1 /** @file 2 This implementation of EFI_PXE_BASE_CODE_PROTOCOL and EFI_LOAD_FILE_PROTOCOL. 3 4 Copyright (c) 2007 - 2016, Intel Corporation. All rights reserved.<BR> 5 6 This program and the accompanying materials 7 are licensed and made available under the terms and conditions of the BSD License 8 which accompanies this distribution. The full text of the license may be found at 9 http://opensource.org/licenses/bsd-license.php. 10 11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 13 14 **/ 15 16 #include "PxeBcImpl.h" 17 18 19 /** 20 Enables the use of the PXE Base Code Protocol functions. 21 22 This function enables the use of the PXE Base Code Protocol functions. If the 23 Started field of the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then 24 EFI_ALREADY_STARTED will be returned. If UseIpv6 is TRUE, then IPv6 formatted 25 addresses will be used in this session. If UseIpv6 is FALSE, then IPv4 formatted 26 addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported 27 field of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will 28 be returned. If there is not enough memory or other resources to start the PXE 29 Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the 30 PXE Base Code Protocol will be started. 31 32 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 33 @param[in] UseIpv6 Specifies the type of IP addresses that are to be 34 used during the session that is being started. 35 Set to TRUE for IPv6, and FALSE for IPv4. 36 37 @retval EFI_SUCCESS The PXE Base Code Protocol was started. 38 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 39 @retval EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the 40 EFI_PXE_BASE_CODE_MODE structure is FALSE. 41 @retval EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state. 42 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid 43 EFI_PXE_BASE_CODE_PROTOCOL structure. 44 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the 45 PXE Base Code Protocol. 46 47 **/ 48 EFI_STATUS 49 EFIAPI 50 EfiPxeBcStart ( 51 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 52 IN BOOLEAN UseIpv6 53 ) 54 { 55 PXEBC_PRIVATE_DATA *Private; 56 EFI_PXE_BASE_CODE_MODE *Mode; 57 UINTN Index; 58 EFI_STATUS Status; 59 60 if (This == NULL) { 61 return EFI_INVALID_PARAMETER; 62 } 63 64 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 65 Mode = Private->PxeBc.Mode; 66 67 if (Mode->Started) { 68 return EFI_ALREADY_STARTED; 69 } 70 71 // 72 // Detect whether using IPv6 or not, and set it into mode data. 73 // 74 if (UseIpv6 && Mode->Ipv6Available && Mode->Ipv6Supported && Private->Ip6Nic != NULL) { 75 Mode->UsingIpv6 = TRUE; 76 } else if (!UseIpv6 && Private->Ip4Nic != NULL) { 77 Mode->UsingIpv6 = FALSE; 78 } else { 79 return EFI_UNSUPPORTED; 80 } 81 82 if (Mode->UsingIpv6) { 83 AsciiPrint ("\n>>Start PXE over IPv6"); 84 // 85 // Configure udp6 instance to receive data. 86 // 87 Status = Private->Udp6Read->Configure ( 88 Private->Udp6Read, 89 &Private->Udp6CfgData 90 ); 91 if (EFI_ERROR (Status)) { 92 goto ON_ERROR; 93 } 94 95 // 96 // Configure block size for TFTP as a default value to handle all link layers. 97 // 98 Private->BlockSize = (UINTN) (Private->Ip6MaxPacketSize - 99 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE); 100 101 // 102 // PXE over IPv6 starts here, initialize the fields and list header. 103 // 104 Private->Ip6Policy = PXEBC_IP6_POLICY_MAX; 105 Private->ProxyOffer.Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE; 106 Private->DhcpAck.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE; 107 Private->PxeReply.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE; 108 109 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) { 110 Private->OfferBuffer[Index].Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE; 111 } 112 113 // 114 // Create event and set status for token to capture ICMP6 error message. 115 // 116 Private->Icmp6Token.Status = EFI_NOT_READY; 117 Status = gBS->CreateEvent ( 118 EVT_NOTIFY_SIGNAL, 119 TPL_NOTIFY, 120 PxeBcIcmp6ErrorUpdate, 121 Private, 122 &Private->Icmp6Token.Event 123 ); 124 if (EFI_ERROR (Status)) { 125 goto ON_ERROR; 126 } 127 128 // 129 // Set Ip6 policy to Automatic to start the IP6 router discovery. 130 // 131 Status = PxeBcSetIp6Policy (Private); 132 if (EFI_ERROR (Status)) { 133 goto ON_ERROR; 134 } 135 } else { 136 AsciiPrint ("\n>>Start PXE over IPv4"); 137 // 138 // Configure udp4 instance to receive data. 139 // 140 Status = Private->Udp4Read->Configure ( 141 Private->Udp4Read, 142 &Private->Udp4CfgData 143 ); 144 if (EFI_ERROR (Status)) { 145 goto ON_ERROR; 146 } 147 148 // 149 // Configure block size for TFTP as a default value to handle all link layers. 150 // 151 Private->BlockSize = (UINTN) (Private->Ip4MaxPacketSize - 152 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE); 153 154 // 155 // PXE over IPv4 starts here, initialize the fields. 156 // 157 Private->ProxyOffer.Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE; 158 Private->DhcpAck.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE; 159 Private->PxeReply.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE; 160 161 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) { 162 Private->OfferBuffer[Index].Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE; 163 } 164 165 PxeBcSeedDhcp4Packet (&Private->SeedPacket, Private->Udp4Read); 166 167 // 168 // Create the event for Arp cache update. 169 // 170 Status = gBS->CreateEvent ( 171 EVT_TIMER | EVT_NOTIFY_SIGNAL, 172 TPL_CALLBACK, 173 PxeBcArpCacheUpdate, 174 Private, 175 &Private->ArpUpdateEvent 176 ); 177 if (EFI_ERROR (Status)) { 178 goto ON_ERROR; 179 } 180 181 // 182 // Start a periodic timer by second to update Arp cache. 183 // 184 Status = gBS->SetTimer ( 185 Private->ArpUpdateEvent, 186 TimerPeriodic, 187 TICKS_PER_SECOND 188 ); 189 if (EFI_ERROR (Status)) { 190 goto ON_ERROR; 191 } 192 193 // 194 // Create event and set status for token to capture ICMP error message. 195 // 196 Private->Icmp6Token.Status = EFI_NOT_READY; 197 Status = gBS->CreateEvent ( 198 EVT_NOTIFY_SIGNAL, 199 TPL_NOTIFY, 200 PxeBcIcmpErrorUpdate, 201 Private, 202 &Private->IcmpToken.Event 203 ); 204 if (EFI_ERROR (Status)) { 205 goto ON_ERROR; 206 } 207 208 // 209 //DHCP4 service allows only one of its children to be configured in 210 //the active state, If the DHCP4 D.O.R.A started by IP4 auto 211 //configuration and has not been completed, the Dhcp4 state machine 212 //will not be in the right state for the PXE to start a new round D.O.R.A. 213 //so we need to switch it's policy to static. 214 // 215 Status = PxeBcSetIp4Policy (Private); 216 if (EFI_ERROR (Status)) { 217 goto ON_ERROR; 218 } 219 } 220 221 // 222 // If PcdTftpBlockSize is set to non-zero, override the default value. 223 // 224 if (PcdGet64 (PcdTftpBlockSize) != 0) { 225 Private->BlockSize = (UINTN) PcdGet64 (PcdTftpBlockSize); 226 } 227 228 // 229 // Create event for UdpRead/UdpWrite timeout since they are both blocking API. 230 // 231 Status = gBS->CreateEvent ( 232 EVT_TIMER, 233 TPL_CALLBACK, 234 NULL, 235 NULL, 236 &Private->UdpTimeOutEvent 237 ); 238 if (EFI_ERROR (Status)) { 239 goto ON_ERROR; 240 } 241 242 Private->IsAddressOk = FALSE; 243 Mode->Started = TRUE; 244 245 return EFI_SUCCESS; 246 247 ON_ERROR: 248 if (Mode->UsingIpv6) { 249 if (Private->Icmp6Token.Event != NULL) { 250 gBS->CloseEvent (Private->Icmp6Token.Event); 251 Private->Icmp6Token.Event = NULL; 252 } 253 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 254 Private->Ip6->Configure (Private->Ip6, NULL); 255 } else { 256 if (Private->ArpUpdateEvent != NULL) { 257 gBS->CloseEvent (Private->ArpUpdateEvent); 258 Private->ArpUpdateEvent = NULL; 259 } 260 if (Private->IcmpToken.Event != NULL) { 261 gBS->CloseEvent (Private->IcmpToken.Event); 262 Private->IcmpToken.Event = NULL; 263 } 264 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 265 Private->Ip4->Configure (Private->Ip4, NULL); 266 } 267 return Status; 268 } 269 270 271 /** 272 Disable the use of the PXE Base Code Protocol functions. 273 274 This function stops all activity on the network device. All the resources allocated 275 in Start() are released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is 276 set to FALSE, and EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE 277 structure is already FALSE, then EFI_NOT_STARTED will be returned. 278 279 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 280 281 @retval EFI_SUCCESS The PXE Base Code Protocol was stopped. 282 @retval EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state. 283 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid 284 EFI_PXE_BASE_CODE_PROTOCOL structure. 