Home | History | Annotate | Download | only in lib
      1 // SPDX-License-Identifier: GPL-2.0
      2 /*
      3  * Generic binary BCH encoding/decoding library
      4  *
      5  * Copyright  2011 Parrot S.A.
      6  *
      7  * Author: Ivan Djelic <ivan.djelic (at) parrot.com>
      8  *
      9  * Description:
     10  *
     11  * This library provides runtime configurable encoding/decoding of binary
     12  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
     13  *
     14  * Call init_bch to get a pointer to a newly allocated bch_control structure for
     15  * the given m (Galois field order), t (error correction capability) and
     16  * (optional) primitive polynomial parameters.
     17  *
     18  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
     19  * Call decode_bch to detect and locate errors in received data.
     20  *
     21  * On systems supporting hw BCH features, intermediate results may be provided
     22  * to decode_bch in order to skip certain steps. See decode_bch() documentation
     23  * for details.
     24  *
     25  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
     26  * parameters m and t; thus allowing extra compiler optimizations and providing
     27  * better (up to 2x) encoding performance. Using this option makes sense when
     28  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
     29  * on a particular NAND flash device.
     30  *
     31  * Algorithmic details:
     32  *
     33  * Encoding is performed by processing 32 input bits in parallel, using 4
     34  * remainder lookup tables.
     35  *
     36  * The final stage of decoding involves the following internal steps:
     37  * a. Syndrome computation
     38  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
     39  * c. Error locator root finding (by far the most expensive step)
     40  *
     41  * In this implementation, step c is not performed using the usual Chien search.
     42  * Instead, an alternative approach described in [1] is used. It consists in
     43  * factoring the error locator polynomial using the Berlekamp Trace algorithm
     44  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
     45  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
     46  * much better performance than Chien search for usual (m,t) values (typically
     47  * m >= 13, t < 32, see [1]).
     48  *
     49  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
     50  * of characteristic 2, in: Western European Workshop on Research in Cryptology
     51  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
     52  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
     53  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
     54  */
     55 
     56 #ifndef USE_HOSTCC
     57 #include <common.h>
     58 #include <ubi_uboot.h>
     59 
     60 #include <linux/bitops.h>
     61 #else
     62 #include <errno.h>
     63 #if defined(__FreeBSD__)
     64 #include <sys/endian.h>
     65 #else
     66 #include <endian.h>
     67 #endif
     68 #include <stdint.h>
     69 #include <stdlib.h>
     70 #include <string.h>
     71 
     72 #undef cpu_to_be32
     73 #define cpu_to_be32 htobe32
     74 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
     75 #define kmalloc(size, flags)	malloc(size)
     76 #define kzalloc(size, flags)	calloc(1, size)
     77 #define kfree free
     78 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
     79 #endif
     80 
     81 #include <asm/byteorder.h>
     82 #include <linux/bch.h>
     83 
     84 #if defined(CONFIG_BCH_CONST_PARAMS)
     85 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
     86 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
     87 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
     88 #else
     89 #define GF_M(_p)               ((_p)->m)
     90 #define GF_T(_p)               ((_p)->t)
     91 #define GF_N(_p)               ((_p)->n)
     92 #endif
     93 
     94 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
     95 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
     96 
     97 #ifndef dbg
     98 #define dbg(_fmt, args...)     do {} while (0)
     99 #endif
    100 
    101 /*
    102  * represent a polynomial over GF(2^m)
    103  */
    104 struct gf_poly {
    105 	unsigned int deg;    /* polynomial degree */
    106 	unsigned int c[0];   /* polynomial terms */
    107 };
    108 
    109 /* given its degree, compute a polynomial size in bytes */
    110 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
    111 
    112 /* polynomial of degree 1 */
    113 struct gf_poly_deg1 {
    114 	struct gf_poly poly;
    115 	unsigned int   c[2];
    116 };
    117 
    118 #ifdef USE_HOSTCC
    119 #if !defined(__DragonFly__) && !defined(__FreeBSD__)
    120 static int fls(int x)
    121 {
    122 	int r = 32;
    123 
    124 	if (!x)
    125 		return 0;
    126 	if (!(x & 0xffff0000u)) {
    127 		x <<= 16;
    128 		r -= 16;
    129 	}
    130 	if (!(x & 0xff000000u)) {
    131 		x <<= 8;
    132 		r -= 8;
    133 	}
    134 	if (!(x & 0xf0000000u)) {
    135 		x <<= 4;
    136 		r -= 4;
    137 	}
    138 	if (!(x & 0xc0000000u)) {
    139 		x <<= 2;
    140 		r -= 2;
    141 	}
    142 	if (!(x & 0x80000000u)) {
    143 		x <<= 1;
    144 		r -= 1;
    145 	}
    146 	return r;
    147 }
    148 #endif
    149 #endif
    150 
    151 /*
    152  * same as encode_bch(), but process input data one byte at a time
    153  */
    154 static void encode_bch_unaligned(struct bch_control *bch,
    155 				 const unsigned char *data, unsigned int len,
    156 				 uint32_t *ecc)
    157 {
    158 	int i;
    159 	const uint32_t *p;
    160 	const int l = BCH_ECC_WORDS(bch)-1;
    161 
    162 	while (len--) {
    163 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
    164 
    165 		for (i = 0; i < l; i++)
    166 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
    167 
    168 		ecc[l] = (ecc[l] << 8)^(*p);
    169 	}
    170 }
    171 
    172 /*
    173  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
    174  */
    175 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
    176 		      const uint8_t *src)
    177 {
    178 	uint8_t pad[4] = {0, 0, 0, 0};
    179 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
    180 
    181 	for (i = 0; i < nwords; i++, src += 4)
    182 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
    183 
    184 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
    185 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
    186 }
    187 
    188 /*
    189  * convert 32-bit ecc words to ecc bytes
    190  */
    191 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
    192 		       const uint32_t *src)
    193 {
    194 	uint8_t pad[4];
    195 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
    196 
    197 	for (i = 0; i < nwords; i++) {
    198 		*dst++ = (src[i] >> 24);
    199 		*dst++ = (src[i] >> 16) & 0xff;
    200 		*dst++ = (src[i] >>  8) & 0xff;
    201 		*dst++ = (src[i] >>  0) & 0xff;
    202 	}
    203 	pad[0] = (src[nwords] >> 24);
    204 	pad[1] = (src[nwords] >> 16) & 0xff;
    205 	pad[2] = (src[nwords] >>  8) & 0xff;
    206 	pad[3] = (src[nwords] >>  0) & 0xff;
    207 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
    208 }
    209 
    210 /**
    211  * encode_bch - calculate BCH ecc parity of data
    212  * @bch:   BCH control structure
    213  * @data:  data to encode
    214  * @len:   data length in bytes
    215  * @ecc:   ecc parity data, must be initialized by caller
    216  *
    217  * The @ecc parity array is used both as input and output parameter, in order to
    218  * allow incremental computations. It should be of the size indicated by member
    219  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
    220  *
    221  * The exact number of computed ecc parity bits is given by member @ecc_bits of
    222  * @bch; it may be less than m*t for large values of t.
