Home | History | Annotate | Download | only in gmock
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 
     31 // Google Mock - a framework for writing C++ mock classes.
     32 //
     33 // This file implements some commonly used actions.
     34 
     35 // GOOGLETEST_CM0002 DO NOT DELETE
     36 
     37 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     38 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     39 
     40 #ifndef _WIN32_WCE
     41 # include <errno.h>
     42 #endif
     43 
     44 #include <algorithm>
     45 #include <functional>
     46 #include <memory>
     47 #include <string>
     48 #include <type_traits>
     49 #include <utility>
     50 
     51 #include "gmock/internal/gmock-internal-utils.h"
     52 #include "gmock/internal/gmock-port.h"
     53 
     54 #ifdef _MSC_VER
     55 # pragma warning(push)
     56 # pragma warning(disable:4100)
     57 #endif
     58 
     59 namespace testing {
     60 
     61 // To implement an action Foo, define:
     62 //   1. a class FooAction that implements the ActionInterface interface, and
     63 //   2. a factory function that creates an Action object from a
     64 //      const FooAction*.
     65 //
     66 // The two-level delegation design follows that of Matcher, providing
     67 // consistency for extension developers.  It also eases ownership
     68 // management as Action objects can now be copied like plain values.
     69 
     70 namespace internal {
     71 
     72 // BuiltInDefaultValueGetter<T, true>::Get() returns a
     73 // default-constructed T value.  BuiltInDefaultValueGetter<T,
     74 // false>::Get() crashes with an error.
     75 //
     76 // This primary template is used when kDefaultConstructible is true.
     77 template <typename T, bool kDefaultConstructible>
     78 struct BuiltInDefaultValueGetter {
     79   static T Get() { return T(); }
     80 };
     81 template <typename T>
     82 struct BuiltInDefaultValueGetter<T, false> {
     83   static T Get() {
     84     Assert(false, __FILE__, __LINE__,
     85            "Default action undefined for the function return type.");
     86     return internal::Invalid<T>();
     87     // The above statement will never be reached, but is required in
     88     // order for this function to compile.
     89   }
     90 };
     91 
     92 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
     93 // for type T, which is NULL when T is a raw pointer type, 0 when T is
     94 // a numeric type, false when T is bool, or "" when T is string or
     95 // std::string.  In addition, in C++11 and above, it turns a
     96 // default-constructed T value if T is default constructible.  For any
     97 // other type T, the built-in default T value is undefined, and the
     98 // function will abort the process.
     99 template <typename T>
    100 class BuiltInDefaultValue {
    101  public:
    102   // This function returns true iff type T has a built-in default value.
    103   static bool Exists() {
    104     return ::std::is_default_constructible<T>::value;
    105   }
    106 
    107   static T Get() {
    108     return BuiltInDefaultValueGetter<
    109         T, ::std::is_default_constructible<T>::value>::Get();
    110   }
    111 };
    112 
    113 // This partial specialization says that we use the same built-in
    114 // default value for T and const T.
    115 template <typename T>
    116 class BuiltInDefaultValue<const T> {
    117  public:
    118   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
    119   static T Get() { return BuiltInDefaultValue<T>::Get(); }
    120 };
    121 
    122 // This partial specialization defines the default values for pointer
    123 // types.
    124 template <typename T>
    125 class BuiltInDefaultValue<T*> {
    126  public:
    127   static bool Exists() { return true; }
    128   static T* Get() { return nullptr; }
    129 };
    130 
    131 // The following specializations define the default values for
    132 // specific types we care about.
    133 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
    134   template <> \
    135   class BuiltInDefaultValue<type> { \
    136    public: \
    137     static bool Exists() { return true; } \
    138     static type Get() { return value; } \
    139   }
    140 
    141 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
    142 #if GTEST_HAS_GLOBAL_STRING
    143 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
    144 #endif  // GTEST_HAS_GLOBAL_STRING
    145 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
    146 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
    147 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
    148 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
    149 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
    150 
    151 // There's no need for a default action for signed wchar_t, as that
    152 // type is the same as wchar_t for gcc, and invalid for MSVC.
    153 //
    154 // There's also no need for a default action for unsigned wchar_t, as
    155 // that type is the same as unsigned int for gcc, and invalid for
    156 // MSVC.
    157 #if GMOCK_WCHAR_T_IS_NATIVE_
    158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
    159 #endif
    160 
    161 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
    162 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
    163 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
    164 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
    165 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
    166 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
    167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
    168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
    169 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
    170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
    171 
    172 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
    173 
    174 }  // namespace internal
    175 
    176 // When an unexpected function call is encountered, Google Mock will
    177 // let it return a default value if the user has specified one for its
    178 // return type, or if the return type has a built-in default value;
    179 // otherwise Google Mock won't know what value to return and will have
    180 // to abort the process.
    181 //
    182 // The DefaultValue<T> class allows a user to specify the
    183 // default value for a type T that is both copyable and publicly
    184 // destructible (i.e. anything that can be used as a function return
    185 // type).  The usage is:
    186 //
    187 //   // Sets the default value for type T to be foo.