285 @retval Others 286 287 **/ 288 EFI_STATUS 289 EFIAPI 290 EfiPxeBcStop ( 291 IN EFI_PXE_BASE_CODE_PROTOCOL *This 292 ) 293 { 294 PXEBC_PRIVATE_DATA *Private; 295 EFI_PXE_BASE_CODE_MODE *Mode; 296 BOOLEAN Ipv6Supported; 297 BOOLEAN Ipv6Available; 298 299 if (This == NULL) { 300 return EFI_INVALID_PARAMETER; 301 } 302 303 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 304 Mode = Private->PxeBc.Mode; 305 Ipv6Supported = Mode->Ipv6Supported; 306 Ipv6Available = Mode->Ipv6Available; 307 308 if (!Mode->Started) { 309 return EFI_NOT_STARTED; 310 } 311 312 if (Mode->UsingIpv6) { 313 // 314 // Configure all the instances for IPv6 as NULL. 315 // 316 ZeroMem (&Private->Udp6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS)); 317 ZeroMem (&Private->Ip6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS)); 318 Private->Dhcp6->Stop (Private->Dhcp6); 319 Private->Dhcp6->Configure (Private->Dhcp6, NULL); 320 Private->Udp6Write->Configure (Private->Udp6Write, NULL); 321 Private->Udp6Read->Groups (Private->Udp6Read, FALSE, NULL); 322 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 323 Private->Ip6->Cancel (Private->Ip6, &Private->Icmp6Token); 324 Private->Ip6->Configure (Private->Ip6, NULL); 325 PxeBcUnregisterIp6Address (Private); 326 if (Private->Icmp6Token.Event != NULL) { 327 gBS->CloseEvent (Private->Icmp6Token.Event); 328 Private->Icmp6Token.Event = NULL; 329 } 330 if (Private->Dhcp6Request != NULL) { 331 FreePool (Private->Dhcp6Request); 332 Private->Dhcp6Request = NULL; 333 } 334 if (Private->BootFileName != NULL) { 335 FreePool (Private->BootFileName); 336 Private->BootFileName = NULL; 337 } 338 } else { 339 // 340 // Configure all the instances for IPv4 as NULL. 341 // 342 ZeroMem (&Private->Udp4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS)); 343 ZeroMem (&Private->Udp4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS)); 344 ZeroMem (&Private->Ip4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS)); 345 ZeroMem (&Private->Ip4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS)); 346 Private->Dhcp4->Stop (Private->Dhcp4); 347 Private->Dhcp4->Configure (Private->Dhcp4, NULL); 348 Private->Udp4Write->Configure (Private->Udp4Write, NULL); 349 Private->Udp4Read->Groups (Private->Udp4Read, FALSE, NULL); 350 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 351 Private->Ip4->Cancel (Private->Ip4, &Private->IcmpToken); 352 Private->Ip4->Configure (Private->Ip4, NULL); 353 if (Private->ArpUpdateEvent != NULL) { 354 gBS->CloseEvent (Private->ArpUpdateEvent); 355 Private->ArpUpdateEvent = NULL; 356 } 357 if (Private->IcmpToken.Event != NULL) { 358 gBS->CloseEvent (Private->IcmpToken.Event); 359 Private->IcmpToken.Event = NULL; 360 } 361 Private->BootFileName = NULL; 362 } 363 364 gBS->CloseEvent (Private->UdpTimeOutEvent); 365 Private->CurSrcPort = 0; 366 Private->BootFileSize = 0; 367 Private->SolicitTimes = 0; 368 Private->ElapsedTime = 0; 369 ZeroMem (&Private->StationIp, sizeof (EFI_IP_ADDRESS)); 370 ZeroMem (&Private->SubnetMask, sizeof (EFI_IP_ADDRESS)); 371 ZeroMem (&Private->GatewayIp, sizeof (EFI_IP_ADDRESS)); 372 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS)); 373 374 // 375 // Reset the mode data. 376 // 377 ZeroMem (Mode, sizeof (EFI_PXE_BASE_CODE_MODE)); 378 Mode->Ipv6Available = Ipv6Available; 379 Mode->Ipv6Supported = Ipv6Supported; 380 Mode->AutoArp = TRUE; 381 Mode->TTL = DEFAULT_TTL; 382 Mode->ToS = DEFAULT_ToS; 383 384 return EFI_SUCCESS; 385 } 386 387 388 /** 389 Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6 390 S.A.R.R (solicit / advertise / request / reply) sequence. 391 392 If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before 393 they are tried. If SortOffers is FALSE, then the cached DHCP offer packets will 394 be tried in the order in which they are received. Please see the Preboot Execution 395 Environment (PXE) Specification and Unified Extensible Firmware Interface (UEFI) 396 Specification for additional details on the implementation of DHCP. 397 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, 398 then the DHCP sequence will be stopped and EFI_ABORTED will be returned. 399 400 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 401 @param[in] SortOffers TRUE if the offers received should be sorted. Set to FALSE to 402 try the offers in the order that they are received. 403 404 @retval EFI_SUCCESS Valid DHCP has completed. 405 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 406 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid 407 EFI_PXE_BASE_CODE_PROTOCOL structure. 408 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 409 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol. 410 @retval EFI_ABORTED The callback function aborted the DHCP Protocol. 411 @retval EFI_TIMEOUT The DHCP Protocol timed out. 412 @retval EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session. 413 @retval EFI_NO_RESPONSE Valid PXE offer was not received. 414 415 **/ 416 EFI_STATUS 417 EFIAPI 418 EfiPxeBcDhcp ( 419 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 420 IN BOOLEAN SortOffers 421 ) 422 { 423 PXEBC_PRIVATE_DATA *Private; 424 EFI_PXE_BASE_CODE_MODE *Mode; 425 EFI_STATUS Status; 426 EFI_PXE_BASE_CODE_IP_FILTER IpFilter; 427 428 if (This == NULL) { 429 return EFI_INVALID_PARAMETER; 430 } 431 432 Status = EFI_SUCCESS; 433 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 434 Mode = Private->PxeBc.Mode; 435 Mode->IcmpErrorReceived = FALSE; 436 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DHCP; 437 Private->IsOfferSorted = SortOffers; 438 Private->SolicitTimes = 0; 439 Private->ElapsedTime = 0; 440 441 if (!Mode->Started) { 442 return EFI_NOT_STARTED; 443 } 444 445 if (Mode->UsingIpv6) { 446 447 // 448 // Stop Udp6Read instance 449 // 450 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 451 452 // 453 // Start S.A.R.R. process to get a IPv6 address and other boot information. 454 // 455 Status = PxeBcDhcp6Sarr (Private, Private->Dhcp6); 456 } else { 457 458 // 459 // Stop Udp4Read instance 460 // 461 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 462 463 // 464 // Start D.O.R.A. process to get a IPv4 address and other boot information. 465 // 466 Status = PxeBcDhcp4Dora (Private, Private->Dhcp4); 467 } 468 469 // 470 // Reconfigure the UDP instance with the default configuration. 471 // 472 if (Mode->UsingIpv6) { 473 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData); 474 } else { 475 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData); 476 } 477 // 478 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP 479 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. 480 // 481 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER)); 482 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP; 483 This->SetIpFilter (This, &IpFilter); 484 485 return Status; 486 } 487 488 489 /** 490 Attempts to complete the PXE Boot Server and/or boot image discovery sequence. 491 492 This function attempts to complete the PXE Boot Server and/or boot image discovery 493 sequence. If this sequence is completed, then EFI_SUCCESS is returned, and the 494 PxeDiscoverValid, PxeDiscover, PxeReplyReceived, and PxeReply fields of the 495 EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the 496 PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE structure 497 will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to FALSE. 498 In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], 499 has two uses: It is the Boot Server IP address list used for unicast discovery 500 (if the UseUCast field is TRUE), and it is the list used for Boot Server verification 501 (if the MustUseList field is TRUE). Also, if the MustUseList field in that structure 502 is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot 503 Server reply of that type will be accepted. If the AcceptAnyResponse field is 504 FALSE, only responses from Boot Servers with matching IP addresses will be accepted. 505 This function can take at least 10 seconds to timeout and return control to the 506 caller. If the Discovery sequence does not complete, then EFI_TIMEOUT will be 507 returned. Please see the Preboot Execution Environment (PXE) Specification for 508 additional details on the implementation of the Discovery sequence. 509 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, 510 then the Discovery sequence is stopped and EFI_ABORTED will be returned. 511 512 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 513 @param[in] Type The type of bootstrap to perform. 514 @param[in] Layer Pointer to the boot server layer number to discover, which must be 515 PXE_BOOT_LAYER_INITIAL when a new server type is being 516 discovered. 517 @param[in] UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise. 518 @param[in] Info Pointer to a data structure that contains additional information 519 on the type of discovery operation that is to be performed. 520 It is optional. 521 522 @retval EFI_SUCCESS The Discovery sequence has been completed. 523 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 524 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 525 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 526 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery. 527 @retval EFI_ABORTED The callback function aborted the Discovery sequence. 528 @retval EFI_TIMEOUT The Discovery sequence timed out. 529 @retval EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery 530 session. 531 532 **/ 533 EFI_STATUS 534 EFIAPI 535 EfiPxeBcDiscover ( 536 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 537 IN UINT16 Type, 538 IN UINT16 *Layer, 539 IN BOOLEAN UseBis, 540 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL 541 ) 542 { 543 PXEBC_PRIVATE_DATA *Private; 544 EFI_PXE_BASE_CODE_MODE *Mode; 545 EFI_PXE_BASE_CODE_DISCOVER_INFO DefaultInfo; 546 EFI_PXE_BASE_CODE_SRVLIST *SrvList; 547 PXEBC_BOOT_SVR_ENTRY *BootSvrEntry; 548 UINT16 Index; 549 EFI_STATUS Status; 550 EFI_PXE_BASE_CODE_IP_FILTER IpFilter; 551 EFI_PXE_BASE_CODE_DISCOVER_INFO *NewCreatedInfo; 552 553 if (This == NULL) { 554 return EFI_INVALID_PARAMETER; 555 } 556 557 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 558 Mode = Private->PxeBc.Mode; 559 Mode->IcmpErrorReceived = FALSE; 560 BootSvrEntry = NULL; 561 SrvList = NULL; 562 Status = EFI_DEVICE_ERROR; 563 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DISCOVER; 564 NewCreatedInfo = NULL; 565 566 if (!Mode->Started) { 567 return EFI_NOT_STARTED; 568 } 569 570 // 571 // Station address should be ready before do discover. 572 // 573 if (!Private->IsAddressOk) { 574 return EFI_INVALID_PARAMETER; 575 } 576 577 if (Mode->UsingIpv6) { 578 579 // 580 // Stop Udp6Read instance 581 // 582 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 583 } else { 584 585 // 586 // Stop Udp4Read instance 587 // 588 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 589 } 590 591 // 592 // There are 3 methods to get the information for discover. 593 // 594 ZeroMem (&DefaultInfo, sizeof (EFI_PXE_BASE_CODE_DISCOVER_INFO)); 595 if (*Layer != EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL) { 596 // 597 // 1. Take the previous setting as the discover info. 598 // 599 if (!Mode->PxeDiscoverValid || 600 !Mode->PxeReplyReceived || 601 (!Mode->PxeBisReplyReceived && UseBis)) { 602 Status = EFI_INVALID_PARAMETER; 603 goto ON_EXIT; 604 } 605 606 Info = &DefaultInfo; 607 Info->IpCnt = 1; 608 Info->UseUCast = TRUE; 609 SrvList = Info->SrvList; 610 SrvList[0].Type = Type; 611 SrvList[0].AcceptAnyResponse = FALSE; 612 613 CopyMem (&SrvList->IpAddr, &Private->ServerIp, sizeof (EFI_IP_ADDRESS)); 614 615 } else if (Info == NULL) { 616 // 617 // 2. Extract the discover information from the cached packets if unspecified. 