    223  */
    224 void encode_bch(struct bch_control *bch, const uint8_t *data,
    225 		unsigned int len, uint8_t *ecc)
    226 {
    227 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
    228 	unsigned int i, mlen;
    229 	unsigned long m;
    230 	uint32_t w, r[l+1];
    231 	const uint32_t * const tab0 = bch->mod8_tab;
    232 	const uint32_t * const tab1 = tab0 + 256*(l+1);
    233 	const uint32_t * const tab2 = tab1 + 256*(l+1);
    234 	const uint32_t * const tab3 = tab2 + 256*(l+1);
    235 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
    236 
    237 	if (ecc) {
    238 		/* load ecc parity bytes into internal 32-bit buffer */
    239 		load_ecc8(bch, bch->ecc_buf, ecc);
    240 	} else {
    241 		memset(bch->ecc_buf, 0, sizeof(r));
    242 	}
    243 
    244 	/* process first unaligned data bytes */
    245 	m = ((unsigned long)data) & 3;
    246 	if (m) {
    247 		mlen = (len < (4-m)) ? len : 4-m;
    248 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
    249 		data += mlen;
    250 		len  -= mlen;
    251 	}
    252 
    253 	/* process 32-bit aligned data words */
    254 	pdata = (uint32_t *)data;
    255 	mlen  = len/4;
    256 	data += 4*mlen;
    257 	len  -= 4*mlen;
    258 	memcpy(r, bch->ecc_buf, sizeof(r));
    259 
    260 	/*
    261 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
    262 	 *
    263 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
    264 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
    265 	 *                               tttttttt  mod g = r0 (precomputed)
    266 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
    267 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
    268 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
    269 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
    270 	 */
    271 	while (mlen--) {
    272 		/* input data is read in big-endian format */
    273 		w = r[0]^cpu_to_be32(*pdata++);
    274 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
    275 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
    276 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
    277 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
    278 
    279 		for (i = 0; i < l; i++)
    280 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
    281 
    282 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
    283 	}
    284 	memcpy(bch->ecc_buf, r, sizeof(r));
    285 
    286 	/* process last unaligned bytes */
    287 	if (len)
    288 		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
    289 
    290 	/* store ecc parity bytes into original parity buffer */
    291 	if (ecc)
    292 		store_ecc8(bch, ecc, bch->ecc_buf);
    293 }
    294 
    295 static inline int modulo(struct bch_control *bch, unsigned int v)
    296 {
    297 	const unsigned int n = GF_N(bch);
    298 	while (v >= n) {
    299 		v -= n;
    300 		v = (v & n) + (v >> GF_M(bch));
    301 	}
    302 	return v;
    303 }
    304 
    305 /*
    306  * shorter and faster modulo function, only works when v < 2N.
