    390 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
    391 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
    392 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
    393 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
    394 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
    395 		pr_err("\ttotal_free     %llu\n",
    396 		       (unsigned long long)le64_to_cpu(mst->total_free));
    397 		pr_err("\ttotal_dirty    %llu\n",
    398 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
    399 		pr_err("\ttotal_used     %llu\n",
    400 		       (unsigned long long)le64_to_cpu(mst->total_used));
    401 		pr_err("\ttotal_dead     %llu\n",
    402 		       (unsigned long long)le64_to_cpu(mst->total_dead));
    403 		pr_err("\ttotal_dark     %llu\n",
    404 		       (unsigned long long)le64_to_cpu(mst->total_dark));
    405 		break;
    406 	}
    407 	case UBIFS_REF_NODE:
    408 	{
    409 		const struct ubifs_ref_node *ref = node;
    410 
    411 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
    412 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
    413 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
    414 		break;
    415 	}
    416 	case UBIFS_INO_NODE:
    417 	{
    418 		const struct ubifs_ino_node *ino = node;
    419 
    420 		key_read(c, &ino->key, &key);
    421 		pr_err("\tkey            %s\n",
    422 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    423 		pr_err("\tcreat_sqnum    %llu\n",
    424 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
    425 		pr_err("\tsize           %llu\n",
    426 		       (unsigned long long)le64_to_cpu(ino->size));
    427 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
    428 		pr_err("\tatime          %lld.%u\n",
    429 		       (long long)le64_to_cpu(ino->atime_sec),
    430 		       le32_to_cpu(ino->atime_nsec));
    431 		pr_err("\tmtime          %lld.%u\n",
    432 		       (long long)le64_to_cpu(ino->mtime_sec),
    433 		       le32_to_cpu(ino->mtime_nsec));
    434 		pr_err("\tctime          %lld.%u\n",
    435 		       (long long)le64_to_cpu(ino->ctime_sec),
    436 		       le32_to_cpu(ino->ctime_nsec));
    437 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
    438 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
    439 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
    440 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
    441 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
    442 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
    443 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
    444 		pr_err("\tcompr_type     %#x\n",
    445 		       (int)le16_to_cpu(ino->compr_type));
    446 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
    447 		break;
    448 	}
    449 	case UBIFS_DENT_NODE:
    450 	case UBIFS_XENT_NODE:
    451 	{
    452 		const struct ubifs_dent_node *dent = node;
    453 		int nlen = le16_to_cpu(dent->nlen);
    454 
    455 		key_read(c, &dent->key, &key);
    456 		pr_err("\tkey            %s\n",
    457 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    458 		pr_err("\tinum           %llu\n",
    459 		       (unsigned long long)le64_to_cpu(dent->inum));
    460 		pr_err("\ttype           %d\n", (int)dent->type);
    461 		pr_err("\tnlen           %d\n", nlen);
    462 		pr_err("\tname           ");
    463 
    464 		if (nlen > UBIFS_MAX_NLEN)
    465 			pr_err("(bad name length, not printing, bad or corrupted node)");
    466 		else {
    467 			for (i = 0; i < nlen && dent->name[i]; i++)
    468 				pr_cont("%c", dent->name[i]);
    469 		}
    470 		pr_cont("\n");
    471 
    472 		break;
    473 	}
    474 	case UBIFS_DATA_NODE:
    475 	{
    476 		const struct ubifs_data_node *dn = node;
    477 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
    478 
    479 		key_read(c, &dn->key, &key);
    480 		pr_err("\tkey            %s\n",
    481 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    482 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
    483 		pr_err("\tcompr_typ      %d\n",
    484 		       (int)le16_to_cpu(dn->compr_type));
    485 		pr_err("\tdata size      %d\n", dlen);
    486 		pr_err("\tdata:\n");
    487 		print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
    488 			       (void *)&dn->data, dlen, 0);
    489 		break;
    490 	}
    491 	case UBIFS_TRUN_NODE:
    492 	{
    493 		const struct ubifs_trun_node *trun = node;
    494 
    495 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
    496 		pr_err("\told_size       %llu\n",
    497 		       (unsigned long long)le64_to_cpu(trun->old_size));
    498 		pr_err("\tnew_size       %llu\n",
    499 		       (unsigned long long)le64_to_cpu(trun->new_size));
    500 		break;
    501 	}
    502 	case UBIFS_IDX_NODE:
    503 	{
    504 		const struct ubifs_idx_node *idx = node;
    505 
    506 		n = le16_to_cpu(idx->child_cnt);
    507 		pr_err("\tchild_cnt      %d\n", n);
    508 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
    509 		pr_err("\tBranches:\n");
    510 
    511 		for (i = 0; i < n && i < c->fanout - 1; i++) {
    512 			const struct ubifs_branch *br;
    513 
    514 			br = ubifs_idx_branch(c, idx, i);
    515 			key_read(c, &br->key, &key);
    516 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
    517 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
    518 			       le32_to_cpu(br->len),
    519 			       dbg_snprintf_key(c, &key, key_buf,
    520 						DBG_KEY_BUF_LEN));
    521 		}
    522 		break;
    523 	}
    524 	case UBIFS_CS_NODE:
    525 		break;
    526 	case UBIFS_ORPH_NODE:
    527 	{
    528 		const struct ubifs_orph_node *orph = node;
    529 
    530 		pr_err("\tcommit number  %llu\n",
    531 		       (unsigned long long)
    532 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
    533 		pr_err("\tlast node flag %llu\n",
    534 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
    535 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
    536 		pr_err("\t%d orphan inode numbers:\n", n);
    537 		for (i = 0; i < n; i++)
    538 			pr_err("\t  ino %llu\n",
    539 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
    540 		break;
    541 	}
    542 	default:
    543 		pr_err("node type %d was not recognized\n",
    544 		       (int)ch->node_type);
    545 	}
    546 	spin_unlock(&dbg_lock);
    547 }
    548 
    549 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
    550 {
    551 	spin_lock(&dbg_lock);
    552 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
    553 	       req->new_ino, req->dirtied_ino);
    554 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
    555 	       req->new_ino_d, req->dirtied_ino_d);
    556 	pr_err("\tnew_page    %d, dirtied_page %d\n",
    557 	       req->new_page, req->dirtied_page);
    558 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
    559 	       req->new_dent, req->mod_dent);
    560 	pr_err("\tidx_growth  %d\n", req->idx_growth);
    561 	pr_err("\tdata_growth %d dd_growth     %d\n",
    562 	       req->data_growth, req->dd_growth);
    563 	spin_unlock(&dbg_lock);
    564 }
    565 
    566 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
    567 {
    568 	spin_lock(&dbg_lock);
    569 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
    570 	       current->pid, lst->empty_lebs, lst->idx_lebs);
    571 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
    572 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
    573 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
    574 	       lst->total_used, lst->total_dark, lst->total_dead);
    575 	spin_unlock(&dbg_lock);
    576 }
    577 
    578 #ifndef __UBOOT__
    579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
    580 {
    581 	int i;
    582 	struct rb_node *rb;
    583 	struct ubifs_bud *bud;
    584 	struct ubifs_gced_idx_leb *idx_gc;
    585 	long long available, outstanding, free;
    586 
    587 	spin_lock(&c->space_lock);
    588 	spin_lock(&dbg_lock);
    589 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
    590 	       current->pid, bi->data_growth + bi->dd_growth,
    591 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
    592 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
    593 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
    594 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
    595 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
    596 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
    597 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
    598 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
    599 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
    600 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
    601 
    602 	if (bi != &c->bi)
    603 		/*
    604 		 * If we are dumping saved budgeting data, do not print
    605 		 * additional information which is about the current state, not
    606 		 * the old one which corresponded to the saved budgeting data.
    607 		 */
    608 		goto out_unlock;
    609 
    610 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
    611 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
    612 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
    613 	       atomic_long_read(&c->dirty_pg_cnt),
    614 	       atomic_long_read(&c->dirty_zn_cnt),
    615 	       atomic_long_read(&c->clean_zn_cnt));
    616 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
    617 
    618 	/* If we are in R/O mode, journal heads do not exist */
    619 	if (c->jheads)
    620 		for (i = 0; i < c->jhead_cnt; i++)
    621 			pr_err("\tjhead %s\t LEB %d\n",
    622 			       dbg_jhead(c->jheads[i].wbuf.jhead),
    623 			       c->jheads[i].wbuf.lnum);
    624 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
    625 		bud = rb_entry(rb, struct ubifs_bud, rb);
    626 		pr_err("\tbud LEB %d\n", bud->lnum);
    627 	}
    628 	list_for_each_entry(bud, &c->old_buds, list)
    629 		pr_err("\told bud LEB %d\n", bud->lnum);
    630 	list_for_each_entry(idx_gc, &c->idx_gc, list)
    631 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
    632 		       idx_gc->lnum, idx_gc->unmap);
    633 	pr_err("\tcommit state %d\n", c->cmt_state);
    634 
    635 	/* Print budgeting predictions */
    636 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
    637 	outstanding = c->bi.data_growth + c->bi.dd_growth;
    638 	free = ubifs_get_free_space_nolock(c);
    639 	pr_err("Budgeting predictions:\n");
    640 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
    641 	       available, outstanding, free);
    642 out_unlock:
    643 	spin_unlock(&dbg_lock);
    644 	spin_unlock(&c->space_lock);
    645 }
    646 #else
    647 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
    648 {
    649 }
    650 #endif
    651 
    652 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
    653 {
    654 	int i, spc, dark = 0, dead = 0;
    655 	struct rb_node *rb;
    656 	struct ubifs_bud *bud;
    657 
    658 	spc = lp->free + lp->dirty;
    659 	if (spc < c->dead_wm)
    660 		dead = spc;
    661 	else
    662 		dark = ubifs_calc_dark(c, spc);
    663 
    664 	if (lp->flags & LPROPS_INDEX)
    665 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
    666 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
    667 		       lp->flags);
    668 	else
    669 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
    670 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
    671 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
    672 
    673 	if (lp->flags & LPROPS_TAKEN) {
    674 		if (lp->flags & LPROPS_INDEX)
    675 			pr_cont("index, taken");
    676 		else
    677 			pr_cont("taken");
    678 	} else {
    679 		const char *s;
    680 
    681 		if (lp->flags & LPROPS_INDEX) {
    682 			switch (lp->flags & LPROPS_CAT_MASK) {
    683 			case LPROPS_DIRTY_IDX:
    684 				s = "dirty index";
    685 				break;
    686 			case LPROPS_FRDI_IDX:
    687 				s = "freeable index";
    688 				break;
    689 			default:
    690 				s = "index";
    691 			}
    692 		} else {
    693 			switch (lp->flags & LPROPS_CAT_MASK) {
    694 			case LPROPS_UNCAT:
    695 				s = "not categorized";
    696 				break;
    697 			case LPROPS_DIRTY:
    698 				s = "dirty";
    699 				break;
    700 			case LPROPS_FREE:
    701 				s = "free";
    702 				break;
    703 			case LPROPS_EMPTY:
    704 				s = "empty";
    705 				break;
    706 			case LPROPS_FREEABLE:
    707 				s = "freeable";
    708 				break;
    709 			default:
    710 				s = NULL;
    711 				break;
    712 			}
    713 		}
    714 		pr_cont("%s", s);
    715 	}
    716 
    717 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
    718 		bud = rb_entry(rb, struct ubifs_bud, rb);
    719 		if (bud->lnum == lp->lnum) {
    720 			int head = 0;
    721 			for (i = 0; i < c->jhead_cnt; i++) {
    722 				/*
    723 				 * Note, if we are in R/O mode or in the middle
    724 				 * of mounting/re-mounting, the write-buffers do
    725 				 * not exist.