618 // 619 NewCreatedInfo = &DefaultInfo; 620 Status = PxeBcExtractDiscoverInfo (Private, Type, &NewCreatedInfo, &BootSvrEntry, &SrvList); 621 if (EFI_ERROR (Status)) { 622 goto ON_EXIT; 623 } 624 ASSERT (NewCreatedInfo != NULL); 625 Info = NewCreatedInfo; 626 } else { 627 // 628 // 3. Take the pass-in information as the discover info, and validate the server list. 629 // 630 SrvList = Info->SrvList; 631 632 if (!SrvList[0].AcceptAnyResponse) { 633 for (Index = 1; Index < Info->IpCnt; Index++) { 634 if (SrvList[Index].AcceptAnyResponse) { 635 break; 636 } 637 } 638 if (Index != Info->IpCnt) { 639 // 640 // It's invalid if the first server doesn't accecpt any response 641 // but any of the other servers does accept any response. 642 // 643 Status = EFI_INVALID_PARAMETER; 644 goto ON_EXIT; 645 } 646 } 647 } 648 649 // 650 // Info and BootSvrEntry/SrvList are all ready by now, so execute discover by UniCast/BroadCast/MultiCast. 651 // 652 if ((!Info->UseUCast && !Info->UseBCast && !Info->UseMCast) || 653 (Info->MustUseList && Info->IpCnt == 0)) { 654 Status = EFI_INVALID_PARAMETER; 655 goto ON_EXIT; 656 } 657 658 Private->IsDoDiscover = TRUE; 659 660 if (Info->UseMCast) { 661 // 662 // Do discover by multicast. 663 // 664 Status = PxeBcDiscoverBootServer ( 665 Private, 666 Type, 667 Layer, 668 UseBis, 669 &Info->ServerMCastIp, 670 Info->IpCnt, 671 SrvList 672 ); 673 674 } else if (Info->UseBCast) { 675 // 676 // Do discover by broadcast, but only valid for IPv4. 677 // 678 ASSERT (!Mode->UsingIpv6); 679 Status = PxeBcDiscoverBootServer ( 680 Private, 681 Type, 682 Layer, 683 UseBis, 684 NULL, 685 Info->IpCnt, 686 SrvList 687 ); 688 689 } else if (Info->UseUCast) { 690 // 691 // Do discover by unicast. 692 // 693 for (Index = 0; Index < Info->IpCnt; Index++) { 694 if (BootSvrEntry == NULL) { 695 CopyMem (&Private->ServerIp, &SrvList[Index].IpAddr, sizeof (EFI_IP_ADDRESS)); 696 } else { 697 ASSERT (!Mode->UsingIpv6); 698 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS)); 699 CopyMem (&Private->ServerIp, &BootSvrEntry->IpAddr[Index], sizeof (EFI_IPv4_ADDRESS)); 700 } 701 702 Status = PxeBcDiscoverBootServer ( 703 Private, 704 Type, 705 Layer, 706 UseBis, 707 &Private->ServerIp, 708 Info->IpCnt, 709 SrvList 710 ); 711 } 712 } 713 714 if (!EFI_ERROR (Status)) { 715 // 716 // Parse the cached PXE reply packet, and store it into mode data if valid. 717 // 718 if (Mode->UsingIpv6) { 719 Status = PxeBcParseDhcp6Packet (&Private->PxeReply.Dhcp6); 720 if (!EFI_ERROR (Status)) { 721 CopyMem ( 722 &Mode->PxeReply.Dhcpv6, 723 &Private->PxeReply.Dhcp6.Packet.Ack.Dhcp6, 724 Private->PxeReply.Dhcp6.Packet.Ack.Length 725 ); 726 Mode->PxeReplyReceived = TRUE; 727 Mode->PxeDiscoverValid = TRUE; 728 } 729 } else { 730 Status = PxeBcParseDhcp4Packet (&Private->PxeReply.Dhcp4); 731 if (!EFI_ERROR (Status)) { 732 CopyMem ( 733 &Mode->PxeReply.Dhcpv4, 734 &Private->PxeReply.Dhcp4.Packet.Ack.Dhcp4, 735 Private->PxeReply.Dhcp4.Packet.Ack.Length 736 ); 737 Mode->PxeReplyReceived = TRUE; 738 Mode->PxeDiscoverValid = TRUE; 739 } 740 } 741 } 742 743 ON_EXIT: 744 745 if (NewCreatedInfo != NULL && NewCreatedInfo != &DefaultInfo) { 746 FreePool (NewCreatedInfo); 747 } 748 749 if (Mode->UsingIpv6) { 750 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData); 751 } else { 752 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData); 753 } 754 755 // 756 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP 757 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. 758 // 759 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER)); 760 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP; 761 This->SetIpFilter (This, &IpFilter); 762 763 return Status; 764 } 765 766 767 /** 768 Used to perform TFTP and MTFTP services. 769 770 This function is used to perform TFTP and MTFTP services. This includes the 771 TFTP operations to get the size of a file, read a directory, read a file, and 772 write a file. It also includes the MTFTP operations to get the size of a file, 773 read a directory, and read a file. The type of operation is specified by Operation. 774 If the callback function that is invoked during the TFTP/MTFTP operation does 775 not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will 776 be returned. 777 For read operations, the return data will be placed in the buffer specified by 778 BufferPtr. If BufferSize is too small to contain the entire downloaded file, 779 then EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero, 780 or the size of the requested file. (NOTE: the size of the requested file is only returned 781 if the TFTP server supports TFTP options). If BufferSize is large enough for the 782 read operation, then BufferSize will be set to the size of the downloaded file, 783 and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services 784 should use the get-file-size operations to determine the size of the downloaded 785 file prior to using the read-file operations-especially when downloading large 786 (greater than 64 MB) files-instead of making two calls to the read-file operation. 787 Following this recommendation will save time if the file is larger than expected 788 and the TFTP server does not support TFTP option extensions. Without TFTP option 789 extension support, the client must download the entire file, counting and discarding 790 the received packets, to determine the file size. 791 For write operations, the data to be sent is in the buffer specified by BufferPtr. 792 BufferSize specifies the number of bytes to send. If the write operation completes 793 successfully, then EFI_SUCCESS will be returned. 794 For TFTP "get file size" operations, the size of the requested file or directory 795 is returned in BufferSize, and EFI_SUCCESS will be returned. If the TFTP server 796 does not support options, the file will be downloaded into a bit bucket and the 797 length of the downloaded file will be returned. For MTFTP "get file size" operations, 798 if the MTFTP server does not support the "get file size" option, EFI_UNSUPPORTED 799 will be returned. 800 This function can take up to 10 seconds to timeout and return control to the caller. 801 If the TFTP sequence does not complete, EFI_TIMEOUT will be returned. 802 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, 803 then the TFTP sequence is stopped and EFI_ABORTED will be returned. 804 805 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 806 @param[in] Operation The type of operation to perform. 807 @param[in, out] BufferPtr A pointer to the data buffer. 808 @param[in] Overwrite Only used on write file operations. TRUE if a file on a remote 809 server can be overwritten. 810 @param[in, out] BufferSize For get-file-size operations, *BufferSize returns the size of the 811 requested file. 812 @param[in] BlockSize The requested block size to be used during a TFTP transfer. 813 @param[in] ServerIp The TFTP / MTFTP server IP address. 814 @param[in] Filename A Null-terminated ASCII string that specifies a directory name 815 or a file name. 816 @param[in] Info Pointer to the MTFTP information. 817 @param[in] DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation. 818 819 @retval EFI_SUCCESS The TFTP/MTFTP operation was completed. 820 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 821 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 822 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 823 @retval EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation. 824 @retval EFI_ABORTED The callback function aborted the TFTP/MTFTP operation. 825 @retval EFI_TIMEOUT The TFTP/MTFTP operation timed out. 826 @retval EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session. 827 @retval EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session. 828 829 **/ 830 EFI_STATUS 831 EFIAPI 832 EfiPxeBcMtftp ( 833 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 834 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation, 835 IN OUT VOID *BufferPtr OPTIONAL, 836 IN BOOLEAN Overwrite, 837 IN OUT UINT64 *BufferSize, 838 IN UINTN *BlockSize OPTIONAL, 839 IN EFI_IP_ADDRESS *ServerIp, 840 IN UINT8 *Filename, 841 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info OPTIONAL, 842 IN BOOLEAN DontUseBuffer 843 ) 844 { 845 PXEBC_PRIVATE_DATA *Private; 846 EFI_PXE_BASE_CODE_MODE *Mode; 847 EFI_MTFTP4_CONFIG_DATA Mtftp4Config; 848 EFI_MTFTP6_CONFIG_DATA Mtftp6Config; 849 VOID *Config; 850 EFI_STATUS Status; 851 EFI_PXE_BASE_CODE_IP_FILTER IpFilter; 852 853 854 if ((This == NULL) || 855 (Filename == NULL) || 856 (BufferSize == NULL) || 857 (ServerIp == NULL) || 858 ((BufferPtr == NULL) && DontUseBuffer) || 859 ((BlockSize != NULL) && (*BlockSize < PXE_MTFTP_DEFAULT_BLOCK_SIZE))) { 860 return EFI_INVALID_PARAMETER; 861 } 862 863 Config = NULL; 864 Status = EFI_DEVICE_ERROR; 865 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 866 Mode = Private->PxeBc.Mode; 867 868 if (Mode->UsingIpv6) { 869 if (!NetIp6IsValidUnicast (&ServerIp->v6)) { 870 return EFI_INVALID_PARAMETER; 871 } 872 } else { 873 if (IP4_IS_UNSPECIFIED (NTOHL (ServerIp->Addr[0])) || IP4_IS_LOCAL_BROADCAST (NTOHL (ServerIp->Addr[0]))) { 874 return EFI_INVALID_PARAMETER; 875 } 876 } 877 878 if (Mode->UsingIpv6) { 879 // 880 // Set configuration data for Mtftp6 instance. 881 // 882 ZeroMem (&Mtftp6Config, sizeof (EFI_MTFTP6_CONFIG_DATA)); 883 Config = &Mtftp6Config; 884 Mtftp6Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT; 885 Mtftp6Config.TryCount = PXEBC_MTFTP_RETRIES; 886 CopyMem (&Mtftp6Config.StationIp, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS)); 887 CopyMem (&Mtftp6Config.ServerIp, &ServerIp->v6, sizeof (EFI_IPv6_ADDRESS)); 888 // 889 // Stop Udp6Read instance 890 // 891 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 892 } else { 893 // 894 // Set configuration data for Mtftp4 instance. 