    307  */
    308 static inline int mod_s(struct bch_control *bch, unsigned int v)
    309 {
    310 	const unsigned int n = GF_N(bch);
    311 	return (v < n) ? v : v-n;
    312 }
    313 
    314 static inline int deg(unsigned int poly)
    315 {
    316 	/* polynomial degree is the most-significant bit index */
    317 	return fls(poly)-1;
    318 }
    319 
    320 static inline int parity(unsigned int x)
    321 {
    322 	/*
    323 	 * public domain code snippet, lifted from
    324 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
    325 	 */
    326 	x ^= x >> 1;
    327 	x ^= x >> 2;
    328 	x = (x & 0x11111111U) * 0x11111111U;
    329 	return (x >> 28) & 1;
    330 }
    331 
    332 /* Galois field basic operations: multiply, divide, inverse, etc. */
    333 
    334 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
    335 				  unsigned int b)
    336 {
    337 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
    338 					       bch->a_log_tab[b])] : 0;
    339 }
    340 
    341 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
    342 {
    343 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
    344 }
    345 
    346 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
    347 				  unsigned int b)
    348 {
    349 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
    350 					GF_N(bch)-bch->a_log_tab[b])] : 0;
    351 }
    352 
    353 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
    354 {
    355 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
    356 }
    357 
    358 static inline unsigned int a_pow(struct bch_control *bch, int i)
    359 {
    360 	return bch->a_pow_tab[modulo(bch, i)];
    361 }
    362 
    363 static inline int a_log(struct bch_control *bch, unsigned int x)
    364 {
    365 	return bch->a_log_tab[x];
    366 }
    367 
    368 static inline int a_ilog(struct bch_control *bch, unsigned int x)
    369 {
    370 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
    371 }
    372 
    373 /*
    374  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
    375  */
    376 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
    377 			      unsigned int *syn)
    378 {
    379 	int i, j, s;
    380 	unsigned int m;
    381 	uint32_t poly;
    382 	const int t = GF_T(bch);
    383 
    384 	s = bch->ecc_bits;
    385 
    386 	/* make sure extra bits in last ecc word are cleared */
    387 	m = ((unsigned int)s) & 31;
    388 	if (m)
    389 		ecc[s/32] &= ~((1u << (32-m))-1);
    390 	memset(syn, 0, 2*t*sizeof(*syn));
    391 
    392 	/* compute v(a^j) for j=1 .. 2t-1 */
    393 	do {
    394 		poly = *ecc++;
    395 		s -= 32;
    396 		while (poly) {
    397 			i = deg(poly);
    398 			for (j = 0; j < 2*t; j += 2)
    399 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
    400 
    401 			poly ^= (1 << i);
    402 		}
    403 	} while (s > 0);
    404 
    405 	/* v(a^(2j)) = v(a^j)^2 */
    406 	for (j = 0; j < t; j++)
    407 		syn[2*j+1] = gf_sqr(bch, syn[j]);
    408 }
    409 
    410 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
    411 {
    412 	memcpy(dst, src, GF_POLY_SZ(src->deg));
    413 }
    414 
    415 static int compute_error_locator_polynomial(struct bch_control *bch,
    416 					    const unsigned int *syn)
    417 {
    418 	const unsigned int t = GF_T(bch);
    419 	const unsigned int n = GF_N(bch);
    420 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
    421 	struct gf_poly *elp = bch->elp;
    422 	struct gf_poly *pelp = bch->poly_2t[0];
    423 	struct gf_poly *elp_copy = bch->poly_2t[1];
    424 	int k, pp = -1;
    425 
    426 	memset(pelp, 0, GF_POLY_SZ(2*t));
    427 	memset(elp, 0, GF_POLY_SZ(2*t));
    428 
    429 	pelp->deg = 0;
    430 	pelp->c[0] = 1;
    431 	elp->deg = 0;
    432 	elp->c[0] = 1;
    433 
    434 	/* use simplified binary Berlekamp-Massey algorithm */
    435 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
    436 		if (d) {
    437 			k = 2*i-pp;
    438 			gf_poly_copy(elp_copy, elp);
    439 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
    440 			tmp = a_log(bch, d)+n-a_log(bch, pd);
    441 			for (j = 0; j <= pelp->deg; j++) {
    442 				if (pelp->c[j]) {
    443 					l = a_log(bch, pelp->c[j]);
    444 					elp->c[j+k] ^= a_pow(bch, tmp+l);
    445 				}
    446 			}
    447 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
    448 			tmp = pelp->deg+k;
    449 			if (tmp > elp->deg) {
    450 				elp->deg = tmp;
    451 				gf_poly_copy(pelp, elp_copy);
    452 				pd = d;
    453 				pp = 2*i;
    454 			}
    455 		}
    456 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
    457 		if (i < t-1) {
    458 			d = syn[2*i+2];
    459 			for (j = 1; j <= elp->deg; j++)
    460 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
    461 		}
    462 	}
    463 	dbg("elp=%s\n", gf_poly_str(elp));
    464 	return (elp->deg > t) ? -1 : (int)elp->deg;
    465 }
    466 
    467 /*
    468  * solve a m x m linear system in GF(2) with an expected number of solutions,
    469  * and return the number of found solutions
    470  */
    471 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
    472 			       unsigned int *sol, int nsol)
    473 {
    474 	const int m = GF_M(bch);
    475 	unsigned int tmp, mask;
    476 	int rem, c, r, p, k, param[m];
    477 
    478 	k = 0;
    479 	mask = 1 << m;
    480 
    481 	/* Gaussian elimination */
    482 	for (c = 0; c < m; c++) {
    483 		rem = 0;
    484 		p = c-k;
    485 		/* find suitable row for elimination */
    486 		for (r = p; r < m; r++) {
    487 			if (rows[r] & mask) {
    488 				if (r != p) {
    489 					tmp = rows[r];
    490 					rows[r] = rows[p];
    491 					rows[p] = tmp;
    492 				}
    493 				rem = r+1;
    494 				break;
    495 			}
    496 		}
    497 		if (rem) {
    498 			/* perform elimination on remaining rows */
    499 			tmp = rows[p];
    500 			for (r = rem; r < m; r++) {
    501 				if (rows[r] & mask)
    502 					rows[r] ^= tmp;
    503 			}
    504 		} else {
    505 			/* elimination not needed, store defective row index */
    506 			param[k++] = c;
    507 		}
    508 		mask >>= 1;
    509 	}
    510 	/* rewrite system, inserting fake parameter rows */
    511 	if (k > 0) {
    512 		p = k;
    513 		for (r = m-1; r >= 0; r--) {
    514 			if ((r > m-1-k) && rows[r])
    515 				/* system has no solution */
    516 				return 0;
    517 
    518 			rows[r] = (p && (r == param[p-1])) ?