    726 				 */
    727 				if (c->jheads &&
    728 				    lp->lnum == c->jheads[i].wbuf.lnum) {
    729 					pr_cont(", jhead %s", dbg_jhead(i));
    730 					head = 1;
    731 				}
    732 			}
    733 			if (!head)
    734 				pr_cont(", bud of jhead %s",
    735 				       dbg_jhead(bud->jhead));
    736 		}
    737 	}
    738 	if (lp->lnum == c->gc_lnum)
    739 		pr_cont(", GC LEB");
    740 	pr_cont(")\n");
    741 }
    742 
    743 void ubifs_dump_lprops(struct ubifs_info *c)
    744 {
    745 	int lnum, err;
    746 	struct ubifs_lprops lp;
    747 	struct ubifs_lp_stats lst;
    748 
    749 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
    750 	ubifs_get_lp_stats(c, &lst);
    751 	ubifs_dump_lstats(&lst);
    752 
    753 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
    754 		err = ubifs_read_one_lp(c, lnum, &lp);
    755 		if (err) {
    756 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
    757 			continue;
    758 		}
    759 
    760 		ubifs_dump_lprop(c, &lp);
    761 	}
    762 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
    763 }
    764 
    765 void ubifs_dump_lpt_info(struct ubifs_info *c)
    766 {
    767 	int i;
    768 
    769 	spin_lock(&dbg_lock);
    770 	pr_err("(pid %d) dumping LPT information\n", current->pid);
    771 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
    772 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
    773 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
    774 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
    775 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
    776 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
    777 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
    778 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
    779 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
    780 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
    781 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
    782 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
    783 	pr_err("\tspace_bits:    %d\n", c->space_bits);
    784 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
    785 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
    786 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
    787 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
    788 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
    789 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
    790 	pr_err("\tLPT head is at %d:%d\n",
    791 	       c->nhead_lnum, c->nhead_offs);
    792 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
    793 	if (c->big_lpt)
    794 		pr_err("\tLPT lsave is at %d:%d\n",
    795 		       c->lsave_lnum, c->lsave_offs);
    796 	for (i = 0; i < c->lpt_lebs; i++)
    797 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
    798 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
    799 		       c->ltab[i].tgc, c->ltab[i].cmt);
    800 	spin_unlock(&dbg_lock);
    801 }
    802 
    803 void ubifs_dump_sleb(const struct ubifs_info *c,
    804 		     const struct ubifs_scan_leb *sleb, int offs)
    805 {
    806 	struct ubifs_scan_node *snod;
    807 
    808 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
    809 	       current->pid, sleb->lnum, offs);
    810 
    811 	list_for_each_entry(snod, &sleb->nodes, list) {
    812 		cond_resched();
    813 		pr_err("Dumping node at LEB %d:%d len %d\n",
    814 		       sleb->lnum, snod->offs, snod->len);
    815 		ubifs_dump_node(c, snod->node);
    816 	}
    817 }
    818 
    819 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
    820 {
    821 	struct ubifs_scan_leb *sleb;
    822 	struct ubifs_scan_node *snod;
    823 	void *buf;
    824 
    825 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
    826 
    827 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
    828 	if (!buf) {
    829 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
    830 		return;
    831 	}
    832 
    833 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
    834 	if (IS_ERR(sleb)) {
    835 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
    836 		goto out;
    837 	}
    838 
    839 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
    840 	       sleb->nodes_cnt, sleb->endpt);
    841 
    842 	list_for_each_entry(snod, &sleb->nodes, list) {
    843 		cond_resched();
    844 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
    845 		       snod->offs, snod->len);
    846 		ubifs_dump_node(c, snod->node);
    847 	}
    848 
    849 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
    850 	ubifs_scan_destroy(sleb);
    851 
    852 out:
    853 	vfree(buf);
    854 	return;
    855 }
    856 
    857 void ubifs_dump_znode(const struct ubifs_info *c,
    858 		      const struct ubifs_znode *znode)
    859 {
    860 	int n;
    861 	const struct ubifs_zbranch *zbr;
    862 	char key_buf[DBG_KEY_BUF_LEN];
    863 
    864 	spin_lock(&dbg_lock);
    865 	if (znode->parent)
    866 		zbr = &znode->parent->zbranch[znode->iip];
    867 	else
    868 		zbr = &c->zroot;
    869 
    870 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
    871 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
    872 	       znode->level, znode->child_cnt, znode->flags);
    873 
    874 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
    875 		spin_unlock(&dbg_lock);
    876 		return;
    877 	}
    878 
    879 	pr_err("zbranches:\n");
    880 	for (n = 0; n < znode->child_cnt; n++) {
    881 		zbr = &znode->zbranch[n];
    882 		if (znode->level > 0)
    883 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
    884 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
    885 			       dbg_snprintf_key(c, &zbr->key, key_buf,
    886 						DBG_KEY_BUF_LEN));
    887 		else
    888 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
    889 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
    890 			       dbg_snprintf_key(c, &zbr->key, key_buf,
    891 						DBG_KEY_BUF_LEN));
    892 	}
    893 	spin_unlock(&dbg_lock);
    894 }
    895 
    896 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
    897 {
    898 	int i;
    899 
    900 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
    901 	       current->pid, cat, heap->cnt);
    902 	for (i = 0; i < heap->cnt; i++) {
    903 		struct ubifs_lprops *lprops = heap->arr[i];
    904 
    905 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
    906 		       i, lprops->lnum, lprops->hpos, lprops->free,
    907 		       lprops->dirty, lprops->flags);
    908 	}
    909 	pr_err("(pid %d) finish dumping heap\n", current->pid);
    910 }
    911 
    912 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
    913 		      struct ubifs_nnode *parent, int iip)
    914 {
    915 	int i;
    916 
    917 	pr_err("(pid %d) dumping pnode:\n", current->pid);
    918 	pr_err("\taddress %zx parent %zx cnext %zx\n",
    919 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
    920 	pr_err("\tflags %lu iip %d level %d num %d\n",
    921 	       pnode->flags, iip, pnode->level, pnode->num);
    922 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    923 		struct ubifs_lprops *lp = &pnode->lprops[i];
    924 
    925 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
    926 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
    927 	}
    928 }
    929 
    930 void ubifs_dump_tnc(struct ubifs_info *c)
    931 {
    932 	struct ubifs_znode *znode;
    933 	int level;
    934 
    935 	pr_err("\n");
    936 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
    937 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
    938 	level = znode->level;
    939 	pr_err("== Level %d ==\n", level);
    940 	while (znode) {
    941 		if (level != znode->level) {
    942 			level = znode->level;
    943 			pr_err("== Level %d ==\n", level);
    944 		}
    945 		ubifs_dump_znode(c, znode);
    946 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
    947 	}
    948 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
    949 }
    950 
    951 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
    952 		      void *priv)
    953 {
    954 	ubifs_dump_znode(c, znode);
    955 	return 0;
    956 }
    957 
    958 /**
    959  * ubifs_dump_index - dump the on-flash index.
    960  * @c: UBIFS file-system description object
    961  *
    962  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
    963  * which dumps only in-memory znodes and does not read znodes which from flash.
    964  */
    965 void ubifs_dump_index(struct ubifs_info *c)
    966 {
    967 	dbg_walk_index(c, NULL, dump_znode, NULL);
    968 }
    969 
    970 #ifndef __UBOOT__
    971 /**
    972  * dbg_save_space_info - save information about flash space.
    973  * @c: UBIFS file-system description object
    974  *
    975  * This function saves information about UBIFS free space, dirty space, etc, in
    976  * order to check it later.
    977  */
    978 void dbg_save_space_info(struct ubifs_info *c)
    979 {
    980 	struct ubifs_debug_info *d = c->dbg;
    981 	int freeable_cnt;
    982 
    983 	spin_lock(&c->space_lock);
    984 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
    985 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
    986 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
    987 
    988 	/*
    989 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
    990 	 * affects the free space calculations, and UBIFS might not know about
    991 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
    992 	 * only when we read their lprops, and we do this only lazily, upon the
    993 	 * need. So at any given point of time @c->freeable_cnt might be not
    994 	 * exactly accurate.
    995 	 *
    996 	 * Just one example about the issue we hit when we did not zero
    997 	 * @c->freeable_cnt.
    998 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
    999 	 *    amount of free space in @d->saved_free
   1000 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
   1001 	 *    information from flash, where we cache LEBs from various
   1002 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
   1003 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
   1004 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
   1005 	 *    -> 'ubifs_add_to_cat()').
   1006 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
   1007 	 *    becomes %1.
   1008 	 * 4. We calculate the amount of free space when the re-mount is
   1009 	 *    finished in 'dbg_check_space_info()' and it does not match
   1010 	 *    @d->saved_free.
   1011 	 */
   1012 	freeable_cnt = c->freeable_cnt;
   1013 	c->freeable_cnt = 0;
   1014 	d->saved_free = ubifs_get_free_space_nolock(c);
   1015 	c->freeable_cnt = freeable_cnt;
   1016 	spin_unlock(&c->space_lock);
   1017 }
   1018 
   1019 /**
   1020  * dbg_check_space_info - check flash space information.
   1021  * @c: UBIFS file-system description object
   1022  *
   1023  * This function compares current flash space information with the information
   1024  * which was saved when the 'dbg_save_space_info()' function was called.
   1025  * Returns zero if the information has not changed, and %-EINVAL it it has
   1026  * changed.
   1027  */
   1028 int dbg_check_space_info(struct ubifs_info *c)
   1029 {
   1030 	struct ubifs_debug_info *d = c->dbg;
   1031 	struct ubifs_lp_stats lst;
   1032 	long long free;
   1033 	int freeable_cnt;
   1034 
   1035 	spin_lock(&c->space_lock);
   1036 	freeable_cnt = c->freeable_cnt;
   1037 	c->freeable_cnt = 0;
   1038 	free = ubifs_get_free_space_nolock(c);
   1039 	c->freeable_cnt = freeable_cnt;
   1040 	spin_unlock(&c->space_lock);
   1041 
   1042 	if (free != d->saved_free) {
   1043 		ubifs_err(c, "free space changed from %lld to %lld",
   1044 			  d->saved_free, free);
   1045 		goto out;
   1046 	}
   1047 
   1048 	return 0;
   1049 
   1050 out:
   1051 	ubifs_msg(c, "saved lprops statistics dump");
   1052 	ubifs_dump_lstats(&d->saved_lst);
   1053 	ubifs_msg(c, "saved budgeting info dump");
   1054 	ubifs_dump_budg(c, &d->saved_bi);
   1055 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
   1056 	ubifs_msg(c, "current lprops statistics dump");
   1057 	ubifs_get_lp_stats(c, &lst);
   1058 	ubifs_dump_lstats(&lst);
   1059 	ubifs_msg(c, "current budgeting info dump");
   1060 	ubifs_dump_budg(c, &c->bi);
   1061 	dump_stack();
   1062 	return -EINVAL;
   1063 }
   1064 
   1065 /**
   1066  * dbg_check_synced_i_size - check synchronized inode size.
   1067  * @c: UBIFS file-system description object
   1068  * @inode: inode to check
   1069  *
   1070  * If inode is clean, synchronized inode size has to be equivalent to current
   1071  * inode size. This function has to be called only for locked inodes (@i_mutex
   1072  * has to be locked). Returns %0 if synchronized inode size if correct, and
   1073  * %-EINVAL if not.
   1074  */
   1075 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
   1076 {
   1077 	int err = 0;
   1078 	struct ubifs_inode *ui = ubifs_inode(inode);
   1079 
   1080 	if (!dbg_is_chk_gen(c))
   1081 		return 0;
   1082 	if (!S_ISREG(inode->i_mode))
   1083 		return 0;
   1084 
   1085 	mutex_lock(&ui->ui_mutex);
   1086 	spin_lock(&ui->ui_lock);
   1087 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
   1088 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
   1089 			  ui->ui_size, ui->synced_i_size);
   1090 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
   1091 			  inode->i_mode, i_size_read(inode));
   1092 		dump_stack();
   1093 		err = -EINVAL;
   1094 	}
   1095 	spin_unlock(&ui->ui_lock);
   1096 	mutex_unlock(&ui->ui_mutex);
   1097 	return err;
   1098 }
   1099 
   1100 /*
   1101  * dbg_check_dir - check directory inode size and link count.
   1102  * @c: UBIFS file-system description object
   1103  * @dir: the directory to calculate size for
   1104  * @size: the result is returned here
   1105  *
   1106  * This function makes sure that directory size and link count are correct.