895 // 896 ZeroMem (&Mtftp4Config, sizeof (EFI_MTFTP4_CONFIG_DATA)); 897 Config = &Mtftp4Config; 898 Mtftp4Config.UseDefaultSetting = FALSE; 899 Mtftp4Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT; 900 Mtftp4Config.TryCount = PXEBC_MTFTP_RETRIES; 901 CopyMem (&Mtftp4Config.StationIp, &Private->StationIp.v4, sizeof (EFI_IPv4_ADDRESS)); 902 CopyMem (&Mtftp4Config.SubnetMask, &Private->SubnetMask.v4, sizeof (EFI_IPv4_ADDRESS)); 903 CopyMem (&Mtftp4Config.GatewayIp, &Private->GatewayIp.v4, sizeof (EFI_IPv4_ADDRESS)); 904 CopyMem (&Mtftp4Config.ServerIp, &ServerIp->v4, sizeof (EFI_IPv4_ADDRESS)); 905 // 906 // Stop Udp4Read instance 907 // 908 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 909 } 910 911 Mode->TftpErrorReceived = FALSE; 912 Mode->IcmpErrorReceived = FALSE; 913 914 switch (Operation) { 915 916 case EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE: 917 // 918 // Send TFTP request to get file size. 919 // 920 Status = PxeBcTftpGetFileSize ( 921 Private, 922 Config, 923 Filename, 924 BlockSize, 925 BufferSize 926 ); 927 928 break; 929 930 case EFI_PXE_BASE_CODE_TFTP_READ_FILE: 931 // 932 // Send TFTP request to read file. 933 // 934 Status = PxeBcTftpReadFile ( 935 Private, 936 Config, 937 Filename, 938 BlockSize, 939 BufferPtr, 940 BufferSize, 941 DontUseBuffer 942 ); 943 944 break; 945 946 case EFI_PXE_BASE_CODE_TFTP_WRITE_FILE: 947 // 948 // Send TFTP request to write file. 949 // 950 Status = PxeBcTftpWriteFile ( 951 Private, 952 Config, 953 Filename, 954 Overwrite, 955 BlockSize, 956 BufferPtr, 957 BufferSize 958 ); 959 960 break; 961 962 case EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY: 963 // 964 // Send TFTP request to read directory. 965 // 966 Status = PxeBcTftpReadDirectory ( 967 Private, 968 Config, 969 Filename, 970 BlockSize, 971 BufferPtr, 972 BufferSize, 973 DontUseBuffer 974 ); 975 976 break; 977 978 case EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE: 979 case EFI_PXE_BASE_CODE_MTFTP_READ_FILE: 980 case EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY: 981 Status = EFI_UNSUPPORTED; 982 983 break; 984 985 default: 986 Status = EFI_INVALID_PARAMETER; 987 988 break; 989 } 990 991 if (Status == EFI_ICMP_ERROR) { 992 Mode->IcmpErrorReceived = TRUE; 993 } 994 995 // 996 // Reconfigure the UDP instance with the default configuration. 997 // 998 if (Mode->UsingIpv6) { 999 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData); 1000 } else { 1001 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData); 1002 } 1003 // 1004 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP 1005 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. 1006 // 1007 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER)); 1008 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP; 1009 This->SetIpFilter (This, &IpFilter); 1010 1011 return Status; 1012 } 1013 1014 1015 /** 1016 Writes a UDP packet to the network interface. 1017 1018 This function writes a UDP packet specified by the (optional HeaderPtr and) 1019 BufferPtr parameters to the network interface. The UDP header is automatically 1020 built by this routine. It uses the parameters OpFlags, DestIp, DestPort, GatewayIp, 1021 SrcIp, and SrcPort to build this header. If the packet is successfully built and 1022 transmitted through the network interface, then EFI_SUCCESS will be returned. 1023 If a timeout occurs during the transmission of the packet, then EFI_TIMEOUT will 1024 be returned. If an ICMP error occurs during the transmission of the packet, then 1025 the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and 1026 EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return 1027 EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned. 1028 1029 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1030 @param[in] OpFlags The UDP operation flags. 1031 @param[in] DestIp The destination IP address. 1032 @param[in] DestPort The destination UDP port number. 1033 @param[in] GatewayIp The gateway IP address. 1034 @param[in] SrcIp The source IP address. 1035 @param[in, out] SrcPort The source UDP port number. 1036 @param[in] HeaderSize An optional field which may be set to the length of a header 1037 at HeaderPtr to be prefixed to the data at BufferPtr. 1038 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be 1039 prefixed to the data at BufferPtr. 1040 @param[in] BufferSize A pointer to the size of the data at BufferPtr. 1041 @param[in] BufferPtr A pointer to the data to be written. 1042 1043 @retval EFI_SUCCESS The UDP Write operation completed. 1044 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1045 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1046 @retval EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted. 1047 @retval EFI_ABORTED The callback function aborted the UDP Write operation. 1048 @retval EFI_TIMEOUT The UDP Write operation timed out. 1049 @retval EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session. 1050 1051 **/ 1052 EFI_STATUS 1053 EFIAPI 1054 EfiPxeBcUdpWrite ( 1055 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1056 IN UINT16 OpFlags, 1057 IN EFI_IP_ADDRESS *DestIp, 1058 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort, 1059 IN EFI_IP_ADDRESS *GatewayIp OPTIONAL, 1060 IN EFI_IP_ADDRESS *SrcIp OPTIONAL, 1061 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL, 1062 IN UINTN *HeaderSize OPTIONAL, 1063 IN VOID *HeaderPtr OPTIONAL, 1064 IN UINTN *BufferSize, 1065 IN VOID *BufferPtr 1066 ) 1067 { 1068 PXEBC_PRIVATE_DATA *Private; 1069 EFI_PXE_BASE_CODE_MODE *Mode; 1070 EFI_UDP4_SESSION_DATA Udp4Session; 1071 EFI_UDP6_SESSION_DATA Udp6Session; 1072 EFI_STATUS Status; 1073 BOOLEAN DoNotFragment; 1074 1075 if (This == NULL || DestIp == NULL || DestPort == NULL) { 1076 return EFI_INVALID_PARAMETER; 1077 } 1078 1079 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 1080 Mode = Private->PxeBc.Mode; 1081 1082 if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT) != 0) { 1083 DoNotFragment = FALSE; 1084 } else { 1085 DoNotFragment = TRUE; 1086 } 1087 1088 if (!Mode->UsingIpv6 && GatewayIp != NULL && !NetIp4IsUnicast (NTOHL (GatewayIp->Addr[0]), EFI_NTOHL(Mode->SubnetMask))) { 1089 // 1090 // Gateway is provided but it's not a unicast IPv4 address, while it will be ignored for IPv6. 1091 // 1092 return EFI_INVALID_PARAMETER; 1093 } 1094 1095 if (HeaderSize != NULL && (*HeaderSize == 0 || HeaderPtr == NULL)) { 1096 return EFI_INVALID_PARAMETER; 1097 } 1098 1099 if (BufferSize == NULL || (*BufferSize != 0 && BufferPtr == NULL)) { 1100 return EFI_INVALID_PARAMETER; 1101 } 1102 1103 if (!Mode->Started) { 1104 return EFI_NOT_STARTED; 1105 } 1106 1107 if (!Private->IsAddressOk && SrcIp == NULL) { 1108 return EFI_INVALID_PARAMETER; 1109 } 1110 1111 if (Private->CurSrcPort == 0 || 1112 (SrcPort != NULL && *SrcPort != Private->CurSrcPort)) { 1113 // 1114 // Reconfigure UDPv4/UDPv6 for UdpWrite if the source port changed. 1115 // 1116 if (SrcPort != NULL) { 1117 Private->CurSrcPort = *SrcPort; 1118 } 1119 } 1120 1121 if (Mode->UsingIpv6) { 1122 Status = PxeBcConfigUdp6Write ( 1123 Private->Udp6Write, 1124 &Private->StationIp.v6, 1125 &Private->CurSrcPort 1126 ); 1127 } else { 1128 // 1129 // Configure the UDPv4 instance with gateway information from DHCP server as default. 1130 // 1131 Status = PxeBcConfigUdp4Write ( 1132 Private->Udp4Write, 1133 &Private->StationIp.v4, 1134 &Private->SubnetMask.v4, 1135 &Private->GatewayIp.v4, 1136 &Private->CurSrcPort, 1137 DoNotFragment, 1138 Private->Mode.TTL, 1139 Private->Mode.ToS 1140 ); 1141 } 1142 1143 if (EFI_ERROR (Status)) { 1144 Private->CurSrcPort = 0; 1145 return EFI_INVALID_PARAMETER; 1146 } else if (SrcPort != NULL) { 1147 *SrcPort = Private->CurSrcPort; 1148 } 1149 1150 // 1151 // Start a timer as timeout event for this blocking API. 1152 // 1153 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT); 1154 1155 if (Mode->UsingIpv6) { 1156 // 1157 // Construct UDPv6 session data. 1158 // 1159 ZeroMem (&Udp6Session, sizeof (EFI_UDP6_SESSION_DATA)); 1160 CopyMem (&Udp6Session.DestinationAddress, DestIp, sizeof (EFI_IPv6_ADDRESS)); 1161 Udp6Session.DestinationPort = *DestPort; 1162 if (SrcIp != NULL) { 1163 CopyMem (&Udp6Session.SourceAddress, SrcIp, sizeof (EFI_IPv6_ADDRESS)); 1164 } 1165 if (SrcPort != NULL) { 1166 Udp6Session.SourcePort = *SrcPort; 1167 } 1168 1169 Status = PxeBcUdp6Write ( 1170 Private->Udp6Write, 1171 &Udp6Session, 1172 Private->UdpTimeOutEvent, 1173 HeaderSize, 1174 HeaderPtr, 1175 BufferSize, 1176 BufferPtr 1177 ); 1178 } else { 1179 // 1180 // Construct UDPv4 session data. 1181 // 1182 ZeroMem (&Udp4Session, sizeof (EFI_UDP4_SESSION_DATA)); 1183 CopyMem (&Udp4Session.DestinationAddress, DestIp, sizeof (EFI_IPv4_ADDRESS)); 1184 Udp4Session.DestinationPort = *DestPort; 1185 if (SrcIp != NULL) { 1186 CopyMem (&Udp4Session.SourceAddress, SrcIp, sizeof (EFI_IPv4_ADDRESS)); 1187 } 1188 if (SrcPort != NULL) { 1189 Udp4Session.SourcePort = *SrcPort; 1190 } 1191 // 1192 // Override the gateway information if user specified. 1193 // 1194 Status = PxeBcUdp4Write ( 1195 Private->Udp4Write, 1196 &Udp4Session, 1197 Private->UdpTimeOutEvent, 1198 (EFI_IPv4_ADDRESS *) GatewayIp, 1199 HeaderSize, 1200 HeaderPtr, 1201 BufferSize, 1202 BufferPtr 1203 ); 1204 } 1205 1206 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0); 1207 1208 1209 // 1210 // Reset the UdpWrite instance. 1211 // 1212 if (Mode->UsingIpv6) { 1213 Private->Udp6Write->Configure (Private->Udp6Write, NULL); 1214 } else { 1215 Private->Udp4Write->Configure (Private->Udp4Write, NULL); 1216 } 1217 1218 return Status; 1219 } 1220 1221 1222 /** 1223 Reads a UDP packet from the network interface. 1224 + 1225 This function reads a UDP packet from a network interface. The data contents 1226 are returned in (the optional HeaderPtr and) BufferPtr, and the size of the 1227 buffer received is returned in BufferSize . If the input BufferSize is smaller 1228 than the UDP packet received (less optional HeaderSize), it will be set to the 1229 required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the 1230 contents of BufferPtr are undefined, and the packet is lost. If a UDP packet is 1231 successfully received, then EFI_SUCCESS will be returned, and the information 1232 from the UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if 1233 they are not NULL. Depending on the values of OpFlags and the DestIp, DestPort, 1234 SrcIp, and SrcPort input values, different types of UDP packet receive filtering 1235 will be performed. The following tables summarize these receive filter operations. 