Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "art_method-inl.h"
     18 #include "base/callee_save_type.h"
     19 #include "base/enums.h"
     20 #include "callee_save_frame.h"
     21 #include "common_throws.h"
     22 #include "class_root.h"
     23 #include "debug_print.h"
     24 #include "debugger.h"
     25 #include "dex/dex_file-inl.h"
     26 #include "dex/dex_file_types.h"
     27 #include "dex/dex_instruction-inl.h"
     28 #include "dex/method_reference.h"
     29 #include "entrypoints/entrypoint_utils-inl.h"
     30 #include "entrypoints/quick/callee_save_frame.h"
     31 #include "entrypoints/runtime_asm_entrypoints.h"
     32 #include "gc/accounting/card_table-inl.h"
     33 #include "imt_conflict_table.h"
     34 #include "imtable-inl.h"
     35 #include "index_bss_mapping.h"
     36 #include "instrumentation.h"
     37 #include "interpreter/interpreter.h"
     38 #include "interpreter/interpreter_common.h"
     39 #include "interpreter/shadow_frame-inl.h"
     40 #include "jit/jit.h"
     41 #include "jit/jit_code_cache.h"
     42 #include "linear_alloc.h"
     43 #include "method_handles.h"
     44 #include "mirror/class-inl.h"
     45 #include "mirror/dex_cache-inl.h"
     46 #include "mirror/method.h"
     47 #include "mirror/method_handle_impl.h"
     48 #include "mirror/object-inl.h"
     49 #include "mirror/object_array-inl.h"
     50 #include "mirror/var_handle.h"
     51 #include "oat_file.h"
     52 #include "oat_quick_method_header.h"
     53 #include "quick_exception_handler.h"
     54 #include "runtime.h"
     55 #include "scoped_thread_state_change-inl.h"
     56 #include "stack.h"
     57 #include "thread-inl.h"
     58 #include "var_handles.h"
     59 #include "well_known_classes.h"
     60 
     61 namespace art {
     62 
     63 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
     64 class QuickArgumentVisitor {
     65   // Number of bytes for each out register in the caller method's frame.
     66   static constexpr size_t kBytesStackArgLocation = 4;
     67   // Frame size in bytes of a callee-save frame for RefsAndArgs.
     68   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
     69       RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
     70   // Offset of first GPR arg.
     71   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
     72       RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
     73   // Offset of first FPR arg.
     74   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
     75       RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
     76   // Offset of return address.
     77   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
     78       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
     79 #if defined(__arm__)
     80   // The callee save frame is pointed to by SP.
     81   // | argN       |  |
     82   // | ...        |  |
     83   // | arg4       |  |
     84   // | arg3 spill |  |  Caller's frame
     85   // | arg2 spill |  |
     86   // | arg1 spill |  |
     87   // | Method*    | ---
     88   // | LR         |
     89   // | ...        |    4x6 bytes callee saves
     90   // | R3         |
     91   // | R2         |
     92   // | R1         |
     93   // | S15        |
     94   // | :          |
     95   // | S0         |
     96   // |            |    4x2 bytes padding
     97   // | Method*    |  <- sp
     98   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
     99   static constexpr bool kAlignPairRegister = true;
    100   static constexpr bool kQuickSoftFloatAbi = false;
    101   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
    102   static constexpr bool kQuickSkipOddFpRegisters = false;
    103   static constexpr size_t kNumQuickGprArgs = 3;
    104   static constexpr size_t kNumQuickFprArgs = 16;
    105   static constexpr bool kGprFprLockstep = false;
    106   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    107     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    108   }
    109 #elif defined(__aarch64__)
    110   // The callee save frame is pointed to by SP.
    111   // | argN       |  |
    112   // | ...        |  |
    113   // | arg4       |  |
    114   // | arg3 spill |  |  Caller's frame
    115   // | arg2 spill |  |
    116   // | arg1 spill |  |
    117   // | Method*    | ---
    118   // | LR         |
    119   // | X29        |
    120   // |  :         |
    121   // | X20        |
    122   // | X7         |
    123   // | :          |
    124   // | X1         |
    125   // | D7         |
    126   // |  :         |
    127   // | D0         |
    128   // |            |    padding
    129   // | Method*    |  <- sp
    130   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    131   static constexpr bool kAlignPairRegister = false;
    132   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    133   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    134   static constexpr bool kQuickSkipOddFpRegisters = false;
    135   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    136   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    137   static constexpr bool kGprFprLockstep = false;
    138   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    139     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    140   }
    141 #elif defined(__mips__) && !defined(__LP64__)
    142   // The callee save frame is pointed to by SP.
    143   // | argN       |  |
    144   // | ...        |  |
    145   // | arg4       |  |
    146   // | arg3 spill |  |  Caller's frame
    147   // | arg2 spill |  |
    148   // | arg1 spill |  |
    149   // | Method*    | ---
    150   // | RA         |
    151   // | ...        |    callee saves
    152   // | T1         |    arg5
    153   // | T0         |    arg4
    154   // | A3         |    arg3
    155   // | A2         |    arg2
    156   // | A1         |    arg1
    157   // | F19        |
    158   // | F18        |    f_arg5
    159   // | F17        |
    160   // | F16        |    f_arg4
    161   // | F15        |
    162   // | F14        |    f_arg3
    163   // | F13        |
    164   // | F12        |    f_arg2
    165   // | F11        |
    166   // | F10        |    f_arg1
    167   // | F9         |
    168   // | F8         |    f_arg0
    169   // |            |    padding
    170   // | A0/Method* |  <- sp
    171   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    172   static constexpr bool kAlignPairRegister = true;
    173   static constexpr bool kQuickSoftFloatAbi = false;
    174   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    175   static constexpr bool kQuickSkipOddFpRegisters = true;
    176   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
    177   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
    178                                                   // passed only in even numbered registers and each
    179                                                   // double occupies two registers.
    180   static constexpr bool kGprFprLockstep = false;
    181   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    182     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    183   }
    184 #elif defined(__mips__) && defined(__LP64__)
    185   // The callee save frame is pointed to by SP.
    186   // | argN       |  |
    187   // | ...        |  |
    188   // | arg4       |  |
    189   // | arg3 spill |  |  Caller's frame
    190   // | arg2 spill |  |
    191   // | arg1 spill |  |
    192   // | Method*    | ---
    193   // | RA         |
    194   // | ...        |    callee saves
    195   // | A7         |    arg7
    196   // | A6         |    arg6
    197   // | A5         |    arg5
    198   // | A4         |    arg4
    199   // | A3         |    arg3
    200   // | A2         |    arg2
    201   // | A1         |    arg1
    202   // | F19        |    f_arg7
    203   // | F18        |    f_arg6
    204   // | F17        |    f_arg5
    205   // | F16        |    f_arg4
    206   // | F15        |    f_arg3
    207   // | F14        |    f_arg2
    208   // | F13        |    f_arg1
    209   // | F12        |    f_arg0
    210   // |            |    padding
    211   // | A0/Method* |  <- sp
    212   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
    213   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    214   static constexpr bool kAlignPairRegister = false;
    215   static constexpr bool kQuickSoftFloatAbi = false;
    216   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    217   static constexpr bool kQuickSkipOddFpRegisters = false;
    218   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    219   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
    220   static constexpr bool kGprFprLockstep = true;
    221 
    222   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    223     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    224   }
    225 #elif defined(__i386__)
    226   // The callee save frame is pointed to by SP.
    227   // | argN        |  |
    228   // | ...         |  |
    229   // | arg4        |  |
    230   // | arg3 spill  |  |  Caller's frame
    231   // | arg2 spill  |  |
    232   // | arg1 spill  |  |
    233   // | Method*     | ---
    234   // | Return      |
    235   // | EBP,ESI,EDI |    callee saves
    236   // | EBX         |    arg3
    237   // | EDX         |    arg2
    238   // | ECX         |    arg1
    239   // | XMM3        |    float arg 4
    240   // | XMM2        |    float arg 3
    241   // | XMM1        |    float arg 2
    242   // | XMM0        |    float arg 1
    243   // | EAX/Method* |  <- sp
    244   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    245   static constexpr bool kAlignPairRegister = false;
    246   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    247   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    248   static constexpr bool kQuickSkipOddFpRegisters = false;
    249   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
    250   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
    251   static constexpr bool kGprFprLockstep = false;
    252   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    253     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    254   }
    255 #elif defined(__x86_64__)
    256   // The callee save frame is pointed to by SP.
    257   // | argN            |  |
    258   // | ...             |  |
    259   // | reg. arg spills |  |  Caller's frame
    260   // | Method*         | ---
    261   // | Return          |
    262   // | R15             |    callee save
    263   // | R14             |    callee save
    264   // | R13             |    callee save
    265   // | R12             |    callee save
    266   // | R9              |    arg5
    267   // | R8              |    arg4
    268   // | RSI/R6          |    arg1
    269   // | RBP/R5          |    callee save
    270   // | RBX/R3          |    callee save
    271   // | RDX/R2          |    arg2
    272   // | RCX/R1          |    arg3
    273   // | XMM7            |    float arg 8
    274   // | XMM6            |    float arg 7
    275   // | XMM5            |    float arg 6
    276   // | XMM4            |    float arg 5
    277   // | XMM3            |    float arg 4
    278   // | XMM2            |    float arg 3
    279   // | XMM1            |    float arg 2
    280   // | XMM0            |    float arg 1
    281   // | Padding         |
    282   // | RDI/Method*     |  <- sp
    283   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    284   static constexpr bool kAlignPairRegister = false;
    285   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    286   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    287   static constexpr bool kQuickSkipOddFpRegisters = false;
    288   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
    289   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    290   static constexpr bool kGprFprLockstep = false;
    291   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    292     switch (gpr_index) {
    293       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
    294       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
    295       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
    296       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
    297       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
    298       default:
    299       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
    300       UNREACHABLE();
    301     }
    302   }
    303 #else
    304 #error "Unsupported architecture"
    305 #endif
    306 
    307  public:
    308   // Special handling for proxy methods. Proxy methods are instance methods so the
    309   // 'this' object is the 1st argument. They also have the same frame layout as the
    310   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
    311   // 1st GPR.
    312   static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
    313       REQUIRES_SHARED(Locks::mutator_lock_) {
    314     CHECK((*sp)->IsProxyMethod());
    315     CHECK_GT(kNumQuickGprArgs, 0u);
    316     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
    317     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
    318         GprIndexToGprOffset(kThisGprIndex);
    319     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
    320     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
    321   }
    322 
    323   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    324     DCHECK((*sp)->IsCalleeSaveMethod());
    325     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
    326   }
    327 
    328   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    329     DCHECK((*sp)->IsCalleeSaveMethod());
    330     uint8_t* previous_sp =
    331         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
    332     return *reinterpret_cast<ArtMethod**>(previous_sp);
    333   }
    334 
    335   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    336     DCHECK((*sp)->IsCalleeSaveMethod());
    337     constexpr size_t callee_frame_size =
    338         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
    339     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
    340         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
    341     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
    342     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
    343     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
    344 
    345     if (current_code->IsOptimized()) {
    346       CodeInfo code_info(current_code, CodeInfo::DecodeFlags::InlineInfoOnly);
    347       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
    348       DCHECK(stack_map.IsValid());
    349       BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
    350       if (!inline_infos.empty()) {
    351         return inline_infos.back().GetDexPc();
    352       } else {
    353         return stack_map.GetDexPc();
    354       }
    355     } else {
    356       return current_code->ToDexPc(*caller_sp, outer_pc);
    357     }
    358   }
    359 
    360   // For the given quick ref and args quick frame, return the caller's PC.
    361   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    362     DCHECK((*sp)->IsCalleeSaveMethod());
    363     uint8_t* return_adress_spill =
    364         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
    365     return *reinterpret_cast<uintptr_t*>(return_adress_spill);
    366   }
    367 
    368   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    369                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
    370           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
    371           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
    372           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
    373           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
    374               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
    375           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
    376           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
    377     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
    378                   "Number of Quick FPR arguments unexpected");
    379     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
    380                   "Double alignment unexpected");
    381     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
    382     // next register is even.