   1107  * Returns zero in case of success and a negative error code in case of
   1108  * failure.
   1109  *
   1110  * Note, it is good idea to make sure the @dir->i_mutex is locked before
   1111  * calling this function.
   1112  */
   1113 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
   1114 {
   1115 	unsigned int nlink = 2;
   1116 	union ubifs_key key;
   1117 	struct ubifs_dent_node *dent, *pdent = NULL;
   1118 	struct qstr nm = { .name = NULL };
   1119 	loff_t size = UBIFS_INO_NODE_SZ;
   1120 
   1121 	if (!dbg_is_chk_gen(c))
   1122 		return 0;
   1123 
   1124 	if (!S_ISDIR(dir->i_mode))
   1125 		return 0;
   1126 
   1127 	lowest_dent_key(c, &key, dir->i_ino);
   1128 	while (1) {
   1129 		int err;
   1130 
   1131 		dent = ubifs_tnc_next_ent(c, &key, &nm);
   1132 		if (IS_ERR(dent)) {
   1133 			err = PTR_ERR(dent);
   1134 			if (err == -ENOENT)
   1135 				break;
   1136 			return err;
   1137 		}
   1138 
   1139 		nm.name = dent->name;
   1140 		nm.len = le16_to_cpu(dent->nlen);
   1141 		size += CALC_DENT_SIZE(nm.len);
   1142 		if (dent->type == UBIFS_ITYPE_DIR)
   1143 			nlink += 1;
   1144 		kfree(pdent);
   1145 		pdent = dent;
   1146 		key_read(c, &dent->key, &key);
   1147 	}
   1148 	kfree(pdent);
   1149 
   1150 	if (i_size_read(dir) != size) {
   1151 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
   1152 			  dir->i_ino, (unsigned long long)i_size_read(dir),
   1153 			  (unsigned long long)size);
   1154 		ubifs_dump_inode(c, dir);
   1155 		dump_stack();
   1156 		return -EINVAL;
   1157 	}
   1158 	if (dir->i_nlink != nlink) {
   1159 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
   1160 			  dir->i_ino, dir->i_nlink, nlink);
   1161 		ubifs_dump_inode(c, dir);
   1162 		dump_stack();
   1163 		return -EINVAL;
   1164 	}
   1165 
   1166 	return 0;
   1167 }
   1168 
   1169 /**
   1170  * dbg_check_key_order - make sure that colliding keys are properly ordered.
   1171  * @c: UBIFS file-system description object
   1172  * @zbr1: first zbranch
   1173  * @zbr2: following zbranch
   1174  *
   1175  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
   1176  * names of the direntries/xentries which are referred by the keys. This
   1177  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
   1178  * sure the name of direntry/xentry referred by @zbr1 is less than
   1179  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
   1180  * and a negative error code in case of failure.
   1181  */
   1182 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
   1183 			       struct ubifs_zbranch *zbr2)
   1184 {
   1185 	int err, nlen1, nlen2, cmp;
   1186 	struct ubifs_dent_node *dent1, *dent2;
   1187 	union ubifs_key key;
   1188 	char key_buf[DBG_KEY_BUF_LEN];
   1189 
   1190 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
   1191 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
   1192 	if (!dent1)
   1193 		return -ENOMEM;
   1194 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
   1195 	if (!dent2) {
   1196 		err = -ENOMEM;
   1197 		goto out_free;
   1198 	}
   1199 
   1200 	err = ubifs_tnc_read_node(c, zbr1, dent1);
   1201 	if (err)
   1202 		goto out_free;
   1203 	err = ubifs_validate_entry(c, dent1);
   1204 	if (err)
   1205 		goto out_free;
   1206 
   1207 	err = ubifs_tnc_read_node(c, zbr2, dent2);
   1208 	if (err)
   1209 		goto out_free;
   1210 	err = ubifs_validate_entry(c, dent2);
   1211 	if (err)
   1212 		goto out_free;
   1213 
   1214 	/* Make sure node keys are the same as in zbranch */
   1215 	err = 1;
   1216 	key_read(c, &dent1->key, &key);
   1217 	if (keys_cmp(c, &zbr1->key, &key)) {
   1218 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
   1219 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
   1220 						       DBG_KEY_BUF_LEN));
   1221 		ubifs_err(c, "but it should have key %s according to tnc",
   1222 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
   1223 					   DBG_KEY_BUF_LEN));
   1224 		ubifs_dump_node(c, dent1);
   1225 		goto out_free;
   1226 	}
   1227 
   1228 	key_read(c, &dent2->key, &key);
   1229 	if (keys_cmp(c, &zbr2->key, &key)) {
   1230 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
   1231 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
   1232 						       DBG_KEY_BUF_LEN));
   1233 		ubifs_err(c, "but it should have key %s according to tnc",
   1234 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
   1235 					   DBG_KEY_BUF_LEN));
   1236 		ubifs_dump_node(c, dent2);
   1237 		goto out_free;
   1238 	}
   1239 
   1240 	nlen1 = le16_to_cpu(dent1->nlen);
   1241 	nlen2 = le16_to_cpu(dent2->nlen);
   1242 
   1243 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
   1244 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
   1245 		err = 0;
   1246 		goto out_free;
   1247 	}
   1248 	if (cmp == 0 && nlen1 == nlen2)
   1249 		ubifs_err(c, "2 xent/dent nodes with the same name");
   1250 	else
   1251 		ubifs_err(c, "bad order of colliding key %s",
   1252 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
   1253 
   1254 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
   1255 	ubifs_dump_node(c, dent1);
   1256 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
   1257 	ubifs_dump_node(c, dent2);
   1258 
   1259 out_free:
   1260 	kfree(dent2);
   1261 	kfree(dent1);
   1262 	return err;
   1263 }
   1264 
   1265 /**
   1266  * dbg_check_znode - check if znode is all right.
   1267  * @c: UBIFS file-system description object
   1268  * @zbr: zbranch which points to this znode
   1269  *
   1270  * This function makes sure that znode referred to by @zbr is all right.
   1271  * Returns zero if it is, and %-EINVAL if it is not.
   1272  */
   1273 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
   1274 {
   1275 	struct ubifs_znode *znode = zbr->znode;
   1276 	struct ubifs_znode *zp = znode->parent;
   1277 	int n, err, cmp;
   1278 
   1279 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
   1280 		err = 1;
   1281 		goto out;
   1282 	}
   1283 	if (znode->level < 0) {
   1284 		err = 2;
   1285 		goto out;
   1286 	}
   1287 	if (znode->iip < 0 || znode->iip >= c->fanout) {
   1288 		err = 3;
   1289 		goto out;
   1290 	}
   1291 
   1292 	if (zbr->len == 0)
   1293 		/* Only dirty zbranch may have no on-flash nodes */
   1294 		if (!ubifs_zn_dirty(znode)) {
   1295 			err = 4;
   1296 			goto out;
   1297 		}
   1298 
   1299 	if (ubifs_zn_dirty(znode)) {
   1300 		/*
   1301 		 * If znode is dirty, its parent has to be dirty as well. The
   1302 		 * order of the operation is important, so we have to have
   1303 		 * memory barriers.
   1304 		 */
   1305 		smp_mb();
   1306 		if (zp && !ubifs_zn_dirty(zp)) {
   1307 			/*
   1308 			 * The dirty flag is atomic and is cleared outside the
   1309 			 * TNC mutex, so znode's dirty flag may now have
   1310 			 * been cleared. The child is always cleared before the
   1311 			 * parent, so we just need to check again.
   1312 			 */
   1313 			smp_mb();
   1314 			if (ubifs_zn_dirty(znode)) {
   1315 				err = 5;
   1316 				goto out;
   1317 			}
   1318 		}
   1319 	}
   1320 
   1321 	if (zp) {
   1322 		const union ubifs_key *min, *max;
   1323 
   1324 		if (znode->level != zp->level - 1) {
   1325 			err = 6;
   1326 			goto out;
   1327 		}
   1328 
   1329 		/* Make sure the 'parent' pointer in our znode is correct */
   1330 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
   1331 		if (!err) {
   1332 			/* This zbranch does not exist in the parent */
   1333 			err = 7;
   1334 			goto out;
   1335 		}
   1336 
   1337 		if (znode->iip >= zp->child_cnt) {
   1338 			err = 8;
   1339 			goto out;
   1340 		}
   1341 
   1342 		if (znode->iip != n) {
   1343 			/* This may happen only in case of collisions */
   1344 			if (keys_cmp(c, &zp->zbranch[n].key,
   1345 				     &zp->zbranch[znode->iip].key)) {
   1346 				err = 9;
   1347 				goto out;
   1348 			}
   1349 			n = znode->iip;
   1350 		}
   1351 
   1352 		/*
   1353 		 * Make sure that the first key in our znode is greater than or
   1354 		 * equal to the key in the pointing zbranch.
   1355 		 */
   1356 		min = &zbr->key;
   1357 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
   1358 		if (cmp == 1) {
   1359 			err = 10;
   1360 			goto out;
   1361 		}
   1362 
   1363 		if (n + 1 < zp->child_cnt) {
   1364 			max = &zp->zbranch[n + 1].key;
   1365 
   1366 			/*
   1367 			 * Make sure the last key in our znode is less or
   1368 			 * equivalent than the key in the zbranch which goes
   1369 			 * after our pointing zbranch.
   1370 			 */
   1371 			cmp = keys_cmp(c, max,
   1372 				&znode->zbranch[znode->child_cnt - 1].key);
   1373 			if (cmp == -1) {
   1374 				err = 11;
   1375 				goto out;
   1376 			}
   1377 		}
   1378 	} else {
   1379 		/* This may only be root znode */
   1380 		if (zbr != &c->zroot) {
   1381 			err = 12;
   1382 			goto out;
   1383 		}
   1384 	}
   1385 
   1386 	/*
   1387 	 * Make sure that next key is greater or equivalent then the previous
   1388 	 * one.
   1389 	 */
   1390 	for (n = 1; n < znode->child_cnt; n++) {
   1391 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
   1392 			       &znode->zbranch[n].key);
   1393 		if (cmp > 0) {
   1394 			err = 13;
   1395 			goto out;
   1396 		}
   1397 		if (cmp == 0) {
   1398 			/* This can only be keys with colliding hash */
   1399 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
   1400 				err = 14;
   1401 				goto out;
   1402 			}
   1403 
   1404 			if (znode->level != 0 || c->replaying)
   1405 				continue;
   1406 
   1407 			/*
   1408 			 * Colliding keys should follow binary order of
   1409 			 * corresponding xentry/dentry names.
   1410 			 */
   1411 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
   1412 						  &znode->zbranch[n]);
   1413 			if (err < 0)
   1414 				return err;
   1415 			if (err) {
   1416 				err = 15;
   1417 				goto out;
   1418 			}
   1419 		}
   1420 	}
   1421 
   1422 	for (n = 0; n < znode->child_cnt; n++) {
   1423 		if (!znode->zbranch[n].znode &&
   1424 		    (znode->zbranch[n].lnum == 0 ||
   1425 		     znode->zbranch[n].len == 0)) {
   1426 			err = 16;
   1427 			goto out;
   1428 		}
   1429 
   1430 		if (znode->zbranch[n].lnum != 0 &&
   1431 		    znode->zbranch[n].len == 0) {
   1432 			err = 17;
   1433 			goto out;
   1434 		}
   1435 
   1436 		if (znode->zbranch[n].lnum == 0 &&
   1437 		    znode->zbranch[n].len != 0) {
   1438 			err = 18;
   1439 			goto out;
   1440 		}
   1441 
   1442 		if (znode->zbranch[n].lnum == 0 &&
   1443 		    znode->zbranch[n].offs != 0) {
   1444 			err = 19;
   1445 			goto out;
   1446 		}
   1447 
   1448 		if (znode->level != 0 && znode->zbranch[n].znode)
   1449 			if (znode->zbranch[n].znode->parent != znode) {
   1450 				err = 20;
   1451 				goto out;
   1452 			}
   1453 	}
   1454 
   1455 	return 0;
   1456 
   1457 out:
   1458 	ubifs_err(c, "failed, error %d", err);
   1459 	ubifs_msg(c, "dump of the znode");
   1460 	ubifs_dump_znode(c, znode);
   1461 	if (zp) {
   1462 		ubifs_msg(c, "dump of the parent znode");
   1463 		ubifs_dump_znode(c, zp);
   1464 	}
   1465 	dump_stack();
   1466 	return -EINVAL;
   1467 }
   1468 #else
   1469 
   1470 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
   1471 {
   1472 	return 0;
   1473 }
   1474 
   1475 void dbg_debugfs_exit_fs(struct ubifs_info *c)
   1476 {
   1477 	return;
   1478 }
   1479 
   1480 int ubifs_debugging_init(struct ubifs_info *c)
   1481 {
   1482 	return 0;
   1483 }
   1484 void ubifs_debugging_exit(struct ubifs_info *c)
   1485 {
   1486 }
   1487 int dbg_check_filesystem(struct ubifs_info *c)
   1488 {
   1489 	return 0;
   1490 }
   1491 int dbg_debugfs_init_fs(struct ubifs_info *c)
   1492 {
   1493 	return 0;
   1494 }
   1495 #endif
   1496 
   1497 #ifndef __UBOOT__
   1498 /**
   1499  * dbg_check_tnc - check TNC tree.