    188 //   DefaultValue<T>::Set(foo);
    189 template <typename T>
    190 class DefaultValue {
    191  public:
    192   // Sets the default value for type T; requires T to be
    193   // copy-constructable and have a public destructor.
    194   static void Set(T x) {
    195     delete producer_;
    196     producer_ = new FixedValueProducer(x);
    197   }
    198 
    199   // Provides a factory function to be called to generate the default value.
    200   // This method can be used even if T is only move-constructible, but it is not
    201   // limited to that case.
    202   typedef T (*FactoryFunction)();
    203   static void SetFactory(FactoryFunction factory) {
    204     delete producer_;
    205     producer_ = new FactoryValueProducer(factory);
    206   }
    207 
    208   // Unsets the default value for type T.
    209   static void Clear() {
    210     delete producer_;
    211     producer_ = nullptr;
    212   }
    213 
    214   // Returns true iff the user has set the default value for type T.
    215   static bool IsSet() { return producer_ != nullptr; }
    216 
    217   // Returns true if T has a default return value set by the user or there
    218   // exists a built-in default value.
    219   static bool Exists() {
    220     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
    221   }
    222 
    223   // Returns the default value for type T if the user has set one;
    224   // otherwise returns the built-in default value. Requires that Exists()
    225   // is true, which ensures that the return value is well-defined.
    226   static T Get() {
    227     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
    228                                 : producer_->Produce();
    229   }
    230 
    231  private:
    232   class ValueProducer {
    233    public:
    234     virtual ~ValueProducer() {}
    235     virtual T Produce() = 0;
    236   };
    237 
    238   class FixedValueProducer : public ValueProducer {
    239    public:
    240     explicit FixedValueProducer(T value) : value_(value) {}
    241     T Produce() override { return value_; }
    242 
    243    private:
    244     const T value_;
    245     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
    246   };
    247 
    248   class FactoryValueProducer : public ValueProducer {
    249    public:
    250     explicit FactoryValueProducer(FactoryFunction factory)
    251         : factory_(factory) {}
    252     T Produce() override { return factory_(); }
    253 
    254    private:
    255     const FactoryFunction factory_;
    256     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
    257   };
    258 
    259   static ValueProducer* producer_;
    260 };
    261 
    262 // This partial specialization allows a user to set default values for
    263 // reference types.
    264 template <typename T>
    265 class DefaultValue<T&> {
    266  public:
    267   // Sets the default value for type T&.
    268   static void Set(T& x) {  // NOLINT
    269     address_ = &x;
    270   }
    271 
    272   // Unsets the default value for type T&.
    273   static void Clear() { address_ = nullptr; }
    274 
    275   // Returns true iff the user has set the default value for type T&.
    276   static bool IsSet() { return address_ != nullptr; }
    277 
    278   // Returns true if T has a default return value set by the user or there
    279   // exists a built-in default value.
    280   static bool Exists() {
    281     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
    282   }
    283 
    284   // Returns the default value for type T& if the user has set one;
    285   // otherwise returns the built-in default value if there is one;
    286   // otherwise aborts the process.
    287   static T& Get() {
    288     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
    289                                : *address_;
    290   }
    291 
    292  private:
    293   static T* address_;
    294 };
    295 
    296 // This specialization allows DefaultValue<void>::Get() to
    297 // compile.
    298 template <>
    299 class DefaultValue<void> {
    300  public:
    301   static bool Exists() { return true; }
    302   static void Get() {}
    303 };
    304 
    305 // Points to the user-set default value for type T.
    306 template <typename T>
    307 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
    308 
    309 // Points to the user-set default value for type T&.
    310 template <typename T>
    311 T* DefaultValue<T&>::address_ = nullptr;
    312 
    313 // Implement this interface to define an action for function type F.
    314 template <typename F>
    315 class ActionInterface {
    316  public:
    317   typedef typename internal::Function<F>::Result Result;
    318   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    319 
    320   ActionInterface() {}
    321   virtual ~ActionInterface() {}
    322 
    323   // Performs the action.  This method is not const, as in general an
    324   // action can have side effects and be stateful.  For example, a
    325   // get-the-next-element-from-the-collection action will need to
    326   // remember the current element.
    327   virtual Result Perform(const ArgumentTuple& args) = 0;
    328 
    329  private:
    330   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
    331 };
    332 
    333 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
    334 // object that represents an action to be taken when a mock function
    335 // of type F is called.  The implementation of Action<T> is just a
    336 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
    337 // You can view an object implementing ActionInterface<F> as a
    338 // concrete action (including its current state), and an Action<F>
    339 // object as a handle to it.
    340 template <typename F>
    341 class Action {
    342   // Adapter class to allow constructing Action from a legacy ActionInterface.
    343   // New code should create Actions from functors instead.
    344   struct ActionAdapter {
    345     // Adapter must be copyable to satisfy std::function requirements.
