Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <openssl/bn.h>
     71 #include <openssl/err.h>
     72 #include <openssl/mem.h>
     73 
     74 #include "../bn/internal.h"
     75 #include "../delocate.h"
     76 #include "internal.h"
     77 
     78 
     79 int ec_GFp_mont_group_init(EC_GROUP *group) {
     80   int ok;
     81 
     82   ok = ec_GFp_simple_group_init(group);
     83   group->mont = NULL;
     84   return ok;
     85 }
     86 
     87 void ec_GFp_mont_group_finish(EC_GROUP *group) {
     88   BN_MONT_CTX_free(group->mont);
     89   group->mont = NULL;
     90   ec_GFp_simple_group_finish(group);
     91 }
     92 
     93 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
     94                                 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
     95   BN_CTX *new_ctx = NULL;
     96   int ret = 0;
     97 
     98   BN_MONT_CTX_free(group->mont);
     99   group->mont = NULL;
    100 
    101   if (ctx == NULL) {
    102     ctx = new_ctx = BN_CTX_new();
    103     if (ctx == NULL) {
    104       return 0;
    105     }
    106   }
    107 
    108   group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
    109   if (group->mont == NULL) {
    110     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    111     goto err;
    112   }
    113 
    114   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
    115 
    116   if (!ret) {
    117     BN_MONT_CTX_free(group->mont);
    118     group->mont = NULL;
    119   }
    120 
    121 err:
    122   BN_CTX_free(new_ctx);
    123   return ret;
    124 }
    125 
    126 static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
    127                                             EC_FELEM *out, const EC_FELEM *in) {
    128   bn_to_montgomery_small(out->words, in->words, group->field.width,
    129                          group->mont);
    130 }
    131 
    132 static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
    133                                               EC_FELEM *out,
    134                                               const EC_FELEM *in) {
    135   bn_from_montgomery_small(out->words, in->words, group->field.width,
    136                            group->mont);
    137 }
    138 
    139 static void ec_GFp_mont_felem_inv(const EC_GROUP *group, EC_FELEM *out,
    140                                   const EC_FELEM *a) {
    141   bn_mod_inverse_prime_mont_small(out->words, a->words, group->field.width,
    142                                   group->mont);
    143 }
    144 
    145 void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
    146                            const EC_FELEM *a, const EC_FELEM *b) {
    147   bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width,
    148                               group->mont);
    149 }
    150 
    151 void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
    152                            const EC_FELEM *a) {
    153   bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width,
    154                               group->mont);
    155 }
    156 
    157 int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
    158                                 const BIGNUM *in) {
    159   if (group->mont == NULL) {
    160     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    161     return 0;
    162   }
    163 
    164   if (!bn_copy_words(out->words, group->field.width, in)) {
    165     return 0;
    166   }
    167   ec_GFp_mont_felem_to_montgomery(group, out, out);
    168   return 1;
    169 }
    170 
    171 int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
    172                                 const EC_FELEM *in) {
    173   if (group->mont == NULL) {
    174     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    175     return 0;
    176   }
    177 
    178   EC_FELEM tmp;
    179   ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
    180   return bn_set_words(out, tmp.words, group->field.width);
    181 }
    182 
    183 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
    184                                                     const EC_RAW_POINT *point,
    185                                                     EC_FELEM *x, EC_FELEM *y) {
    186   if (ec_GFp_simple_is_at_infinity(group, point)) {
    187     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    188     return 0;
    189   }
    190 
    191   // Transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3).
    192 
    193   EC_FELEM z1, z2;
    194   ec_GFp_mont_felem_inv(group, &z2, &point->Z);
    195   ec_GFp_mont_felem_sqr(group, &z1, &z2);
    196 
    197   // Instead of using |ec_GFp_mont_felem_from_montgomery| to convert the |x|
    198   // coordinate and then calling |ec_GFp_mont_felem_from_montgomery| again to
    199   // convert the |y| coordinate below, convert the common factor |z1| once now,
    200   // saving one reduction.