   1500  * @c: UBIFS file-system description object
   1501  * @extra: do extra checks that are possible at start commit
   1502  *
   1503  * This function traverses whole TNC tree and checks every znode. Returns zero
   1504  * if everything is all right and %-EINVAL if something is wrong with TNC.
   1505  */
   1506 int dbg_check_tnc(struct ubifs_info *c, int extra)
   1507 {
   1508 	struct ubifs_znode *znode;
   1509 	long clean_cnt = 0, dirty_cnt = 0;
   1510 	int err, last;
   1511 
   1512 	if (!dbg_is_chk_index(c))
   1513 		return 0;
   1514 
   1515 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
   1516 	if (!c->zroot.znode)
   1517 		return 0;
   1518 
   1519 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
   1520 	while (1) {
   1521 		struct ubifs_znode *prev;
   1522 		struct ubifs_zbranch *zbr;
   1523 
   1524 		if (!znode->parent)
   1525 			zbr = &c->zroot;
   1526 		else
   1527 			zbr = &znode->parent->zbranch[znode->iip];
   1528 
   1529 		err = dbg_check_znode(c, zbr);
   1530 		if (err)
   1531 			return err;
   1532 
   1533 		if (extra) {
   1534 			if (ubifs_zn_dirty(znode))
   1535 				dirty_cnt += 1;
   1536 			else
   1537 				clean_cnt += 1;
   1538 		}
   1539 
   1540 		prev = znode;
   1541 		znode = ubifs_tnc_postorder_next(znode);
   1542 		if (!znode)
   1543 			break;
   1544 
   1545 		/*
   1546 		 * If the last key of this znode is equivalent to the first key
   1547 		 * of the next znode (collision), then check order of the keys.
   1548 		 */
   1549 		last = prev->child_cnt - 1;
   1550 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
   1551 		    !keys_cmp(c, &prev->zbranch[last].key,
   1552 			      &znode->zbranch[0].key)) {
   1553 			err = dbg_check_key_order(c, &prev->zbranch[last],
   1554 						  &znode->zbranch[0]);
   1555 			if (err < 0)
   1556 				return err;
   1557 			if (err) {
   1558 				ubifs_msg(c, "first znode");
   1559 				ubifs_dump_znode(c, prev);
   1560 				ubifs_msg(c, "second znode");
   1561 				ubifs_dump_znode(c, znode);
   1562 				return -EINVAL;
   1563 			}
   1564 		}
   1565 	}
   1566 
   1567 	if (extra) {
   1568 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
   1569 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
   1570 				  atomic_long_read(&c->clean_zn_cnt),
   1571 				  clean_cnt);
   1572 			return -EINVAL;
   1573 		}
   1574 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
   1575 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
   1576 				  atomic_long_read(&c->dirty_zn_cnt),
   1577 				  dirty_cnt);
   1578 			return -EINVAL;
   1579 		}
   1580 	}
   1581 
   1582 	return 0;
   1583 }
   1584 #else
   1585 int dbg_check_tnc(struct ubifs_info *c, int extra)
   1586 {
   1587 	return 0;
   1588 }
   1589 #endif
   1590 
   1591 /**
   1592  * dbg_walk_index - walk the on-flash index.
   1593  * @c: UBIFS file-system description object
   1594  * @leaf_cb: called for each leaf node
   1595  * @znode_cb: called for each indexing node
   1596  * @priv: private data which is passed to callbacks
   1597  *
   1598  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
   1599  * node and @znode_cb for each indexing node. Returns zero in case of success
   1600  * and a negative error code in case of failure.
   1601  *
   1602  * It would be better if this function removed every znode it pulled to into
   1603  * the TNC, so that the behavior more closely matched the non-debugging
   1604  * behavior.
   1605  */
   1606 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
   1607 		   dbg_znode_callback znode_cb, void *priv)
   1608 {
   1609 	int err;
   1610 	struct ubifs_zbranch *zbr;
   1611 	struct ubifs_znode *znode, *child;
   1612 
   1613 	mutex_lock(&c->tnc_mutex);
   1614 	/* If the root indexing node is not in TNC - pull it */
   1615 	if (!c->zroot.znode) {
   1616 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
   1617 		if (IS_ERR(c->zroot.znode)) {
   1618 			err = PTR_ERR(c->zroot.znode);
   1619 			c->zroot.znode = NULL;
   1620 			goto out_unlock;
   1621 		}
   1622 	}
   1623 
   1624 	/*
   1625 	 * We are going to traverse the indexing tree in the postorder manner.
   1626 	 * Go down and find the leftmost indexing node where we are going to
   1627 	 * start from.
   1628 	 */
   1629 	znode = c->zroot.znode;
   1630 	while (znode->level > 0) {
   1631 		zbr = &znode->zbranch[0];
   1632 		child = zbr->znode;
   1633 		if (!child) {
   1634 			child = ubifs_load_znode(c, zbr, znode, 0);
   1635 			if (IS_ERR(child)) {
   1636 				err = PTR_ERR(child);
   1637 				goto out_unlock;
   1638 			}
   1639 			zbr->znode = child;
   1640 		}
   1641 
   1642 		znode = child;
   1643 	}
   1644 
   1645 	/* Iterate over all indexing nodes */
   1646 	while (1) {
   1647 		int idx;
   1648 
   1649 		cond_resched();
   1650 
   1651 		if (znode_cb) {
   1652 			err = znode_cb(c, znode, priv);
   1653 			if (err) {
   1654 				ubifs_err(c, "znode checking function returned error %d",
   1655 					  err);
   1656 				ubifs_dump_znode(c, znode);
   1657 				goto out_dump;
   1658 			}
   1659 		}
   1660 		if (leaf_cb && znode->level == 0) {
   1661 			for (idx = 0; idx < znode->child_cnt; idx++) {
   1662 				zbr = &znode->zbranch[idx];
   1663 				err = leaf_cb(c, zbr, priv);
   1664 				if (err) {
   1665 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
   1666 						  err, zbr->lnum, zbr->offs);
   1667 					goto out_dump;
   1668 				}
   1669 			}
   1670 		}
   1671 
   1672 		if (!znode->parent)
   1673 			break;
   1674 
   1675 		idx = znode->iip + 1;
   1676 		znode = znode->parent;
   1677 		if (idx < znode->child_cnt) {
   1678 			/* Switch to the next index in the parent */
   1679 			zbr = &znode->zbranch[idx];
   1680 			child = zbr->znode;
   1681 			if (!child) {
   1682 				child = ubifs_load_znode(c, zbr, znode, idx);
   1683 				if (IS_ERR(child)) {
   1684 					err = PTR_ERR(child);
   1685 					goto out_unlock;
   1686 				}
   1687 				zbr->znode = child;
   1688 			}
   1689 			znode = child;
   1690 		} else
   1691 			/*
   1692 			 * This is the last child, switch to the parent and
   1693 			 * continue.
   1694 			 */
   1695 			continue;
   1696 
   1697 		/* Go to the lowest leftmost znode in the new sub-tree */
   1698 		while (znode->level > 0) {
   1699 			zbr = &znode->zbranch[0];
   1700 			child = zbr->znode;
   1701 			if (!child) {
   1702 				child = ubifs_load_znode(c, zbr, znode, 0);
   1703 				if (IS_ERR(child)) {
   1704 					err = PTR_ERR(child);
   1705 					goto out_unlock;
   1706 				}
   1707 				zbr->znode = child;
   1708 			}
   1709 			znode = child;
   1710 		}
   1711 	}
   1712 
   1713 	mutex_unlock(&c->tnc_mutex);
   1714 	return 0;
   1715 
   1716 out_dump:
   1717 	if (znode->parent)
   1718 		zbr = &znode->parent->zbranch[znode->iip];
   1719 	else
   1720 		zbr = &c->zroot;
   1721 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
   1722 	ubifs_dump_znode(c, znode);
   1723 out_unlock:
   1724 	mutex_unlock(&c->tnc_mutex);
   1725 	return err;
   1726 }
   1727 
   1728 /**
   1729  * add_size - add znode size to partially calculated index size.
   1730  * @c: UBIFS file-system description object
   1731  * @znode: znode to add size for
   1732  * @priv: partially calculated index size
   1733  *
   1734  * This is a helper function for 'dbg_check_idx_size()' which is called for
   1735  * every indexing node and adds its size to the 'long long' variable pointed to
   1736  * by @priv.
   1737  */
   1738 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
   1739 {
   1740 	long long *idx_size = priv;
   1741 	int add;
   1742 
   1743 	add = ubifs_idx_node_sz(c, znode->child_cnt);
   1744 	add = ALIGN(add, 8);
   1745 	*idx_size += add;
   1746 	return 0;
   1747 }
   1748 
   1749 /**
   1750  * dbg_check_idx_size - check index size.
   1751  * @c: UBIFS file-system description object
   1752  * @idx_size: size to check
   1753  *
   1754  * This function walks the UBIFS index, calculates its size and checks that the
   1755  * size is equivalent to @idx_size. Returns zero in case of success and a
   1756  * negative error code in case of failure.
   1757  */
   1758 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
   1759 {
   1760 	int err;
   1761 	long long calc = 0;
   1762 
   1763 	if (!dbg_is_chk_index(c))
   1764 		return 0;
   1765 
   1766 	err = dbg_walk_index(c, NULL, add_size, &calc);
   1767 	if (err) {
   1768 		ubifs_err(c, "error %d while walking the index", err);
   1769 		return err;
   1770 	}
   1771 
   1772 	if (calc != idx_size) {
   1773 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
   1774 			  calc, idx_size);
   1775 		dump_stack();
   1776 		return -EINVAL;
   1777 	}
   1778 
   1779 	return 0;
   1780 }
   1781 
   1782 #ifndef __UBOOT__
   1783 /**
   1784  * struct fsck_inode - information about an inode used when checking the file-system.
   1785  * @rb: link in the RB-tree of inodes
   1786  * @inum: inode number
   1787  * @mode: inode type, permissions, etc
   1788  * @nlink: inode link count
   1789  * @xattr_cnt: count of extended attributes
   1790  * @references: how many directory/xattr entries refer this inode (calculated
   1791  *              while walking the index)
   1792  * @calc_cnt: for directory inode count of child directories
   1793  * @size: inode size (read from on-flash inode)
   1794  * @xattr_sz: summary size of all extended attributes (read from on-flash
   1795  *            inode)
   1796  * @calc_sz: for directories calculated directory size
   1797  * @calc_xcnt: count of extended attributes
   1798  * @calc_xsz: calculated summary size of all extended attributes
   1799  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
   1800  *             inode (read from on-flash inode)
   1801  * @calc_xnms: calculated sum of lengths of all extended attribute names
   1802  */
   1803 struct fsck_inode {
   1804 	struct rb_node rb;
   1805 	ino_t inum;
   1806 	umode_t mode;
   1807 	unsigned int nlink;
   1808 	unsigned int xattr_cnt;
   1809 	int references;
   1810 	int calc_cnt;
   1811 	long long size;
   1812 	unsigned int xattr_sz;
   1813 	long long calc_sz;
   1814 	long long calc_xcnt;
   1815 	long long calc_xsz;
   1816 	unsigned int xattr_nms;
   1817 	long long calc_xnms;
   1818 };
   1819 
   1820 /**
   1821  * struct fsck_data - private FS checking information.