    519 				p--, 1u << (m-r) : rows[r-p];
    520 		}
    521 	}
    522 
    523 	if (nsol != (1 << k))
    524 		/* unexpected number of solutions */
    525 		return 0;
    526 
    527 	for (p = 0; p < nsol; p++) {
    528 		/* set parameters for p-th solution */
    529 		for (c = 0; c < k; c++)
    530 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
    531 
    532 		/* compute unique solution */
    533 		tmp = 0;
    534 		for (r = m-1; r >= 0; r--) {
    535 			mask = rows[r] & (tmp|1);
    536 			tmp |= parity(mask) << (m-r);
    537 		}
    538 		sol[p] = tmp >> 1;
    539 	}
    540 	return nsol;
    541 }
    542 
    543 /*
    544  * this function builds and solves a linear system for finding roots of a degree
    545  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
    546  */
    547 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
    548 			      unsigned int b, unsigned int c,
    549 			      unsigned int *roots)
    550 {
    551 	int i, j, k;
    552 	const int m = GF_M(bch);
    553 	unsigned int mask = 0xff, t, rows[16] = {0,};
    554 
    555 	j = a_log(bch, b);
    556 	k = a_log(bch, a);
    557 	rows[0] = c;
    558 
    559 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
    560 	for (i = 0; i < m; i++) {
    561 		rows[i+1] = bch->a_pow_tab[4*i]^
    562 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
    563 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
    564 		j++;
    565 		k += 2;
    566 	}
    567 	/*
    568 	 * transpose 16x16 matrix before passing it to linear solver
    569 	 * warning: this code assumes m < 16
    570 	 */
    571 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
    572 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
    573 			t = ((rows[k] >> j)^rows[k+j]) & mask;
    574 			rows[k] ^= (t << j);
    575 			rows[k+j] ^= t;
    576 		}
    577 	}
    578 	return solve_linear_system(bch, rows, roots, 4);
    579 }
    580 
    581 /*
    582  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
    583  */
    584 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
    585 				unsigned int *roots)
    586 {
    587 	int n = 0;
    588 
    589 	if (poly->c[0])
    590 		/* poly[X] = bX+c with c!=0, root=c/b */
    591 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
    592 				   bch->a_log_tab[poly->c[1]]);
    593 	return n;
    594 }
    595 
    596 /*
    597  * compute roots of a degree 2 polynomial over GF(2^m)
    598  */
    599 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
    600 				unsigned int *roots)
    601 {
    602 	int n = 0, i, l0, l1, l2;
    603 	unsigned int u, v, r;
    604 
    605 	if (poly->c[0] && poly->c[1]) {
    606 
    607 		l0 = bch->a_log_tab[poly->c[0]];
    608 		l1 = bch->a_log_tab[poly->c[1]];
    609 		l2 = bch->a_log_tab[poly->c[2]];
    610 
    611 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
    612 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
    613 		/*
    614 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
    615 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
    616 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
    617 		 * i.e. r and r+1 are roots iff Tr(u)=0
    618 		 */
    619 		r = 0;
    620 		v = u;
    621 		while (v) {
    622 			i = deg(v);
    623 			r ^= bch->xi_tab[i];
    624 			v ^= (1 << i);
    625 		}
    626 		/* verify root */
    627 		if ((gf_sqr(bch, r)^r) == u) {
    628 			/* reverse z=a/bX transformation and compute log(1/r) */
    629 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
    630 					    bch->a_log_tab[r]+l2);
    631 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
    632 					    bch->a_log_tab[r^1]+l2);
    633 		}
    634 	}
    635 	return n;
    636 }
    637 
    638 /*
    639  * compute roots of a degree 3 polynomial over GF(2^m)
    640  */
    641 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
    642 				unsigned int *roots)
    643 {
    644 	int i, n = 0;
    645 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
    646 
    647 	if (poly->c[0]) {
    648 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
    649 		e3 = poly->c[3];
    650 		c2 = gf_div(bch, poly->c[0], e3);
    651 		b2 = gf_div(bch, poly->c[1], e3);
    652 		a2 = gf_div(bch, poly->c[2], e3);
    653 
    654 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
    655 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
    656 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
    657 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
    658 
    659 		/* find the 4 roots of this affine polynomial */
    660 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
    661 			/* remove a2 from final list of roots */
    662 			for (i = 0; i < 4; i++) {
    663 				if (tmp[i] != a2)
    664 					roots[n++] = a_ilog(bch, tmp[i]);
    665 			}
    666 		}
    667 	}
    668 	return n;
    669 }
    670 
    671 /*
    672  * compute roots of a degree 4 polynomial over GF(2^m)
    673  */
    674 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
    675 				unsigned int *roots)
    676 {
    677 	int i, l, n = 0;
    678 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
    679 
    680 	if (poly->c[0] == 0)
    681 		return 0;
    682 
    683 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
    684 	e4 = poly->c[4];
    685 	d = gf_div(bch, poly->c[0], e4);
    686 	c = gf_div(bch, poly->c[1], e4);
    687 	b = gf_div(bch, poly->c[2], e4);
    688 	a = gf_div(bch, poly->c[3], e4);
    689 