    383     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
    384                   "Number of Quick FPR arguments not even");
    385     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
    386   }
    387 
    388   virtual ~QuickArgumentVisitor() {}
    389 
    390   virtual void Visit() = 0;
    391 
    392   Primitive::Type GetParamPrimitiveType() const {
    393     return cur_type_;
    394   }
    395 
    396   uint8_t* GetParamAddress() const {
    397     if (!kQuickSoftFloatAbi) {
    398       Primitive::Type type = GetParamPrimitiveType();
    399       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
    400         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
    401           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    402             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    403           }
    404         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    405           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    406         }
    407         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    408       }
    409     }
    410     if (gpr_index_ < kNumQuickGprArgs) {
    411       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
    412     }
    413     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    414   }
    415 
    416   bool IsSplitLongOrDouble() const {
    417     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
    418         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
    419       return is_split_long_or_double_;
    420     } else {
    421       return false;  // An optimization for when GPR and FPRs are 64bit.
    422     }
    423   }
    424 
    425   bool IsParamAReference() const {
    426     return GetParamPrimitiveType() == Primitive::kPrimNot;
    427   }
    428 
    429   bool IsParamALongOrDouble() const {
    430     Primitive::Type type = GetParamPrimitiveType();
    431     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
    432   }
    433 
    434   uint64_t ReadSplitLongParam() const {
    435     // The splitted long is always available through the stack.
    436     return *reinterpret_cast<uint64_t*>(stack_args_
    437         + stack_index_ * kBytesStackArgLocation);
    438   }
    439 
    440   void IncGprIndex() {
    441     gpr_index_++;
    442     if (kGprFprLockstep) {
    443       fpr_index_++;
    444     }
    445   }
    446 
    447   void IncFprIndex() {
    448     fpr_index_++;
    449     if (kGprFprLockstep) {
    450       gpr_index_++;
    451     }
    452   }
    453 
    454   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
    455     // (a) 'stack_args_' should point to the first method's argument
    456     // (b) whatever the argument type it is, the 'stack_index_' should
    457     //     be moved forward along with every visiting.
    458     gpr_index_ = 0;
    459     fpr_index_ = 0;
    460     if (kQuickDoubleRegAlignedFloatBackFilled) {
    461       fpr_double_index_ = 0;
    462     }
    463     stack_index_ = 0;
    464     if (!is_static_) {  // Handle this.
    465       cur_type_ = Primitive::kPrimNot;
    466       is_split_long_or_double_ = false;
    467       Visit();
    468       stack_index_++;
    469       if (kNumQuickGprArgs > 0) {
    470         IncGprIndex();
    471       }
    472     }
    473     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
    474       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
    475       switch (cur_type_) {
    476         case Primitive::kPrimNot:
    477         case Primitive::kPrimBoolean:
    478         case Primitive::kPrimByte:
    479         case Primitive::kPrimChar:
    480         case Primitive::kPrimShort:
    481         case Primitive::kPrimInt:
    482           is_split_long_or_double_ = false;
    483           Visit();
    484           stack_index_++;
    485           if (gpr_index_ < kNumQuickGprArgs) {
    486             IncGprIndex();
    487           }
    488           break;
    489         case Primitive::kPrimFloat:
    490           is_split_long_or_double_ = false;
    491           Visit();
    492           stack_index_++;
    493           if (kQuickSoftFloatAbi) {
    494             if (gpr_index_ < kNumQuickGprArgs) {
    495               IncGprIndex();
    496             }
    497           } else {
    498             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    499               IncFprIndex();
    500               if (kQuickDoubleRegAlignedFloatBackFilled) {
    501                 // Double should not overlap with float.
    502                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
    503                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
    504                 // Float should not overlap with double.
    505                 if (fpr_index_ % 2 == 0) {
    506                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    507                 }
    508               } else if (kQuickSkipOddFpRegisters) {
    509                 IncFprIndex();
    510               }
    511             }
    512           }
    513           break;
    514         case Primitive::kPrimDouble:
    515         case Primitive::kPrimLong:
    516           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
    517             if (cur_type_ == Primitive::kPrimLong &&
    518 #if defined(__mips__) && !defined(__LP64__)
    519                 (gpr_index_ == 0 || gpr_index_ == 2) &&
    520 #else
    521                 gpr_index_ == 0 &&
    522 #endif
    523                 kAlignPairRegister) {
    524               // Currently, this is only for ARM and MIPS, where we align long parameters with
    525               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
    526               // R2 (on ARM) or A2(T0) (on MIPS) instead.
    527               IncGprIndex();
    528             }
    529             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
    530                 ((gpr_index_ + 1) == kNumQuickGprArgs);
    531             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
    532               // We don't want to split this. Pass over this register.
    533               gpr_index_++;
    534               is_split_long_or_double_ = false;
    535             }
    536             Visit();
    537             if (kBytesStackArgLocation == 4) {
    538               stack_index_+= 2;
    539             } else {
    540               CHECK_EQ(kBytesStackArgLocation, 8U);
    541               stack_index_++;
    542             }
    543             if (gpr_index_ < kNumQuickGprArgs) {
    544               IncGprIndex();
    545               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
    546                 if (gpr_index_ < kNumQuickGprArgs) {
    547                   IncGprIndex();
    548                 }
    549               }
    550             }
    551           } else {
    552             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
    553                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
    554             Visit();
    555             if (kBytesStackArgLocation == 4) {
    556               stack_index_+= 2;
    557             } else {
    558               CHECK_EQ(kBytesStackArgLocation, 8U);
    559               stack_index_++;
    560             }
    561             if (kQuickDoubleRegAlignedFloatBackFilled) {
    562               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    563                 fpr_double_index_ += 2;
    564                 // Float should not overlap with double.
    565                 if (fpr_index_ % 2 == 0) {
    566                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    567                 }
    568               }
    569             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    570               IncFprIndex();
    571               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
    572                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    573                   IncFprIndex();
    574                 }
    575               }
    576             }
    577           }
    578           break;
    579         default:
    580           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
    581       }
    582     }
    583   }
    584 
    585  protected:
    586   const bool is_static_;
    587   const char* const shorty_;
    588   const uint32_t shorty_len_;
    589 
    590  private:
    591   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
    592   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
    593   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
    594   uint32_t gpr_index_;  // Index into spilled GPRs.
    595   // Index into spilled FPRs.
    596   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
    597   // holds a higher register number.
    598   uint32_t fpr_index_;
    599   // Index into spilled FPRs for aligned double.
    600   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
    601   // terms of singles, may be behind fpr_index.
    602   uint32_t fpr_double_index_;
    603   uint32_t stack_index_;  // Index into arguments on the stack.
    604   // The current type of argument during VisitArguments.
    605   Primitive::Type cur_type_;
    606   // Does a 64bit parameter straddle the register and stack arguments?
    607   bool is_split_long_or_double_;
    608 };
    609 
    610 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
    611 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
    612 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
    613     REQUIRES_SHARED(Locks::mutator_lock_) {
    614   return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
    615 }
    616 
    617 // Visits arguments on the stack placing them into the shadow frame.
    618 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
    619  public:
    620   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    621                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
    622       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
    623 
    624   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
    625 
    626  private:
    627   ShadowFrame* const sf_;
    628   uint32_t cur_reg_;
    629 
    630   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
    631 };
    632 
    633 void BuildQuickShadowFrameVisitor::Visit() {
    634   Primitive::Type type = GetParamPrimitiveType();
    635   switch (type) {
    636     case Primitive::kPrimLong:  // Fall-through.
    637     case Primitive::kPrimDouble:
    638       if (IsSplitLongOrDouble()) {
    639         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
    640       } else {
    641         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
    642       }
    643       ++cur_reg_;
    644       break;
    645     case Primitive::kPrimNot: {
    646         StackReference<mirror::Object>* stack_ref =
    647             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    648         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
    649       }
    650       break;
    651     case Primitive::kPrimBoolean:  // Fall-through.
    652     case Primitive::kPrimByte:     // Fall-through.
    653     case Primitive::kPrimChar:     // Fall-through.
    654     case Primitive::kPrimShort:    // Fall-through.
    655     case Primitive::kPrimInt:      // Fall-through.
    656     case Primitive::kPrimFloat:
    657       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
    658       break;
    659     case Primitive::kPrimVoid:
    660       LOG(FATAL) << "UNREACHABLE";
    661       UNREACHABLE();
    662   }
    663   ++cur_reg_;
    664 }
    665 
    666 // Don't inline. See b/65159206.
    667 NO_INLINE
    668 static void HandleDeoptimization(JValue* result,
    669                                  ArtMethod* method,
    670                                  ShadowFrame* deopt_frame,
    671                                  ManagedStack* fragment)
    672     REQUIRES_SHARED(Locks::mutator_lock_) {
    673   // Coming from partial-fragment deopt.
    674   Thread* self = Thread::Current();
    675   if (kIsDebugBuild) {
    676     // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
    677     // of the call-stack) corresponds to the called method.
    678     ShadowFrame* linked = deopt_frame;
    679     while (linked->GetLink() != nullptr) {
    680       linked = linked->GetLink();
    681     }
    682     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
    683         << ArtMethod::PrettyMethod(linked->GetMethod());
    684   }
    685 
    686   if (VLOG_IS_ON(deopt)) {
    687     // Print out the stack to verify that it was a partial-fragment deopt.
    688     LOG(INFO) << "Continue-ing from deopt. Stack is:";
    689     QuickExceptionHandler::DumpFramesWithType(self, true);
    690   }
    691 
    692   ObjPtr<mirror::Throwable> pending_exception;
    693   bool from_code = false;
    694   DeoptimizationMethodType method_type;
    695   self->PopDeoptimizationContext(/* out */ result,
    696                                  /* out */ &pending_exception,
    697                                  /* out */ &from_code,
    698                                  /* out */ &method_type);
    699 
    700   // Push a transition back into managed code onto the linked list in thread.
    701   self->PushManagedStackFragment(fragment);
    702 
    703   // Ensure that the stack is still in order.
    704   if (kIsDebugBuild) {
    705     class DummyStackVisitor : public StackVisitor {
    706      public:
    707       explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
    708           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
    709 
    710       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
    711         // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
    712         // logic. Just always say we want to continue.
    713         return true;
    714       }
    715     };
    716     DummyStackVisitor dsv(self);
    717     dsv.WalkStack();
    718   }
    719 
    720   // Restore the exception that was pending before deoptimization then interpret the
    721   // deoptimized frames.
    722   if (pending_exception != nullptr) {
    723     self->SetException(pending_exception);
    724   }
    725   interpreter::EnterInterpreterFromDeoptimize(self,
    726                                               deopt_frame,
    727                                               result,
    728                                               from_code,
    729                                               DeoptimizationMethodType::kDefault);
    730 }
    731 
    732 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
    733     REQUIRES_SHARED(Locks::mutator_lock_) {
    734   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
    735   // frame.
    736   ScopedQuickEntrypointChecks sqec(self);
    737 
    738   if (UNLIKELY(!method->IsInvokable())) {
    739     method->ThrowInvocationTimeError();
    740     return 0;
    741   }
    742 
    743   JValue tmp_value;
    744   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
    745       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
    746   ManagedStack fragment;
    747 
    748   DCHECK(!method->IsNative()) << method->PrettyMethod();
    749   uint32_t shorty_len = 0;
    750   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    751   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
    752   CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
    753   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    754 
    755   JValue result;
    756   bool force_frame_pop = false;
    757 
    758   if (UNLIKELY(deopt_frame != nullptr)) {
    759     HandleDeoptimization(&result, method, deopt_frame, &fragment);
    760   } else {
    761     const char* old_cause = self->StartAssertNoThreadSuspension(
    762         "Building interpreter shadow frame");
    763     uint16_t num_regs = accessor.RegistersSize();
    764     // No last shadow coming from quick.
    765     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
    766         CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
    767     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
    768     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
    769     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
    770                                                       shadow_frame, first_arg_reg);
    771     shadow_frame_builder.VisitArguments();
    772     const bool needs_initialization =
    773         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
    774     // Push a transition back into managed code onto the linked list in thread.