   1822  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
   1823  */
   1824 struct fsck_data {
   1825 	struct rb_root inodes;
   1826 };
   1827 
   1828 /**
   1829  * add_inode - add inode information to RB-tree of inodes.
   1830  * @c: UBIFS file-system description object
   1831  * @fsckd: FS checking information
   1832  * @ino: raw UBIFS inode to add
   1833  *
   1834  * This is a helper function for 'check_leaf()' which adds information about
   1835  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
   1836  * case of success and a negative error code in case of failure.
   1837  */
   1838 static struct fsck_inode *add_inode(struct ubifs_info *c,
   1839 				    struct fsck_data *fsckd,
   1840 				    struct ubifs_ino_node *ino)
   1841 {
   1842 	struct rb_node **p, *parent = NULL;
   1843 	struct fsck_inode *fscki;
   1844 	ino_t inum = key_inum_flash(c, &ino->key);
   1845 	struct inode *inode;
   1846 	struct ubifs_inode *ui;
   1847 
   1848 	p = &fsckd->inodes.rb_node;
   1849 	while (*p) {
   1850 		parent = *p;
   1851 		fscki = rb_entry(parent, struct fsck_inode, rb);
   1852 		if (inum < fscki->inum)
   1853 			p = &(*p)->rb_left;
   1854 		else if (inum > fscki->inum)
   1855 			p = &(*p)->rb_right;
   1856 		else
   1857 			return fscki;
   1858 	}
   1859 
   1860 	if (inum > c->highest_inum) {
   1861 		ubifs_err(c, "too high inode number, max. is %lu",
   1862 			  (unsigned long)c->highest_inum);
   1863 		return ERR_PTR(-EINVAL);
   1864 	}
   1865 
   1866 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
   1867 	if (!fscki)
   1868 		return ERR_PTR(-ENOMEM);
   1869 
   1870 	inode = ilookup(c->vfs_sb, inum);
   1871 
   1872 	fscki->inum = inum;
   1873 	/*
   1874 	 * If the inode is present in the VFS inode cache, use it instead of
   1875 	 * the on-flash inode which might be out-of-date. E.g., the size might
   1876 	 * be out-of-date. If we do not do this, the following may happen, for
   1877 	 * example:
   1878 	 *   1. A power cut happens
   1879 	 *   2. We mount the file-system R/O, the replay process fixes up the
   1880 	 *      inode size in the VFS cache, but on on-flash.
   1881 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
   1882 	 *      size.
   1883 	 */
   1884 	if (!inode) {
   1885 		fscki->nlink = le32_to_cpu(ino->nlink);
   1886 		fscki->size = le64_to_cpu(ino->size);
   1887 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
   1888 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
   1889 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
   1890 		fscki->mode = le32_to_cpu(ino->mode);
   1891 	} else {
   1892 		ui = ubifs_inode(inode);
   1893 		fscki->nlink = inode->i_nlink;
   1894 		fscki->size = inode->i_size;
   1895 		fscki->xattr_cnt = ui->xattr_cnt;
   1896 		fscki->xattr_sz = ui->xattr_size;
   1897 		fscki->xattr_nms = ui->xattr_names;
   1898 		fscki->mode = inode->i_mode;
   1899 		iput(inode);
   1900 	}
   1901 
   1902 	if (S_ISDIR(fscki->mode)) {
   1903 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
   1904 		fscki->calc_cnt = 2;
   1905 	}
   1906 
   1907 	rb_link_node(&fscki->rb, parent, p);
   1908 	rb_insert_color(&fscki->rb, &fsckd->inodes);
   1909 
   1910 	return fscki;
   1911 }
   1912 
   1913 /**
   1914  * search_inode - search inode in the RB-tree of inodes.
   1915  * @fsckd: FS checking information
   1916  * @inum: inode number to search
   1917  *
   1918  * This is a helper function for 'check_leaf()' which searches inode @inum in
   1919  * the RB-tree of inodes and returns an inode information pointer or %NULL if
   1920  * the inode was not found.
   1921  */
   1922 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
   1923 {
   1924 	struct rb_node *p;
   1925 	struct fsck_inode *fscki;
   1926 
   1927 	p = fsckd->inodes.rb_node;
   1928 	while (p) {
   1929 		fscki = rb_entry(p, struct fsck_inode, rb);
   1930 		if (inum < fscki->inum)
   1931 			p = p->rb_left;
   1932 		else if (inum > fscki->inum)
   1933 			p = p->rb_right;
   1934 		else
   1935 			return fscki;
   1936 	}
   1937 	return NULL;
   1938 }
   1939 
   1940 /**
   1941  * read_add_inode - read inode node and add it to RB-tree of inodes.
   1942  * @c: UBIFS file-system description object
   1943  * @fsckd: FS checking information
   1944  * @inum: inode number to read
   1945  *
   1946  * This is a helper function for 'check_leaf()' which finds inode node @inum in
   1947  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
   1948  * information pointer in case of success and a negative error code in case of
   1949  * failure.
   1950  */
   1951 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
   1952 					 struct fsck_data *fsckd, ino_t inum)
   1953 {
   1954 	int n, err;
   1955 	union ubifs_key key;
   1956 	struct ubifs_znode *znode;
   1957 	struct ubifs_zbranch *zbr;
   1958 	struct ubifs_ino_node *ino;
   1959 	struct fsck_inode *fscki;
   1960 
   1961 	fscki = search_inode(fsckd, inum);
   1962 	if (fscki)
   1963 		return fscki;
   1964 
   1965 	ino_key_init(c, &key, inum);
   1966 	err = ubifs_lookup_level0(c, &key, &znode, &n);
   1967 	if (!err) {
   1968 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
   1969 		return ERR_PTR(-ENOENT);
   1970 	} else if (err < 0) {
   1971 		ubifs_err(c, "error %d while looking up inode %lu",
   1972 			  err, (unsigned long)inum);
   1973 		return ERR_PTR(err);
   1974 	}
   1975 
   1976 	zbr = &znode->zbranch[n];
   1977 	if (zbr->len < UBIFS_INO_NODE_SZ) {
   1978 		ubifs_err(c, "bad node %lu node length %d",
   1979 			  (unsigned long)inum, zbr->len);
   1980 		return ERR_PTR(-EINVAL);
   1981 	}
   1982 
   1983 	ino = kmalloc(zbr->len, GFP_NOFS);
   1984 	if (!ino)
   1985 		return ERR_PTR(-ENOMEM);
   1986 
   1987 	err = ubifs_tnc_read_node(c, zbr, ino);
   1988 	if (err) {
   1989 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
   1990 			  zbr->lnum, zbr->offs, err);
   1991 		kfree(ino);
   1992 		return ERR_PTR(err);
   1993 	}
   1994 
   1995 	fscki = add_inode(c, fsckd, ino);
   1996 	kfree(ino);
   1997 	if (IS_ERR(fscki)) {
   1998 		ubifs_err(c, "error %ld while adding inode %lu node",
   1999 			  PTR_ERR(fscki), (unsigned long)inum);
   2000 		return fscki;
   2001 	}
   2002 
   2003 	return fscki;
   2004 }
   2005 
   2006 /**
   2007  * check_leaf - check leaf node.
   2008  * @c: UBIFS file-system description object
   2009  * @zbr: zbranch of the leaf node to check
   2010  * @priv: FS checking information
   2011  *
   2012  * This is a helper function for 'dbg_check_filesystem()' which is called for
   2013  * every single leaf node while walking the indexing tree. It checks that the
   2014  * leaf node referred from the indexing tree exists, has correct CRC, and does
   2015  * some other basic validation. This function is also responsible for building
   2016  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
   2017  * calculates reference count, size, etc for each inode in order to later
   2018  * compare them to the information stored inside the inodes and detect possible
   2019  * inconsistencies. Returns zero in case of success and a negative error code
   2020  * in case of failure.
   2021  */
   2022 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
   2023 		      void *priv)
   2024 {
   2025 	ino_t inum;
   2026 	void *node;
   2027 	struct ubifs_ch *ch;
   2028 	int err, type = key_type(c, &zbr->key);
   2029 	struct fsck_inode *fscki;
   2030 
   2031 	if (zbr->len < UBIFS_CH_SZ) {
   2032 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
   2033 			  zbr->len, zbr->lnum, zbr->offs);
   2034 		return -EINVAL;
   2035 	}
   2036 
   2037 	node = kmalloc(zbr->len, GFP_NOFS);
   2038 	if (!node)
   2039 		return -ENOMEM;
   2040 
   2041 	err = ubifs_tnc_read_node(c, zbr, node);
   2042 	if (err) {
   2043 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
   2044 			  zbr->lnum, zbr->offs, err);
   2045 		goto out_free;
   2046 	}
   2047 
   2048 	/* If this is an inode node, add it to RB-tree of inodes */
   2049 	if (type == UBIFS_INO_KEY) {
   2050 		fscki = add_inode(c, priv, node);
   2051 		if (IS_ERR(fscki)) {
   2052 			err = PTR_ERR(fscki);
   2053 			ubifs_err(c, "error %d while adding inode node", err);
   2054 			goto out_dump;
   2055 		}
   2056 		goto out;
   2057 	}
   2058 
   2059 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
   2060 	    type != UBIFS_DATA_KEY) {
   2061 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
   2062 			  type, zbr->lnum, zbr->offs);
   2063 		err = -EINVAL;
   2064 		goto out_free;
   2065 	}
   2066 
   2067 	ch = node;
   2068 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
   2069 		ubifs_err(c, "too high sequence number, max. is %llu",
   2070 			  c->max_sqnum);
   2071 		err = -EINVAL;
   2072 		goto out_dump;
   2073 	}
   2074 
   2075 	if (type == UBIFS_DATA_KEY) {
   2076 		long long blk_offs;
   2077 		struct ubifs_data_node *dn = node;
   2078 
   2079 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
   2080 
   2081 		/*
   2082 		 * Search the inode node this data node belongs to and insert
   2083 		 * it to the RB-tree of inodes.
   2084 		 */
   2085 		inum = key_inum_flash(c, &dn->key);
   2086 		fscki = read_add_inode(c, priv, inum);
   2087 		if (IS_ERR(fscki)) {
   2088 			err = PTR_ERR(fscki);
   2089 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
   2090 				  err, (unsigned long)inum);
   2091 			goto out_dump;
   2092 		}
   2093 
   2094 		/* Make sure the data node is within inode size */
   2095 		blk_offs = key_block_flash(c, &dn->key);
   2096 		blk_offs <<= UBIFS_BLOCK_SHIFT;
   2097 		blk_offs += le32_to_cpu(dn->size);
   2098 		if (blk_offs > fscki->size) {
   2099 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
   2100 				  zbr->lnum, zbr->offs, fscki->size);
   2101 			err = -EINVAL;
   2102 			goto out_dump;
   2103 		}
   2104 	} else {
   2105 		int nlen;
   2106 		struct ubifs_dent_node *dent = node;
   2107 		struct fsck_inode *fscki1;
   2108 
   2109 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
   2110 
   2111 		err = ubifs_validate_entry(c, dent);
   2112 		if (err)
   2113 			goto out_dump;
   2114 
   2115 		/*
   2116 		 * Search the inode node this entry refers to and the parent
   2117 		 * inode node and insert them to the RB-tree of inodes.