    346     ::std::shared_ptr<ActionInterface<F>> impl_;
    347 
    348     template <typename... Args>
    349     typename internal::Function<F>::Result operator()(Args&&... args) {
    350       return impl_->Perform(
    351           ::std::forward_as_tuple(::std::forward<Args>(args)...));
    352     }
    353   };
    354 
    355  public:
    356   typedef typename internal::Function<F>::Result Result;
    357   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    358 
    359   // Constructs a null Action.  Needed for storing Action objects in
    360   // STL containers.
    361   Action() {}
    362 
    363   // Construct an Action from a specified callable.
    364   // This cannot take std::function directly, because then Action would not be
    365   // directly constructible from lambda (it would require two conversions).
    366   template <typename G,
    367             typename = typename ::std::enable_if<
    368                 ::std::is_constructible<::std::function<F>, G>::value>::type>
    369   Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
    370 
    371   // Constructs an Action from its implementation.
    372   explicit Action(ActionInterface<F>* impl)
    373       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
    374 
    375   // This constructor allows us to turn an Action<Func> object into an
    376   // Action<F>, as long as F's arguments can be implicitly converted
    377   // to Func's and Func's return type can be implicitly converted to F's.
    378   template <typename Func>
    379   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
    380 
    381   // Returns true iff this is the DoDefault() action.
    382   bool IsDoDefault() const { return fun_ == nullptr; }
    383 
    384   // Performs the action.  Note that this method is const even though
    385   // the corresponding method in ActionInterface is not.  The reason
    386   // is that a const Action<F> means that it cannot be re-bound to
    387   // another concrete action, not that the concrete action it binds to
    388   // cannot change state.  (Think of the difference between a const
    389   // pointer and a pointer to const.)
    390   Result Perform(ArgumentTuple args) const {
    391     if (IsDoDefault()) {
    392       internal::IllegalDoDefault(__FILE__, __LINE__);
    393     }
    394     return internal::Apply(fun_, ::std::move(args));
    395   }
    396 
    397  private:
    398   template <typename G>
    399   friend class Action;
    400 
    401   // fun_ is an empty function iff this is the DoDefault() action.
    402   ::std::function<F> fun_;
    403 };
    404 
    405 // The PolymorphicAction class template makes it easy to implement a
    406 // polymorphic action (i.e. an action that can be used in mock
    407 // functions of than one type, e.g. Return()).
    408 //
    409 // To define a polymorphic action, a user first provides a COPYABLE
    410 // implementation class that has a Perform() method template:
    411 //
    412 //   class FooAction {
    413 //    public:
    414 //     template <typename Result, typename ArgumentTuple>
    415 //     Result Perform(const ArgumentTuple& args) const {
    416 //       // Processes the arguments and returns a result, using
    417 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
    418 //     }
    419 //     ...
    420 //   };
    421 //
    422 // Then the user creates the polymorphic action using
    423 // MakePolymorphicAction(object) where object has type FooAction.  See
    424 // the definition of Return(void) and SetArgumentPointee<N>(value) for
    425 // complete examples.
    426 template <typename Impl>
    427 class PolymorphicAction {
    428  public:
    429   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
    430 
    431   template <typename F>
    432   operator Action<F>() const {
    433     return Action<F>(new MonomorphicImpl<F>(impl_));
    434   }
    435 
    436  private:
    437   template <typename F>
    438   class MonomorphicImpl : public ActionInterface<F> {
    439    public:
    440     typedef typename internal::Function<F>::Result Result;
    441     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    442 
    443     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
    444 
    445     Result Perform(const ArgumentTuple& args) override {
    446       return impl_.template Perform<Result>(args);
    447     }
    448 
    449    private:
    450     Impl impl_;
    451 
    452     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
    453   };
    454 
    455   Impl impl_;
    456 
    457   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
    458 };
    459 
    460 // Creates an Action from its implementation and returns it.  The
    461 // created Action object owns the implementation.
    462 template <typename F>
    463 Action<F> MakeAction(ActionInterface<F>* impl) {
    464   return Action<F>(impl);
    465 }
    466 
    467 // Creates a polymorphic action from its implementation.  This is
    468 // easier to use than the PolymorphicAction<Impl> constructor as it
    469 // doesn't require you to explicitly write the template argument, e.g.
    470 //
    471 //   MakePolymorphicAction(foo);
    472 // vs
    473 //   PolymorphicAction<TypeOfFoo>(foo);
    474 template <typename Impl>
    475 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
    476   return PolymorphicAction<Impl>(impl);
    477 }
    478 
    479 namespace internal {
    480 
    481 // Helper struct to specialize ReturnAction to execute a move instead of a copy
    482 // on return. Useful for move-only types, but could be used on any type.
    483 template <typename T>
    484 struct ByMoveWrapper {
    485   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
    486   T payload;
    487 };
    488 
    489 // Implements the polymorphic Return(x) action, which can be used in
    490 // any function that returns the type of x, regardless of the argument
    491 // types.