    775     self->PushManagedStackFragment(&fragment);
    776     self->PushShadowFrame(shadow_frame);
    777     self->EndAssertNoThreadSuspension(old_cause);
    778 
    779     if (needs_initialization) {
    780       // Ensure static method's class is initialized.
    781       StackHandleScope<1> hs(self);
    782       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
    783       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
    784         DCHECK(Thread::Current()->IsExceptionPending())
    785             << shadow_frame->GetMethod()->PrettyMethod();
    786         self->PopManagedStackFragment(fragment);
    787         return 0;
    788       }
    789     }
    790 
    791     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
    792     force_frame_pop = shadow_frame->GetForcePopFrame();
    793   }
    794 
    795   // Pop transition.
    796   self->PopManagedStackFragment(fragment);
    797 
    798   // Request a stack deoptimization if needed
    799   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
    800   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
    801   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
    802   // should be done and it knows the real return pc. NB If the upcall is null we don't need to do
    803   // anything. This can happen during shutdown or early startup.
    804   if (UNLIKELY(
    805           caller != nullptr &&
    806           caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
    807           (self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
    808     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
    809       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
    810                    << caller->PrettyMethod();
    811     } else {
    812       VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
    813                   << " to " << caller->PrettyMethod()
    814                   << (force_frame_pop ? " for frame-pop" : "");
    815       DCHECK(!force_frame_pop || result.GetJ() == 0) << "Force frame pop should have no result.";
    816       if (force_frame_pop && self->GetException() != nullptr) {
    817         LOG(WARNING) << "Suppressing exception for instruction-retry: "
    818                      << self->GetException()->Dump();
    819       }
    820       // Push the context of the deoptimization stack so we can restore the return value and the
    821       // exception before executing the deoptimized frames.
    822       self->PushDeoptimizationContext(
    823           result,
    824           shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
    825           force_frame_pop ? nullptr : self->GetException(),
    826           /* from_code= */ false,
    827           DeoptimizationMethodType::kDefault);
    828 
    829       // Set special exception to cause deoptimization.
    830       self->SetException(Thread::GetDeoptimizationException());
    831     }
    832   }
    833 
    834   // No need to restore the args since the method has already been run by the interpreter.
    835   return result.GetJ();
    836 }
    837 
    838 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
    839 // to jobjects.
    840 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
    841  public:
    842   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
    843                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
    844       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
    845 
    846   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
    847 
    848  private:
    849   ScopedObjectAccessUnchecked* const soa_;
    850   std::vector<jvalue>* const args_;
    851 
    852   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
    853 };
    854 
    855 void BuildQuickArgumentVisitor::Visit() {
    856   jvalue val;
    857   Primitive::Type type = GetParamPrimitiveType();
    858   switch (type) {
    859     case Primitive::kPrimNot: {
    860       StackReference<mirror::Object>* stack_ref =
    861           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    862       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
    863       break;
    864     }
    865     case Primitive::kPrimLong:  // Fall-through.
    866     case Primitive::kPrimDouble:
    867       if (IsSplitLongOrDouble()) {
    868         val.j = ReadSplitLongParam();
    869       } else {
    870         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
    871       }
    872       break;
    873     case Primitive::kPrimBoolean:  // Fall-through.
    874     case Primitive::kPrimByte:     // Fall-through.
    875     case Primitive::kPrimChar:     // Fall-through.
    876     case Primitive::kPrimShort:    // Fall-through.
    877     case Primitive::kPrimInt:      // Fall-through.
    878     case Primitive::kPrimFloat:
    879       val.i = *reinterpret_cast<jint*>(GetParamAddress());
    880       break;
    881     case Primitive::kPrimVoid:
    882       LOG(FATAL) << "UNREACHABLE";
    883       UNREACHABLE();
    884   }
    885   args_->push_back(val);
    886 }
    887 
    888 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
    889 // which is responsible for recording callee save registers. We explicitly place into jobjects the
    890 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
    891 // field within the proxy object, which will box the primitive arguments and deal with error cases.
    892 extern "C" uint64_t artQuickProxyInvokeHandler(
    893     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
    894     REQUIRES_SHARED(Locks::mutator_lock_) {
    895   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
    896   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
    897   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
    898   const char* old_cause =
    899       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
    900   // Register the top of the managed stack, making stack crawlable.
    901   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
    902   self->VerifyStack();
    903   // Start new JNI local reference state.
    904   JNIEnvExt* env = self->GetJniEnv();
    905   ScopedObjectAccessUnchecked soa(env);
    906   ScopedJniEnvLocalRefState env_state(env);
    907   // Create local ref. copies of proxy method and the receiver.
    908   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
    909 
    910   // Placing arguments into args vector and remove the receiver.
    911   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    912   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
    913                                        << non_proxy_method->PrettyMethod();
    914   std::vector<jvalue> args;
    915   uint32_t shorty_len = 0;
    916   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    917   BuildQuickArgumentVisitor local_ref_visitor(
    918       sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
    919 
    920   local_ref_visitor.VisitArguments();
    921   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
    922   args.erase(args.begin());
    923 
    924   // Convert proxy method into expected interface method.
    925   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
    926   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
    927   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
    928   self->EndAssertNoThreadSuspension(old_cause);
    929   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
    930   DCHECK(!Runtime::Current()->IsActiveTransaction());
    931   ObjPtr<mirror::Method> interface_reflect_method =
    932       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
    933   if (interface_reflect_method == nullptr) {
    934     soa.Self()->AssertPendingOOMException();
    935     return 0;
    936   }
    937   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
    938 
    939   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
    940   // that performs allocations or instrumentation events.
    941   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
    942   if (instr->HasMethodEntryListeners()) {
    943     instr->MethodEnterEvent(soa.Self(),
    944                             soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
    945                             proxy_method,
    946                             0);
    947     if (soa.Self()->IsExceptionPending()) {
    948       instr->MethodUnwindEvent(self,
    949                                soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
    950                                proxy_method,
    951                                0);
    952       return 0;
    953     }
    954   }
    955   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
    956   if (soa.Self()->IsExceptionPending()) {
    957     if (instr->HasMethodUnwindListeners()) {
    958       instr->MethodUnwindEvent(self,
    959                                soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
    960                                proxy_method,
    961                                0);
    962     }
    963   } else if (instr->HasMethodExitListeners()) {
    964     instr->MethodExitEvent(self,
    965                            soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
    966                            proxy_method,
    967                            0,
    968                            result);
    969   }
    970   return result.GetJ();
    971 }
    972 
    973 // Visitor returning a reference argument at a given position in a Quick stack frame.
    974 // NOTE: Only used for testing purposes.
    975 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
    976  public:
    977   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
    978                                      const char* shorty,
    979                                      uint32_t shorty_len,
    980                                      size_t arg_pos)
    981       : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
    982         cur_pos_(0u),
    983         arg_pos_(arg_pos),
    984         ref_arg_(nullptr) {
    985           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
    986         }
    987 
    988   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
    989     if (cur_pos_ == arg_pos_) {
    990       Primitive::Type type = GetParamPrimitiveType();
    991       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
    992       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    993     }
    994     ++cur_pos_;
    995   }
    996 
    997   StackReference<mirror::Object>* GetReferenceArgument() {
    998     return ref_arg_;
    999   }
   1000 
   1001  private:
   1002   // The position of the currently visited argument.
   1003   size_t cur_pos_;
   1004   // The position of the searched argument.
   1005   const size_t arg_pos_;
   1006   // The reference argument, if found.
   1007   StackReference<mirror::Object>* ref_arg_;
   1008 
   1009   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
   1010 };
   1011 
   1012 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
   1013 // NOTE: Only used for testing purposes.
   1014 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
   1015                                                                                ArtMethod** sp)
   1016     REQUIRES_SHARED(Locks::mutator_lock_) {
   1017   ArtMethod* proxy_method = *sp;
   1018   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1019   CHECK(!non_proxy_method->IsStatic())
   1020       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
   1021   uint32_t shorty_len = 0;
   1022   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
   1023   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
   1024   ref_arg_visitor.VisitArguments();
   1025   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
   1026   return ref_arg;
   1027 }
   1028 
   1029 // Visitor returning all the reference arguments in a Quick stack frame.
   1030 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
   1031  public:
   1032   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
   1033                                     bool is_static,
   1034                                     const char* shorty,
   1035                                     uint32_t shorty_len)
   1036       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
   1037 
   1038   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
   1039     Primitive::Type type = GetParamPrimitiveType();
   1040     if (type == Primitive::kPrimNot) {
   1041       StackReference<mirror::Object>* ref_arg =
   1042           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   1043       ref_args_.push_back(ref_arg);
   1044     }
   1045   }
   1046 
   1047   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
   1048     return ref_args_;
   1049   }
   1050 
   1051  private:
   1052   // The reference arguments.
   1053   std::vector<StackReference<mirror::Object>*> ref_args_;
   1054 
   1055   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
   1056 };
   1057 
   1058 // Returning all reference arguments in Quick stack frame at address `sp`.
   1059 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
   1060     REQUIRES_SHARED(Locks::mutator_lock_) {
   1061   ArtMethod* proxy_method = *sp;
   1062   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1063   CHECK(!non_proxy_method->IsStatic())
   1064       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
   1065   uint32_t shorty_len = 0;
   1066   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
   1067   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
   1068   ref_args_visitor.VisitArguments();
   1069   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
   1070   return ref_args;
   1071 }
   1072 
   1073 // Read object references held in arguments from quick frames and place in a JNI local references,
   1074 // so they don't get garbage collected.
   1075 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
   1076  public:
   1077   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
   1078                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
   1079       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
   1080 
   1081   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
   1082 
   1083   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
   1084 
   1085  private:
   1086   ScopedObjectAccessUnchecked* const soa_;
   1087   // References which we must update when exiting in case the GC moved the objects.
   1088   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
   1089 
   1090   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
   1091 };
   1092 
   1093 void RememberForGcArgumentVisitor::Visit() {
   1094   if (IsParamAReference()) {
   1095     StackReference<mirror::Object>* stack_ref =
   1096         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   1097     jobject reference =
   1098         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
   1099     references_.push_back(std::make_pair(reference, stack_ref));
   1100   }
   1101 }
   1102 
   1103 void RememberForGcArgumentVisitor::FixupReferences() {
   1104   // Fixup any references which may have changed.
   1105   for (const auto& pair : references_) {
   1106     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
   1107     soa_->Env()->DeleteLocalRef(pair.first);
   1108   }
   1109 }
   1110 
   1111 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
   1112                                                              mirror::Object* this_object,
   1113                                                              Thread* self,
   1114                                                              ArtMethod** sp)
   1115     REQUIRES_SHARED(Locks::mutator_lock_) {
   1116   const void* result;
   1117   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
   1118   // that part.
   1119   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
   1120   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   1121   DCHECK(!method->IsProxyMethod())
   1122       << "Proxy method " << method->PrettyMethod()
   1123       << " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
   1124       << " should not hit instrumentation entrypoint.";
   1125   if (instrumentation->IsDeoptimized(method)) {
   1126     result = GetQuickToInterpreterBridge();
   1127   } else {
   1128     // This will get the entry point either from the oat file, the JIT or the appropriate bridge
   1129     // method if none of those can be found.
   1130     result = instrumentation->GetCodeForInvoke(method);
   1131     jit::Jit* jit = Runtime::Current()->GetJit();
   1132     DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
   1133     DCHECK(jit == nullptr ||
   1134            // Native methods come through here in Interpreter entrypoints. We might not have
   1135            // disabled jit-gc but that is fine since we won't return jit-code for native methods.
