Home | History | Annotate | Download | only in freedreno
      1 /*
      2  * Copyright (C) 2016 Rob Clark <robclark (at) freedesktop.org>
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21  * SOFTWARE.
     22  *
     23  * Authors:
     24  *    Rob Clark <robclark (at) freedesktop.org>
     25  */
     26 
     27 #include "util/hash_table.h"
     28 #include "util/set.h"
     29 #include "util/list.h"
     30 #include "util/u_string.h"
     31 
     32 #include "freedreno_batch.h"
     33 #include "freedreno_batch_cache.h"
     34 #include "freedreno_context.h"
     35 #include "freedreno_resource.h"
     36 
     37 /* Overview:
     38  *
     39  *   The batch cache provides lookup for mapping pipe_framebuffer_state
     40  *   to a batch.
     41  *
     42  *   It does this via hashtable, with key that roughly matches the
     43  *   pipe_framebuffer_state, as described below.
     44  *
     45  * Batch Cache hashtable key:
     46  *
     47  *   To serialize the key, and to avoid dealing with holding a reference to
     48  *   pipe_surface's (which hold a reference to pipe_resource and complicate
     49  *   the whole refcnting thing), the key is variable length and inline's the
     50  *   pertinent details of the pipe_surface.
     51  *
     52  * Batch:
     53  *
     54  *   Each batch needs to hold a reference to each resource it depends on (ie.
     55  *   anything that needs a mem2gmem).  And a weak reference to resources it
     56  *   renders to.  (If both src[n] and dst[n] are not NULL then they are the
     57  *   same.)
     58  *
     59  *   When a resource is destroyed, we need to remove entries in the batch
     60  *   cache that reference the resource, to avoid dangling pointer issues.
     61  *   So each resource holds a hashset of batches which have reference them
     62  *   in their hashtable key.
     63  *
     64  *   When a batch has weak reference to no more resources (ie. all the
     65  *   surfaces it rendered to are destroyed) the batch can be destroyed.
     66  *   Could happen in an app that renders and never uses the result.  More
     67  *   common scenario, I think, will be that some, but not all, of the
     68  *   surfaces are destroyed before the batch is submitted.
     69  *
     70  *   If (for example), batch writes to zsbuf but that surface is destroyed
     71  *   before batch is submitted, we can skip gmem2mem (but still need to
     72  *   alloc gmem space as before.  If the batch depended on previous contents
     73  *   of that surface, it would be holding a reference so the surface would
     74  *   not have been destroyed.
     75  */
     76 
     77 struct key {
     78 	uint32_t width, height, layers;
     79 	uint16_t samples, num_surfs;
     80 	struct fd_context *ctx;
     81 	struct {
     82 		struct pipe_resource *texture;
     83 		union pipe_surface_desc u;
     84 		uint16_t pos, format;
     85 	} surf[0];
     86 };
     87 
     88 static struct key *
     89 key_alloc(unsigned num_surfs)
     90 {
     91 	struct key *key =
     92 		CALLOC_VARIANT_LENGTH_STRUCT(key, sizeof(key->surf[0]) * num_surfs);
     93 	return key;
     94 }
     95 
     96 static uint32_t
     97 key_hash(const void *_key)
     98 {
     99 	const struct key *key = _key;
    100 	uint32_t hash = _mesa_fnv32_1a_offset_bias;