    492 //
    493 // Note: The value passed into Return must be converted into
    494 // Function<F>::Result when this action is cast to Action<F> rather than
    495 // when that action is performed. This is important in scenarios like
    496 //
    497 // MOCK_METHOD1(Method, T(U));
    498 // ...
    499 // {
    500 //   Foo foo;
    501 //   X x(&foo);
    502 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
    503 // }
    504 //
    505 // In the example above the variable x holds reference to foo which leaves
    506 // scope and gets destroyed.  If copying X just copies a reference to foo,
    507 // that copy will be left with a hanging reference.  If conversion to T
    508 // makes a copy of foo, the above code is safe. To support that scenario, we
    509 // need to make sure that the type conversion happens inside the EXPECT_CALL
    510 // statement, and conversion of the result of Return to Action<T(U)> is a
    511 // good place for that.
    512 //
    513 // The real life example of the above scenario happens when an invocation
    514 // of gtl::Container() is passed into Return.
    515 //
    516 template <typename R>
    517 class ReturnAction {
    518  public:
    519   // Constructs a ReturnAction object from the value to be returned.
    520   // 'value' is passed by value instead of by const reference in order
    521   // to allow Return("string literal") to compile.
    522   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
    523 
    524   // This template type conversion operator allows Return(x) to be
    525   // used in ANY function that returns x's type.
    526   template <typename F>
    527   operator Action<F>() const {  // NOLINT
    528     // Assert statement belongs here because this is the best place to verify
    529     // conditions on F. It produces the clearest error messages
    530     // in most compilers.
    531     // Impl really belongs in this scope as a local class but can't
    532     // because MSVC produces duplicate symbols in different translation units
    533     // in this case. Until MS fixes that bug we put Impl into the class scope
    534     // and put the typedef both here (for use in assert statement) and
    535     // in the Impl class. But both definitions must be the same.
    536     typedef typename Function<F>::Result Result;
    537     GTEST_COMPILE_ASSERT_(
    538         !is_reference<Result>::value,
    539         use_ReturnRef_instead_of_Return_to_return_a_reference);
    540     static_assert(!std::is_void<Result>::value,
    541                   "Can't use Return() on an action expected to return `void`.");
    542     return Action<F>(new Impl<R, F>(value_));
    543   }
    544 
    545  private:
    546   // Implements the Return(x) action for a particular function type F.
    547   template <typename R_, typename F>
    548   class Impl : public ActionInterface<F> {
    549    public:
    550     typedef typename Function<F>::Result Result;
    551     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    552 
    553     // The implicit cast is necessary when Result has more than one
    554     // single-argument constructor (e.g. Result is std::vector<int>) and R
    555     // has a type conversion operator template.  In that case, value_(value)
    556     // won't compile as the compiler doesn't known which constructor of
    557     // Result to call.  ImplicitCast_ forces the compiler to convert R to
    558     // Result without considering explicit constructors, thus resolving the
    559     // ambiguity. value_ is then initialized using its copy constructor.
    560     explicit Impl(const std::shared_ptr<R>& value)
    561         : value_before_cast_(*value),
    562           value_(ImplicitCast_<Result>(value_before_cast_)) {}
    563 
    564     Result Perform(const ArgumentTuple&) override { return value_; }
    565 
    566    private:
    567     GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
    568                           Result_cannot_be_a_reference_type);
    569     // We save the value before casting just in case it is being cast to a
    570     // wrapper type.
    571     R value_before_cast_;
    572     Result value_;
    573 
    574     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
    575   };
    576 
    577   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
    578   // move its contents instead.
    579   template <typename R_, typename F>
    580   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
    581    public:
    582     typedef typename Function<F>::Result Result;
    583     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    584 
    585     explicit Impl(const std::shared_ptr<R>& wrapper)
    586         : performed_(false), wrapper_(wrapper) {}
    587 
    588     Result Perform(const ArgumentTuple&) override {
    589       GTEST_CHECK_(!performed_)
    590           << "A ByMove() action should only be performed once.";
    591       performed_ = true;
    592       return std::move(wrapper_->payload);
    593     }
    594 
    595    private:
    596     bool performed_;
    597     const std::shared_ptr<R> wrapper_;
    598 
    599     GTEST_DISALLOW_ASSIGN_(Impl);
    600   };
    601 
    602   const std::shared_ptr<R> value_;
    603 
    604   GTEST_DISALLOW_ASSIGN_(ReturnAction);
    605 };
    606 
    607 // Implements the ReturnNull() action.
    608 class ReturnNullAction {
    609  public:
    610   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
    611   // this is enforced by returning nullptr, and in non-C++11 by asserting a
    612   // pointer type on compile time.
    613   template <typename Result, typename ArgumentTuple>
    614   static Result Perform(const ArgumentTuple&) {
    615     return nullptr;
    616   }
    617 };
    618 
    619 // Implements the Return() action.
    620 class ReturnVoidAction {
    621  public:
    622   // Allows Return() to be used in any void-returning function.