    201   ec_GFp_mont_felem_from_montgomery(group, &z1, &z1);
    202 
    203   if (x != NULL) {
    204     ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
    205   }
    206 
    207   if (y != NULL) {
    208     ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
    209     ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
    210   }
    211 
    212   return 1;
    213 }
    214 
    215 void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out,
    216                      const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
    217   if (a == b) {
    218     ec_GFp_mont_dbl(group, out, a);
    219     return;
    220   }
    221 
    222   // The method is taken from:
    223   //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
    224   //
    225   // Coq transcription and correctness proof:
    226   // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
    227   // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
    228   EC_FELEM x_out, y_out, z_out;
    229   BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
    230   BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
    231 
    232   // z1z1 = z1z1 = z1**2
    233   EC_FELEM z1z1;
    234   ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
    235 
    236   // z2z2 = z2**2
    237   EC_FELEM z2z2;
    238   ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
    239 
    240   // u1 = x1*z2z2
    241   EC_FELEM u1;
    242   ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
    243 
    244   // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    245   EC_FELEM two_z1z2;
    246   ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
    247   ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
    248   ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
    249   ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
    250 
    251   // s1 = y1 * z2**3
    252   EC_FELEM s1;
    253   ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
    254   ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
    255 
    256   // u2 = x2*z1z1
    257   EC_FELEM u2;
    258   ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
    259 
    260   // h = u2 - u1
    261   EC_FELEM h;
    262   ec_felem_sub(group, &h, &u2, &u1);
    263 
    264   BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
    265 
    266   // z_out = two_z1z2 * h
    267   ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
    268 
    269   // z1z1z1 = z1 * z1z1
    270   EC_FELEM z1z1z1;
    271   ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
    272 
    273   // s2 = y2 * z1**3
    274   EC_FELEM s2;
    275   ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
    276 
    277   // r = (s2 - s1)*2
    278   EC_FELEM r;
    279   ec_felem_sub(group, &r, &s2, &s1);
    280   ec_felem_add(group, &r, &r, &r);
    281 
    282   BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
    283 
    284   // This case will never occur in the constant-time |ec_GFp_mont_mul|.
    285   if (!xneq && !yneq && z1nz && z2nz) {
    286     ec_GFp_mont_dbl(group, out, a);
    287     return;
    288   }
    289 
    290   // I = (2h)**2
    291   EC_FELEM i;
    292   ec_felem_add(group, &i, &h, &h);
    293   ec_GFp_mont_felem_sqr(group, &i, &i);
    294 
    295   // J = h * I
    296   EC_FELEM j;
    297   ec_GFp_mont_felem_mul(group, &j, &h, &i);
    298 
    299   // V = U1 * I
    300   EC_FELEM v;
    301   ec_GFp_mont_felem_mul(group, &v, &u1, &i);
    302 
    303   // x_out = r**2 - J - 2V
    304   ec_GFp_mont_felem_sqr(group, &x_out, &r);
    305   ec_felem_sub(group, &x_out, &x_out, &j);
    306   ec_felem_sub(group, &x_out, &x_out, &v);
    307   ec_felem_sub(group, &x_out, &x_out, &v);
    308 
    309   // y_out = r(V-x_out) - 2 * s1 * J
    310   ec_felem_sub(group, &y_out, &v, &x_out);
    311   ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
    312   EC_FELEM s1j;
    313   ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
    314   ec_felem_sub(group, &y_out, &y_out, &s1j);
    315   ec_felem_sub(group, &y_out, &y_out, &s1j);
    316 
    317   ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
    318   ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
    319   ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
    320   ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
    321   ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
    322   ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
    323 }
    324 
    325 void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
    326                      const EC_RAW_POINT *a) {
    327   if (group->a_is_minus3) {
    328     // The method is taken from:
    329     //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
    330     //
    331     // Coq transcription and correctness proof:
    332     // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
    333     // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
    334     EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
    335     // delta = z^2
    336     ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
    337     // gamma = y^2
    338     ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
    339     // beta = x*gamma
    340     ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
    341 
    342     // alpha = 3*(x-delta)*(x+delta)
    343     ec_felem_sub(group, &ftmp, &a->X, &delta);
    344     ec_felem_add(group, &ftmp2, &a->X, &delta);
    345 
    346     ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
    347     ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
    348     ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
    349 
    350     // x' = alpha^2 - 8*beta
    351     ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
    352     ec_felem_add(group, &fourbeta, &beta, &beta);
    353     ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