   1136            method->IsNative() ||
   1137            !jit->GetCodeCache()->GetGarbageCollectCode());
   1138     DCHECK(!method->IsNative() ||
   1139            jit == nullptr ||
   1140            !jit->GetCodeCache()->ContainsPc(result))
   1141         << method->PrettyMethod() << " code will jump to possibly cleaned up jit code!";
   1142   }
   1143 
   1144   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
   1145   bool is_static = method->IsStatic();
   1146   uint32_t shorty_len;
   1147   const char* shorty =
   1148       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
   1149 
   1150   ScopedObjectAccessUnchecked soa(self);
   1151   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
   1152   visitor.VisitArguments();
   1153 
   1154   instrumentation->PushInstrumentationStackFrame(self,
   1155                                                  is_static ? nullptr : this_object,
   1156                                                  method,
   1157                                                  QuickArgumentVisitor::GetCallingPc(sp),
   1158                                                  interpreter_entry);
   1159 
   1160   visitor.FixupReferences();
   1161   if (UNLIKELY(self->IsExceptionPending())) {
   1162     return nullptr;
   1163   }
   1164   CHECK(result != nullptr) << method->PrettyMethod();
   1165   return result;
   1166 }
   1167 
   1168 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
   1169                                                               ArtMethod** sp,
   1170                                                               uint64_t* gpr_result,
   1171                                                               uint64_t* fpr_result)
   1172     REQUIRES_SHARED(Locks::mutator_lock_) {
   1173   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
   1174   CHECK(gpr_result != nullptr);
   1175   CHECK(fpr_result != nullptr);
   1176   // Instrumentation exit stub must not be entered with a pending exception.
   1177   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
   1178                                      << self->GetException()->Dump();
   1179   // Compute address of return PC and sanity check that it currently holds 0.
   1180   constexpr size_t return_pc_offset =
   1181       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
   1182   uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
   1183                                                       return_pc_offset);
   1184   CHECK_EQ(*return_pc, 0U);
   1185 
   1186   // Pop the frame filling in the return pc. The low half of the return value is 0 when
   1187   // deoptimization shouldn't be performed with the high-half having the return address. When
   1188   // deoptimization should be performed the low half is zero and the high-half the address of the
   1189   // deoptimization entry point.
   1190   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   1191   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
   1192       self, return_pc, gpr_result, fpr_result);
   1193   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
   1194     return GetTwoWordFailureValue();
   1195   }
   1196   return return_or_deoptimize_pc;
   1197 }
   1198 
   1199 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
   1200     REQUIRES_SHARED(Locks::mutator_lock_) {
   1201   if (dex_pc == static_cast<uint32_t>(-1)) {
   1202     CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
   1203     return "<native>";
   1204   } else {
   1205     CodeItemInstructionAccessor accessor = method->DexInstructions();
   1206     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
   1207     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
   1208   }
   1209 }
   1210 
   1211 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
   1212     REQUIRES_SHARED(Locks::mutator_lock_) {
   1213   std::string storage;
   1214   const char* descriptor = klass->GetDescriptor(&storage);
   1215   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
   1216   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
   1217   if (oat_dex_file != nullptr) {
   1218     const OatFile* oat_file = oat_dex_file->GetOatFile();
   1219     const char* dex2oat_cmdline =
   1220         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
   1221     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
   1222         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
   1223   }
   1224 }
   1225 
   1226 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
   1227   // Mimick the search for the caller and dump some data while doing so.
   1228   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
   1229 
   1230   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
   1231   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
   1232 
   1233   constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
   1234   auto** caller_sp = reinterpret_cast<ArtMethod**>(
   1235       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
   1236   constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
   1237   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
   1238       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
   1239   ArtMethod* outer_method = *caller_sp;
   1240 
   1241   if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
   1242     LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
   1243         << " native pc: " << caller_pc << " Instrumented!";
   1244     return;
   1245   }
   1246 
   1247   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
   1248   CHECK(current_code != nullptr);
   1249   CHECK(current_code->IsOptimized());
   1250   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
   1251   CodeInfo code_info(current_code);
   1252   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
   1253   CHECK(stack_map.IsValid());
   1254   uint32_t dex_pc = stack_map.GetDexPc();
   1255 
   1256   // Log the outer method and its associated dex file and class table pointer which can be used
   1257   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
   1258   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1259   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
   1260       << " native pc: " << caller_pc
   1261       << " dex pc: " << dex_pc
   1262       << " dex file: " << outer_method->GetDexFile()->GetLocation()
   1263       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
   1264   DumpB74410240ClassData(outer_method->GetDeclaringClass());
   1265   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
   1266 
   1267   ArtMethod* caller = outer_method;
   1268   BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
   1269   for (InlineInfo inline_info : inline_infos) {
   1270     const char* tag = "";
   1271     dex_pc = inline_info.GetDexPc();
   1272     if (inline_info.EncodesArtMethod()) {
   1273       tag = "encoded ";
   1274       caller = inline_info.GetArtMethod();
   1275     } else {
   1276       uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
   1277       if (dex_pc == static_cast<uint32_t>(-1)) {
   1278         tag = "special ";
   1279         CHECK(inline_info.Equals(inline_infos.back()));
   1280         caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
   1281         CHECK_EQ(caller->GetDexMethodIndex(), method_index);
   1282       } else {
   1283         ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
   1284         ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
   1285         caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
   1286         CHECK(caller != nullptr);
   1287       }
   1288     }
   1289     LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
   1290         << ": " << tag << caller->PrettyMethod()
   1291         << " dex pc: " << dex_pc
   1292         << " dex file: " << caller->GetDexFile()->GetLocation()
   1293         << " class table: "
   1294         << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
   1295     DumpB74410240ClassData(caller->GetDeclaringClass());
   1296     LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
   1297   }
   1298 }
   1299 
   1300 // Lazily resolve a method for quick. Called by stub code.
   1301 extern "C" const void* artQuickResolutionTrampoline(
   1302     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
   1303     REQUIRES_SHARED(Locks::mutator_lock_) {
   1304   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
   1305   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
   1306   // does not have the same stack layout as the callee-save method).
   1307   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
   1308   // Start new JNI local reference state
   1309   JNIEnvExt* env = self->GetJniEnv();
   1310   ScopedObjectAccessUnchecked soa(env);
   1311   ScopedJniEnvLocalRefState env_state(env);
   1312   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
   1313 
   1314   // Compute details about the called method (avoid GCs)
   1315   ClassLinker* linker = Runtime::Current()->GetClassLinker();
   1316   InvokeType invoke_type;
   1317   MethodReference called_method(nullptr, 0);
   1318   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
   1319   ArtMethod* caller = nullptr;
   1320   if (!called_method_known_on_entry) {
   1321     caller = QuickArgumentVisitor::GetCallingMethod(sp);
   1322     called_method.dex_file = caller->GetDexFile();
   1323 
   1324     {
   1325       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   1326       CodeItemInstructionAccessor accessor(caller->DexInstructions());
   1327       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
   1328       const Instruction& instr = accessor.InstructionAt(dex_pc);
   1329       Instruction::Code instr_code = instr.Opcode();
   1330       bool is_range;
   1331       switch (instr_code) {
   1332         case Instruction::INVOKE_DIRECT:
   1333           invoke_type = kDirect;
   1334           is_range = false;
   1335           break;
   1336         case Instruction::INVOKE_DIRECT_RANGE:
   1337           invoke_type = kDirect;
   1338           is_range = true;
   1339           break;
   1340         case Instruction::INVOKE_STATIC:
   1341           invoke_type = kStatic;
   1342           is_range = false;
   1343           break;
   1344         case Instruction::INVOKE_STATIC_RANGE:
   1345           invoke_type = kStatic;
   1346           is_range = true;
   1347           break;
   1348         case Instruction::INVOKE_SUPER:
   1349           invoke_type = kSuper;
   1350           is_range = false;
   1351           break;
   1352         case Instruction::INVOKE_SUPER_RANGE:
   1353           invoke_type = kSuper;
   1354           is_range = true;
   1355           break;
   1356         case Instruction::INVOKE_VIRTUAL:
   1357           invoke_type = kVirtual;
   1358           is_range = false;
   1359           break;
   1360         case Instruction::INVOKE_VIRTUAL_RANGE:
   1361           invoke_type = kVirtual;
   1362           is_range = true;
   1363           break;
   1364         case Instruction::INVOKE_INTERFACE:
   1365           invoke_type = kInterface;
   1366           is_range = false;
   1367           break;
   1368         case Instruction::INVOKE_INTERFACE_RANGE:
   1369           invoke_type = kInterface;
   1370           is_range = true;
   1371           break;
   1372         default:
   1373           DumpB74410240DebugData(sp);
   1374           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
   1375           UNREACHABLE();
   1376       }
   1377       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
   1378       VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
   1379                 << called_method.index;
   1380     }
   1381   } else {
   1382     invoke_type = kStatic;
   1383     called_method.dex_file = called->GetDexFile();
   1384     called_method.index = called->GetDexMethodIndex();
   1385   }
   1386   uint32_t shorty_len;
   1387   const char* shorty =
   1388       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
   1389   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
   1390   visitor.VisitArguments();
   1391   self->EndAssertNoThreadSuspension(old_cause);
   1392   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
   1393   // Resolve method filling in dex cache.
   1394   if (!called_method_known_on_entry) {
   1395     StackHandleScope<1> hs(self);
   1396     mirror::Object* dummy = nullptr;
   1397     HandleWrapper<mirror::Object> h_receiver(
   1398         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
   1399     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
   1400     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
   1401         self, called_method.index, caller, invoke_type);
   1402 
   1403     // Update .bss entry in oat file if any.
   1404     if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
   1405       size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
   1406           called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
   1407           called_method.index,
   1408           called_method.dex_file->NumMethodIds(),
   1409           static_cast<size_t>(kRuntimePointerSize));
   1410       if (bss_offset != IndexBssMappingLookup::npos) {
   1411         DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
   1412         const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
   1413         ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
   1414             oat_file->BssBegin() + bss_offset));
   1415         DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
   1416         DCHECK_LT(method_entry,
   1417                   oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
   1418         *method_entry = called;
   1419       }
   1420     }
   1421   }
   1422   const void* code = nullptr;
   1423   if (LIKELY(!self->IsExceptionPending())) {
   1424     // Incompatible class change should have been handled in resolve method.
   1425     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
   1426         << called->PrettyMethod() << " " << invoke_type;
   1427     if (virtual_or_interface || invoke_type == kSuper) {
   1428       // Refine called method based on receiver for kVirtual/kInterface, and
   1429       // caller for kSuper.
   1430       ArtMethod* orig_called = called;
   1431       if (invoke_type == kVirtual) {
   1432         CHECK(receiver != nullptr) << invoke_type;
   1433         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
   1434       } else if (invoke_type == kInterface) {
   1435         CHECK(receiver != nullptr) << invoke_type;
   1436         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
   1437       } else {
   1438         DCHECK_EQ(invoke_type, kSuper);
   1439         CHECK(caller != nullptr) << invoke_type;
   1440         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
   1441             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
   1442         if (ref_class->IsInterface()) {
   1443           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
   1444         } else {
   1445           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
   1446               called->GetMethodIndex(), kRuntimePointerSize);
   1447         }
   1448       }
   1449 
   1450       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
   1451                                << mirror::Object::PrettyTypeOf(receiver) << " "
   1452                                << invoke_type << " " << orig_called->GetVtableIndex();
   1453     }
   1454 
   1455     // Ensure that the called method's class is initialized.
   1456     StackHandleScope<1> hs(soa.Self());
   1457     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
   1458     linker->EnsureInitialized(soa.Self(), called_class, true, true);
   1459     bool force_interpreter = self->IsForceInterpreter() && !called->IsNative();
   1460     if (LIKELY(called_class->IsInitialized())) {
   1461       if (UNLIKELY(force_interpreter ||
   1462                    Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1463         // If we are single-stepping or the called method is deoptimized (by a
   1464         // breakpoint, for example), then we have to execute the called method
   1465         // with the interpreter.
   1466         code = GetQuickToInterpreterBridge();
   1467       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
   1468         // If the caller is deoptimized (by a breakpoint, for example), we have to
   1469         // continue its execution with interpreter when returning from the called
   1470         // method. Because we do not want to execute the called method with the
   1471         // interpreter, we wrap its execution into the instrumentation stubs.
   1472         // When the called method returns, it will execute the instrumentation
   1473         // exit hook that will determine the need of the interpreter with a call
   1474         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
   1475         // it is needed.
   1476         code = GetQuickInstrumentationEntryPoint();
   1477       } else {
   1478         code = called->GetEntryPointFromQuickCompiledCode();
   1479       }
   1480     } else if (called_class->IsInitializing()) {
   1481       if (UNLIKELY(force_interpreter ||
   1482                    Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1483         // If we are single-stepping or the called method is deoptimized (by a
   1484         // breakpoint, for example), then we have to execute the called method
   1485         // with the interpreter.