    623   template <typename Result, typename ArgumentTuple>
    624   static void Perform(const ArgumentTuple&) {
    625     CompileAssertTypesEqual<void, Result>();
    626   }
    627 };
    628 
    629 // Implements the polymorphic ReturnRef(x) action, which can be used
    630 // in any function that returns a reference to the type of x,
    631 // regardless of the argument types.
    632 template <typename T>
    633 class ReturnRefAction {
    634  public:
    635   // Constructs a ReturnRefAction object from the reference to be returned.
    636   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
    637 
    638   // This template type conversion operator allows ReturnRef(x) to be
    639   // used in ANY function that returns a reference to x's type.
    640   template <typename F>
    641   operator Action<F>() const {
    642     typedef typename Function<F>::Result Result;
    643     // Asserts that the function return type is a reference.  This
    644     // catches the user error of using ReturnRef(x) when Return(x)
    645     // should be used, and generates some helpful error message.
    646     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
    647                           use_Return_instead_of_ReturnRef_to_return_a_value);
    648     return Action<F>(new Impl<F>(ref_));
    649   }
    650 
    651  private:
    652   // Implements the ReturnRef(x) action for a particular function type F.
    653   template <typename F>
    654   class Impl : public ActionInterface<F> {
    655    public:
    656     typedef typename Function<F>::Result Result;
    657     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    658 
    659     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
    660 
    661     Result Perform(const ArgumentTuple&) override { return ref_; }
    662 
    663    private:
    664     T& ref_;
    665 
    666     GTEST_DISALLOW_ASSIGN_(Impl);
    667   };
    668 
    669   T& ref_;
    670 
    671   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
    672 };
    673 
    674 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
    675 // used in any function that returns a reference to the type of x,
    676 // regardless of the argument types.
    677 template <typename T>
    678 class ReturnRefOfCopyAction {
    679  public:
    680   // Constructs a ReturnRefOfCopyAction object from the reference to
    681   // be returned.
    682   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
    683 
    684   // This template type conversion operator allows ReturnRefOfCopy(x) to be
    685   // used in ANY function that returns a reference to x's type.
    686   template <typename F>
    687   operator Action<F>() const {
    688     typedef typename Function<F>::Result Result;
    689     // Asserts that the function return type is a reference.  This
    690     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    691     // should be used, and generates some helpful error message.
    692     GTEST_COMPILE_ASSERT_(
    693         internal::is_reference<Result>::value,
    694         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    695     return Action<F>(new Impl<F>(value_));
    696   }
    697 
    698  private:
    699   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
    700   template <typename F>
    701   class Impl : public ActionInterface<F> {
    702    public:
    703     typedef typename Function<F>::Result Result;
    704     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    705 
    706     explicit Impl(const T& value) : value_(value) {}  // NOLINT
    707 
    708     Result Perform(const ArgumentTuple&) override { return value_; }
    709 
    710    private:
    711     T value_;
    712 
    713     GTEST_DISALLOW_ASSIGN_(Impl);
    714   };
    715 
    716   const T value_;
    717 
    718   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
    719 };
    720 
    721 // Implements the polymorphic DoDefault() action.
    722 class DoDefaultAction {
    723  public:
    724   // This template type conversion operator allows DoDefault() to be
    725   // used in any function.
    726   template <typename F>
    727   operator Action<F>() const { return Action<F>(); }  // NOLINT
    728 };
    729 
    730 // Implements the Assign action to set a given pointer referent to a
    731 // particular value.
    732 template <typename T1, typename T2>
    733 class AssignAction {
    734  public:
    735   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
    736 
    737   template <typename Result, typename ArgumentTuple>
    738   void Perform(const ArgumentTuple& /* args */) const {
    739     *ptr_ = value_;
    740   }
    741 
    742  private:
    743   T1* const ptr_;
    744   const T2 value_;
    745 
    746   GTEST_DISALLOW_ASSIGN_(AssignAction);
    747 };
    748 
    749 #if !GTEST_OS_WINDOWS_MOBILE
    750 
    751 // Implements the SetErrnoAndReturn action to simulate return from
    752 // various system calls and libc functions.
    753 template <typename T>
    754 class SetErrnoAndReturnAction {
    755  public:
    756   SetErrnoAndReturnAction(int errno_value, T result)
    757       : errno_(errno_value),
    758         result_(result) {}
    759   template <typename Result, typename ArgumentTuple>
    760   Result Perform(const ArgumentTuple& /* args */) const {
    761     errno = errno_;
    762     return result_;
    763   }
    764 
    765  private:
    766   const int errno_;
    767   const T result_;
    768 
    769   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
    770 };
    771 
    772 #endif  // !GTEST_OS_WINDOWS_MOBILE
    773 
    774 // Implements the SetArgumentPointee<N>(x) action for any function
    775 // whose N-th argument (0-based) is a pointer to x's type.  The
    776 // template parameter kIsProto is true iff type A is ProtocolMessage,
    777 // proto2::Message, or a sub-class of those.