    690 	/* use Y=1/X transformation to get an affine polynomial */
    691 	if (a) {
    692 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
    693 		if (c) {
    694 			/* compute e such that e^2 = c/a */
    695 			f = gf_div(bch, c, a);
    696 			l = a_log(bch, f);
    697 			l += (l & 1) ? GF_N(bch) : 0;
    698 			e = a_pow(bch, l/2);
    699 			/*
    700 			 * use transformation z=X+e:
    701 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
    702 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
    703 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
    704 			 * z^4 + az^3 +     b'z^2 + d'
    705 			 */
    706 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
    707 			b = gf_mul(bch, a, e)^b;
    708 		}
    709 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
    710 		if (d == 0)
    711 			/* assume all roots have multiplicity 1 */
    712 			return 0;
    713 
    714 		c2 = gf_inv(bch, d);
    715 		b2 = gf_div(bch, a, d);
    716 		a2 = gf_div(bch, b, d);
    717 	} else {
    718 		/* polynomial is already affine */
    719 		c2 = d;
    720 		b2 = c;
    721 		a2 = b;
    722 	}
    723 	/* find the 4 roots of this affine polynomial */
    724 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
    725 		for (i = 0; i < 4; i++) {
    726 			/* post-process roots (reverse transformations) */
    727 			f = a ? gf_inv(bch, roots[i]) : roots[i];
    728 			roots[i] = a_ilog(bch, f^e);
    729 		}
    730 		n = 4;
    731 	}
    732 	return n;
    733 }
    734 
    735 /*
    736  * build monic, log-based representation of a polynomial
    737  */
    738 static void gf_poly_logrep(struct bch_control *bch,
    739 			   const struct gf_poly *a, int *rep)
    740 {
    741 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
    742 
    743 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
    744 	for (i = 0; i < d; i++)
    745 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
    746 }
    747 
    748 /*
    749  * compute polynomial Euclidean division remainder in GF(2^m)[X]
    750  */
    751 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
    752 			const struct gf_poly *b, int *rep)
    753 {
    754 	int la, p, m;
    755 	unsigned int i, j, *c = a->c;
    756 	const unsigned int d = b->deg;
    757 
    758 	if (a->deg < d)
    759 		return;
    760 
    761 	/* reuse or compute log representation of denominator */
    762 	if (!rep) {
    763 		rep = bch->cache;
    764 		gf_poly_logrep(bch, b, rep);
    765 	}
    766 
    767 	for (j = a->deg; j >= d; j--) {
    768 		if (c[j]) {
    769 			la = a_log(bch, c[j]);
    770 			p = j-d;
    771 			for (i = 0; i < d; i++, p++) {
    772 				m = rep[i];
    773 				if (m >= 0)
    774 					c[p] ^= bch->a_pow_tab[mod_s(bch,
    775 								     m+la)];
    776 			}
    777 		}
    778 	}
    779 	a->deg = d-1;
    780 	while (!c[a->deg] && a->deg)
    781 		a->deg--;
    782 }
    783 
    784 /*
    785  * compute polynomial Euclidean division quotient in GF(2^m)[X]
    786  */
    787 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
    788 			const struct gf_poly *b, struct gf_poly *q)
    789 {
    790 	if (a->deg >= b->deg) {
    791 		q->deg = a->deg-b->deg;
    792 		/* compute a mod b (modifies a) */
    793 		gf_poly_mod(bch, a, b, NULL);
    794 		/* quotient is stored in upper part of polynomial a */
    795 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
    796 	} else {
    797 		q->deg = 0;
    798 		q->c[0] = 0;
    799 	}
    800 }
    801 
    802 /*
    803  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
    804  */
    805 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
    806 				   struct gf_poly *b)
    807 {
    808 	struct gf_poly *tmp;
    809 
    810 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
    811 
    812 	if (a->deg < b->deg) {
    813 		tmp = b;
    814 		b = a;
    815 		a = tmp;
    816 	}
    817 
    818 	while (b->deg > 0) {
    819 		gf_poly_mod(bch, a, b, NULL);
    820 		tmp = b;
    821 		b = a;
    822 		a = tmp;
    823 	}
    824 
    825 	dbg("%s\n", gf_poly_str(a));
    826 
    827 	return a;
    828 }
    829 
    830 /*
    831  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
    832  * This is used in Berlekamp Trace algorithm for splitting polynomials
    833  */
    834 static void compute_trace_bk_mod(struct bch_control *bch, int k,
    835 				 const struct gf_poly *f, struct gf_poly *z,
    836 				 struct gf_poly *out)
    837 {
    838 	const int m = GF_M(bch);
    839 	int i, j;
    840 
    841 	/* z contains z^2j mod f */
    842 	z->deg = 1;
    843 	z->c[0] = 0;
    844 	z->c[1] = bch->a_pow_tab[k];
    845 
    846 	out->deg = 0;
    847 	memset(out, 0, GF_POLY_SZ(f->deg));
    848 
    849 	/* compute f log representation only once */
    850 	gf_poly_logrep(bch, f, bch->cache);
    851 
    852 	for (i = 0; i < m; i++) {
    853 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
    854 		for (j = z->deg; j >= 0; j--) {
    855 			out->c[j] ^= z->c[j];
    856 			z->c[2*j] = gf_sqr(bch, z->c[j]);
    857 			z->c[2*j+1] = 0;
    858 		}
    859 		if (z->deg > out->deg)
    860 			out->deg = z->deg;
    861 
    862 		if (i < m-1) {
    863 			z->deg *= 2;
    864 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
    865 			gf_poly_mod(bch, z, f, bch->cache);
    866 		}
    867 	}
    868 	while (!out->c[out->deg] && out->deg)
    869 		out->deg--;
    870 
    871 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
    872 }
    873 