   1486         code = GetQuickToInterpreterBridge();
   1487       } else if (invoke_type == kStatic) {
   1488         // Class is still initializing, go to JIT or oat and grab code (trampoline must be
   1489         // left in place until class is initialized to stop races between threads).
   1490         if (Runtime::Current()->GetJit() != nullptr) {
   1491           code = Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteSavedEntryPoint(called);
   1492         }
   1493         if (code == nullptr) {
   1494           code = linker->GetQuickOatCodeFor(called);
   1495         }
   1496       } else {
   1497         // No trampoline for non-static methods.
   1498         code = called->GetEntryPointFromQuickCompiledCode();
   1499       }
   1500     } else {
   1501       DCHECK(called_class->IsErroneous());
   1502     }
   1503   }
   1504   CHECK_EQ(code == nullptr, self->IsExceptionPending());
   1505   // Fixup any locally saved objects may have moved during a GC.
   1506   visitor.FixupReferences();
   1507   // Place called method in callee-save frame to be placed as first argument to quick method.
   1508   *sp = called;
   1509 
   1510   return code;
   1511 }
   1512 
   1513 /*
   1514  * This class uses a couple of observations to unite the different calling conventions through
   1515  * a few constants.
   1516  *
   1517  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
   1518  *    possible alignment.
   1519  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
   1520  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
   1521  *    when we have to split things
   1522  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
   1523  *    and we can use Int handling directly.
   1524  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
   1525  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
   1526  *    extension should be compatible with Aarch64, which mandates copying the available bits
   1527  *    into LSB and leaving the rest unspecified.
   1528  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
   1529  *    the stack.
   1530  * 6) There is only little endian.
   1531  *
   1532  *
   1533  * Actual work is supposed to be done in a delegate of the template type. The interface is as
   1534  * follows:
   1535  *
   1536  * void PushGpr(uintptr_t):   Add a value for the next GPR
   1537  *
   1538  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
   1539  *                            padding, that is, think the architecture is 32b and aligns 64b.
   1540  *
   1541  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
   1542  *                            split this if necessary. The current state will have aligned, if
   1543  *                            necessary.
   1544  *
   1545  * void PushStack(uintptr_t): Push a value to the stack.
   1546  *
   1547  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
   1548  *                                          as this might be important for null initialization.
   1549  *                                          Must return the jobject, that is, the reference to the
   1550  *                                          entry in the HandleScope (nullptr if necessary).
   1551  *
   1552  */
   1553 template<class T> class BuildNativeCallFrameStateMachine {
   1554  public:
   1555 #if defined(__arm__)
   1556   // TODO: These are all dummy values!
   1557   static constexpr bool kNativeSoftFloatAbi = true;
   1558   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
   1559   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1560 
   1561   static constexpr size_t kRegistersNeededForLong = 2;
   1562   static constexpr size_t kRegistersNeededForDouble = 2;
   1563   static constexpr bool kMultiRegistersAligned = true;
   1564   static constexpr bool kMultiFPRegistersWidened = false;
   1565   static constexpr bool kMultiGPRegistersWidened = false;
   1566   static constexpr bool kAlignLongOnStack = true;
   1567   static constexpr bool kAlignDoubleOnStack = true;
   1568 #elif defined(__aarch64__)
   1569   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1570   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
   1571   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1572 
   1573   static constexpr size_t kRegistersNeededForLong = 1;
   1574   static constexpr size_t kRegistersNeededForDouble = 1;
   1575   static constexpr bool kMultiRegistersAligned = false;
   1576   static constexpr bool kMultiFPRegistersWidened = false;
   1577   static constexpr bool kMultiGPRegistersWidened = false;
   1578   static constexpr bool kAlignLongOnStack = false;
   1579   static constexpr bool kAlignDoubleOnStack = false;
   1580 #elif defined(__mips__) && !defined(__LP64__)
   1581   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
   1582   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
   1583   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1584 
   1585   static constexpr size_t kRegistersNeededForLong = 2;
   1586   static constexpr size_t kRegistersNeededForDouble = 2;
   1587   static constexpr bool kMultiRegistersAligned = true;
   1588   static constexpr bool kMultiFPRegistersWidened = true;
   1589   static constexpr bool kMultiGPRegistersWidened = false;
   1590   static constexpr bool kAlignLongOnStack = true;
   1591   static constexpr bool kAlignDoubleOnStack = true;
   1592 #elif defined(__mips__) && defined(__LP64__)
   1593   // Let the code prepare GPRs only and we will load the FPRs with same data.
   1594   static constexpr bool kNativeSoftFloatAbi = true;
   1595   static constexpr size_t kNumNativeGprArgs = 8;
   1596   static constexpr size_t kNumNativeFprArgs = 0;
   1597 
   1598   static constexpr size_t kRegistersNeededForLong = 1;
   1599   static constexpr size_t kRegistersNeededForDouble = 1;
   1600   static constexpr bool kMultiRegistersAligned = false;
   1601   static constexpr bool kMultiFPRegistersWidened = false;
   1602   static constexpr bool kMultiGPRegistersWidened = true;
   1603   static constexpr bool kAlignLongOnStack = false;
   1604   static constexpr bool kAlignDoubleOnStack = false;
   1605 #elif defined(__i386__)
   1606   // TODO: Check these!
   1607   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
   1608   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
   1609   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
   1610 
   1611   static constexpr size_t kRegistersNeededForLong = 2;
   1612   static constexpr size_t kRegistersNeededForDouble = 2;
   1613   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
   1614   static constexpr bool kMultiFPRegistersWidened = false;
   1615   static constexpr bool kMultiGPRegistersWidened = false;
   1616   static constexpr bool kAlignLongOnStack = false;
   1617   static constexpr bool kAlignDoubleOnStack = false;
   1618 #elif defined(__x86_64__)
   1619   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1620   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
   1621   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1622 
   1623   static constexpr size_t kRegistersNeededForLong = 1;
   1624   static constexpr size_t kRegistersNeededForDouble = 1;
   1625   static constexpr bool kMultiRegistersAligned = false;
   1626   static constexpr bool kMultiFPRegistersWidened = false;
   1627   static constexpr bool kMultiGPRegistersWidened = false;
   1628   static constexpr bool kAlignLongOnStack = false;
   1629   static constexpr bool kAlignDoubleOnStack = false;
   1630 #else
   1631 #error "Unsupported architecture"
   1632 #endif
   1633 
   1634  public:
   1635   explicit BuildNativeCallFrameStateMachine(T* delegate)
   1636       : gpr_index_(kNumNativeGprArgs),
   1637         fpr_index_(kNumNativeFprArgs),
   1638         stack_entries_(0),
   1639         delegate_(delegate) {
   1640     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
   1641     // the next register is even; counting down is just to make the compiler happy...
   1642     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
   1643     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
   1644   }
   1645 
   1646   virtual ~BuildNativeCallFrameStateMachine() {}
   1647 
   1648   bool HavePointerGpr() const {
   1649     return gpr_index_ > 0;
   1650   }
   1651 
   1652   void AdvancePointer(const void* val) {
   1653     if (HavePointerGpr()) {
   1654       gpr_index_--;
   1655       PushGpr(reinterpret_cast<uintptr_t>(val));
   1656     } else {
   1657       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
   1658       PushStack(reinterpret_cast<uintptr_t>(val));
   1659       gpr_index_ = 0;
   1660     }
   1661   }
   1662 
   1663   bool HaveHandleScopeGpr() const {
   1664     return gpr_index_ > 0;
   1665   }
   1666 
   1667   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
   1668     uintptr_t handle = PushHandle(ptr);
   1669     if (HaveHandleScopeGpr()) {
   1670       gpr_index_--;
   1671       PushGpr(handle);
   1672     } else {
   1673       stack_entries_++;
   1674       PushStack(handle);
   1675       gpr_index_ = 0;
   1676     }
   1677   }
   1678 
   1679   bool HaveIntGpr() const {
   1680     return gpr_index_ > 0;
   1681   }
   1682 
   1683   void AdvanceInt(uint32_t val) {
   1684     if (HaveIntGpr()) {
   1685       gpr_index_--;
   1686       if (kMultiGPRegistersWidened) {
   1687         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1688         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1689       } else {
   1690         PushGpr(val);
   1691       }
   1692     } else {
   1693       stack_entries_++;
   1694       if (kMultiGPRegistersWidened) {
   1695         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1696         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1697       } else {
   1698         PushStack(val);
   1699       }
   1700       gpr_index_ = 0;
   1701     }
   1702   }
   1703 
   1704   bool HaveLongGpr() const {
   1705     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
   1706   }
   1707 
   1708   bool LongGprNeedsPadding() const {
   1709     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1710         kAlignLongOnStack &&                  // and when it needs alignment
   1711         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
   1712   }
   1713 
   1714   bool LongStackNeedsPadding() const {
   1715     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1716         kAlignLongOnStack &&                  // and when it needs 8B alignment
   1717         (stack_entries_ & 1) == 1;            // counter is odd
   1718   }
   1719 
   1720   void AdvanceLong(uint64_t val) {
   1721     if (HaveLongGpr()) {
   1722       if (LongGprNeedsPadding()) {
   1723         PushGpr(0);
   1724         gpr_index_--;
   1725       }
   1726       if (kRegistersNeededForLong == 1) {
   1727         PushGpr(static_cast<uintptr_t>(val));
   1728       } else {
   1729         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1730         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1731       }
   1732       gpr_index_ -= kRegistersNeededForLong;
   1733     } else {
   1734       if (LongStackNeedsPadding()) {
   1735         PushStack(0);
   1736         stack_entries_++;
   1737       }
   1738       if (kRegistersNeededForLong == 1) {
   1739         PushStack(static_cast<uintptr_t>(val));
   1740         stack_entries_++;
   1741       } else {
   1742         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1743         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1744         stack_entries_ += 2;
   1745       }
   1746       gpr_index_ = 0;
   1747     }
   1748   }
   1749 
   1750   bool HaveFloatFpr() const {
   1751     return fpr_index_ > 0;
   1752   }
   1753 
   1754   void AdvanceFloat(float val) {
   1755     if (kNativeSoftFloatAbi) {
   1756       AdvanceInt(bit_cast<uint32_t, float>(val));
   1757     } else {
   1758       if (HaveFloatFpr()) {
   1759         fpr_index_--;
   1760         if (kRegistersNeededForDouble == 1) {
   1761           if (kMultiFPRegistersWidened) {
   1762             PushFpr8(bit_cast<uint64_t, double>(val));
   1763           } else {
   1764             // No widening, just use the bits.
   1765             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
   1766           }
   1767         } else {
   1768           PushFpr4(val);
   1769         }
   1770       } else {
   1771         stack_entries_++;
   1772         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
   1773           // Need to widen before storing: Note the "double" in the template instantiation.
   1774           // Note: We need to jump through those hoops to make the compiler happy.