    778 template <size_t N, typename A, bool kIsProto>
    779 class SetArgumentPointeeAction {
    780  public:
    781   // Constructs an action that sets the variable pointed to by the
    782   // N-th function argument to 'value'.
    783   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
    784 
    785   template <typename Result, typename ArgumentTuple>
    786   void Perform(const ArgumentTuple& args) const {
    787     CompileAssertTypesEqual<void, Result>();
    788     *::std::get<N>(args) = value_;
    789   }
    790 
    791  private:
    792   const A value_;
    793 
    794   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    795 };
    796 
    797 template <size_t N, typename Proto>
    798 class SetArgumentPointeeAction<N, Proto, true> {
    799  public:
    800   // Constructs an action that sets the variable pointed to by the
    801   // N-th function argument to 'proto'.  Both ProtocolMessage and
    802   // proto2::Message have the CopyFrom() method, so the same
    803   // implementation works for both.
    804   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    805     proto_->CopyFrom(proto);
    806   }
    807 
    808   template <typename Result, typename ArgumentTuple>
    809   void Perform(const ArgumentTuple& args) const {
    810     CompileAssertTypesEqual<void, Result>();
    811     ::std::get<N>(args)->CopyFrom(*proto_);
    812   }
    813 
    814  private:
    815   const std::shared_ptr<Proto> proto_;
    816 
    817   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    818 };
    819 
    820 // Implements the Invoke(object_ptr, &Class::Method) action.
    821 template <class Class, typename MethodPtr>
    822 struct InvokeMethodAction {
    823   Class* const obj_ptr;
    824   const MethodPtr method_ptr;
    825 
    826   template <typename... Args>
    827   auto operator()(Args&&... args) const
    828       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
    829     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
    830   }
    831 };
    832 
    833 // Implements the InvokeWithoutArgs(f) action.  The template argument
    834 // FunctionImpl is the implementation type of f, which can be either a
    835 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
    836 // Action<F> as long as f's type is compatible with F.
    837 template <typename FunctionImpl>
    838 struct InvokeWithoutArgsAction {
    839   FunctionImpl function_impl;
    840 
    841   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
    842   // compatible with f.
    843   template <typename... Args>
    844   auto operator()(const Args&...) -> decltype(function_impl()) {
    845     return function_impl();
    846   }
    847 };
    848 
    849 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
    850 template <class Class, typename MethodPtr>
    851 struct InvokeMethodWithoutArgsAction {
    852   Class* const obj_ptr;
    853   const MethodPtr method_ptr;
    854 
    855   using ReturnType = typename std::result_of<MethodPtr(Class*)>::type;
    856 
    857   template <typename... Args>
    858   ReturnType operator()(const Args&...) const {
    859     return (obj_ptr->*method_ptr)();
    860   }
    861 };
    862 
    863 // Implements the IgnoreResult(action) action.
    864 template <typename A>
    865 class IgnoreResultAction {
    866  public:
    867   explicit IgnoreResultAction(const A& action) : action_(action) {}
    868 
    869   template <typename F>
    870   operator Action<F>() const {
    871     // Assert statement belongs here because this is the best place to verify
    872     // conditions on F. It produces the clearest error messages
    873     // in most compilers.
    874     // Impl really belongs in this scope as a local class but can't
    875     // because MSVC produces duplicate symbols in different translation units
    876     // in this case. Until MS fixes that bug we put Impl into the class scope
    877     // and put the typedef both here (for use in assert statement) and
    878     // in the Impl class. But both definitions must be the same.
    879     typedef typename internal::Function<F>::Result Result;
    880 
    881     // Asserts at compile time that F returns void.
    882     CompileAssertTypesEqual<void, Result>();
    883 
    884     return Action<F>(new Impl<F>(action_));
    885   }
    886 
    887  private:
    888   template <typename F>
    889   class Impl : public ActionInterface<F> {
    890    public:
    891     typedef typename internal::Function<F>::Result Result;
    892     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    893 
    894     explicit Impl(const A& action) : action_(action) {}
    895 
    896     void Perform(const ArgumentTuple& args) override {
    897       // Performs the action and ignores its result.
    898       action_.Perform(args);
    899     }
    900 
    901    private:
    902     // Type OriginalFunction is the same as F except that its return
    903     // type is IgnoredValue.
    904     typedef typename internal::Function<F>::MakeResultIgnoredValue
    905         OriginalFunction;
    906 
    907     const Action<OriginalFunction> action_;
    908 
    909     GTEST_DISALLOW_ASSIGN_(Impl);
    910   };
    911 
    912   const A action_;
    913 
    914   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
    915 };
    916 
    917 template <typename InnerAction, size_t... I>
    918 struct WithArgsAction {
    919   InnerAction action;
    920 
    921   // The inner action could be anything convertible to Action<X>.
    922   // We use the conversion operator to detect the signature of the inner Action.