    874 /*
    875  * factor a polynomial using Berlekamp Trace algorithm (BTA)
    876  */
    877 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
    878 			      struct gf_poly **g, struct gf_poly **h)
    879 {
    880 	struct gf_poly *f2 = bch->poly_2t[0];
    881 	struct gf_poly *q  = bch->poly_2t[1];
    882 	struct gf_poly *tk = bch->poly_2t[2];
    883 	struct gf_poly *z  = bch->poly_2t[3];
    884 	struct gf_poly *gcd;
    885 
    886 	dbg("factoring %s...\n", gf_poly_str(f));
    887 
    888 	*g = f;
    889 	*h = NULL;
    890 
    891 	/* tk = Tr(a^k.X) mod f */
    892 	compute_trace_bk_mod(bch, k, f, z, tk);
    893 
    894 	if (tk->deg > 0) {
    895 		/* compute g = gcd(f, tk) (destructive operation) */
    896 		gf_poly_copy(f2, f);
    897 		gcd = gf_poly_gcd(bch, f2, tk);
    898 		if (gcd->deg < f->deg) {
    899 			/* compute h=f/gcd(f,tk); this will modify f and q */
    900 			gf_poly_div(bch, f, gcd, q);
    901 			/* store g and h in-place (clobbering f) */
    902 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
    903 			gf_poly_copy(*g, gcd);
    904 			gf_poly_copy(*h, q);
    905 		}
    906 	}
    907 }
    908 
    909 /*
    910  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
    911  * file for details
    912  */
    913 static int find_poly_roots(struct bch_control *bch, unsigned int k,
    914 			   struct gf_poly *poly, unsigned int *roots)
    915 {
    916 	int cnt;
    917 	struct gf_poly *f1, *f2;
    918 
    919 	switch (poly->deg) {
    920 		/* handle low degree polynomials with ad hoc techniques */
    921 	case 1:
    922 		cnt = find_poly_deg1_roots(bch, poly, roots);
    923 		break;
    924 	case 2:
    925 		cnt = find_poly_deg2_roots(bch, poly, roots);
    926 		break;
    927 	case 3:
    928 		cnt = find_poly_deg3_roots(bch, poly, roots);
    929 		break;
    930 	case 4:
    931 		cnt = find_poly_deg4_roots(bch, poly, roots);
    932 		break;
    933 	default:
    934 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
    935 		cnt = 0;
    936 		if (poly->deg && (k <= GF_M(bch))) {
    937 			factor_polynomial(bch, k, poly, &f1, &f2);
    938 			if (f1)
    939 				cnt += find_poly_roots(bch, k+1, f1, roots);
    940 			if (f2)
    941 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
    942 		}
    943 		break;
    944 	}
    945 	return cnt;
    946 }
    947 
    948 #if defined(USE_CHIEN_SEARCH)
    949 /*
    950  * exhaustive root search (Chien) implementation - not used, included only for
    951  * reference/comparison tests
    952  */
    953 static int chien_search(struct bch_control *bch, unsigned int len,
    954 			struct gf_poly *p, unsigned int *roots)
    955 {
    956 	int m;
    957 	unsigned int i, j, syn, syn0, count = 0;
    958 	const unsigned int k = 8*len+bch->ecc_bits;
    959 
    960 	/* use a log-based representation of polynomial */
    961 	gf_poly_logrep(bch, p, bch->cache);
    962 	bch->cache[p->deg] = 0;
    963 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
    964 
    965 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
    966 		/* compute elp(a^i) */
    967 		for (j = 1, syn = syn0; j <= p->deg; j++) {
    968 			m = bch->cache[j];
    969 			if (m >= 0)
    970 				syn ^= a_pow(bch, m+j*i);
    971 		}
    972 		if (syn == 0) {
    973 			roots[count++] = GF_N(bch)-i;
    974 			if (count == p->deg)
    975 				break;
    976 		}
    977 	}
    978 	return (count == p->deg) ? count : 0;
    979 }
    980 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
    981 #endif /* USE_CHIEN_SEARCH */
    982 
    983 /**
    984  * decode_bch - decode received codeword and find bit error locations
    985  * @bch:      BCH control structure
    986  * @data:     received data, ignored if @calc_ecc is provided
    987  * @len:      data length in bytes, must always be provided
    988  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
    989  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
    990  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
    991  * @errloc:   output array of error locations
    992  *
    993  * Returns:
    994  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
    995  *  invalid parameters were provided
    996  *
    997  * Depending on the available hw BCH support and the need to compute @calc_ecc
    998  * separately (using encode_bch()), this function should be called with one of
    999  * the following parameter configurations -
   1000  *
   1001  * by providing @data and @recv_ecc only:
   1002  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
   1003  *
   1004  * by providing @recv_ecc and @calc_ecc:
   1005  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
   1006  *
   1007  * by providing ecc = recv_ecc XOR calc_ecc:
   1008  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
   1009  *
   1010  * by providing syndrome results @syn:
   1011  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
   1012  *
   1013  * Once decode_bch() has successfully returned with a positive value, error
   1014  * locations returned in array @errloc should be interpreted as follows -
   1015  *
   1016  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
   1017  * data correction)
   1018  *
   1019  * if (errloc[n] < 8*len), then n-th error is located in data and can be
   1020  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
   1021  *
   1022  * Note that this function does not perform any data correction by itself, it
   1023  * merely indicates error locations.