   2118 		 */
   2119 		inum = le64_to_cpu(dent->inum);
   2120 		fscki = read_add_inode(c, priv, inum);
   2121 		if (IS_ERR(fscki)) {
   2122 			err = PTR_ERR(fscki);
   2123 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
   2124 				  err, (unsigned long)inum);
   2125 			goto out_dump;
   2126 		}
   2127 
   2128 		/* Count how many direntries or xentries refers this inode */
   2129 		fscki->references += 1;
   2130 
   2131 		inum = key_inum_flash(c, &dent->key);
   2132 		fscki1 = read_add_inode(c, priv, inum);
   2133 		if (IS_ERR(fscki1)) {
   2134 			err = PTR_ERR(fscki1);
   2135 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
   2136 				  err, (unsigned long)inum);
   2137 			goto out_dump;
   2138 		}
   2139 
   2140 		nlen = le16_to_cpu(dent->nlen);
   2141 		if (type == UBIFS_XENT_KEY) {
   2142 			fscki1->calc_xcnt += 1;
   2143 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
   2144 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
   2145 			fscki1->calc_xnms += nlen;
   2146 		} else {
   2147 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
   2148 			if (dent->type == UBIFS_ITYPE_DIR)
   2149 				fscki1->calc_cnt += 1;
   2150 		}
   2151 	}
   2152 
   2153 out:
   2154 	kfree(node);
   2155 	return 0;
   2156 
   2157 out_dump:
   2158 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
   2159 	ubifs_dump_node(c, node);
   2160 out_free:
   2161 	kfree(node);
   2162 	return err;
   2163 }
   2164 
   2165 /**
   2166  * free_inodes - free RB-tree of inodes.
   2167  * @fsckd: FS checking information
   2168  */
   2169 static void free_inodes(struct fsck_data *fsckd)
   2170 {
   2171 	struct fsck_inode *fscki, *n;
   2172 
   2173 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
   2174 		kfree(fscki);
   2175 }
   2176 
   2177 /**
   2178  * check_inodes - checks all inodes.
   2179  * @c: UBIFS file-system description object
   2180  * @fsckd: FS checking information
   2181  *
   2182  * This is a helper function for 'dbg_check_filesystem()' which walks the
   2183  * RB-tree of inodes after the index scan has been finished, and checks that
   2184  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
   2185  * %-EINVAL if not, and a negative error code in case of failure.
   2186  */
   2187 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
   2188 {
   2189 	int n, err;
   2190 	union ubifs_key key;
   2191 	struct ubifs_znode *znode;
   2192 	struct ubifs_zbranch *zbr;
   2193 	struct ubifs_ino_node *ino;
   2194 	struct fsck_inode *fscki;
   2195 	struct rb_node *this = rb_first(&fsckd->inodes);
   2196 
   2197 	while (this) {
   2198 		fscki = rb_entry(this, struct fsck_inode, rb);
   2199 		this = rb_next(this);
   2200 
   2201 		if (S_ISDIR(fscki->mode)) {
   2202 			/*
   2203 			 * Directories have to have exactly one reference (they
   2204 			 * cannot have hardlinks), although root inode is an
   2205 			 * exception.
   2206 			 */
   2207 			if (fscki->inum != UBIFS_ROOT_INO &&
   2208 			    fscki->references != 1) {
   2209 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
   2210 					  (unsigned long)fscki->inum,
   2211 					  fscki->references);
   2212 				goto out_dump;
   2213 			}
   2214 			if (fscki->inum == UBIFS_ROOT_INO &&
   2215 			    fscki->references != 0) {
   2216 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
   2217 					  (unsigned long)fscki->inum,
   2218 					  fscki->references);
   2219 				goto out_dump;
   2220 			}
   2221 			if (fscki->calc_sz != fscki->size) {
   2222 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
   2223 					  (unsigned long)fscki->inum,
   2224 					  fscki->size, fscki->calc_sz);
   2225 				goto out_dump;
   2226 			}
   2227 			if (fscki->calc_cnt != fscki->nlink) {
   2228 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
   2229 					  (unsigned long)fscki->inum,
   2230 					  fscki->nlink, fscki->calc_cnt);
   2231 				goto out_dump;
   2232 			}
   2233 		} else {
   2234 			if (fscki->references != fscki->nlink) {
   2235 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
   2236 					  (unsigned long)fscki->inum,
   2237 					  fscki->nlink, fscki->references);
   2238 				goto out_dump;
   2239 			}
   2240 		}
   2241 		if (fscki->xattr_sz != fscki->calc_xsz) {
   2242 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
   2243 				  (unsigned long)fscki->inum, fscki->xattr_sz,
   2244 				  fscki->calc_xsz);
   2245 			goto out_dump;
   2246 		}
   2247 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
   2248 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
   2249 				  (unsigned long)fscki->inum,
   2250 				  fscki->xattr_cnt, fscki->calc_xcnt);
   2251 			goto out_dump;
   2252 		}
   2253 		if (fscki->xattr_nms != fscki->calc_xnms) {
   2254 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
   2255 				  (unsigned long)fscki->inum, fscki->xattr_nms,
   2256 				  fscki->calc_xnms);
   2257 			goto out_dump;
   2258 		}
   2259 	}
   2260 
   2261 	return 0;
   2262 
   2263 out_dump:
   2264 	/* Read the bad inode and dump it */
   2265 	ino_key_init(c, &key, fscki->inum);
   2266 	err = ubifs_lookup_level0(c, &key, &znode, &n);
   2267 	if (!err) {
   2268 		ubifs_err(c, "inode %lu not found in index",
   2269 			  (unsigned long)fscki->inum);
   2270 		return -ENOENT;
   2271 	} else if (err < 0) {
   2272 		ubifs_err(c, "error %d while looking up inode %lu",
   2273 			  err, (unsigned long)fscki->inum);
   2274 		return err;
   2275 	}
   2276 
   2277 	zbr = &znode->zbranch[n];
   2278 	ino = kmalloc(zbr->len, GFP_NOFS);
   2279 	if (!ino)
   2280 		return -ENOMEM;
   2281 
   2282 	err = ubifs_tnc_read_node(c, zbr, ino);
   2283 	if (err) {
   2284 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
   2285 			  zbr->lnum, zbr->offs, err);
   2286 		kfree(ino);
   2287 		return err;
   2288 	}
   2289 
   2290 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
   2291 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
   2292 	ubifs_dump_node(c, ino);
   2293 	kfree(ino);
   2294 	return -EINVAL;
   2295 }
   2296 
   2297 /**
   2298  * dbg_check_filesystem - check the file-system.
   2299  * @c: UBIFS file-system description object
   2300  *
   2301  * This function checks the file system, namely:
   2302  * o makes sure that all leaf nodes exist and their CRCs are correct;
   2303  * o makes sure inode nlink, size, xattr size/count are correct (for all
   2304  *   inodes).
   2305  *
   2306  * The function reads whole indexing tree and all nodes, so it is pretty
   2307  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
   2308  * not, and a negative error code in case of failure.
   2309  */
   2310 int dbg_check_filesystem(struct ubifs_info *c)
   2311 {
   2312 	int err;
   2313 	struct fsck_data fsckd;
   2314 
   2315 	if (!dbg_is_chk_fs(c))
   2316 		return 0;
   2317 
   2318 	fsckd.inodes = RB_ROOT;
   2319 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
   2320 	if (err)
   2321 		goto out_free;
   2322 
   2323 	err = check_inodes(c, &fsckd);
   2324 	if (err)
   2325 		goto out_free;
   2326 
   2327 	free_inodes(&fsckd);
   2328 	return 0;
   2329 
   2330 out_free:
   2331 	ubifs_err(c, "file-system check failed with error %d", err);
   2332 	dump_stack();
   2333 	free_inodes(&fsckd);
   2334 	return err;
   2335 }
   2336 
   2337 /**
   2338  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
   2339  * @c: UBIFS file-system description object
   2340  * @head: the list of nodes ('struct ubifs_scan_node' objects)
   2341  *
   2342  * This function returns zero if the list of data nodes is sorted correctly,
   2343  * and %-EINVAL if not.
   2344  */
   2345 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
   2346 {
   2347 	struct list_head *cur;
   2348 	struct ubifs_scan_node *sa, *sb;
   2349 
   2350 	if (!dbg_is_chk_gen(c))
   2351 		return 0;
   2352 
   2353 	for (cur = head->next; cur->next != head; cur = cur->next) {
   2354 		ino_t inuma, inumb;
   2355 		uint32_t blka, blkb;
   2356 
   2357 		cond_resched();
   2358 		sa = container_of(cur, struct ubifs_scan_node, list);
   2359 		sb = container_of(cur->next, struct ubifs_scan_node, list);
   2360 
   2361 		if (sa->type != UBIFS_DATA_NODE) {
   2362 			ubifs_err(c, "bad node type %d", sa->type);
   2363 			ubifs_dump_node(c, sa->node);
   2364 			return -EINVAL;
   2365 		}
   2366 		if (sb->type != UBIFS_DATA_NODE) {
   2367 			ubifs_err(c, "bad node type %d", sb->type);
   2368 			ubifs_dump_node(c, sb->node);
   2369 			return -EINVAL;
   2370 		}
   2371 
   2372 		inuma = key_inum(c, &sa->key);
   2373 		inumb = key_inum(c, &sb->key);
   2374 
   2375 		if (inuma < inumb)
   2376 			continue;
   2377 		if (inuma > inumb) {
   2378 			ubifs_err(c, "larger inum %lu goes before inum %lu",
   2379 				  (unsigned long)inuma, (unsigned long)inumb);
   2380 			goto error_dump;
   2381 		}
   2382 
   2383 		blka = key_block(c, &sa->key);
   2384 		blkb = key_block(c, &sb->key);
   2385 
   2386 		if (blka > blkb) {
   2387 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
   2388 			goto error_dump;
   2389 		}
   2390 		if (blka == blkb) {
   2391 			ubifs_err(c, "two data nodes for the same block");
   2392 			goto error_dump;
   2393 		}
   2394 	}
   2395 
   2396 	return 0;
   2397 
   2398 error_dump:
   2399 	ubifs_dump_node(c, sa->node);
   2400 	ubifs_dump_node(c, sb->node);
   2401 	return -EINVAL;
   2402 }
   2403 
   2404 /**
   2405  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
   2406  * @c: UBIFS file-system description object
   2407  * @head: the list of nodes ('struct ubifs_scan_node' objects)
   2408  *
   2409  * This function returns zero if the list of non-data nodes is sorted correctly,
   2410  * and %-EINVAL if not.
   2411  */
   2412 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
   2413 {
   2414 	struct list_head *cur;
   2415 	struct ubifs_scan_node *sa, *sb;
   2416 
   2417 	if (!dbg_is_chk_gen(c))
   2418 		return 0;
   2419 
   2420 	for (cur = head->next; cur->next != head; cur = cur->next) {
   2421 		ino_t inuma, inumb;
   2422 		uint32_t hasha, hashb;
   2423 
   2424 		cond_resched();
   2425 		sa = container_of(cur, struct ubifs_scan_node, list);
   2426 		sb = container_of(cur->next, struct ubifs_scan_node, list);
   2427 
   2428 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
   2429 		    sa->type != UBIFS_XENT_NODE) {
   2430 			ubifs_err(c, "bad node type %d", sa->type);
   2431 			ubifs_dump_node(c, sa->node);
   2432 			return -EINVAL;
   2433 		}
   2434 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
   2435 		    sa->type != UBIFS_XENT_NODE) {
   2436 			ubifs_err(c, "bad node type %d", sb->type);
   2437 			ubifs_dump_node(c, sb->node);
   2438 			return -EINVAL;
   2439 		}
   2440 
   2441 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
   2442 			ubifs_err(c, "non-inode node goes before inode node");
   2443 			goto error_dump;
   2444 		}
   2445 
   2446 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
   2447 			continue;
   2448 
   2449 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
   2450 			/* Inode nodes are sorted in descending size order */
   2451 			if (sa->len < sb->len) {
   2452 				ubifs_err(c, "smaller inode node goes first");
   2453 				goto error_dump;
   2454 			}
   2455 			continue;
   2456 		}
   2457 
   2458 		/*
   2459 		 * This is either a dentry or xentry, which should be sorted in
   2460 		 * ascending (parent ino, hash) order.