    923   template <typename R, typename... Args>
    924   operator Action<R(Args...)>() const {  // NOLINT
    925     Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)>
    926         converted(action);
    927 
    928     return [converted](Args... args) -> R {
    929       return converted.Perform(std::forward_as_tuple(
    930         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
    931     };
    932   }
    933 };
    934 
    935 template <typename... Actions>
    936 struct DoAllAction {
    937  private:
    938   template <typename... Args, size_t... I>
    939   std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const {
    940     return {std::get<I>(actions)...};
    941   }
    942 
    943  public:
    944   std::tuple<Actions...> actions;
    945 
    946   template <typename R, typename... Args>
    947   operator Action<R(Args...)>() const {  // NOLINT
    948     struct Op {
    949       std::vector<Action<void(Args...)>> converted;
    950       Action<R(Args...)> last;
    951       R operator()(Args... args) const {
    952         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
    953         for (auto& a : converted) {
    954           a.Perform(tuple_args);
    955         }
    956         return last.Perform(tuple_args);
    957       }
    958     };
    959     return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()),
    960               std::get<sizeof...(Actions) - 1>(actions)};
    961   }
    962 };
    963 
    964 }  // namespace internal
    965 
    966 // An Unused object can be implicitly constructed from ANY value.
    967 // This is handy when defining actions that ignore some or all of the
    968 // mock function arguments.  For example, given
    969 //
    970 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
    971 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
    972 //
    973 // instead of
    974 //
    975 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
    976 //     return sqrt(x*x + y*y);
    977 //   }
    978 //   double DistanceToOriginWithIndex(int index, double x, double y) {
    979 //     return sqrt(x*x + y*y);
    980 //   }
    981 //   ...
    982 //   EXPECT_CALL(mock, Foo("abc", _, _))
    983 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
    984 //   EXPECT_CALL(mock, Bar(5, _, _))
    985 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
    986 //
    987 // you could write
    988 //
    989 //   // We can declare any uninteresting argument as Unused.
    990 //   double DistanceToOrigin(Unused, double x, double y) {
    991 //     return sqrt(x*x + y*y);
    992 //   }
    993 //   ...
    994 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
    995 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
    996 typedef internal::IgnoredValue Unused;
    997 
    998 // Creates an action that does actions a1, a2, ..., sequentially in
    999 // each invocation.
   1000 template <typename... Action>
   1001 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
   1002     Action&&... action) {
   1003   return {std::forward_as_tuple(std::forward<Action>(action)...)};
   1004 }
   1005 
   1006 // WithArg<k>(an_action) creates an action that passes the k-th
   1007 // (0-based) argument of the mock function to an_action and performs
   1008 // it.  It adapts an action accepting one argument to one that accepts
   1009 // multiple arguments.  For convenience, we also provide
   1010 // WithArgs<k>(an_action) (defined below) as a synonym.
   1011 template <size_t k, typename InnerAction>
   1012 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
   1013 WithArg(InnerAction&& action) {
   1014   return {std::forward<InnerAction>(action)};
   1015 }
   1016 
   1017 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
   1018 // the selected arguments of the mock function to an_action and
   1019 // performs it.  It serves as an adaptor between actions with
   1020 // different argument lists.
   1021 template <size_t k, size_t... ks, typename InnerAction>
   1022 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
   1023 WithArgs(InnerAction&& action) {
   1024   return {std::forward<InnerAction>(action)};
   1025 }
   1026 
   1027 // WithoutArgs(inner_action) can be used in a mock function with a
   1028 // non-empty argument list to perform inner_action, which takes no
   1029 // argument.  In other words, it adapts an action accepting no
   1030 // argument to one that accepts (and ignores) arguments.
   1031 template <typename InnerAction>
   1032 internal::WithArgsAction<typename std::decay<InnerAction>::type>
   1033 WithoutArgs(InnerAction&& action) {
   1034   return {std::forward<InnerAction>(action)};
   1035 }
   1036 
   1037 // Creates an action that returns 'value'.  'value' is passed by value
   1038 // instead of const reference - otherwise Return("string literal")
   1039 // will trigger a compiler error about using array as initializer.
   1040 template <typename R>
   1041 internal::ReturnAction<R> Return(R value) {
   1042   return internal::ReturnAction<R>(std::move(value));
   1043 }
   1044 
   1045 // Creates an action that returns NULL.
   1046 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
   1047   return MakePolymorphicAction(internal::ReturnNullAction());
   1048 }
   1049 
   1050 // Creates an action that returns from a void function.
   1051 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
   1052   return MakePolymorphicAction(internal::ReturnVoidAction());
   1053 }
   1054 
   1055 // Creates an action that returns the reference to a variable.
   1056 template <typename R>
   1057 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
   1058   return internal::ReturnRefAction<R>(x);
   1059 }
   1060 
   1061 // Creates an action that returns the reference to a copy of the
   1062 // argument.  The copy is created when the action is constructed and
   1063 // lives as long as the action.