   1024  */
   1025 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
   1026 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
   1027 	       const unsigned int *syn, unsigned int *errloc)
   1028 {
   1029 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
   1030 	unsigned int nbits;
   1031 	int i, err, nroots;
   1032 	uint32_t sum;
   1033 
   1034 	/* sanity check: make sure data length can be handled */
   1035 	if (8*len > (bch->n-bch->ecc_bits))
   1036 		return -EINVAL;
   1037 
   1038 	/* if caller does not provide syndromes, compute them */
   1039 	if (!syn) {
   1040 		if (!calc_ecc) {
   1041 			/* compute received data ecc into an internal buffer */
   1042 			if (!data || !recv_ecc)
   1043 				return -EINVAL;
   1044 			encode_bch(bch, data, len, NULL);
   1045 		} else {
   1046 			/* load provided calculated ecc */
   1047 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
   1048 		}
   1049 		/* load received ecc or assume it was XORed in calc_ecc */
   1050 		if (recv_ecc) {
   1051 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
   1052 			/* XOR received and calculated ecc */
   1053 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
   1054 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
   1055 				sum |= bch->ecc_buf[i];
   1056 			}
   1057 			if (!sum)
   1058 				/* no error found */
   1059 				return 0;
   1060 		}
   1061 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
   1062 		syn = bch->syn;
   1063 	}
   1064 
   1065 	err = compute_error_locator_polynomial(bch, syn);
   1066 	if (err > 0) {
   1067 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
   1068 		if (err != nroots)
   1069 			err = -1;
   1070 	}
   1071 	if (err > 0) {
   1072 		/* post-process raw error locations for easier correction */
   1073 		nbits = (len*8)+bch->ecc_bits;
   1074 		for (i = 0; i < err; i++) {
   1075 			if (errloc[i] >= nbits) {
   1076 				err = -1;
   1077 				break;
   1078 			}
   1079 			errloc[i] = nbits-1-errloc[i];
   1080 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
   1081 		}
   1082 	}
   1083 	return (err >= 0) ? err : -EBADMSG;
   1084 }
   1085 
   1086 /*
   1087  * generate Galois field lookup tables
   1088  */
   1089 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
   1090 {
   1091 	unsigned int i, x = 1;
   1092 	const unsigned int k = 1 << deg(poly);
   1093 
   1094 	/* primitive polynomial must be of degree m */
   1095 	if (k != (1u << GF_M(bch)))
   1096 		return -1;
   1097 
   1098 	for (i = 0; i < GF_N(bch); i++) {
   1099 		bch->a_pow_tab[i] = x;
   1100 		bch->a_log_tab[x] = i;
   1101 		if (i && (x == 1))
   1102 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
   1103 			return -1;
   1104 		x <<= 1;
   1105 		if (x & k)
   1106 			x ^= poly;
   1107 	}
   1108 	bch->a_pow_tab[GF_N(bch)] = 1;
   1109 	bch->a_log_tab[0] = 0;
   1110 
   1111 	return 0;
   1112 }
   1113 
   1114 /*
   1115  * compute generator polynomial remainder tables for fast encoding
   1116  */
   1117 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
   1118 {
   1119 	int i, j, b, d;
   1120 	uint32_t data, hi, lo, *tab;
   1121 	const int l = BCH_ECC_WORDS(bch);
   1122 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
   1123 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
   1124 
   1125 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
   1126 
   1127 	for (i = 0; i < 256; i++) {
   1128 		/* p(X)=i is a small polynomial of weight <= 8 */
   1129 		for (b = 0; b < 4; b++) {
   1130 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
   1131 			tab = bch->mod8_tab + (b*256+i)*l;
   1132 			data = i << (8*b);
   1133 			while (data) {
   1134 				d = deg(data);
   1135 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
   1136 				data ^= g[0] >> (31-d);
   1137 				for (j = 0; j < ecclen; j++) {
   1138 					hi = (d < 31) ? g[j] << (d+1) : 0;
   1139 					lo = (j+1 < plen) ?
   1140 						g[j+1] >> (31-d) : 0;
   1141 					tab[j] ^= hi|lo;
   1142 				}
   1143 			}
   1144 		}
   1145 	}
   1146 }
   1147 
   1148 /*
   1149  * build a base for factoring degree 2 polynomials
   1150  */
   1151 static int build_deg2_base(struct bch_control *bch)
   1152 {
   1153 	const int m = GF_M(bch);
   1154 	int i, j, r;
   1155 	unsigned int sum, x, y, remaining, ak = 0, xi[m];
   1156 
   1157 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
   1158 	for (i = 0; i < m; i++) {
   1159 		for (j = 0, sum = 0; j < m; j++)
   1160 			sum ^= a_pow(bch, i*(1 << j));
   1161 
   1162 		if (sum) {
   1163 			ak = bch->a_pow_tab[i];
   1164 			break;
   1165 		}
   1166 	}
   1167 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
   1168 	remaining = m;
   1169 	memset(xi, 0, sizeof(xi));
   1170 
   1171 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
   1172 		y = gf_sqr(bch, x)^x;
   1173 		for (i = 0; i < 2; i++) {
   1174 			r = a_log(bch, y);
   1175 			if (y && (r < m) && !xi[r]) {
   1176 				bch->xi_tab[r] = x;
   1177 				xi[r] = 1;
   1178 				remaining--;
   1179 				dbg("x%d = %x\n", r, x);
   1180 				break;
   1181 			}
   1182 			y ^= ak;
   1183 		}
   1184 	}
   1185 	/* should not happen but check anyway */
   1186 	return remaining ? -1 : 0;
   1187 }
   1188 
   1189 static void *bch_alloc(size_t size, int *err)
   1190 {
   1191 	void *ptr;
   1192 
   1193 	ptr = kmalloc(size, GFP_KERNEL);
   1194 	if (ptr == NULL)
   1195 		*err = 1;
   1196 	return ptr;
   1197 }
   1198 
   1199 /*
   1200  * compute generator polynomial for given (m,t) parameters.