   1775           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
   1776           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
   1777         } else {
   1778           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
   1779         }
   1780         fpr_index_ = 0;
   1781       }
   1782     }
   1783   }
   1784 
   1785   bool HaveDoubleFpr() const {
   1786     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
   1787   }
   1788 
   1789   bool DoubleFprNeedsPadding() const {
   1790     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1791         kAlignDoubleOnStack &&                  // and when it needs alignment
   1792         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
   1793   }
   1794 
   1795   bool DoubleStackNeedsPadding() const {
   1796     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1797         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
   1798         (stack_entries_ & 1) == 1;              // counter is odd
   1799   }
   1800 
   1801   void AdvanceDouble(uint64_t val) {
   1802     if (kNativeSoftFloatAbi) {
   1803       AdvanceLong(val);
   1804     } else {
   1805       if (HaveDoubleFpr()) {
   1806         if (DoubleFprNeedsPadding()) {
   1807           PushFpr4(0);
   1808           fpr_index_--;
   1809         }
   1810         PushFpr8(val);
   1811         fpr_index_ -= kRegistersNeededForDouble;
   1812       } else {
   1813         if (DoubleStackNeedsPadding()) {
   1814           PushStack(0);
   1815           stack_entries_++;
   1816         }
   1817         if (kRegistersNeededForDouble == 1) {
   1818           PushStack(static_cast<uintptr_t>(val));
   1819           stack_entries_++;
   1820         } else {
   1821           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1822           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1823           stack_entries_ += 2;
   1824         }
   1825         fpr_index_ = 0;
   1826       }
   1827     }
   1828   }
   1829 
   1830   uint32_t GetStackEntries() const {
   1831     return stack_entries_;
   1832   }
   1833 
   1834   uint32_t GetNumberOfUsedGprs() const {
   1835     return kNumNativeGprArgs - gpr_index_;
   1836   }
   1837 
   1838   uint32_t GetNumberOfUsedFprs() const {
   1839     return kNumNativeFprArgs - fpr_index_;
   1840   }
   1841 
   1842  private:
   1843   void PushGpr(uintptr_t val) {
   1844     delegate_->PushGpr(val);
   1845   }
   1846   void PushFpr4(float val) {
   1847     delegate_->PushFpr4(val);
   1848   }
   1849   void PushFpr8(uint64_t val) {
   1850     delegate_->PushFpr8(val);
   1851   }
   1852   void PushStack(uintptr_t val) {
   1853     delegate_->PushStack(val);
   1854   }
   1855   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
   1856     return delegate_->PushHandle(ref);
   1857   }
   1858 
   1859   uint32_t gpr_index_;      // Number of free GPRs
   1860   uint32_t fpr_index_;      // Number of free FPRs
   1861   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
   1862                             // extended
   1863   T* const delegate_;             // What Push implementation gets called
   1864 };
   1865 
   1866 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
   1867 // in subclasses.
   1868 //
   1869 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
   1870 // them with handles.
   1871 class ComputeNativeCallFrameSize {
   1872  public:
   1873   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
   1874 
   1875   virtual ~ComputeNativeCallFrameSize() {}
   1876 
   1877   uint32_t GetStackSize() const {
   1878     return num_stack_entries_ * sizeof(uintptr_t);
   1879   }
   1880 
   1881   uint8_t* LayoutCallStack(uint8_t* sp8) const {
   1882     sp8 -= GetStackSize();
   1883     // Align by kStackAlignment.
   1884     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   1885     return sp8;
   1886   }
   1887 
   1888   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
   1889       const {
   1890     // Assumption is OK right now, as we have soft-float arm
   1891     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
   1892     sp8 -= fregs * sizeof(uintptr_t);
   1893     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
   1894     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
   1895     sp8 -= iregs * sizeof(uintptr_t);
   1896     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
   1897     return sp8;
   1898   }
   1899 
   1900   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
   1901                             uint32_t** start_fpr) const {
   1902     // Native call stack.
   1903     sp8 = LayoutCallStack(sp8);
   1904     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
   1905 
   1906     // Put fprs and gprs below.
   1907     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
   1908 
   1909     // Return the new bottom.
   1910     return sp8;
   1911   }
   1912 
   1913   virtual void WalkHeader(
   1914       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
   1915       REQUIRES_SHARED(Locks::mutator_lock_) {
   1916   }
   1917 
   1918   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
   1919     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
   1920 
   1921     WalkHeader(&sm);
   1922 
   1923     for (uint32_t i = 1; i < shorty_len; ++i) {
   1924       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
   1925       switch (cur_type_) {
   1926         case Primitive::kPrimNot:
   1927           // TODO: fix abuse of mirror types.
   1928           sm.AdvanceHandleScope(
   1929               reinterpret_cast<mirror::Object*>(0x12345678));
   1930           break;
   1931 
   1932         case Primitive::kPrimBoolean:
   1933         case Primitive::kPrimByte:
   1934         case Primitive::kPrimChar:
   1935         case Primitive::kPrimShort:
   1936         case Primitive::kPrimInt:
   1937           sm.AdvanceInt(0);
   1938           break;
   1939         case Primitive::kPrimFloat:
   1940           sm.AdvanceFloat(0);
   1941           break;
   1942         case Primitive::kPrimDouble:
   1943           sm.AdvanceDouble(0);
   1944           break;
   1945         case Primitive::kPrimLong:
   1946           sm.AdvanceLong(0);
   1947           break;
   1948         default:
   1949           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
   1950           UNREACHABLE();
   1951       }
   1952     }
   1953 
   1954     num_stack_entries_ = sm.GetStackEntries();
   1955   }
   1956 
   1957   void PushGpr(uintptr_t /* val */) {
   1958     // not optimizing registers, yet
   1959   }
   1960 
   1961   void PushFpr4(float /* val */) {
   1962     // not optimizing registers, yet
   1963   }
   1964 
   1965   void PushFpr8(uint64_t /* val */) {
   1966     // not optimizing registers, yet
   1967   }
   1968 
   1969   void PushStack(uintptr_t /* val */) {
   1970     // counting is already done in the superclass
   1971   }
   1972 
   1973   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
   1974     return reinterpret_cast<uintptr_t>(nullptr);
   1975   }
   1976 
   1977  protected:
   1978   uint32_t num_stack_entries_;
   1979 };
   1980 
   1981 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
   1982  public:
   1983   explicit ComputeGenericJniFrameSize(bool critical_native)
   1984     : num_handle_scope_references_(0), critical_native_(critical_native) {}
   1985 
   1986   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
   1987   // is at *m = sp. Will update to point to the bottom of the save frame.
   1988   //
   1989   // Note: assumes ComputeAll() has been run before.
   1990   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   1991       REQUIRES_SHARED(Locks::mutator_lock_) {
   1992     ArtMethod* method = **m;
   1993 
   1994     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
   1995 
   1996     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
   1997 
   1998     // First, fix up the layout of the callee-save frame.
   1999     // We have to squeeze in the HandleScope, and relocate the method pointer.
   2000 
   2001     // "Free" the slot for the method.
   2002     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
   2003 
   2004     // Under the callee saves put handle scope and new method stack reference.
   2005     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
   2006     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
   2007 
   2008     sp8 -= scope_and_method;
   2009     // Align by kStackAlignment.
   2010     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   2011 
   2012     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
   2013     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
   2014                                         num_handle_scope_references_);
   2015 
   2016     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
   2017     uint8_t* method_pointer = sp8;
   2018     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
   2019     *new_method_ref = method;
   2020     *m = new_method_ref;
   2021   }
   2022 
   2023   // Adds space for the cookie. Note: may leave stack unaligned.
   2024   void LayoutCookie(uint8_t** sp) const {
   2025     // Reference cookie and padding
   2026     *sp -= 8;
   2027   }
   2028 
   2029   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
   2030   // Returns the new bottom. Note: this may be unaligned.
   2031   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   2032       REQUIRES_SHARED(Locks::mutator_lock_) {
   2033     // First, fix up the layout of the callee-save frame.
   2034     // We have to squeeze in the HandleScope, and relocate the method pointer.
   2035     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
   2036 
   2037     // The bottom of the callee-save frame is now where the method is, *m.
   2038     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
   2039 
   2040     // Add space for cookie.
   2041     LayoutCookie(&sp8);
   2042 
   2043     return sp8;
   2044   }
   2045 
   2046   // WARNING: After this, *sp won't be pointing to the method anymore!
   2047   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
   2048                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
   2049                          uint32_t** start_fpr)
   2050       REQUIRES_SHARED(Locks::mutator_lock_) {
   2051     Walk(shorty, shorty_len);
   2052 
   2053     // JNI part.
   2054     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
   2055 
   2056     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
   2057 
   2058     // Return the new bottom.
   2059     return sp8;
   2060   }
   2061 
   2062   uintptr_t PushHandle(mirror::Object* /* ptr */) override;
   2063 
   2064   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
   2065   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
   2066       REQUIRES_SHARED(Locks::mutator_lock_);
   2067 
   2068  private:
   2069   uint32_t num_handle_scope_references_;
   2070   const bool critical_native_;
   2071 };
   2072 
   2073 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
   2074   num_handle_scope_references_++;
   2075   return reinterpret_cast<uintptr_t>(nullptr);
   2076 }
   2077 
   2078 void ComputeGenericJniFrameSize::WalkHeader(
   2079     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
   2080   // First 2 parameters are always excluded for @CriticalNative.
   2081   if (UNLIKELY(critical_native_)) {
   2082     return;
   2083   }
   2084 
   2085   // JNIEnv
   2086   sm->AdvancePointer(nullptr);
   2087 
   2088   // Class object or this as first argument
   2089   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
   2090 }
   2091 
   2092 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
   2093 // the template requirements of BuildGenericJniFrameStateMachine.
   2094 class FillNativeCall {
   2095  public:
   2096   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
   2097       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
   2098 
   2099   virtual ~FillNativeCall() {}
   2100 
   2101   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
   2102     cur_gpr_reg_ = gpr_regs;
   2103     cur_fpr_reg_ = fpr_regs;
   2104     cur_stack_arg_ = stack_args;
   2105   }
   2106 
   2107   void PushGpr(uintptr_t val) {
   2108     *cur_gpr_reg_ = val;
   2109     cur_gpr_reg_++;
   2110   }
   2111 
   2112   void PushFpr4(float val) {
   2113     *cur_fpr_reg_ = val;
   2114     cur_fpr_reg_++;
   2115   }
   2116 
   2117   void PushFpr8(uint64_t val) {
   2118     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
   2119     *tmp = val;
   2120     cur_fpr_reg_ += 2;
   2121   }
   2122 
   2123   void PushStack(uintptr_t val) {
   2124     *cur_stack_arg_ = val;
   2125     cur_stack_arg_++;
   2126   }
   2127 
   2128   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
   2129     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
   2130     UNREACHABLE();
   2131   }
   2132 
   2133  private:
   2134   uintptr_t* cur_gpr_reg_;
   2135   uint32_t* cur_fpr_reg_;
   2136   uintptr_t* cur_stack_arg_;
   2137 };
   2138 
   2139 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
   2140 // of transitioning into native code.
   2141 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
   2142  public:
   2143   BuildGenericJniFrameVisitor(Thread* self,
   2144                               bool is_static,
   2145                               bool critical_native,
   2146                               const char* shorty,
   2147                               uint32_t shorty_len,
   2148                               ArtMethod*** sp)
   2149      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
   2150        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
   2151        sm_(&jni_call_) {
   2152     ComputeGenericJniFrameSize fsc(critical_native);
   2153     uintptr_t* start_gpr_reg;
   2154     uint32_t* start_fpr_reg;
   2155     uintptr_t* start_stack_arg;
   2156     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
   2157                                              &handle_scope_,
   2158                                              &start_stack_arg,
   2159                                              &start_gpr_reg, &start_fpr_reg);
   2160 
   2161     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
   2162 
   2163     // First 2 parameters are always excluded for CriticalNative methods.
   2164     if (LIKELY(!critical_native)) {
   2165       // jni environment is always first argument
   2166       sm_.AdvancePointer(self->GetJniEnv());
   2167 
   2168       if (is_static) {
   2169         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass().Ptr());
   2170       }  // else "this" reference is already handled by QuickArgumentVisitor.
   2171     }
   2172   }
   2173 
   2174   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
   2175 
   2176   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
   2177 
   2178   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
   2179     return handle_scope_->GetHandle(0).GetReference();
   2180   }
   2181 
   2182   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2183     return handle_scope_->GetHandle(0).ToJObject();
   2184   }
   2185 
   2186   void* GetBottomOfUsedArea() const {
   2187     return bottom_of_used_area_;
   2188   }
   2189 
   2190  private:
   2191   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
   2192   class FillJniCall final : public FillNativeCall {
   2193    public:
   2194     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
   2195                 HandleScope* handle_scope, bool critical_native)
   2196       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
   2197                        handle_scope_(handle_scope),
   2198         cur_entry_(0),
   2199         critical_native_(critical_native) {}
   2200 
   2201     uintptr_t PushHandle(mirror::Object* ref) override REQUIRES_SHARED(Locks::mutator_lock_);
   2202 
   2203     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
   2204       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
   2205       handle_scope_ = scope;
   2206       cur_entry_ = 0U;
   2207     }
   2208 
   2209     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
   2210       // Initialize padding entries.