   2461 		 */
   2462 		inuma = key_inum(c, &sa->key);
   2463 		inumb = key_inum(c, &sb->key);
   2464 
   2465 		if (inuma < inumb)
   2466 			continue;
   2467 		if (inuma > inumb) {
   2468 			ubifs_err(c, "larger inum %lu goes before inum %lu",
   2469 				  (unsigned long)inuma, (unsigned long)inumb);
   2470 			goto error_dump;
   2471 		}
   2472 
   2473 		hasha = key_block(c, &sa->key);
   2474 		hashb = key_block(c, &sb->key);
   2475 
   2476 		if (hasha > hashb) {
   2477 			ubifs_err(c, "larger hash %u goes before %u",
   2478 				  hasha, hashb);
   2479 			goto error_dump;
   2480 		}
   2481 	}
   2482 
   2483 	return 0;
   2484 
   2485 error_dump:
   2486 	ubifs_msg(c, "dumping first node");
   2487 	ubifs_dump_node(c, sa->node);
   2488 	ubifs_msg(c, "dumping second node");
   2489 	ubifs_dump_node(c, sb->node);
   2490 	return -EINVAL;
   2491 	return 0;
   2492 }
   2493 
   2494 static inline int chance(unsigned int n, unsigned int out_of)
   2495 {
   2496 	return !!((prandom_u32() % out_of) + 1 <= n);
   2497 
   2498 }
   2499 
   2500 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
   2501 {
   2502 	struct ubifs_debug_info *d = c->dbg;
   2503 
   2504 	ubifs_assert(dbg_is_tst_rcvry(c));
   2505 
   2506 	if (!d->pc_cnt) {
   2507 		/* First call - decide delay to the power cut */
   2508 		if (chance(1, 2)) {
   2509 			unsigned long delay;
   2510 
   2511 			if (chance(1, 2)) {
   2512 				d->pc_delay = 1;
   2513 				/* Fail within 1 minute */
   2514 				delay = prandom_u32() % 60000;
   2515 				d->pc_timeout = jiffies;
   2516 				d->pc_timeout += msecs_to_jiffies(delay);
   2517 				ubifs_warn(c, "failing after %lums", delay);
   2518 			} else {
   2519 				d->pc_delay = 2;
   2520 				delay = prandom_u32() % 10000;
   2521 				/* Fail within 10000 operations */
   2522 				d->pc_cnt_max = delay;
   2523 				ubifs_warn(c, "failing after %lu calls", delay);
   2524 			}
   2525 		}
   2526 
   2527 		d->pc_cnt += 1;
   2528 	}
   2529 
   2530 	/* Determine if failure delay has expired */
   2531 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
   2532 			return 0;
   2533 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
   2534 			return 0;
   2535 
   2536 	if (lnum == UBIFS_SB_LNUM) {
   2537 		if (write && chance(1, 2))
   2538 			return 0;
   2539 		if (chance(19, 20))
   2540 			return 0;
   2541 		ubifs_warn(c, "failing in super block LEB %d", lnum);
   2542 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
   2543 		if (chance(19, 20))
   2544 			return 0;
   2545 		ubifs_warn(c, "failing in master LEB %d", lnum);
   2546 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
   2547 		if (write && chance(99, 100))
   2548 			return 0;
   2549 		if (chance(399, 400))
   2550 			return 0;
   2551 		ubifs_warn(c, "failing in log LEB %d", lnum);
   2552 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
   2553 		if (write && chance(7, 8))
   2554 			return 0;
   2555 		if (chance(19, 20))
   2556 			return 0;
   2557 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
   2558 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
   2559 		if (write && chance(1, 2))
   2560 			return 0;
   2561 		if (chance(9, 10))
   2562 			return 0;
   2563 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
   2564 	} else if (lnum == c->ihead_lnum) {
   2565 		if (chance(99, 100))
   2566 			return 0;
   2567 		ubifs_warn(c, "failing in index head LEB %d", lnum);
   2568 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
   2569 		if (chance(9, 10))
   2570 			return 0;
   2571 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
   2572 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
   2573 		   !ubifs_search_bud(c, lnum)) {
   2574 		if (chance(19, 20))
   2575 			return 0;
   2576 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
   2577 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
   2578 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
   2579 		if (chance(999, 1000))
   2580 			return 0;
   2581 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
   2582 	} else {
   2583 		if (chance(9999, 10000))
   2584 			return 0;
   2585 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
   2586 	}
   2587 
   2588 	d->pc_happened = 1;
   2589 	ubifs_warn(c, "========== Power cut emulated ==========");
   2590 	dump_stack();
   2591 	return 1;
   2592 }
   2593 
   2594 static int corrupt_data(const struct ubifs_info *c, const void *buf,
   2595 			unsigned int len)
   2596 {
   2597 	unsigned int from, to, ffs = chance(1, 2);
   2598 	unsigned char *p = (void *)buf;
   2599 
   2600 	from = prandom_u32() % len;
   2601 	/* Corruption span max to end of write unit */
   2602 	to = min(len, ALIGN(from + 1, c->max_write_size));
   2603 
   2604 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
   2605 		   ffs ? "0xFFs" : "random data");
   2606 
   2607 	if (ffs)
   2608 		memset(p + from, 0xFF, to - from);
   2609 	else
   2610 		prandom_bytes(p + from, to - from);
   2611 
   2612 	return to;
   2613 }
   2614 
   2615 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
   2616 		  int offs, int len)
   2617 {
   2618 	int err, failing;
   2619 
   2620 	if (c->dbg->pc_happened)
   2621 		return -EROFS;
   2622 
   2623 	failing = power_cut_emulated(c, lnum, 1);
   2624 	if (failing) {
   2625 		len = corrupt_data(c, buf, len);
   2626 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
   2627 			   len, lnum, offs);
   2628 	}
   2629 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
   2630 	if (err)
   2631 		return err;
   2632 	if (failing)
   2633 		return -EROFS;
   2634 	return 0;
   2635 }
   2636 
   2637 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
   2638 		   int len)
   2639 {
   2640 	int err;
   2641 
   2642 	if (c->dbg->pc_happened)
   2643 		return -EROFS;
   2644 	if (power_cut_emulated(c, lnum, 1))
   2645 		return -EROFS;
   2646 	err = ubi_leb_change(c->ubi, lnum, buf, len);
   2647 	if (err)
   2648 		return err;
   2649 	if (power_cut_emulated(c, lnum, 1))
   2650 		return -EROFS;
   2651 	return 0;
   2652 }
   2653 
   2654 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
   2655 {
   2656 	int err;
   2657 
   2658 	if (c->dbg->pc_happened)
   2659 		return -EROFS;
   2660 	if (power_cut_emulated(c, lnum, 0))
   2661 		return -EROFS;
   2662 	err = ubi_leb_unmap(c->ubi, lnum);
   2663 	if (err)
   2664 		return err;
   2665 	if (power_cut_emulated(c, lnum, 0))
   2666 		return -EROFS;
   2667 	return 0;
   2668 }
   2669 
   2670 int dbg_leb_map(struct ubifs_info *c, int lnum)
   2671 {
   2672 	int err;
   2673 
   2674 	if (c->dbg->pc_happened)
   2675 		return -EROFS;
   2676 	if (power_cut_emulated(c, lnum, 0))
   2677 		return -EROFS;
   2678 	err = ubi_leb_map(c->ubi, lnum);
   2679 	if (err)
   2680 		return err;
   2681 	if (power_cut_emulated(c, lnum, 0))
   2682 		return -EROFS;
   2683 	return 0;
   2684 }
   2685 
   2686 /*
   2687  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
   2688  * contain the stuff specific to particular file-system mounts.
   2689  */
   2690 static struct dentry *dfs_rootdir;
   2691 
   2692 static int dfs_file_open(struct inode *inode, struct file *file)
   2693 {
   2694 	file->private_data = inode->i_private;
   2695 	return nonseekable_open(inode, file);
   2696 }
   2697 
   2698 /**
   2699  * provide_user_output - provide output to the user reading a debugfs file.
   2700  * @val: boolean value for the answer
   2701  * @u: the buffer to store the answer at
   2702  * @count: size of the buffer
   2703  * @ppos: position in the @u output buffer
   2704  *
   2705  * This is a simple helper function which stores @val boolean value in the user
   2706  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
   2707  * bytes written to @u in case of success and a negative error code in case of
   2708  * failure.
   2709  */
   2710 static int provide_user_output(int val, char __user *u, size_t count,
   2711 			       loff_t *ppos)
   2712 {
   2713 	char buf[3];
   2714 
   2715 	if (val)
   2716 		buf[0] = '1';
   2717 	else
   2718 		buf[0] = '0';
   2719 	buf[1] = '\n';
   2720 	buf[2] = 0x00;
   2721 
   2722 	return simple_read_from_buffer(u, count, ppos, buf, 2);
   2723 }
   2724 
   2725 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
   2726 			     loff_t *ppos)
   2727 {
   2728 	struct dentry *dent = file->f_path.dentry;
   2729 	struct ubifs_info *c = file->private_data;
   2730 	struct ubifs_debug_info *d = c->dbg;
   2731 	int val;
   2732 
   2733 	if (dent == d->dfs_chk_gen)
   2734 		val = d->chk_gen;
   2735 	else if (dent == d->dfs_chk_index)
   2736 		val = d->chk_index;
   2737 	else if (dent == d->dfs_chk_orph)
   2738 		val = d->chk_orph;
   2739 	else if (dent == d->dfs_chk_lprops)
   2740 		val = d->chk_lprops;
   2741 	else if (dent == d->dfs_chk_fs)
   2742 		val = d->chk_fs;
   2743 	else if (dent == d->dfs_tst_rcvry)
   2744 		val = d->tst_rcvry;
   2745 	else if (dent == d->dfs_ro_error)
   2746 		val = c->ro_error;
   2747 	else
   2748 		return -EINVAL;
   2749 
   2750 	return provide_user_output(val, u, count, ppos);
   2751 }
   2752 
   2753 /**
   2754  * interpret_user_input - interpret user debugfs file input.
   2755  * @u: user-provided buffer with the input
   2756  * @count: buffer size
   2757  *
   2758  * This is a helper function which interpret user input to a boolean UBIFS
   2759  * debugfs file. Returns %0 or %1 in case of success and a negative error code
   2760  * in case of failure.
   2761  */
   2762 static int interpret_user_input(const char __user *u, size_t count)
   2763 {
   2764 	size_t buf_size;
   2765 	char buf[8];
   2766 
   2767 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
   2768 	if (copy_from_user(buf, u, buf_size))
   2769 		return -EFAULT;
   2770 
   2771 	if (buf[0] == '1')
   2772 		return 1;
   2773 	else if (buf[0] == '0')
   2774 		return 0;
   2775 
   2776 	return -EINVAL;
   2777 }
   2778 
   2779 static ssize_t dfs_file_write(struct file *file, const char __user *u,
   2780 			      size_t count, loff_t *ppos)
   2781 {
   2782 	struct ubifs_info *c = file->private_data;
   2783 	struct ubifs_debug_info *d = c->dbg;
   2784 	struct dentry *dent = file->f_path.dentry;
   2785 	int val;
   2786 
   2787 	/*
   2788 	 * TODO: this is racy - the file-system might have already been
   2789 	 * unmounted and we'd oops in this case. The plan is to fix it with
   2790 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
   2791 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
   2792 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
   2793 	 * superblocks and fine the one with the same UUID, and take the
   2794 	 * locking right.
   2795 	 *
   2796 	 * The other way to go suggested by Al Viro is to create a separate
   2797 	 * 'ubifs-debug' file-system instead.