    101 	hash = _mesa_fnv32_1a_accumulate_block(hash, key, offsetof(struct key, surf[0]));
    102 	hash = _mesa_fnv32_1a_accumulate_block(hash, key->surf, sizeof(key->surf[0]) * key->num_surfs);
    103 	return hash;
    104 }
    105 
    106 static bool
    107 key_equals(const void *_a, const void *_b)
    108 {
    109 	const struct key *a = _a;
    110 	const struct key *b = _b;
    111 	return (memcmp(a, b, offsetof(struct key, surf[0])) == 0) &&
    112 		(memcmp(a->surf, b->surf, sizeof(a->surf[0]) * a->num_surfs) == 0);
    113 }
    114 
    115 void
    116 fd_bc_init(struct fd_batch_cache *cache)
    117 {
    118 	cache->ht = _mesa_hash_table_create(NULL, key_hash, key_equals);
    119 }
    120 
    121 void
    122 fd_bc_fini(struct fd_batch_cache *cache)
    123 {
    124 	_mesa_hash_table_destroy(cache->ht, NULL);
    125 }
    126 
    127 void
    128 fd_bc_flush(struct fd_batch_cache *cache, struct fd_context *ctx)
    129 {
    130 	struct hash_entry *entry;
    131 	struct fd_batch *last_batch = NULL;
    132 
    133 	mtx_lock(&ctx->screen->lock);
    134 
    135 	hash_table_foreach(cache->ht, entry) {
    136 		struct fd_batch *batch = NULL;
    137 		/* hold a reference since we can drop screen->lock: */
    138 		fd_batch_reference_locked(&batch, (struct fd_batch *)entry->data);
    139 		if (batch->ctx == ctx) {
    140 			mtx_unlock(&ctx->screen->lock);
    141 			fd_batch_reference(&last_batch, batch);
    142 			fd_batch_flush(batch, false, false);
    143 			mtx_lock(&ctx->screen->lock);
    144 		}
    145 		fd_batch_reference_locked(&batch, NULL);
    146 	}
    147 
    148 	mtx_unlock(&ctx->screen->lock);
    149 
    150 	if (last_batch) {
    151 		fd_batch_sync(last_batch);
    152 		fd_batch_reference(&last_batch, NULL);
    153 	}
    154 }
    155 
    156 /* deferred flush doesn't actually flush, but it marks every other
    157  * batch associated with the context as dependent on the current
    158  * batch.  So when the current batch gets flushed, all other batches
    159  * that came before also get flushed.
    160  */
    161 void
    162 fd_bc_flush_deferred(struct fd_batch_cache *cache, struct fd_context *ctx)
    163 {
    164 	struct fd_batch *current_batch = ctx->batch;
    165 	struct hash_entry *entry;
    166 
    167 	mtx_lock(&ctx->screen->lock);
    168 
    169 	hash_table_foreach(cache->ht, entry) {
    170 		struct fd_batch *batch = entry->data;
    171 		if (batch == current_batch)
    172 			continue;
    173 		if (batch->ctx == ctx)
    174 			fd_batch_add_dep(current_batch, batch);
    175 	}
    176 
    177 	mtx_unlock(&ctx->screen->lock);
    178 }
    179 
    180 void
    181 fd_bc_invalidate_context(struct fd_context *ctx)
    182 {
    183 	struct fd_batch_cache *cache = &ctx->screen->batch_cache;
    184 	struct fd_batch *batch;
    185 
    186 	mtx_lock(&ctx->screen->lock);
    187 
    188 	foreach_batch(batch, cache, cache->batch_mask) {
    189 		if (batch->ctx == ctx)
    190 			fd_batch_reference_locked(&batch, NULL);
    191 	}
    192 
    193 	mtx_unlock(&ctx->screen->lock);
    194 }
    195 
    196 void
    197 fd_bc_invalidate_batch(struct fd_batch *batch, bool destroy)
    198 {
    199 	if (!batch)
    200 		return;
    201 
    202 	struct fd_batch_cache *cache = &batch->ctx->screen->batch_cache;
    203 	struct key *key = (struct key *)batch->key;
    204 
    205 	pipe_mutex_assert_locked(batch->ctx->screen->lock);