1236 1237 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1238 @param[in] OpFlags The UDP operation flags. 1239 @param[in, out] DestIp The destination IP address. 1240 @param[in, out] DestPort The destination UDP port number. 1241 @param[in, out] SrcIp The source IP address. 1242 @param[in, out] SrcPort The source UDP port number. 1243 @param[in] HeaderSize An optional field which may be set to the length of a 1244 header at HeaderPtr to be prefixed to the data at BufferPtr. 1245 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be 1246 prefixed to the data at BufferPtr. 1247 @param[in, out] BufferSize A pointer to the size of the data at BufferPtr. 1248 @param[in] BufferPtr A pointer to the data to be read. 1249 1250 @retval EFI_SUCCESS The UDP Read operation was completed. 1251 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1252 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1253 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 1254 @retval EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold. 1255 @retval EFI_ABORTED The callback function aborted the UDP Read operation. 1256 @retval EFI_TIMEOUT The UDP Read operation timed out. 1257 1258 **/ 1259 EFI_STATUS 1260 EFIAPI 1261 EfiPxeBcUdpRead ( 1262 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1263 IN UINT16 OpFlags, 1264 IN OUT EFI_IP_ADDRESS *DestIp OPTIONAL, 1265 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort OPTIONAL, 1266 IN OUT EFI_IP_ADDRESS *SrcIp OPTIONAL, 1267 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL, 1268 IN UINTN *HeaderSize OPTIONAL, 1269 IN VOID *HeaderPtr OPTIONAL, 1270 IN OUT UINTN *BufferSize, 1271 IN VOID *BufferPtr 1272 ) 1273 { 1274 PXEBC_PRIVATE_DATA *Private; 1275 EFI_PXE_BASE_CODE_MODE *Mode; 1276 EFI_UDP4_COMPLETION_TOKEN Udp4Token; 1277 EFI_UDP6_COMPLETION_TOKEN Udp6Token; 1278 EFI_UDP4_RECEIVE_DATA *Udp4Rx; 1279 EFI_UDP6_RECEIVE_DATA *Udp6Rx; 1280 EFI_STATUS Status; 1281 BOOLEAN IsDone; 1282 BOOLEAN IsMatched; 1283 UINTN CopiedLen; 1284 UINTN HeaderLen; 1285 UINTN HeaderCopiedLen; 1286 UINTN BufferCopiedLen; 1287 UINT32 FragmentLength; 1288 UINTN FragmentIndex; 1289 UINT8 *FragmentBuffer; 1290 1291 if (This == NULL) { 1292 return EFI_INVALID_PARAMETER; 1293 } 1294 1295 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 1296 Mode = Private->PxeBc.Mode; 1297 IsDone = FALSE; 1298 IsMatched = FALSE; 1299 Udp4Rx = NULL; 1300 Udp6Rx = NULL; 1301 1302 if (((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && DestPort == NULL) || 1303 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP) == 0 && SrcIp == NULL) || 1304 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) == 0 && SrcPort == NULL)) { 1305 return EFI_INVALID_PARAMETER; 1306 } 1307 1308 if ((HeaderSize != NULL && *HeaderSize == 0) || (HeaderSize != NULL && HeaderPtr == NULL)) { 1309 return EFI_INVALID_PARAMETER; 1310 } 1311 1312 if ((BufferSize == NULL) || (BufferPtr == NULL)) { 1313 return EFI_INVALID_PARAMETER; 1314 } 1315 1316 if (!Mode->Started) { 1317 return EFI_NOT_STARTED; 1318 } 1319 1320 ZeroMem (&Udp6Token, sizeof (EFI_UDP6_COMPLETION_TOKEN)); 1321 ZeroMem (&Udp4Token, sizeof (EFI_UDP4_COMPLETION_TOKEN)); 1322 1323 if (Mode->UsingIpv6) { 1324 Status = gBS->CreateEvent ( 1325 EVT_NOTIFY_SIGNAL, 1326 TPL_NOTIFY, 1327 PxeBcCommonNotify, 1328 &IsDone, 1329 &Udp6Token.Event 1330 ); 1331 if (EFI_ERROR (Status)) { 1332 return EFI_OUT_OF_RESOURCES; 1333 } 1334 } else { 1335 Status = gBS->CreateEvent ( 1336 EVT_NOTIFY_SIGNAL, 1337 TPL_NOTIFY, 1338 PxeBcCommonNotify, 1339 &IsDone, 1340 &Udp4Token.Event 1341 ); 1342 if (EFI_ERROR (Status)) { 1343 return EFI_OUT_OF_RESOURCES; 1344 } 1345 } 1346 1347 // 1348 // Start a timer as timeout event for this blocking API. 1349 // 1350 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT); 1351 Mode->IcmpErrorReceived = FALSE; 1352 1353 // 1354 // Read packet by Udp4Read/Udp6Read until matched or timeout. 1355 // 1356 while (!IsMatched && !EFI_ERROR (Status)) { 1357 if (Mode->UsingIpv6) { 1358 Status = PxeBcUdp6Read ( 1359 Private->Udp6Read, 1360 &Udp6Token, 1361 Mode, 1362 Private->UdpTimeOutEvent, 1363 OpFlags, 1364 &IsDone, 1365 &IsMatched, 1366 DestIp, 1367 DestPort, 1368 SrcIp, 1369 SrcPort 1370 ); 1371 } else { 1372 Status = PxeBcUdp4Read ( 1373 Private->Udp4Read, 1374 &Udp4Token, 1375 Mode, 1376 Private->UdpTimeOutEvent, 1377 OpFlags, 1378 &IsDone, 1379 &IsMatched, 1380 DestIp, 1381 DestPort, 1382 SrcIp, 1383 SrcPort 1384 ); 1385 } 1386 } 1387 1388 if (Status == EFI_ICMP_ERROR || 1389 Status == EFI_NETWORK_UNREACHABLE || 1390 Status == EFI_HOST_UNREACHABLE || 1391 Status == EFI_PROTOCOL_UNREACHABLE || 1392 Status == EFI_PORT_UNREACHABLE) { 1393 // 1394 // Get different return status for icmp error from Udp, refers to UEFI spec. 1395 // 1396 Mode->IcmpErrorReceived = TRUE; 1397 } 1398 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0); 1399 1400 if (IsMatched) { 1401 // 1402 // Copy the rececived packet to user if matched by filter. 1403 // 1404 if (Mode->UsingIpv6) { 1405 Udp6Rx = Udp6Token.Packet.RxData; 1406 ASSERT (Udp6Rx != NULL); 1407 1408 HeaderLen = 0; 1409 if (HeaderSize != NULL) { 1410 HeaderLen = MIN (*HeaderSize, Udp6Rx->DataLength); 1411 } 1412 1413 if (Udp6Rx->DataLength - HeaderLen > *BufferSize) { 1414 Status = EFI_BUFFER_TOO_SMALL; 1415 } else { 1416 if (HeaderSize != NULL) { 1417 *HeaderSize = HeaderLen; 1418 } 1419 *BufferSize = Udp6Rx->DataLength - HeaderLen; 1420 1421 HeaderCopiedLen = 0; 1422 BufferCopiedLen = 0; 1423 for (FragmentIndex = 0; FragmentIndex < Udp6Rx->FragmentCount; FragmentIndex++) { 1424 FragmentLength = Udp6Rx->FragmentTable[FragmentIndex].FragmentLength; 1425 FragmentBuffer = Udp6Rx->FragmentTable[FragmentIndex].FragmentBuffer; 1426 if (HeaderCopiedLen + FragmentLength < HeaderLen) { 1427 // 1428 // Copy the header part of received data. 1429 // 1430 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength); 1431 HeaderCopiedLen += FragmentLength; 1432 } else if (HeaderCopiedLen < HeaderLen) { 1433 // 1434 // Copy the header part of received data. 1435 // 1436 CopiedLen = HeaderLen - HeaderCopiedLen; 1437 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen); 1438 HeaderCopiedLen += CopiedLen; 1439 1440 // 1441 // Copy the other part of received data. 1442 // 1443 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen); 1444 BufferCopiedLen += (FragmentLength - CopiedLen); 1445 } else { 1446 // 1447 // Copy the other part of received data. 1448 // 1449 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength); 1450 BufferCopiedLen += FragmentLength; 1451 } 1452 } 1453 } 1454 // 1455 // Recycle the receiving buffer after copy to user. 1456 // 1457 gBS->SignalEvent (Udp6Rx->RecycleSignal); 1458 } else { 1459 Udp4Rx = Udp4Token.Packet.RxData; 1460 ASSERT (Udp4Rx != NULL); 1461 1462 HeaderLen = 0; 1463 if (HeaderSize != NULL) { 1464 HeaderLen = MIN (*HeaderSize, Udp4Rx->DataLength); 1465 } 1466 1467 if (Udp4Rx->DataLength - HeaderLen > *BufferSize) { 1468 Status = EFI_BUFFER_TOO_SMALL; 1469 } else { 1470 if (HeaderSize != NULL) { 1471 *HeaderSize = HeaderLen; 1472 } 1473 *BufferSize = Udp4Rx->DataLength - HeaderLen; 1474 1475 HeaderCopiedLen = 0; 1476 BufferCopiedLen = 0; 1477 for (FragmentIndex = 0; FragmentIndex < Udp4Rx->FragmentCount; FragmentIndex++) { 1478 FragmentLength = Udp4Rx->FragmentTable[FragmentIndex].FragmentLength; 1479 FragmentBuffer = Udp4Rx->FragmentTable[FragmentIndex].FragmentBuffer; 1480 if (HeaderCopiedLen + FragmentLength < HeaderLen) { 1481 // 1482 // Copy the header part of received data. 1483 // 1484 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength); 1485 HeaderCopiedLen += FragmentLength; 1486 } else if (HeaderCopiedLen < HeaderLen) { 1487 // 1488 // Copy the header part of received data. 1489 // 1490 CopiedLen = HeaderLen - HeaderCopiedLen; 1491 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen); 1492 HeaderCopiedLen += CopiedLen; 1493 1494 // 1495 // Copy the other part of received data. 1496 // 1497 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen); 1498 BufferCopiedLen += (FragmentLength - CopiedLen); 1499 } else { 1500 // 1501 // Copy the other part of received data. 1502 // 1503 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength); 1504 BufferCopiedLen += FragmentLength; 1505 } 1506 } 1507 } 1508 // 1509 // Recycle the receiving buffer after copy to user. 1510 // 1511 gBS->SignalEvent (Udp4Rx->RecycleSignal); 1512 } 1513 } 1514 1515 if (Mode->UsingIpv6) { 1516 Private->Udp6Read->Cancel (Private->Udp6Read, &Udp6Token); 1517 gBS->CloseEvent (Udp6Token.Event); 1518 } else { 1519 Private->Udp4Read->Cancel (Private->Udp4Read, &Udp4Token); 1520 gBS->CloseEvent (Udp4Token.Event); 1521 } 1522 1523 return Status; 1524 } 1525 1526 1527 /** 1528 Updates the IP receive filters of a network device and enables software filtering. 1529 1530 The NewFilter field is used to modify the network device's current IP receive 1531 filter settings and to enable a software filter. This function updates the IpFilter 1532 field of the EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter. 1533 The software filter is used when the USE_FILTER in OpFlags is set to UdpRead(). 1534 The current hardware filter remains in effect no matter what the settings of OpFlags. 1535 This is so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those 1536 packets whose reception is enabled in hardware-physical NIC address (unicast), 1537 broadcast address, logical address or addresses (multicast), or all (promiscuous). 1538 UdpRead() does not modify the IP filter settings. 1539 Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive 1540 filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. 