   2798 	 */
   2799 	if (file->f_path.dentry == d->dfs_dump_lprops) {
   2800 		ubifs_dump_lprops(c);
   2801 		return count;
   2802 	}
   2803 	if (file->f_path.dentry == d->dfs_dump_budg) {
   2804 		ubifs_dump_budg(c, &c->bi);
   2805 		return count;
   2806 	}
   2807 	if (file->f_path.dentry == d->dfs_dump_tnc) {
   2808 		mutex_lock(&c->tnc_mutex);
   2809 		ubifs_dump_tnc(c);
   2810 		mutex_unlock(&c->tnc_mutex);
   2811 		return count;
   2812 	}
   2813 
   2814 	val = interpret_user_input(u, count);
   2815 	if (val < 0)
   2816 		return val;
   2817 
   2818 	if (dent == d->dfs_chk_gen)
   2819 		d->chk_gen = val;
   2820 	else if (dent == d->dfs_chk_index)
   2821 		d->chk_index = val;
   2822 	else if (dent == d->dfs_chk_orph)
   2823 		d->chk_orph = val;
   2824 	else if (dent == d->dfs_chk_lprops)
   2825 		d->chk_lprops = val;
   2826 	else if (dent == d->dfs_chk_fs)
   2827 		d->chk_fs = val;
   2828 	else if (dent == d->dfs_tst_rcvry)
   2829 		d->tst_rcvry = val;
   2830 	else if (dent == d->dfs_ro_error)
   2831 		c->ro_error = !!val;
   2832 	else
   2833 		return -EINVAL;
   2834 
   2835 	return count;
   2836 }
   2837 
   2838 static const struct file_operations dfs_fops = {
   2839 	.open = dfs_file_open,
   2840 	.read = dfs_file_read,
   2841 	.write = dfs_file_write,
   2842 	.owner = THIS_MODULE,
   2843 	.llseek = no_llseek,
   2844 };
   2845 
   2846 /**
   2847  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
   2848  * @c: UBIFS file-system description object
   2849  *
   2850  * This function creates all debugfs files for this instance of UBIFS. Returns
   2851  * zero in case of success and a negative error code in case of failure.
   2852  *
   2853  * Note, the only reason we have not merged this function with the
   2854  * 'ubifs_debugging_init()' function is because it is better to initialize
   2855  * debugfs interfaces at the very end of the mount process, and remove them at
   2856  * the very beginning of the mount process.
   2857  */
   2858 int dbg_debugfs_init_fs(struct ubifs_info *c)
   2859 {
   2860 	int err, n;
   2861 	const char *fname;
   2862 	struct dentry *dent;
   2863 	struct ubifs_debug_info *d = c->dbg;
   2864 
   2865 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
   2866 		return 0;
   2867 
   2868 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
   2869 		     c->vi.ubi_num, c->vi.vol_id);
   2870 	if (n == UBIFS_DFS_DIR_LEN) {
   2871 		/* The array size is too small */
   2872 		fname = UBIFS_DFS_DIR_NAME;
   2873 		dent = ERR_PTR(-EINVAL);
   2874 		goto out;
   2875 	}
   2876 
   2877 	fname = d->dfs_dir_name;
   2878 	dent = debugfs_create_dir(fname, dfs_rootdir);
   2879 	if (IS_ERR_OR_NULL(dent))
   2880 		goto out;
   2881 	d->dfs_dir = dent;
   2882 
   2883 	fname = "dump_lprops";
   2884 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
   2885 	if (IS_ERR_OR_NULL(dent))
   2886 		goto out_remove;
   2887 	d->dfs_dump_lprops = dent;
   2888 
   2889 	fname = "dump_budg";
   2890 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
   2891 	if (IS_ERR_OR_NULL(dent))
   2892 		goto out_remove;
   2893 	d->dfs_dump_budg = dent;
   2894 
   2895 	fname = "dump_tnc";
   2896 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
   2897 	if (IS_ERR_OR_NULL(dent))
   2898 		goto out_remove;
   2899 	d->dfs_dump_tnc = dent;
   2900 
   2901 	fname = "chk_general";
   2902 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2903 				   &dfs_fops);
   2904 	if (IS_ERR_OR_NULL(dent))
   2905 		goto out_remove;
   2906 	d->dfs_chk_gen = dent;
   2907 
   2908 	fname = "chk_index";
   2909 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2910 				   &dfs_fops);
   2911 	if (IS_ERR_OR_NULL(dent))
   2912 		goto out_remove;
   2913 	d->dfs_chk_index = dent;
   2914 
   2915 	fname = "chk_orphans";
   2916 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2917 				   &dfs_fops);
   2918 	if (IS_ERR_OR_NULL(dent))
   2919 		goto out_remove;
   2920 	d->dfs_chk_orph = dent;
   2921 
   2922 	fname = "chk_lprops";
   2923 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2924 				   &dfs_fops);
   2925 	if (IS_ERR_OR_NULL(dent))
   2926 		goto out_remove;
   2927 	d->dfs_chk_lprops = dent;
   2928 
   2929 	fname = "chk_fs";
   2930 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2931 				   &dfs_fops);
   2932 	if (IS_ERR_OR_NULL(dent))
   2933 		goto out_remove;
   2934 	d->dfs_chk_fs = dent;
   2935 
   2936 	fname = "tst_recovery";
   2937 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2938 				   &dfs_fops);
   2939 	if (IS_ERR_OR_NULL(dent))
   2940 		goto out_remove;
   2941 	d->dfs_tst_rcvry = dent;
   2942 
   2943 	fname = "ro_error";
   2944 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
   2945 				   &dfs_fops);
   2946 	if (IS_ERR_OR_NULL(dent))
   2947 		goto out_remove;
   2948 	d->dfs_ro_error = dent;
   2949 
   2950 	return 0;
   2951 
   2952 out_remove:
   2953 	debugfs_remove_recursive(d->dfs_dir);
   2954 out:
   2955 	err = dent ? PTR_ERR(dent) : -ENODEV;
   2956 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
   2957 		  fname, err);
   2958 	return err;
   2959 }
   2960 
   2961 /**
   2962  * dbg_debugfs_exit_fs - remove all debugfs files.
   2963  * @c: UBIFS file-system description object
   2964  */
   2965 void dbg_debugfs_exit_fs(struct ubifs_info *c)
   2966 {
   2967 	if (IS_ENABLED(CONFIG_DEBUG_FS))
   2968 		debugfs_remove_recursive(c->dbg->dfs_dir);
   2969 }
   2970 
   2971 struct ubifs_global_debug_info ubifs_dbg;
   2972 
   2973 static struct dentry *dfs_chk_gen;
   2974 static struct dentry *dfs_chk_index;
   2975 static struct dentry *dfs_chk_orph;
   2976 static struct dentry *dfs_chk_lprops;
   2977 static struct dentry *dfs_chk_fs;
   2978 static struct dentry *dfs_tst_rcvry;
   2979 
   2980 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
   2981 				    size_t count, loff_t *ppos)
   2982 {
   2983 	struct dentry *dent = file->f_path.dentry;
   2984 	int val;
   2985 
   2986 	if (dent == dfs_chk_gen)
   2987 		val = ubifs_dbg.chk_gen;
   2988 	else if (dent == dfs_chk_index)
   2989 		val = ubifs_dbg.chk_index;
   2990 	else if (dent == dfs_chk_orph)
   2991 		val = ubifs_dbg.chk_orph;
   2992 	else if (dent == dfs_chk_lprops)
   2993 		val = ubifs_dbg.chk_lprops;
   2994 	else if (dent == dfs_chk_fs)
   2995 		val = ubifs_dbg.chk_fs;
   2996 	else if (dent == dfs_tst_rcvry)
   2997 		val = ubifs_dbg.tst_rcvry;
   2998 	else
   2999 		return -EINVAL;
   3000 
   3001 	return provide_user_output(val, u, count, ppos);
   3002 }
   3003 
   3004 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
   3005 				     size_t count, loff_t *ppos)
   3006 {
   3007 	struct dentry *dent = file->f_path.dentry;
   3008 	int val;
   3009 
   3010 	val = interpret_user_input(u, count);
   3011 	if (val < 0)
   3012 		return val;
   3013 
   3014 	if (dent == dfs_chk_gen)
   3015 		ubifs_dbg.chk_gen = val;
   3016 	else if (dent == dfs_chk_index)
   3017 		ubifs_dbg.chk_index = val;
   3018 	else if (dent == dfs_chk_orph)
   3019 		ubifs_dbg.chk_orph = val;
   3020 	else if (dent == dfs_chk_lprops)
   3021 		ubifs_dbg.chk_lprops = val;
   3022 	else if (dent == dfs_chk_fs)
   3023 		ubifs_dbg.chk_fs = val;
   3024 	else if (dent == dfs_tst_rcvry)
   3025 		ubifs_dbg.tst_rcvry = val;
   3026 	else
   3027 		return -EINVAL;
   3028 
   3029 	return count;
   3030 }
   3031 
   3032 static const struct file_operations dfs_global_fops = {
   3033 	.read = dfs_global_file_read,
   3034 	.write = dfs_global_file_write,
   3035 	.owner = THIS_MODULE,
   3036 	.llseek = no_llseek,
   3037 };
   3038 
   3039 /**
   3040  * dbg_debugfs_init - initialize debugfs file-system.
   3041  *
   3042  * UBIFS uses debugfs file-system to expose various debugging knobs to
   3043  * user-space. This function creates "ubifs" directory in the debugfs
   3044  * file-system. Returns zero in case of success and a negative error code in
   3045  * case of failure.
   3046  */
   3047 int dbg_debugfs_init(void)
   3048 {
   3049 	int err;
   3050 	const char *fname;
   3051 	struct dentry *dent;
   3052 
   3053 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
   3054 		return 0;
   3055 
   3056 	fname = "ubifs";
   3057 	dent = debugfs_create_dir(fname, NULL);
   3058 	if (IS_ERR_OR_NULL(dent))
   3059 		goto out;
   3060 	dfs_rootdir = dent;
   3061 
   3062 	fname = "chk_general";
   3063 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3064 				   &dfs_global_fops);
   3065 	if (IS_ERR_OR_NULL(dent))
   3066 		goto out_remove;
   3067 	dfs_chk_gen = dent;
   3068 
   3069 	fname = "chk_index";
   3070 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3071 				   &dfs_global_fops);
   3072 	if (IS_ERR_OR_NULL(dent))
   3073 		goto out_remove;
   3074 	dfs_chk_index = dent;
   3075 
   3076 	fname = "chk_orphans";
   3077 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3078 				   &dfs_global_fops);
   3079 	if (IS_ERR_OR_NULL(dent))
   3080 		goto out_remove;
   3081 	dfs_chk_orph = dent;
   3082 
   3083 	fname = "chk_lprops";
   3084 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3085 				   &dfs_global_fops);
   3086 	if (IS_ERR_OR_NULL(dent))
   3087 		goto out_remove;
   3088 	dfs_chk_lprops = dent;
   3089 
   3090 	fname = "chk_fs";
   3091 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3092 				   &dfs_global_fops);
   3093 	if (IS_ERR_OR_NULL(dent))
   3094 		goto out_remove;
   3095 	dfs_chk_fs = dent;
   3096 
   3097 	fname = "tst_recovery";
   3098 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
   3099 				   &dfs_global_fops);
   3100 	if (IS_ERR_OR_NULL(dent))
   3101 		goto out_remove;
   3102 	dfs_tst_rcvry = dent;
   3103 
   3104 	return 0;
   3105 
   3106 out_remove:
   3107 	debugfs_remove_recursive(dfs_rootdir);
   3108 out:
   3109 	err = dent ? PTR_ERR(dent) : -ENODEV;
   3110 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
   3111 	       current->pid, fname, err);
   3112 	return err;
   3113 }
   3114 
   3115 /**
   3116  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
   3117  */
   3118 void dbg_debugfs_exit(void)
   3119 {
   3120 	if (IS_ENABLED(CONFIG_DEBUG_FS))
   3121 		debugfs_remove_recursive(dfs_rootdir);
   3122 }
   3123 
   3124 /**
   3125  * ubifs_debugging_init - initialize UBIFS debugging.
   3126  * @c: UBIFS file-system description object
   3127  *
   3128  * This function initializes debugging-related data for the file system.
   3129  * Returns zero in case of success and a negative error code in case of
   3130  * failure.
   3131  */
   3132 int ubifs_debugging_init(struct ubifs_info *c)
   3133 {
   3134 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
   3135 	if (!c->dbg)
   3136 		return -ENOMEM;
   3137 
   3138 	return 0;
   3139 }
   3140 
   3141 /**
   3142  * ubifs_debugging_exit - free debugging data.
   3143  * @c: UBIFS file-system description object
   3144  */
   3145 void ubifs_debugging_exit(struct ubifs_info *c)
   3146 {
   3147 	kfree(c->dbg);
   3148 }
   3149 #endif
   3150