    206 
    207 	if (destroy) {
    208 		cache->batches[batch->idx] = NULL;
    209 		cache->batch_mask &= ~(1 << batch->idx);
    210 	}
    211 
    212 	if (!key)
    213 		return;
    214 
    215 	DBG("%p: key=%p", batch, batch->key);
    216 	for (unsigned idx = 0; idx < key->num_surfs; idx++) {
    217 		struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
    218 		rsc->bc_batch_mask &= ~(1 << batch->idx);
    219 	}
    220 
    221 	struct hash_entry *entry =
    222 		_mesa_hash_table_search_pre_hashed(cache->ht, batch->hash, key);
    223 	_mesa_hash_table_remove(cache->ht, entry);
    224 
    225 	batch->key = NULL;
    226 	free(key);
    227 }
    228 
    229 void
    230 fd_bc_invalidate_resource(struct fd_resource *rsc, bool destroy)
    231 {
    232 	struct fd_screen *screen = fd_screen(rsc->base.screen);
    233 	struct fd_batch *batch;
    234 
    235 	mtx_lock(&screen->lock);
    236 
    237 	if (destroy) {
    238 		foreach_batch(batch, &screen->batch_cache, rsc->batch_mask) {
    239 			struct set_entry *entry = _mesa_set_search(batch->resources, rsc);
    240 			_mesa_set_remove(batch->resources, entry);
    241 		}
    242 		rsc->batch_mask = 0;
    243 
    244 		fd_batch_reference_locked(&rsc->write_batch, NULL);
    245 	}
    246 
    247 	foreach_batch(batch, &screen->batch_cache, rsc->bc_batch_mask)
    248 		fd_bc_invalidate_batch(batch, false);
    249 
    250 	rsc->bc_batch_mask = 0;
    251 
    252 	mtx_unlock(&screen->lock);
    253 }
    254 
    255 struct fd_batch *
    256 fd_bc_alloc_batch(struct fd_batch_cache *cache, struct fd_context *ctx)
    257 {
    258 	struct fd_batch *batch;
    259 	uint32_t idx;
    260 
    261 	mtx_lock(&ctx->screen->lock);
    262 
    263 	while ((idx = ffs(~cache->batch_mask)) == 0) {
    264 #if 0
    265 		for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
    266 			batch = cache->batches[i];
    267 			debug_printf("%d: needs_flush=%d, depends:", batch->idx, batch->needs_flush);
    268 			struct set_entry *entry;
    269 			set_foreach(batch->dependencies, entry) {
    270 				struct fd_batch *dep = (struct fd_batch *)entry->key;
    271 				debug_printf(" %d", dep->idx);
    272 			}
    273 			debug_printf("\n");
    274 		}
    275 #endif
    276 		/* TODO: is LRU the better policy?  Or perhaps the batch that
    277 		 * depends on the fewest other batches?
    278 		 */
    279 		struct fd_batch *flush_batch = NULL;
    280 		for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
    281 			if ((cache->batches[i] == ctx->batch) ||
    282 					!cache->batches[i]->needs_flush)
    283 				continue;
    284 			if (!flush_batch || (cache->batches[i]->seqno < flush_batch->seqno))
    285 				fd_batch_reference_locked(&flush_batch, cache->batches[i]);
    286 		}
    287 
    288 		/* we can drop lock temporarily here, since we hold a ref,
    289 		 * flush_batch won't disappear under us.
    290 		 */
    291 		mtx_unlock(&ctx->screen->lock);
    292 		DBG("%p: too many batches!  flush forced!", flush_batch);
    293 		fd_batch_flush(flush_batch, true, false);
    294 		mtx_lock(&ctx->screen->lock);
    295 
    296 		/* While the resources get cleaned up automatically, the flush_batch
    297 		 * doesn't get removed from the dependencies of other batches, so
    298 		 * it won't be unref'd and will remain in the table.