1541 If an application or driver wishes to preserve the IP receive filter settings, 1542 it will have to preserve the IP receive filter settings before these calls, and 1543 use SetIpFilter() to restore them after the calls. If incompatible filtering is 1544 requested (for example, PROMISCUOUS with anything else), or if the device does not 1545 support a requested filter setting and it cannot be accommodated in software 1546 (for example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned. 1547 The IPlist field is used to enable IPs other than the StationIP. They may be 1548 multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP, 1549 then both the StationIP and the IPs from the IPlist will be used. 1550 1551 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1552 @param[in] NewFilter Pointer to the new set of IP receive filters. 1553 1554 @retval EFI_SUCCESS The IP receive filter settings were updated. 1555 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1556 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1557 1558 **/ 1559 EFI_STATUS 1560 EFIAPI 1561 EfiPxeBcSetIpFilter ( 1562 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1563 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter 1564 ) 1565 { 1566 EFI_STATUS Status; 1567 PXEBC_PRIVATE_DATA *Private; 1568 EFI_PXE_BASE_CODE_MODE *Mode; 1569 EFI_UDP4_CONFIG_DATA *Udp4Cfg; 1570 EFI_UDP6_CONFIG_DATA *Udp6Cfg; 1571 UINTN Index; 1572 BOOLEAN NeedPromiscuous; 1573 BOOLEAN AcceptPromiscuous; 1574 BOOLEAN AcceptBroadcast; 1575 BOOLEAN MultiCastUpdate; 1576 1577 if (This == NULL || NewFilter == NULL) { 1578 return EFI_INVALID_PARAMETER; 1579 } 1580 1581 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 1582 Mode = Private->PxeBc.Mode; 1583 Status = EFI_SUCCESS; 1584 NeedPromiscuous = FALSE; 1585 1586 if (!Mode->Started) { 1587 return EFI_NOT_STARTED; 1588 } 1589 1590 for (Index = 0; Index < NewFilter->IpCnt; Index++) { 1591 ASSERT (Index < EFI_PXE_BASE_CODE_MAX_IPCNT); 1592 if (!Mode->UsingIpv6 && 1593 IP4_IS_LOCAL_BROADCAST (EFI_IP4 (NewFilter->IpList[Index].v4))) { 1594 // 1595 // IPv4 broadcast address should not be in IP filter. 1596 // 1597 return EFI_INVALID_PARAMETER; 1598 } 1599 if (Mode->UsingIpv6) { 1600 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0 && 1601 NetIp6IsValidUnicast (&NewFilter->IpList[Index].v6)) { 1602 NeedPromiscuous = TRUE; 1603 } 1604 } else if ((EFI_NTOHL(Mode->StationIp) != 0) && 1605 (EFI_NTOHL(Mode->SubnetMask) != 0) && 1606 IP4_NET_EQUAL(EFI_NTOHL(Mode->StationIp), EFI_NTOHL(NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask.v4)) && 1607 NetIp4IsUnicast (EFI_IP4 (NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask)) && 1608 ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0)) { 1609 NeedPromiscuous = TRUE; 1610 } 1611 } 1612 1613 AcceptPromiscuous = FALSE; 1614 AcceptBroadcast = FALSE; 1615 MultiCastUpdate = FALSE; 1616 1617 if (NeedPromiscuous || 1618 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0 || 1619 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0) { 1620 // 1621 // Configure UDPv4/UDPv6 as promiscuous mode to receive all packets. 1622 // 1623 AcceptPromiscuous = TRUE; 1624 } else if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) { 1625 // 1626 // Configure UDPv4 to receive all broadcast packets. 1627 // 1628 AcceptBroadcast = TRUE; 1629 } 1630 1631 // 1632 // In multicast condition when Promiscuous FALSE and IpCnt no-zero. 1633 // Here check if there is any update of the multicast ip address. If yes, 1634 // we need leave the old multicast group (by Config UDP instance to NULL), 1635 // and join the new multicast group. 1636 // 1637 if (!AcceptPromiscuous) { 1638 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) { 1639 if (Mode->IpFilter.IpCnt != NewFilter->IpCnt) { 1640 MultiCastUpdate = TRUE; 1641 } else if (CompareMem (Mode->IpFilter.IpList, NewFilter->IpList, NewFilter->IpCnt * sizeof (EFI_IP_ADDRESS)) != 0 ) { 1642 MultiCastUpdate = TRUE; 1643 } 1644 } 1645 } 1646 1647 if (!Mode->UsingIpv6) { 1648 // 1649 // Check whether we need reconfigure the UDP4 instance. 1650 // 1651 Udp4Cfg = &Private->Udp4CfgData; 1652 if ((AcceptPromiscuous != Udp4Cfg->AcceptPromiscuous) || 1653 (AcceptBroadcast != Udp4Cfg->AcceptBroadcast) || MultiCastUpdate) { 1654 // 1655 // Clear the UDP4 instance configuration, all joined groups will be left 1656 // during the operation. 1657 // 1658 Private->Udp4Read->Configure (Private->Udp4Read, NULL); 1659 1660 // 1661 // Configure the UDP instance with the new configuration. 1662 // 1663 Udp4Cfg->AcceptPromiscuous = AcceptPromiscuous; 1664 Udp4Cfg->AcceptBroadcast = AcceptBroadcast; 1665 Status = Private->Udp4Read->Configure (Private->Udp4Read, Udp4Cfg); 1666 if (EFI_ERROR (Status)) { 1667 return Status; 1668 } 1669 1670 // 1671 // In not Promiscuous mode, need to join the new multicast group. 1672 // 1673 if (!AcceptPromiscuous) { 1674 for (Index = 0; Index < NewFilter->IpCnt; ++Index) { 1675 if (IP4_IS_MULTICAST (EFI_NTOHL (NewFilter->IpList[Index].v4))) { 1676 // 1677 // Join the mutilcast group. 1678 // 1679 Status = Private->Udp4Read->Groups (Private->Udp4Read, TRUE, &NewFilter->IpList[Index].v4); 1680 if (EFI_ERROR (Status)) { 1681 return Status; 1682 } 1683 } 1684 } 1685 } 1686 } 1687 } else { 1688 // 1689 // Check whether we need reconfigure the UDP6 instance. 1690 // 1691 Udp6Cfg = &Private->Udp6CfgData; 1692 if ((AcceptPromiscuous != Udp6Cfg->AcceptPromiscuous) || MultiCastUpdate) { 1693 // 1694 // Clear the UDP6 instance configuration, all joined groups will be left 1695 // during the operation. 1696 // 1697 Private->Udp6Read->Configure (Private->Udp6Read, NULL); 1698 1699 // 1700 // Configure the UDP instance with the new configuration. 1701 // 1702 Udp6Cfg->AcceptPromiscuous = AcceptPromiscuous; 1703 Status = Private->Udp6Read->Configure (Private->Udp6Read, Udp6Cfg); 1704 if (EFI_ERROR (Status)) { 1705 return Status; 1706 } 1707 1708 // 1709 // In not Promiscuous mode, need to join the new multicast group. 1710 // 1711 if (!AcceptPromiscuous) { 1712 for (Index = 0; Index < NewFilter->IpCnt; ++Index) { 1713 if (IP6_IS_MULTICAST (&NewFilter->IpList[Index].v6)) { 1714 // 1715 // Join the mutilcast group. 1716 // 1717 Status = Private->Udp6Read->Groups (Private->Udp6Read, TRUE, &NewFilter->IpList[Index].v6); 1718 if (EFI_ERROR (Status)) { 1719 return Status; 1720 } 1721 } 1722 } 1723 } 1724 } 1725 } 1726 1727 // 1728 // Save the new IP filter into mode data. 1729 // 1730 CopyMem (&Mode->IpFilter, NewFilter, sizeof (Mode->IpFilter)); 1731 1732 return Status; 1733 } 1734 1735 1736 /** 1737 Uses the ARP protocol to resolve a MAC address. It is not supported for IPv6. 1738 1739 This function uses the ARP protocol to resolve a MAC address. The IP address specified 1740 by IpAddr is used to resolve a MAC address. If the ARP protocol succeeds in resolving 1741 the specified address, then the ArpCacheEntries and ArpCache fields of the mode data 1742 are updated, and EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved 1743 MAC address is placed there as well. If the PXE Base Code protocol is in the 1744 stopped state, then EFI_NOT_STARTED is returned. If the ARP protocol encounters 1745 a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is 1746 returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, 1747 then EFI_ABORTED is returned. 1748 1749 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1750 @param[in] IpAddr Pointer to the IP address that is used to resolve a MAC address. 1751 @param[in] MacAddr If not NULL, a pointer to the MAC address that was resolved with the 1752 ARP protocol. 1753 1754 @retval EFI_SUCCESS The IP or MAC address was resolved. 1755 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1756 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1757 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation. 1758 @retval EFI_ICMP_ERROR An error occur with the ICMP packet message. 1759 1760 **/ 1761 EFI_STATUS 1762 EFIAPI 1763 EfiPxeBcArp ( 1764 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1765 IN EFI_IP_ADDRESS *IpAddr, 1766 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL 1767 ) 1768 { 1769 PXEBC_PRIVATE_DATA *Private; 1770 EFI_PXE_BASE_CODE_MODE *Mode; 1771 EFI_EVENT ResolvedEvent; 1772 EFI_STATUS Status; 1773 EFI_MAC_ADDRESS TempMac; 1774 EFI_MAC_ADDRESS ZeroMac; 1775 BOOLEAN IsResolved; 1776 1777 if (This == NULL || IpAddr == NULL) { 1778 return EFI_INVALID_PARAMETER; 1779 } 1780 1781 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 1782 Mode = Private->PxeBc.Mode; 1783 ResolvedEvent = NULL; 1784 Status = EFI_SUCCESS; 1785 IsResolved = FALSE; 1786 1787 if (!Mode->Started) { 1788 return EFI_NOT_STARTED; 1789 } 1790 1791 if (Mode->UsingIpv6) { 1792 return EFI_UNSUPPORTED; 1793 } 1794 1795 // 1796 // Station address should be ready before do arp. 1797 // 1798 if (!Private->IsAddressOk) { 1799 return EFI_INVALID_PARAMETER; 1800 } 1801 1802 Mode->IcmpErrorReceived = FALSE; 1803 ZeroMem (&TempMac, sizeof (EFI_MAC_ADDRESS)); 1804 ZeroMem (&ZeroMac, sizeof (EFI_MAC_ADDRESS)); 1805 1806 if (!Mode->AutoArp) { 1807 // 1808 // If AutoArp is FALSE, only search in the current Arp cache. 1809 // 1810 PxeBcArpCacheUpdate (NULL, Private); 1811 if (!PxeBcCheckArpCache (Mode, &IpAddr->v4, &TempMac)) { 1812 Status = EFI_DEVICE_ERROR; 1813 goto ON_EXIT; 1814 } 1815 } else { 1816 Status = gBS->CreateEvent ( 1817 EVT_NOTIFY_SIGNAL, 1818 TPL_NOTIFY, 1819 PxeBcCommonNotify, 1820 &IsResolved, 1821 &ResolvedEvent 1822 ); 1823 if (EFI_ERROR (Status)) { 1824 goto ON_EXIT; 1825 } 1826 1827 // 1828 // If AutoArp is TRUE, try to send Arp request on initiative. 1829 // 1830 Status = Private->Arp->Request (Private->Arp, &IpAddr->v4, ResolvedEvent, &TempMac); 1831 if (EFI_ERROR (Status) && Status != EFI_NOT_READY) { 1832 goto ON_EXIT; 1833 } 1834 1835 while (!IsResolved) { 1836 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) { 1837 break; 1838 } 1839 } 1840 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) { 1841 Status = EFI_SUCCESS; 1842 } else { 1843 Status = EFI_TIMEOUT; 1844 } 1845 } 1846 1847 // 1848 // Copy the Mac address to user if needed. 