   2211       size_t expected_slots = handle_scope_->NumberOfReferences();
   2212       while (cur_entry_ < expected_slots) {
   2213         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
   2214       }
   2215 
   2216       if (!critical_native_) {
   2217         // Non-critical natives have at least the self class (jclass) or this (jobject).
   2218         DCHECK_NE(cur_entry_, 0U);
   2219       }
   2220     }
   2221 
   2222     bool CriticalNative() const {
   2223       return critical_native_;
   2224     }
   2225 
   2226    private:
   2227     HandleScope* handle_scope_;
   2228     size_t cur_entry_;
   2229     const bool critical_native_;
   2230   };
   2231 
   2232   HandleScope* handle_scope_;
   2233   FillJniCall jni_call_;
   2234   void* bottom_of_used_area_;
   2235 
   2236   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
   2237 
   2238   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
   2239 };
   2240 
   2241 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
   2242   uintptr_t tmp;
   2243   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
   2244   h.Assign(ref);
   2245   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
   2246   cur_entry_++;
   2247   return tmp;
   2248 }
   2249 
   2250 void BuildGenericJniFrameVisitor::Visit() {
   2251   Primitive::Type type = GetParamPrimitiveType();
   2252   switch (type) {
   2253     case Primitive::kPrimLong: {
   2254       jlong long_arg;
   2255       if (IsSplitLongOrDouble()) {
   2256         long_arg = ReadSplitLongParam();
   2257       } else {
   2258         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
   2259       }
   2260       sm_.AdvanceLong(long_arg);
   2261       break;
   2262     }
   2263     case Primitive::kPrimDouble: {
   2264       uint64_t double_arg;
   2265       if (IsSplitLongOrDouble()) {
   2266         // Read into union so that we don't case to a double.
   2267         double_arg = ReadSplitLongParam();
   2268       } else {
   2269         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
   2270       }
   2271       sm_.AdvanceDouble(double_arg);
   2272       break;
   2273     }
   2274     case Primitive::kPrimNot: {
   2275       StackReference<mirror::Object>* stack_ref =
   2276           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   2277       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
   2278       break;
   2279     }
   2280     case Primitive::kPrimFloat:
   2281       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
   2282       break;
   2283     case Primitive::kPrimBoolean:  // Fall-through.
   2284     case Primitive::kPrimByte:     // Fall-through.
   2285     case Primitive::kPrimChar:     // Fall-through.
   2286     case Primitive::kPrimShort:    // Fall-through.
   2287     case Primitive::kPrimInt:      // Fall-through.
   2288       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
   2289       break;
   2290     case Primitive::kPrimVoid:
   2291       LOG(FATAL) << "UNREACHABLE";
   2292       UNREACHABLE();
   2293   }
   2294 }
   2295 
   2296 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
   2297   // Clear out rest of the scope.
   2298   jni_call_.ResetRemainingScopeSlots();
   2299   if (!jni_call_.CriticalNative()) {
   2300     // Install HandleScope.
   2301     self->PushHandleScope(handle_scope_);
   2302   }
   2303 }
   2304 
   2305 #if defined(__arm__) || defined(__aarch64__)
   2306 extern "C" const void* artFindNativeMethod();
   2307 #else
   2308 extern "C" const void* artFindNativeMethod(Thread* self);
   2309 #endif
   2310 
   2311 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
   2312                                             uint32_t cookie,
   2313                                             bool fast_native ATTRIBUTE_UNUSED,
   2314                                             jobject l,
   2315                                             jobject lock) {
   2316   // TODO: add entrypoints for @FastNative returning objects.
   2317   if (lock != nullptr) {
   2318     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
   2319   } else {
   2320     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
   2321   }
   2322 }
   2323 
   2324 static void artQuickGenericJniEndJNINonRef(Thread* self,
   2325                                            uint32_t cookie,
   2326                                            bool fast_native,
   2327                                            jobject lock) {
   2328   if (lock != nullptr) {
   2329     JniMethodEndSynchronized(cookie, lock, self);
   2330     // Ignore "fast_native" here because synchronized functions aren't very fast.
   2331   } else {
   2332     if (UNLIKELY(fast_native)) {
   2333       JniMethodFastEnd(cookie, self);
   2334     } else {
   2335       JniMethodEnd(cookie, self);
   2336     }
   2337   }
   2338 }
   2339 
   2340 /*
   2341  * Initializes an alloca region assumed to be directly below sp for a native call:
   2342  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
   2343  * The final element on the stack is a pointer to the native code.
   2344  *
   2345  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
   2346  * We need to fix this, as the handle scope needs to go into the callee-save frame.
   2347  *
   2348  * The return of this function denotes:
   2349  * 1) How many bytes of the alloca can be released, if the value is non-negative.
   2350  * 2) An error, if the value is negative.
   2351  */
   2352 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
   2353     REQUIRES_SHARED(Locks::mutator_lock_) {
   2354   // Note: We cannot walk the stack properly until fixed up below.
   2355   ArtMethod* called = *sp;
   2356   DCHECK(called->IsNative()) << called->PrettyMethod(true);
   2357   Runtime* runtime = Runtime::Current();
   2358   uint32_t shorty_len = 0;
   2359   const char* shorty = called->GetShorty(&shorty_len);
   2360   bool critical_native = called->IsCriticalNative();
   2361   bool fast_native = called->IsFastNative();
   2362   bool normal_native = !critical_native && !fast_native;
   2363 
   2364   // Run the visitor and update sp.
   2365   BuildGenericJniFrameVisitor visitor(self,
   2366                                       called->IsStatic(),
   2367                                       critical_native,
   2368                                       shorty,
   2369                                       shorty_len,
   2370                                       &sp);
   2371   {
   2372     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
   2373     visitor.VisitArguments();
   2374     // FinalizeHandleScope pushes the handle scope on the thread.
   2375     visitor.FinalizeHandleScope(self);
   2376   }
   2377 
   2378   // Fix up managed-stack things in Thread. After this we can walk the stack.
   2379   self->SetTopOfStackTagged(sp);
   2380 
   2381   self->VerifyStack();
   2382 
   2383   // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
   2384   jit::Jit* jit = runtime->GetJit();
   2385   if (jit != nullptr) {
   2386     jit->MethodEntered(self, called);
   2387   }
   2388 
   2389   uint32_t cookie;
   2390   uint32_t* sp32;
   2391   // Skip calling JniMethodStart for @CriticalNative.
   2392   if (LIKELY(!critical_native)) {
   2393     // Start JNI, save the cookie.
   2394     if (called->IsSynchronized()) {
   2395       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
   2396       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
   2397       if (self->IsExceptionPending()) {
   2398         self->PopHandleScope();
   2399         // A negative value denotes an error.
   2400         return GetTwoWordFailureValue();
   2401       }
   2402     } else {
   2403       if (fast_native) {
   2404         cookie = JniMethodFastStart(self);
   2405       } else {
   2406         DCHECK(normal_native);
   2407         cookie = JniMethodStart(self);
   2408       }
   2409     }
   2410     sp32 = reinterpret_cast<uint32_t*>(sp);
   2411     *(sp32 - 1) = cookie;
   2412   }
   2413 
   2414   // Retrieve the stored native code.
   2415   void const* nativeCode = called->GetEntryPointFromJni();
   2416 
   2417   // There are two cases for the content of nativeCode:
   2418   // 1) Pointer to the native function.
   2419   // 2) Pointer to the trampoline for native code binding.
   2420   // In the second case, we need to execute the binding and continue with the actual native function
   2421   // pointer.
   2422   DCHECK(nativeCode != nullptr);
   2423   if (nativeCode == GetJniDlsymLookupStub()) {
   2424 #if defined(__arm__) || defined(__aarch64__)
   2425     nativeCode = artFindNativeMethod();
   2426 #else
   2427     nativeCode = artFindNativeMethod(self);
   2428 #endif
   2429 
   2430     if (nativeCode == nullptr) {
   2431       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
   2432 
   2433       // @CriticalNative calls do not need to call back into JniMethodEnd.
   2434       if (LIKELY(!critical_native)) {
   2435         // End JNI, as the assembly will move to deliver the exception.
   2436         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
   2437         if (shorty[0] == 'L') {
   2438           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
   2439         } else {
   2440           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
   2441         }
   2442       }
   2443 
   2444       return GetTwoWordFailureValue();
   2445     }
   2446     // Note that the native code pointer will be automatically set by artFindNativeMethod().
   2447   }
   2448 
   2449 #if defined(__mips__) && !defined(__LP64__)
   2450   // On MIPS32 if the first two arguments are floating-point, we need to know their types
   2451   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
   2452   // and load into floating-point registers.
   2453   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
   2454   // view):
   2455   // (1)
   2456   //  |     DOUBLE    |     DOUBLE    | other args, if any
   2457   //  |  F12  |  F13  |  F14  |  F15  |
   2458   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2459   // (2)
   2460   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
   2461   //  |  F12  |  F13  |  F14  |       |
   2462   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2463   // (3)
   2464   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
   2465   //  |  F12  |       |  F14  |  F15  |
   2466   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2467   // (4)
   2468   //  | FLOAT | FLOAT | other args, if any
   2469   //  |  F12  |  F14  |
   2470   //  |  SP+0 |  SP+4 | SP+8
   2471   // As you can see, only the last case (4) is special. In all others we can just
   2472   // load F12/F13 and F14/F15 in the same manner.
   2473   // Set bit 0 of the native code address to 1 in this case (valid code addresses
   2474   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
   2475   if (nativeCode != nullptr &&
   2476       shorty != nullptr &&
   2477       shorty_len >= 3 &&
   2478       shorty[1] == 'F' &&
   2479       shorty[2] == 'F') {
   2480     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
   2481   }
   2482 #endif
   2483 
   2484   VLOG(third_party_jni) << "GenericJNI: "
   2485                         << called->PrettyMethod()
   2486                         << " -> "
   2487                         << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
   2488 
   2489   // Return native code addr(lo) and bottom of alloca address(hi).
   2490   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
   2491                                 reinterpret_cast<uintptr_t>(nativeCode));
   2492 }
   2493 
   2494 // Defined in quick_jni_entrypoints.cc.
   2495 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
   2496                                     jvalue result, uint64_t result_f, ArtMethod* called,
   2497                                     HandleScope* handle_scope);
   2498 /*
   2499  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
   2500  * unlocking.
   2501  */
   2502 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
   2503                                                     jvalue result,
   2504                                                     uint64_t result_f) {
   2505   // We're here just back from a native call. We don't have the shared mutator lock at this point
   2506   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
   2507   // anything that requires a mutator lock before that would cause problems as GC may have the
   2508   // exclusive mutator lock and may be moving objects, etc.
   2509   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
   2510   DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
   2511   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
   2512   ArtMethod* called = *sp;
   2513   uint32_t cookie = *(sp32 - 1);
   2514   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
   2515   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
   2516 }
   2517 
   2518 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
   2519 // for the method pointer.
   2520 //
   2521 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
   2522 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
   2523 
   2524 template <InvokeType type, bool access_check>
   2525 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
   2526                                      ObjPtr<mirror::Object> this_object,
   2527                                      Thread* self,
   2528                                      ArtMethod** sp) {
   2529   ScopedQuickEntrypointChecks sqec(self);
   2530   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
   2531   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2532   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
   2533   if (UNLIKELY(method == nullptr)) {
   2534     const DexFile* dex_file = caller_method->GetDexFile();
   2535     uint32_t shorty_len;
   2536     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
   2537     {
   2538       // Remember the args in case a GC happens in FindMethodFromCode.
   2539       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2540       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
   2541       visitor.VisitArguments();
   2542       method = FindMethodFromCode<type, access_check>(method_idx,
   2543                                                       &this_object,
   2544                                                       caller_method,
   2545                                                       self);
   2546       visitor.FixupReferences();
   2547     }
   2548 
   2549     if (UNLIKELY(method == nullptr)) {
   2550       CHECK(self->IsExceptionPending());
   2551       return GetTwoWordFailureValue();  // Failure.