    299 		 *
    300 		 * TODO maybe keep a bitmask of batches that depend on me, to make
    301 		 * this easier:
    302 		 */
    303 		for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
    304 			struct fd_batch *other = cache->batches[i];
    305 			if (!other)
    306 				continue;
    307 			if (other->dependents_mask & (1 << flush_batch->idx)) {
    308 				other->dependents_mask &= ~(1 << flush_batch->idx);
    309 				struct fd_batch *ref = flush_batch;
    310 				fd_batch_reference_locked(&ref, NULL);
    311 			}
    312 		}
    313 
    314 		fd_batch_reference_locked(&flush_batch, NULL);
    315 	}
    316 
    317 	idx--;              /* bit zero returns 1 for ffs() */
    318 
    319 	batch = fd_batch_create(ctx, false);
    320 	if (!batch)
    321 		goto out;
    322 
    323 	batch->seqno = cache->cnt++;
    324 	batch->idx = idx;
    325 	cache->batch_mask |= (1 << idx);
    326 
    327 	debug_assert(cache->batches[idx] == NULL);
    328 	cache->batches[idx] = batch;
    329 
    330 out:
    331 	mtx_unlock(&ctx->screen->lock);
    332 
    333 	return batch;
    334 }
    335 
    336 static struct fd_batch *
    337 batch_from_key(struct fd_batch_cache *cache, struct key *key,
    338 		struct fd_context *ctx)
    339 {
    340 	struct fd_batch *batch = NULL;
    341 	uint32_t hash = key_hash(key);
    342 	struct hash_entry *entry =
    343 		_mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
    344 
    345 	if (entry) {
    346 		free(key);
    347 		fd_batch_reference(&batch, (struct fd_batch *)entry->data);
    348 		return batch;
    349 	}
    350 
    351 	batch = fd_bc_alloc_batch(cache, ctx);
    352 #ifdef DEBUG
    353 	DBG("%p: hash=0x%08x, %ux%u, %u layers, %u samples", batch, hash,
    354 			key->width, key->height, key->layers, key->samples);
    355 	for (unsigned idx = 0; idx < key->num_surfs; idx++) {
    356 		DBG("%p:  surf[%u]: %p (%s) (%u,%u / %u,%u,%u)", batch, key->surf[idx].pos,
    357 			key->surf[idx].texture, util_format_name(key->surf[idx].format),
    358 			key->surf[idx].u.buf.first_element, key->surf[idx].u.buf.last_element,
    359 			key->surf[idx].u.tex.first_layer, key->surf[idx].u.tex.last_layer,
    360 			key->surf[idx].u.tex.level);
    361 	}
    362 #endif
    363 	if (!batch)
    364 		return NULL;
    365 
    366 	mtx_lock(&ctx->screen->lock);
    367 
    368 	_mesa_hash_table_insert_pre_hashed(cache->ht, hash, key, batch);
    369 	batch->key = key;
    370 	batch->hash = hash;
    371 
    372 	for (unsigned idx = 0; idx < key->num_surfs; idx++) {
    373 		struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
    374 		rsc->bc_batch_mask = (1 << batch->idx);
    375 	}
    376 
    377 	mtx_unlock(&ctx->screen->lock);
    378 
    379 	return batch;
    380 }
    381 
    382 static void
    383 key_surf(struct key *key, unsigned idx, unsigned pos, struct pipe_surface *psurf)
    384 {
    385 	key->surf[idx].texture = psurf->texture;
    386 	key->surf[idx].u = psurf->u;
    387 	key->surf[idx].pos = pos;
    388 	key->surf[idx].format = psurf->format;
    389 }
    390 
    391 struct fd_batch *
    392 fd_batch_from_fb(struct fd_batch_cache *cache, struct fd_context *ctx,
    393 		const struct pipe_framebuffer_state *pfb)
    394 {
    395 	unsigned idx = 0, n = pfb->nr_cbufs + (pfb->zsbuf ? 1 : 0);
    396 	struct key *key = key_alloc(n);
    397 
    398 	key->width = pfb->width;
    399 	key->height = pfb->height;
    400 	key->layers = pfb->layers;
    401 	key->samples = pfb->samples;
    402 	key->ctx = ctx;
    403 
    404 	if (pfb->zsbuf)
    405 		key_surf(key, idx++, 0, pfb->zsbuf);
    406 
    407 	for (unsigned i = 0; i < pfb->nr_cbufs; i++)
    408 		if (pfb->cbufs[i])
    409 			key_surf(key, idx++, i + 1, pfb->cbufs[i]);
    410 
    411 	key->num_surfs = idx;
    412 
    413 	return batch_from_key(cache, key, ctx);
    414 }
    415