1849 // 1850 if (MacAddr != NULL && !EFI_ERROR (Status)) { 1851 CopyMem (MacAddr, &TempMac, sizeof (EFI_MAC_ADDRESS)); 1852 } 1853 1854 ON_EXIT: 1855 if (ResolvedEvent != NULL) { 1856 gBS->CloseEvent (ResolvedEvent); 1857 } 1858 return Status; 1859 } 1860 1861 1862 /** 1863 Updates the parameters that affect the operation of the PXE Base Code Protocol. 1864 1865 This function sets parameters that affect the operation of the PXE Base Code Protocol. 1866 The parameter specified by NewAutoArp is used to control the generation of ARP 1867 protocol packets. If NewAutoArp is TRUE, then ARP Protocol packets will be generated 1868 as required by the PXE Base Code Protocol. If NewAutoArp is FALSE, then no ARP 1869 Protocol packets will be generated. In this case, the only mappings that are 1870 available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure. 1871 If there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol 1872 service, then the service will fail. This function updates the AutoArp field of 1873 the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp. 1874 The SetParameters() call must be invoked after a Callback Protocol is installed 1875 to enable the use of callbacks. 1876 1877 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1878 @param[in] NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the 1879 current value of AutoARP. 1880 @param[in] NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the 1881 current value of SendGUID. 1882 @param[in] NewTTL If not NULL, a pointer to be used in place of the current value of TTL, 1883 the "time to live" field of the IP header. 1884 @param[in] NewToS If not NULL, a pointer to be used in place of the current value of ToS, 1885 the "type of service" field of the IP header. 1886 @param[in] NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the 1887 current value of the MakeCallback field of the Mode structure. 1888 1889 @retval EFI_SUCCESS The new parameters values were updated. 1890 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1891 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1892 1893 **/ 1894 EFI_STATUS 1895 EFIAPI 1896 EfiPxeBcSetParameters ( 1897 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1898 IN BOOLEAN *NewAutoArp OPTIONAL, 1899 IN BOOLEAN *NewSendGUID OPTIONAL, 1900 IN UINT8 *NewTTL OPTIONAL, 1901 IN UINT8 *NewToS OPTIONAL, 1902 IN BOOLEAN *NewMakeCallback OPTIONAL 1903 ) 1904 { 1905 PXEBC_PRIVATE_DATA *Private; 1906 EFI_PXE_BASE_CODE_MODE *Mode; 1907 EFI_GUID SystemGuid; 1908 EFI_STATUS Status; 1909 1910 if (This == NULL) { 1911 return EFI_INVALID_PARAMETER; 1912 } 1913 1914 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 1915 Mode = Private->PxeBc.Mode; 1916 1917 if (!Mode->Started) { 1918 return EFI_NOT_STARTED; 1919 } 1920 1921 if (NewMakeCallback != NULL) { 1922 if (*NewMakeCallback) { 1923 // 1924 // Update the previous PxeBcCallback protocol. 1925 // 1926 Status = gBS->HandleProtocol ( 1927 Private->Controller, 1928 &gEfiPxeBaseCodeCallbackProtocolGuid, 1929 (VOID **) &Private->PxeBcCallback 1930 ); 1931 1932 if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) { 1933 return EFI_INVALID_PARAMETER; 1934 } 1935 } else { 1936 Private->PxeBcCallback = NULL; 1937 } 1938 Mode->MakeCallbacks = *NewMakeCallback; 1939 } 1940 1941 if (NewSendGUID != NULL) { 1942 if (*NewSendGUID && EFI_ERROR (NetLibGetSystemGuid (&SystemGuid))) { 1943 return EFI_INVALID_PARAMETER; 1944 } 1945 Mode->SendGUID = *NewSendGUID; 1946 } 1947 1948 if (NewAutoArp != NULL) { 1949 Mode->AutoArp = *NewAutoArp; 1950 } 1951 1952 if (NewTTL != NULL) { 1953 Mode->TTL = *NewTTL; 1954 } 1955 1956 if (NewToS != NULL) { 1957 Mode->ToS = *NewToS; 1958 } 1959 1960 return EFI_SUCCESS; 1961 } 1962 1963 1964 /** 1965 Updates the station IP address and/or subnet mask values of a network device. 1966 1967 This function updates the station IP address and/or subnet mask values of a network 1968 device. The NewStationIp field is used to modify the network device's current IP address. 1969 If NewStationIP is NULL, then the current IP address will not be modified. Otherwise, 1970 this function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure 1971 with NewStationIp. The NewSubnetMask field is used to modify the network device's current subnet 1972 mask. If NewSubnetMask is NULL, then the current subnet mask will not be modified. 1973 Otherwise, this function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE 1974 structure with NewSubnetMask. 1975 1976 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 1977 @param[in] NewStationIp Pointer to the new IP address to be used by the network device. 1978 @param[in] NewSubnetMask Pointer to the new subnet mask to be used by the network device. 1979 1980 @retval EFI_SUCCESS The new station IP address and/or subnet mask were updated. 1981 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 1982 @retval EFI_INVALID_PARAMETER One or more parameters are invalid. 1983 1984 **/ 1985 EFI_STATUS 1986 EFIAPI 1987 EfiPxeBcSetStationIP ( 1988 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 1989 IN EFI_IP_ADDRESS *NewStationIp OPTIONAL, 1990 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL 1991 ) 1992 { 1993 EFI_STATUS Status; 1994 PXEBC_PRIVATE_DATA *Private; 1995 EFI_PXE_BASE_CODE_MODE *Mode; 1996 EFI_ARP_CONFIG_DATA ArpConfigData; 1997 1998 if (This == NULL) { 1999 return EFI_INVALID_PARAMETER; 2000 } 2001 2002 if (NewStationIp != NULL && !NetIp6IsValidUnicast (&NewStationIp->v6)) { 2003 return EFI_INVALID_PARAMETER; 2004 } 2005 2006 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 2007 Mode = Private->PxeBc.Mode; 2008 Status = EFI_SUCCESS; 2009 2010 if (!Mode->UsingIpv6 && 2011 NewSubnetMask != NULL && 2012 !IP4_IS_VALID_NETMASK (NTOHL (NewSubnetMask->Addr[0]))) { 2013 return EFI_INVALID_PARAMETER; 2014 } 2015 2016 if (!Mode->UsingIpv6 && NewStationIp != NULL) { 2017 if (IP4_IS_UNSPECIFIED(NTOHL (NewStationIp->Addr[0])) || 2018 IP4_IS_LOCAL_BROADCAST(NTOHL (NewStationIp->Addr[0])) || 2019 (NewSubnetMask != NULL && !NetIp4IsUnicast (NTOHL (NewStationIp->Addr[0]), NTOHL (NewSubnetMask->Addr[0])))) { 2020 return EFI_INVALID_PARAMETER; 2021 } 2022 } 2023 2024 if (!Mode->Started) { 2025 return EFI_NOT_STARTED; 2026 } 2027 2028 if (Mode->UsingIpv6 && NewStationIp != NULL) { 2029 // 2030 // Set the IPv6 address by Ip6Config protocol. 2031 // 2032 Status = PxeBcRegisterIp6Address (Private, &NewStationIp->v6); 2033 if (EFI_ERROR (Status)) { 2034 goto ON_EXIT; 2035 } 2036 } else if (!Mode->UsingIpv6 && NewStationIp != NULL) { 2037 // 2038 // Configure the corresponding ARP with the IPv4 address. 2039 // 2040 ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA)); 2041 2042 ArpConfigData.SwAddressType = 0x0800; 2043 ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS); 2044 ArpConfigData.StationAddress = &NewStationIp->v4; 2045 2046 Private->Arp->Configure (Private->Arp, NULL); 2047 Private->Arp->Configure (Private->Arp, &ArpConfigData); 2048 2049 if (NewSubnetMask != NULL) { 2050 Mode->RouteTableEntries = 1; 2051 Mode->RouteTable[0].IpAddr.Addr[0] = NewStationIp->Addr[0] & NewSubnetMask->Addr[0]; 2052 Mode->RouteTable[0].SubnetMask.Addr[0] = NewSubnetMask->Addr[0]; 2053 Mode->RouteTable[0].GwAddr.Addr[0] = 0; 2054 } 2055 2056 Private->IsAddressOk = TRUE; 2057 } 2058 2059 if (NewStationIp != NULL) { 2060 CopyMem (&Mode->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS)); 2061 CopyMem (&Private->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS)); 2062 } 2063 2064 if (!Mode->UsingIpv6 && NewSubnetMask != NULL) { 2065 CopyMem (&Mode->SubnetMask, NewSubnetMask, sizeof (EFI_IP_ADDRESS)); 2066 CopyMem (&Private->SubnetMask ,NewSubnetMask, sizeof (EFI_IP_ADDRESS)); 2067 } 2068 2069 Status = PxeBcFlushStationIp (Private, NewStationIp, NewSubnetMask); 2070 ON_EXIT: 2071 return Status; 2072 } 2073 2074 2075 /** 2076 Updates the contents of the cached DHCP and Discover packets. 2077 2078 The pointers to the new packets are used to update the contents of the cached 2079 packets in the EFI_PXE_BASE_CODE_MODE structure. 2080 2081 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance. 2082 @param[in] NewDhcpDiscoverValid Pointer to a value that will replace the current 2083 DhcpDiscoverValid field. 2084 @param[in] NewDhcpAckReceived Pointer to a value that will replace the current 2085 DhcpAckReceived field. 2086 @param[in] NewProxyOfferReceived Pointer to a value that will replace the current 2087 ProxyOfferReceived field. 2088 @param[in] NewPxeDiscoverValid Pointer to a value that will replace the current 2089 ProxyOfferReceived field. 2090 @param[in] NewPxeReplyReceived Pointer to a value that will replace the current 2091 PxeReplyReceived field. 2092 @param[in] NewPxeBisReplyReceived Pointer to a value that will replace the current 2093 PxeBisReplyReceived field. 2094 @param[in] NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents. 2095 @param[in] NewDhcpAck Pointer to the new cached DHCP Ack packet contents. 2096 @param[in] NewProxyOffer Pointer to the new cached Proxy Offer packet contents. 2097 @param[in] NewPxeDiscover Pointer to the new cached PXE Discover packet contents. 2098 @param[in] NewPxeReply Pointer to the new cached PXE Reply packet contents. 2099 @param[in] NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents. 2100 2101 @retval EFI_SUCCESS The cached packet contents were updated. 2102 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state. 2103 @retval EFI_INVALID_PARAMETER This is NULL or does not point to a valid 2104 EFI_PXE_BASE_CODE_PROTOCOL structure. 