   1201  */
   1202 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
   1203 {
   1204 	const unsigned int m = GF_M(bch);
   1205 	const unsigned int t = GF_T(bch);
   1206 	int n, err = 0;
   1207 	unsigned int i, j, nbits, r, word, *roots;
   1208 	struct gf_poly *g;
   1209 	uint32_t *genpoly;
   1210 
   1211 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
   1212 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
   1213 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
   1214 
   1215 	if (err) {
   1216 		kfree(genpoly);
   1217 		genpoly = NULL;
   1218 		goto finish;
   1219 	}
   1220 
   1221 	/* enumerate all roots of g(X) */
   1222 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
   1223 	for (i = 0; i < t; i++) {
   1224 		for (j = 0, r = 2*i+1; j < m; j++) {
   1225 			roots[r] = 1;
   1226 			r = mod_s(bch, 2*r);
   1227 		}
   1228 	}
   1229 	/* build generator polynomial g(X) */
   1230 	g->deg = 0;
   1231 	g->c[0] = 1;
   1232 	for (i = 0; i < GF_N(bch); i++) {
   1233 		if (roots[i]) {
   1234 			/* multiply g(X) by (X+root) */
   1235 			r = bch->a_pow_tab[i];
   1236 			g->c[g->deg+1] = 1;
   1237 			for (j = g->deg; j > 0; j--)
   1238 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
   1239 
   1240 			g->c[0] = gf_mul(bch, g->c[0], r);
   1241 			g->deg++;
   1242 		}
   1243 	}
   1244 	/* store left-justified binary representation of g(X) */
   1245 	n = g->deg+1;
   1246 	i = 0;
   1247 
   1248 	while (n > 0) {
   1249 		nbits = (n > 32) ? 32 : n;
   1250 		for (j = 0, word = 0; j < nbits; j++) {
   1251 			if (g->c[n-1-j])
   1252 				word |= 1u << (31-j);
   1253 		}
   1254 		genpoly[i++] = word;
   1255 		n -= nbits;
   1256 	}
   1257 	bch->ecc_bits = g->deg;
   1258 
   1259 finish:
   1260 	kfree(g);
   1261 	kfree(roots);
   1262 
   1263 	return genpoly;
   1264 }
   1265 
   1266 /**
   1267  * init_bch - initialize a BCH encoder/decoder
   1268  * @m:          Galois field order, should be in the range 5-15
   1269  * @t:          maximum error correction capability, in bits
   1270  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
   1271  *
   1272  * Returns:
   1273  *  a newly allocated BCH control structure if successful, NULL otherwise
   1274  *
   1275  * This initialization can take some time, as lookup tables are built for fast
   1276  * encoding/decoding; make sure not to call this function from a time critical
   1277  * path. Usually, init_bch() should be called on module/driver init and
   1278  * free_bch() should be called to release memory on exit.
   1279  *
   1280  * You may provide your own primitive polynomial of degree @m in argument
   1281  * @prim_poly, or let init_bch() use its default polynomial.
   1282  *
   1283  * Once init_bch() has successfully returned a pointer to a newly allocated
   1284  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
   1285  * the structure.
   1286  */
   1287 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
   1288 {
   1289 	int err = 0;
   1290 	unsigned int i, words;
   1291 	uint32_t *genpoly;
   1292 	struct bch_control *bch = NULL;
   1293 
   1294 	const int min_m = 5;
   1295 	const int max_m = 15;
   1296 
   1297 	/* default primitive polynomials */
   1298 	static const unsigned int prim_poly_tab[] = {
   1299 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
   1300 		0x402b, 0x8003,
   1301 	};
   1302 
   1303 #if defined(CONFIG_BCH_CONST_PARAMS)
   1304 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
   1305 		printk(KERN_ERR "bch encoder/decoder was configured to support "
   1306 		       "parameters m=%d, t=%d only!\n",
   1307 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
   1308 		goto fail;
   1309 	}
   1310 #endif
   1311 	if ((m < min_m) || (m > max_m))
   1312 		/*
   1313 		 * values of m greater than 15 are not currently supported;
   1314 		 * supporting m > 15 would require changing table base type
   1315 		 * (uint16_t) and a small patch in matrix transposition
   1316 		 */
   1317 		goto fail;
   1318 
   1319 	/* sanity checks */
   1320 	if ((t < 1) || (m*t >= ((1 << m)-1)))
   1321 		/* invalid t value */
   1322 		goto fail;
   1323 
   1324 	/* select a primitive polynomial for generating GF(2^m) */
   1325 	if (prim_poly == 0)
   1326 		prim_poly = prim_poly_tab[m-min_m];
   1327 
   1328 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
   1329 	if (bch == NULL)
   1330 		goto fail;
   1331 
   1332 	bch->m = m;
   1333 	bch->t = t;
   1334 	bch->n = (1 << m)-1;
   1335 	words  = DIV_ROUND_UP(m*t, 32);
   1336 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
   1337 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
   1338 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
   1339 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
   1340 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
   1341 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
   1342 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
   1343 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
   1344 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
   1345 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
   1346 
   1347 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
   1348 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
   1349 
   1350 	if (err)
   1351 		goto fail;
   1352 
   1353 	err = build_gf_tables(bch, prim_poly);
   1354 	if (err)
   1355 		goto fail;
   1356 
   1357 	/* use generator polynomial for computing encoding tables */
   1358 	genpoly = compute_generator_polynomial(bch);
   1359 	if (genpoly == NULL)
   1360 		goto fail;
   1361 
   1362 	build_mod8_tables(bch, genpoly);
   1363 	kfree(genpoly);
   1364 
   1365 	err = build_deg2_base(bch);
   1366 	if (err)
   1367 		goto fail;
   1368 
   1369 	return bch;
   1370 
   1371 fail:
   1372 	free_bch(bch);
   1373 	return NULL;
   1374 }
   1375 
   1376 /**
   1377  *  free_bch - free the BCH control structure
   1378  *  @bch:    BCH control structure to release
   1379  */
   1380 void free_bch(struct bch_control *bch)
   1381 {
   1382 	unsigned int i;
   1383 
   1384 	if (bch) {
   1385 		kfree(bch->a_pow_tab);
   1386 		kfree(bch->a_log_tab);
   1387 		kfree(bch->mod8_tab);
   1388 		kfree(bch->ecc_buf);
   1389 		kfree(bch->ecc_buf2);
   1390 		kfree(bch->xi_tab);
   1391 		kfree(bch->syn);
   1392 		kfree(bch->cache);
   1393 		kfree(bch->elp);
   1394 
   1395 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
   1396 			kfree(bch->poly_2t[i]);
   1397 
   1398 		kfree(bch);
   1399 	}
   1400 }
   1401