   2552     }
   2553   }
   2554   DCHECK(!self->IsExceptionPending());
   2555   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2556 
   2557   // When we return, the caller will branch to this address, so it had better not be 0!
   2558   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
   2559                           << " location: "
   2560                           << method->GetDexFile()->GetLocation();
   2561 
   2562   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2563                                 reinterpret_cast<uintptr_t>(method));
   2564 }
   2565 
   2566 // Explicit artInvokeCommon template function declarations to please analysis tool.
   2567 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
   2568   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
   2569   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
   2570       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
   2571 
   2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
   2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
   2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
   2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
   2576 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
   2577 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
   2578 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
   2579 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
   2580 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
   2581 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
   2582 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
   2583 
   2584 // See comments in runtime_support_asm.S
   2585 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
   2586     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2587     REQUIRES_SHARED(Locks::mutator_lock_) {
   2588   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
   2589 }
   2590 
   2591 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
   2592     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2593     REQUIRES_SHARED(Locks::mutator_lock_) {
   2594   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
   2595 }
   2596 
   2597 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
   2598     uint32_t method_idx,
   2599     mirror::Object* this_object ATTRIBUTE_UNUSED,
   2600     Thread* self,
   2601     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
   2602   // For static, this_object is not required and may be random garbage. Don't pass it down so that
   2603   // it doesn't cause ObjPtr alignment failure check.
   2604   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
   2605 }
   2606 
   2607 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
   2608     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2609     REQUIRES_SHARED(Locks::mutator_lock_) {
   2610   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
   2611 }
   2612 
   2613 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
   2614     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2615     REQUIRES_SHARED(Locks::mutator_lock_) {
   2616   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
   2617 }
   2618 
   2619 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
   2620 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
   2621     REQUIRES_SHARED(Locks::mutator_lock_) {
   2622   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
   2623   DCHECK(!referrer->IsProxyMethod());
   2624   ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
   2625       method_index, referrer->GetDexCache(), referrer->GetClassLoader());
   2626   DCHECK(result == nullptr ||
   2627          result->GetDeclaringClass()->IsInterface() ||
   2628          result->GetDeclaringClass() ==
   2629              WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
   2630       << result->PrettyMethod();
   2631   return result;
   2632 }
   2633 
   2634 // Determine target of interface dispatch. The interface method and this object are known non-null.
   2635 // The interface method is the method returned by the dex cache in the conflict trampoline.
   2636 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
   2637                                                       mirror::Object* raw_this_object,
   2638                                                       Thread* self,
   2639                                                       ArtMethod** sp)
   2640     REQUIRES_SHARED(Locks::mutator_lock_) {
   2641   ScopedQuickEntrypointChecks sqec(self);
   2642   StackHandleScope<2> hs(self);
   2643   Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
   2644   Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
   2645 
   2646   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2647   ArtMethod* method = nullptr;
   2648   ImTable* imt = cls->GetImt(kRuntimePointerSize);
   2649 
   2650   if (UNLIKELY(interface_method == nullptr)) {
   2651     // The interface method is unresolved, so resolve it in the dex file of the caller.
   2652     // Fetch the dex_method_idx of the target interface method from the caller.
   2653     uint32_t dex_method_idx;
   2654     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2655     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
   2656     Instruction::Code instr_code = instr.Opcode();
   2657     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
   2658            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
   2659         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
   2660     if (instr_code == Instruction::INVOKE_INTERFACE) {
   2661       dex_method_idx = instr.VRegB_35c();
   2662     } else {
   2663       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
   2664       dex_method_idx = instr.VRegB_3rc();
   2665     }
   2666 
   2667     const DexFile& dex_file = *caller_method->GetDexFile();
   2668     uint32_t shorty_len;
   2669     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
   2670                                                   &shorty_len);
   2671     {
   2672       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
   2673       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2674       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
   2675       visitor.VisitArguments();
   2676       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2677       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
   2678           self, dex_method_idx, caller_method, kInterface);
   2679       visitor.FixupReferences();
   2680     }
   2681 
   2682     if (UNLIKELY(interface_method == nullptr)) {
   2683       CHECK(self->IsExceptionPending());
   2684       return GetTwoWordFailureValue();  // Failure.
   2685     }
   2686   }
   2687 
   2688   DCHECK(!interface_method->IsRuntimeMethod());
   2689   // Look whether we have a match in the ImtConflictTable.
   2690   uint32_t imt_index = interface_method->GetImtIndex();
   2691   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
   2692   if (LIKELY(conflict_method->IsRuntimeMethod())) {
   2693     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
   2694     DCHECK(current_table != nullptr);
   2695     method = current_table->Lookup(interface_method, kRuntimePointerSize);
   2696   } else {
   2697     // It seems we aren't really a conflict method!
   2698     if (kIsDebugBuild) {
   2699       ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
   2700       CHECK_EQ(conflict_method, m)
   2701           << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
   2702           << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
   2703     }
   2704     method = conflict_method;
   2705   }
   2706   if (method != nullptr) {
   2707     return GetTwoWordSuccessValue(
   2708         reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
   2709         reinterpret_cast<uintptr_t>(method));
   2710   }
   2711 
   2712   // No match, use the IfTable.
   2713   method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
   2714   if (UNLIKELY(method == nullptr)) {
   2715     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
   2716         interface_method, this_object.Get(), caller_method);
   2717     return GetTwoWordFailureValue();  // Failure.
   2718   }
   2719 
   2720   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
   2721   // We create a new table with the new pair { interface_method, method }.
   2722   DCHECK(conflict_method->IsRuntimeMethod());
   2723   ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
   2724       cls.Get(),
   2725       conflict_method,
   2726       interface_method,
   2727       method,
   2728       /*force_new_conflict_method=*/false);
   2729   if (new_conflict_method != conflict_method) {
   2730     // Update the IMT if we create a new conflict method. No fence needed here, as the
   2731     // data is consistent.
   2732     imt->Set(imt_index,
   2733              new_conflict_method,
   2734              kRuntimePointerSize);
   2735   }
   2736 
   2737   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2738 
   2739   // When we return, the caller will branch to this address, so it had better not be 0!
   2740   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
   2741                           << " location: " << method->GetDexFile()->GetLocation();
   2742 
   2743   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2744                                 reinterpret_cast<uintptr_t>(method));
   2745 }
   2746 
   2747 // Returns uint64_t representing raw bits from JValue.
   2748 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
   2749     REQUIRES_SHARED(Locks::mutator_lock_) {
   2750   ScopedQuickEntrypointChecks sqec(self);
   2751   DCHECK(raw_receiver != nullptr);
   2752   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
   2753 
   2754   // Start new JNI local reference state
   2755   JNIEnvExt* env = self->GetJniEnv();
   2756   ScopedObjectAccessUnchecked soa(env);
   2757   ScopedJniEnvLocalRefState env_state(env);
   2758   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
   2759 
   2760   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
   2761   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2762   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2763   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
   2764   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
   2765          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
   2766   const dex::ProtoIndex proto_idx(inst.VRegH());
   2767   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
   2768   const size_t shorty_length = strlen(shorty);
   2769   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
   2770   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
   2771   gc_visitor.VisitArguments();
   2772 
   2773   // Wrap raw_receiver in a Handle for safety.
   2774   StackHandleScope<3> hs(self);
   2775   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
   2776   raw_receiver = nullptr;
   2777   self->EndAssertNoThreadSuspension(old_cause);
   2778 
   2779   // Resolve method.
   2780   ClassLinker* linker = Runtime::Current()->GetClassLinker();
   2781   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
   2782       self, inst.VRegB(), caller_method, kVirtual);
   2783 
   2784   Handle<mirror::MethodType> method_type(
   2785       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
   2786   if (UNLIKELY(method_type.IsNull())) {
   2787     // This implies we couldn't resolve one or more types in this method handle.
   2788     CHECK(self->IsExceptionPending());
   2789     return 0UL;
   2790   }
   2791 
   2792   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
   2793   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
   2794 
   2795   // Fix references before constructing the shadow frame.
   2796   gc_visitor.FixupReferences();
   2797 
   2798   // Construct shadow frame placing arguments consecutively from |first_arg|.
   2799   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
   2800   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
   2801   const size_t first_arg = 0;
   2802   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
   2803       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
   2804   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
   2805   ScopedStackedShadowFramePusher
   2806       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
   2807   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
   2808                                                     kMethodIsStatic,
   2809                                                     shorty,
   2810                                                     strlen(shorty),
   2811                                                     shadow_frame,
   2812                                                     first_arg);
   2813   shadow_frame_builder.VisitArguments();
   2814 
   2815   // Push a transition back into managed code onto the linked list in thread.
   2816   ManagedStack fragment;
   2817   self->PushManagedStackFragment(&fragment);
   2818 
   2819   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
   2820   // consecutive order.
   2821   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
   2822   Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
   2823   JValue result;
   2824   bool success = false;
   2825   if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
   2826     Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
   2827         ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
   2828     if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
   2829       success = MethodHandleInvokeExact(self,
   2830                                         *shadow_frame,
   2831                                         method_handle,
   2832                                         method_type,
   2833                                         &operands,
   2834                                         &result);
   2835     } else {
   2836       DCHECK_EQ(static_cast<uint32_t>(intrinsic),
   2837                 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
   2838       success = MethodHandleInvoke(self,
   2839                                    *shadow_frame,
   2840                                    method_handle,
   2841                                    method_type,
   2842                                    &operands,
   2843                                    &result);
   2844     }
   2845   } else {
   2846     DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
   2847     Handle<mirror::VarHandle> var_handle(hs.NewHandle(
   2848         ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
   2849     mirror::VarHandle::AccessMode access_mode =
   2850         mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
   2851     success = VarHandleInvokeAccessor(self,
   2852                                       *shadow_frame,
   2853                                       var_handle,
   2854                                       method_type,
   2855                                       access_mode,
   2856                                       &operands,
   2857                                       &result);
   2858   }
   2859 
   2860   DCHECK(success || self->IsExceptionPending());
   2861 
   2862   // Pop transition record.
   2863   self->PopManagedStackFragment(fragment);
   2864 
   2865   return result.GetJ();
   2866 }
   2867 
   2868 // Returns uint64_t representing raw bits from JValue.
   2869 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
   2870     REQUIRES_SHARED(Locks::mutator_lock_) {
   2871   ScopedQuickEntrypointChecks sqec(self);
   2872   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
   2873 
   2874   // invoke-custom is effectively a static call (no receiver).
   2875   static constexpr bool kMethodIsStatic = true;
   2876 
   2877   // Start new JNI local reference state
   2878   JNIEnvExt* env = self->GetJniEnv();
   2879   ScopedObjectAccessUnchecked soa(env);
   2880   ScopedJniEnvLocalRefState env_state(env);
   2881 
   2882   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
   2883 
   2884   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
   2885   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2886   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2887   const DexFile* dex_file = caller_method->GetDexFile();
   2888   const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
   2889   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
   2890   const uint32_t shorty_len = strlen(shorty);
   2891 
   2892   // Construct the shadow frame placing arguments consecutively from |first_arg|.
   2893   const size_t first_arg = 0;
   2894   const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
   2895   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
   2896       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
   2897   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
   2898   ScopedStackedShadowFramePusher
   2899       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
   2900   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
   2901                                                     kMethodIsStatic,
   2902                                                     shorty,
   2903                                                     shorty_len,
   2904                                                     shadow_frame,
   2905                                                     first_arg);
   2906   shadow_frame_builder.VisitArguments();
   2907 
   2908   // Push a transition back into managed code onto the linked list in thread.
   2909   ManagedStack fragment;
   2910   self->PushManagedStackFragment(&fragment);
   2911   self->EndAssertNoThreadSuspension(old_cause);
   2912 
   2913   // Perform the invoke-custom operation.
   2914   RangeInstructionOperands operands(first_arg, num_vregs);
   2915   JValue result;
   2916   bool success =
   2917       interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
   2918   DCHECK(success || self->IsExceptionPending());
   2919 
   2920   // Pop transition record.
   2921   self->PopManagedStackFragment(fragment);
   2922 
   2923   return result.GetJ();
   2924 }
   2925 
   2926 }  // namespace art
   2927