    354     ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
    355     ec_felem_sub(group, &r->X, &r->X, &tmptmp);
    356 
    357     // z' = (y + z)^2 - gamma - delta
    358     ec_felem_add(group, &delta, &gamma, &delta);
    359     ec_felem_add(group, &ftmp, &a->Y, &a->Z);
    360     ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
    361     ec_felem_sub(group, &r->Z, &r->Z, &delta);
    362 
    363     // y' = alpha*(4*beta - x') - 8*gamma^2
    364     ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
    365     ec_felem_add(group, &gamma, &gamma, &gamma);
    366     ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
    367     ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
    368     ec_felem_add(group, &gamma, &gamma, &gamma);
    369     ec_felem_sub(group, &r->Y, &r->Y, &gamma);
    370   } else {
    371     // The method is taken from:
    372     //   http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
    373     //
    374     // Coq transcription and correctness proof:
    375     // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
    376     // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
    377     EC_FELEM xx, yy, yyyy, zz;
    378     ec_GFp_mont_felem_sqr(group, &xx, &a->X);
    379     ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
    380     ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
    381     ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
    382 
    383     // s = 2*((x_in + yy)^2 - xx - yyyy)
    384     EC_FELEM s;
    385     ec_felem_add(group, &s, &a->X, &yy);
    386     ec_GFp_mont_felem_sqr(group, &s, &s);
    387     ec_felem_sub(group, &s, &s, &xx);
    388     ec_felem_sub(group, &s, &s, &yyyy);
    389     ec_felem_add(group, &s, &s, &s);
    390 
    391     // m = 3*xx + a*zz^2
    392     EC_FELEM m;
    393     ec_GFp_mont_felem_sqr(group, &m, &zz);
    394     ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
    395     ec_felem_add(group, &m, &m, &xx);
    396     ec_felem_add(group, &m, &m, &xx);
    397     ec_felem_add(group, &m, &m, &xx);
    398 
    399     // x_out = m^2 - 2*s
    400     ec_GFp_mont_felem_sqr(group, &r->X, &m);
    401     ec_felem_sub(group, &r->X, &r->X, &s);
    402     ec_felem_sub(group, &r->X, &r->X, &s);
    403 
    404     // z_out = (y_in + z_in)^2 - yy - zz
    405     ec_felem_add(group, &r->Z, &a->Y, &a->Z);
    406     ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
    407     ec_felem_sub(group, &r->Z, &r->Z, &yy);
    408     ec_felem_sub(group, &r->Z, &r->Z, &zz);
    409 
    410     // y_out = m*(s-x_out) - 8*yyyy
    411     ec_felem_add(group, &yyyy, &yyyy, &yyyy);
    412     ec_felem_add(group, &yyyy, &yyyy, &yyyy);
    413     ec_felem_add(group, &yyyy, &yyyy, &yyyy);
    414     ec_felem_sub(group, &r->Y, &s, &r->X);
    415     ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
    416     ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
    417   }
    418 }
    419 
    420 static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group,
    421                                         const EC_RAW_POINT *p,
    422                                         const EC_SCALAR *r) {
    423   if (!group->field_greater_than_order ||
    424       group->field.width != group->order.width) {
    425     // Do not bother optimizing this case. p > order in all commonly-used
    426     // curves.
    427     return ec_GFp_simple_cmp_x_coordinate(group, p, r);
    428   }
    429 
    430   if (ec_GFp_simple_is_at_infinity(group, p)) {
    431     return 0;
    432   }
    433 
    434   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
    435   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
    436   // not.
    437   EC_FELEM r_Z2, Z2_mont, X;
    438   ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
    439   // r < order < p, so this is valid.
    440   OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG));
    441   ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
    442   ec_GFp_mont_felem_from_montgomery(group, &X, &p->X);
    443 
    444   if (ec_felem_equal(group, &r_Z2, &X)) {
    445     return 1;
    446   }
    447 
    448   // During signing the x coefficient is reduced modulo the group order.
    449   // Therefore there is a small possibility, less than 1/2^128, that group_order
    450   // < p.x < P. in that case we need not only to compare against |r| but also to
    451   // compare against r+group_order.
    452   if (bn_less_than_words(r->words, group->field_minus_order.words,
    453                          group->field.width)) {
    454     // We can ignore the carry because: r + group_order < p < 2^256.
    455     bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width);
    456     ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
    457     if (ec_felem_equal(group, &r_Z2, &X)) {
    458       return 1;
    459     }
    460   }
    461 
    462   return 0;
    463 }
    464 
    465 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
    466   out->group_init = ec_GFp_mont_group_init;
    467   out->group_finish = ec_GFp_mont_group_finish;
    468   out->group_set_curve = ec_GFp_mont_group_set_curve;
    469   out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
    470   out->add = ec_GFp_mont_add;
    471   out->dbl = ec_GFp_mont_dbl;
    472   out->mul = ec_GFp_mont_mul;
    473   out->mul_public = ec_GFp_mont_mul_public;
    474   out->felem_mul = ec_GFp_mont_felem_mul;
    475   out->felem_sqr = ec_GFp_mont_felem_sqr;
    476   out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
    477   out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
    478   out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery;
    479   out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime;
    480   out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
    481 }
    482