2105 2106 **/ 2107 EFI_STATUS 2108 EFIAPI 2109 EfiPxeBcSetPackets ( 2110 IN EFI_PXE_BASE_CODE_PROTOCOL *This, 2111 IN BOOLEAN *NewDhcpDiscoverValid OPTIONAL, 2112 IN BOOLEAN *NewDhcpAckReceived OPTIONAL, 2113 IN BOOLEAN *NewProxyOfferReceived OPTIONAL, 2114 IN BOOLEAN *NewPxeDiscoverValid OPTIONAL, 2115 IN BOOLEAN *NewPxeReplyReceived OPTIONAL, 2116 IN BOOLEAN *NewPxeBisReplyReceived OPTIONAL, 2117 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover OPTIONAL, 2118 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck OPTIONAL, 2119 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer OPTIONAL, 2120 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover OPTIONAL, 2121 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply OPTIONAL, 2122 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL 2123 ) 2124 { 2125 PXEBC_PRIVATE_DATA *Private; 2126 EFI_PXE_BASE_CODE_MODE *Mode; 2127 2128 if (This == NULL) { 2129 return EFI_INVALID_PARAMETER; 2130 } 2131 2132 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This); 2133 Mode = Private->PxeBc.Mode; 2134 2135 if (!Mode->Started) { 2136 return EFI_NOT_STARTED; 2137 } 2138 2139 if (NewDhcpDiscoverValid != NULL) { 2140 Mode->DhcpDiscoverValid = *NewDhcpDiscoverValid; 2141 } 2142 2143 if (NewDhcpAckReceived != NULL) { 2144 Mode->DhcpAckReceived = *NewDhcpAckReceived; 2145 } 2146 2147 if (NewProxyOfferReceived != NULL) { 2148 Mode->ProxyOfferReceived = *NewProxyOfferReceived; 2149 } 2150 2151 if (NewPxeDiscoverValid != NULL) { 2152 Mode->PxeDiscoverValid = *NewPxeDiscoverValid; 2153 } 2154 2155 if (NewPxeReplyReceived != NULL) { 2156 Mode->PxeReplyReceived = *NewPxeReplyReceived; 2157 } 2158 2159 if (NewPxeBisReplyReceived != NULL) { 2160 Mode->PxeBisReplyReceived = *NewPxeBisReplyReceived; 2161 } 2162 2163 if (NewDhcpDiscover != NULL) { 2164 CopyMem (&Mode->DhcpDiscover, NewDhcpDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2165 } 2166 2167 if (NewDhcpAck != NULL) { 2168 CopyMem (&Mode->DhcpAck, NewDhcpAck, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2169 } 2170 2171 if (NewProxyOffer != NULL) { 2172 CopyMem (&Mode->ProxyOffer, NewProxyOffer, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2173 } 2174 2175 if (NewPxeDiscover != NULL) { 2176 CopyMem (&Mode->PxeDiscover, NewPxeDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2177 } 2178 2179 if (NewPxeReply != NULL) { 2180 CopyMem (&Mode->PxeReply, NewPxeReply, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2181 } 2182 2183 if (NewPxeBisReply != NULL) { 2184 CopyMem (&Mode->PxeBisReply, NewPxeBisReply, sizeof (EFI_PXE_BASE_CODE_PACKET)); 2185 } 2186 2187 return EFI_SUCCESS; 2188 } 2189 2190 EFI_PXE_BASE_CODE_PROTOCOL gPxeBcProtocolTemplate = { 2191 EFI_PXE_BASE_CODE_PROTOCOL_REVISION, 2192 EfiPxeBcStart, 2193 EfiPxeBcStop, 2194 EfiPxeBcDhcp, 2195 EfiPxeBcDiscover, 2196 EfiPxeBcMtftp, 2197 EfiPxeBcUdpWrite, 2198 EfiPxeBcUdpRead, 2199 EfiPxeBcSetIpFilter, 2200 EfiPxeBcArp, 2201 EfiPxeBcSetParameters, 2202 EfiPxeBcSetStationIP, 2203 EfiPxeBcSetPackets, 2204 NULL 2205 }; 2206 2207 2208 /** 2209 Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has 2210 received, or is waiting to receive a packet. 2211 2212 This function is invoked when the PXE Base Code Protocol is about to transmit, has received, 2213 or is waiting to receive a packet. Parameters Function and Received specify the type of event. 2214 Parameters PacketLen and Packet specify the packet that generated the event. If these fields 2215 are zero and NULL respectively, then this is a status update callback. If the operation specified 2216 by Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the operation 2217 specified by Function should be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to 2218 the polling nature of UEFI device drivers, a callback function should not execute for more than 5 ms. 2219 The SetParameters() function must be called after a Callback Protocol is installed to enable the 2220 use of callbacks. 2221 2222 @param[in] This Pointer to the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL instance. 2223 @param[in] Function The PXE Base Code Protocol function that is waiting for an event. 2224 @param[in] Received TRUE if the callback is being invoked due to a receive event. FALSE if 2225 the callback is being invoked due to a transmit event. 2226 @param[in] PacketLength The length, in bytes, of Packet. This field will have a value of zero if 2227 this is a wait for receive event. 2228 @param[in] PacketPtr If Received is TRUE, a pointer to the packet that was just received; 2229 otherwise a pointer to the packet that is about to be transmitted. 2230 2231 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE If Function specifies a continue operation. 2232 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT If Function specifies an abort operation. 2233 2234 **/ 2235 EFI_PXE_BASE_CODE_CALLBACK_STATUS 2236 EFIAPI 2237 EfiPxeLoadFileCallback ( 2238 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This, 2239 IN EFI_PXE_BASE_CODE_FUNCTION Function, 2240 IN BOOLEAN Received, 2241 IN UINT32 PacketLength, 2242 IN EFI_PXE_BASE_CODE_PACKET *PacketPtr OPTIONAL 2243 ) 2244 { 2245 EFI_INPUT_KEY Key; 2246 EFI_STATUS Status; 2247 2248 // 2249 // Catch Ctrl-C or ESC to abort. 2250 // 2251 Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key); 2252 2253 if (!EFI_ERROR (Status)) { 2254 2255 if (Key.ScanCode == SCAN_ESC || Key.UnicodeChar == (0x1F & 'c')) { 2256 2257 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT; 2258 } 2259 } 2260 // 2261 // No print if receive packet 2262 // 2263 if (Received) { 2264 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE; 2265 } 2266 // 2267 // Print only for three functions 2268 // 2269 switch (Function) { 2270 2271 case EFI_PXE_BASE_CODE_FUNCTION_MTFTP: 2272 // 2273 // Print only for open MTFTP packets, not every MTFTP packets 2274 // 2275 if (PacketLength != 0 && PacketPtr != NULL) { 2276 if (PacketPtr->Raw[0x1C] != 0x00 || PacketPtr->Raw[0x1D] != 0x01) { 2277 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE; 2278 } 2279 } 2280 break; 2281 2282 case EFI_PXE_BASE_CODE_FUNCTION_DHCP: 2283 case EFI_PXE_BASE_CODE_FUNCTION_DISCOVER: 2284 break; 2285 2286 default: 2287 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE; 2288 } 2289 2290 if (PacketLength != 0 && PacketPtr != NULL) { 2291 // 2292 // Print '.' when transmit a packet 2293 // 2294 AsciiPrint ("."); 2295 } 2296 2297 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE; 2298 } 2299 2300 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL gPxeBcCallBackTemplate = { 2301 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION, 2302 EfiPxeLoadFileCallback 2303 }; 2304 2305 2306 /** 2307 Causes the driver to load a specified file. 2308 2309 @param[in] This Protocol instance pointer. 2310 @param[in] FilePath The device specific path of the file to load. 2311 @param[in] BootPolicy If TRUE, indicates that the request originates from the 2312 boot manager is attempting to load FilePath as a boot 2313 selection. If FALSE, then FilePath must match an exact file 2314 to be loaded. 2315 @param[in, out] BufferSize On input the size of Buffer in bytes. On output with a return 2316 code of EFI_SUCCESS, the amount of data transferred to 2317 Buffer. On output with a return code of EFI_BUFFER_TOO_SMALL, 2318 the size of Buffer required to retrieve the requested file. 2319 @param[in] Buffer The memory buffer to transfer the file to. IF Buffer is NULL, 2320 then no the size of the requested file is returned in 2321 BufferSize. 2322 2323 @retval EFI_SUCCESS The file was loaded. 2324 @retval EFI_UNSUPPORTED The device does not support the provided BootPolicy. 2325 @retval EFI_INVALID_PARAMETER FilePath is not a valid device path, or 2326 BufferSize is NULL. 2327 @retval EFI_NO_MEDIA No medium was present to load the file. 2328 @retval EFI_DEVICE_ERROR The file was not loaded due to a device error. 2329 @retval EFI_NO_RESPONSE The remote system did not respond. 2330 @retval EFI_NOT_FOUND The file was not found. 2331 @retval EFI_ABORTED The file load process was manually cancelled. 2332 2333 **/ 2334 EFI_STATUS 2335 EFIAPI 2336 EfiPxeLoadFile ( 2337 IN EFI_LOAD_FILE_PROTOCOL *This, 2338 IN EFI_DEVICE_PATH_PROTOCOL *FilePath, 2339 IN BOOLEAN BootPolicy, 2340 IN OUT UINTN *BufferSize, 2341 IN VOID *Buffer OPTIONAL 2342 ) 2343 { 2344 PXEBC_PRIVATE_DATA *Private; 2345 PXEBC_VIRTUAL_NIC *VirtualNic; 2346 EFI_PXE_BASE_CODE_PROTOCOL *PxeBc; 2347 BOOLEAN UsingIpv6; 2348 EFI_STATUS Status; 2349 BOOLEAN MediaPresent; 2350 2351 if (FilePath == NULL || !IsDevicePathEnd (FilePath)) { 2352 return EFI_INVALID_PARAMETER; 2353 } 2354 2355 VirtualNic = PXEBC_VIRTUAL_NIC_FROM_LOADFILE (This); 2356 Private = VirtualNic->Private; 2357 PxeBc = &Private->PxeBc; 2358 UsingIpv6 = FALSE; 2359 Status = EFI_DEVICE_ERROR; 2360 2361 if (This == NULL || BufferSize == NULL) { 2362 return EFI_INVALID_PARAMETER; 2363 } 2364 2365 // 2366 // Only support BootPolicy 2367 // 2368 if (!BootPolicy) { 2369 return EFI_UNSUPPORTED; 2370 } 2371 2372 // 2373 // Check media status before PXE start 2374 // 2375 MediaPresent = TRUE; 2376 NetLibDetectMedia (Private->Controller, &MediaPresent); 2377 if (!MediaPresent) { 2378 return EFI_NO_MEDIA; 2379 } 2380 2381 // 2382 // Check whether the virtual nic is using IPv6 or not. 2383 // 2384 if (VirtualNic == Private->Ip6Nic) { 2385 UsingIpv6 = TRUE; 2386 } 2387 2388 // 2389 // Start Pxe Base Code to initialize PXE boot. 2390 // 2391 Status = PxeBc->Start (PxeBc, UsingIpv6); 2392 if (Status == EFI_ALREADY_STARTED && UsingIpv6 != PxeBc->Mode->UsingIpv6) { 2393 // 2394 // PxeBc protocol has already been started but not on the required IP version, restart it. 2395 // 2396 Status = PxeBc->Stop (PxeBc); 2397 if (!EFI_ERROR (Status)) { 2398 Status = PxeBc->Start (PxeBc, UsingIpv6); 2399 } 2400 } 2401 if (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED) { 2402 Status = PxeBcLoadBootFile (Private, BufferSize, Buffer); 2403 } 2404 2405 if (Status != EFI_SUCCESS && 2406 Status != EFI_UNSUPPORTED && 2407 Status != EFI_BUFFER_TOO_SMALL) { 2408 // 2409 // There are three cases, which needn't stop pxebc here. 2410 // 1. success to download file. 2411 // 2. success to get file size. 2412 // 3. unsupported. 2413 // 2414 PxeBc->Stop (PxeBc); 2415 } else { 2416 // 2417 // The DHCP4 can have only one configured child instance so we need to stop 2418 // reset the DHCP4 child before we return. Otherwise these programs which 2419 // also need to use DHCP4 will be impacted. 2420 // 2421 if (!PxeBc->Mode->UsingIpv6) { 2422 Private->Dhcp4->Stop (Private->Dhcp4); 2423 Private->Dhcp4->Configure (Private->Dhcp4, NULL); 2424 } 2425 } 2426 2427 return Status; 2428 } 2429 2430 EFI_LOAD_FILE_PROTOCOL gLoadFileProtocolTemplate = { EfiPxeLoadFile }; 2431 2432