   1064 template <typename R>
   1065 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
   1066   return internal::ReturnRefOfCopyAction<R>(x);
   1067 }
   1068 
   1069 // Modifies the parent action (a Return() action) to perform a move of the
   1070 // argument instead of a copy.
   1071 // Return(ByMove()) actions can only be executed once and will assert this
   1072 // invariant.
   1073 template <typename R>
   1074 internal::ByMoveWrapper<R> ByMove(R x) {
   1075   return internal::ByMoveWrapper<R>(std::move(x));
   1076 }
   1077 
   1078 // Creates an action that does the default action for the give mock function.
   1079 inline internal::DoDefaultAction DoDefault() {
   1080   return internal::DoDefaultAction();
   1081 }
   1082 
   1083 // Creates an action that sets the variable pointed by the N-th
   1084 // (0-based) function argument to 'value'.
   1085 template <size_t N, typename T>
   1086 PolymorphicAction<
   1087   internal::SetArgumentPointeeAction<
   1088     N, T, internal::IsAProtocolMessage<T>::value> >
   1089 SetArgPointee(const T& x) {
   1090   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1091       N, T, internal::IsAProtocolMessage<T>::value>(x));
   1092 }
   1093 
   1094 template <size_t N>
   1095 PolymorphicAction<
   1096   internal::SetArgumentPointeeAction<N, const char*, false> >
   1097 SetArgPointee(const char* p) {
   1098   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1099       N, const char*, false>(p));
   1100 }
   1101 
   1102 template <size_t N>
   1103 PolymorphicAction<
   1104   internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
   1105 SetArgPointee(const wchar_t* p) {
   1106   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1107       N, const wchar_t*, false>(p));
   1108 }
   1109 
   1110 // The following version is DEPRECATED.
   1111 template <size_t N, typename T>
   1112 PolymorphicAction<
   1113   internal::SetArgumentPointeeAction<
   1114     N, T, internal::IsAProtocolMessage<T>::value> >
   1115 SetArgumentPointee(const T& x) {
   1116   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1117       N, T, internal::IsAProtocolMessage<T>::value>(x));
   1118 }
   1119 
   1120 // Creates an action that sets a pointer referent to a given value.
   1121 template <typename T1, typename T2>
   1122 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
   1123   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
   1124 }
   1125 
   1126 #if !GTEST_OS_WINDOWS_MOBILE
   1127 
   1128 // Creates an action that sets errno and returns the appropriate error.
   1129 template <typename T>
   1130 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
   1131 SetErrnoAndReturn(int errval, T result) {
   1132   return MakePolymorphicAction(
   1133       internal::SetErrnoAndReturnAction<T>(errval, result));
   1134 }
   1135 
   1136 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1137 
   1138 // Various overloads for Invoke().
   1139 
   1140 // Legacy function.
   1141 // Actions can now be implicitly constructed from callables. No need to create
   1142 // wrapper objects.
   1143 // This function exists for backwards compatibility.
   1144 template <typename FunctionImpl>
   1145 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
   1146   return std::forward<FunctionImpl>(function_impl);
   1147 }
   1148 
   1149 // Creates an action that invokes the given method on the given object
   1150 // with the mock function's arguments.
   1151 template <class Class, typename MethodPtr>
   1152 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
   1153                                                       MethodPtr method_ptr) {
   1154   return {obj_ptr, method_ptr};
   1155 }
   1156 
   1157 // Creates an action that invokes 'function_impl' with no argument.
   1158 template <typename FunctionImpl>
   1159 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
   1160 InvokeWithoutArgs(FunctionImpl function_impl) {
   1161   return {std::move(function_impl)};
   1162 }
   1163 
   1164 // Creates an action that invokes the given method on the given object
   1165 // with no argument.
   1166 template <class Class, typename MethodPtr>
   1167 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
   1168     Class* obj_ptr, MethodPtr method_ptr) {
   1169   return {obj_ptr, method_ptr};
   1170 }
   1171 
   1172 // Creates an action that performs an_action and throws away its
   1173 // result.  In other words, it changes the return type of an_action to
   1174 // void.  an_action MUST NOT return void, or the code won't compile.
   1175 template <typename A>
   1176 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
   1177   return internal::IgnoreResultAction<A>(an_action);
   1178 }
   1179 
   1180 // Creates a reference wrapper for the given L-value.  If necessary,
   1181 // you can explicitly specify the type of the reference.  For example,
   1182 // suppose 'derived' is an object of type Derived, ByRef(derived)
   1183 // would wrap a Derived&.  If you want to wrap a const Base& instead,
   1184 // where Base is a base class of Derived, just write:
   1185 //
   1186 //   ByRef<const Base>(derived)
   1187 //
   1188 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
   1189 // However, it may still be used for consistency with ByMove().
   1190 template <typename T>
   1191 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
   1192   return ::std::reference_wrapper<T>(l_value);
   1193 }
   1194 
   1195 }  // namespace testing
   1196 
   1197 #ifdef _MSC_VER
   1198 # pragma warning(pop)
   1199 #endif
   1200 
   1201 
   1202 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
   1203