1 /* 2 3 Reference Cycle Garbage Collection 4 ================================== 5 6 Neil Schemenauer <nas (at) arctrix.com> 7 8 Based on a post on the python-dev list. Ideas from Guido van Rossum, 9 Eric Tiedemann, and various others. 10 11 http://www.arctrix.com/nas/python/gc/ 12 13 The following mailing list threads provide a historical perspective on 14 the design of this module. Note that a fair amount of refinement has 15 occurred since those discussions. 16 17 http://mail.python.org/pipermail/python-dev/2000-March/002385.html 18 http://mail.python.org/pipermail/python-dev/2000-March/002434.html 19 http://mail.python.org/pipermail/python-dev/2000-March/002497.html 20 21 For a highlevel view of the collection process, read the collect 22 function. 23 24 */ 25 26 #include "Python.h" 27 #include "internal/context.h" 28 #include "internal/mem.h" 29 #include "internal/pystate.h" 30 #include "frameobject.h" /* for PyFrame_ClearFreeList */ 31 #include "pydtrace.h" 32 #include "pytime.h" /* for _PyTime_GetMonotonicClock() */ 33 34 /*[clinic input] 35 module gc 36 [clinic start generated code]*/ 37 /*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/ 38 39 /* Get an object's GC head */ 40 #define AS_GC(o) ((PyGC_Head *)(o)-1) 41 42 /* Get the object given the GC head */ 43 #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1)) 44 45 /* Python string to use if unhandled exception occurs */ 46 static PyObject *gc_str = NULL; 47 48 /* set for debugging information */ 49 #define DEBUG_STATS (1<<0) /* print collection statistics */ 50 #define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */ 51 #define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */ 52 #define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */ 53 #define DEBUG_LEAK DEBUG_COLLECTABLE | \ 54 DEBUG_UNCOLLECTABLE | \ 55 DEBUG_SAVEALL 56 57 #define GEN_HEAD(n) (&_PyRuntime.gc.generations[n].head) 58 59 void 60 _PyGC_Initialize(struct _gc_runtime_state *state) 61 { 62 state->enabled = 1; /* automatic collection enabled? */ 63 64 #define _GEN_HEAD(n) (&state->generations[n].head) 65 struct gc_generation generations[NUM_GENERATIONS] = { 66 /* PyGC_Head, threshold, count */ 67 {{{_GEN_HEAD(0), _GEN_HEAD(0), 0}}, 700, 0}, 68 {{{_GEN_HEAD(1), _GEN_HEAD(1), 0}}, 10, 0}, 69 {{{_GEN_HEAD(2), _GEN_HEAD(2), 0}}, 10, 0}, 70 }; 71 for (int i = 0; i < NUM_GENERATIONS; i++) { 72 state->generations[i] = generations[i]; 73 }; 74 state->generation0 = GEN_HEAD(0); 75 struct gc_generation permanent_generation = { 76 {{&state->permanent_generation.head, &state->permanent_generation.head, 0}}, 0, 0 77 }; 78 state->permanent_generation = permanent_generation; 79 } 80 81 /*-------------------------------------------------------------------------- 82 gc_refs values. 83 84 Between collections, every gc'ed object has one of two gc_refs values: 85 86 GC_UNTRACKED 87 The initial state; objects returned by PyObject_GC_Malloc are in this 88 state. The object doesn't live in any generation list, and its 89 tp_traverse slot must not be called. 90 91 GC_REACHABLE 92 The object lives in some generation list, and its tp_traverse is safe to 93 call. An object transitions to GC_REACHABLE when PyObject_GC_Track 94 is called. 95 96 During a collection, gc_refs can temporarily take on other states: 97 98 >= 0 99 At the start of a collection, update_refs() copies the true refcount 100 to gc_refs, for each object in the generation being collected. 101 subtract_refs() then adjusts gc_refs so that it equals the number of 102 times an object is referenced directly from outside the generation 103 being collected. 104 gc_refs remains >= 0 throughout these steps. 105 106 GC_TENTATIVELY_UNREACHABLE 107 move_unreachable() then moves objects not reachable (whether directly or 108 indirectly) from outside the generation into an "unreachable" set. 109 Objects that are found to be reachable have gc_refs set to GC_REACHABLE 110 again. Objects that are found to be unreachable have gc_refs set to 111 GC_TENTATIVELY_UNREACHABLE. It's "tentatively" because the pass doing 112 this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may 113 transition back to GC_REACHABLE. 114 115 Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates 116 for collection. If it's decided not to collect such an object (e.g., 117 it has a __del__ method), its gc_refs is restored to GC_REACHABLE again. 118 ---------------------------------------------------------------------------- 119 */ 120 #define GC_UNTRACKED _PyGC_REFS_UNTRACKED 121 #define GC_REACHABLE _PyGC_REFS_REACHABLE 122 #define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE 123 124 #define IS_TRACKED(o) (_PyGC_REFS(o) != GC_UNTRACKED) 125 #define IS_REACHABLE(o) (_PyGC_REFS(o) == GC_REACHABLE) 126 #define IS_TENTATIVELY_UNREACHABLE(o) ( \ 127 _PyGC_REFS(o) == GC_TENTATIVELY_UNREACHABLE) 128 129 /*** list functions ***/ 130 131 static void 132 gc_list_init(PyGC_Head *list) 133 { 134 list->gc.gc_prev = list; 135 list->gc.gc_next = list; 136 } 137 138 static int 139 gc_list_is_empty(PyGC_Head *list) 140 { 141 return (list->gc.gc_next == list); 142 } 143 144 #if 0 145 /* This became unused after gc_list_move() was introduced. */ 146 /* Append `node` to `list`. */ 147 static void 148 gc_list_append(PyGC_Head *node, PyGC_Head *list) 149 { 150 node->gc.gc_next = list; 151 node->gc.gc_prev = list->gc.gc_prev; 152 node->gc.gc_prev->gc.gc_next = node; 153 list->gc.gc_prev = node; 154 } 155 #endif 156 157 /* Remove `node` from the gc list it's currently in. */ 158 static void 159 gc_list_remove(PyGC_Head *node) 160 { 161 node->gc.gc_prev->gc.gc_next = node->gc.gc_next; 162 node->gc.gc_next->gc.gc_prev = node->gc.gc_prev; 163 node->gc.gc_next = NULL; /* object is not currently tracked */ 164 } 165 166 /* Move `node` from the gc list it's currently in (which is not explicitly 167 * named here) to the end of `list`. This is semantically the same as 168 * gc_list_remove(node) followed by gc_list_append(node, list). 169 */ 170 static void 171 gc_list_move(PyGC_Head *node, PyGC_Head *list) 172 { 173 PyGC_Head *new_prev; 174 PyGC_Head *current_prev = node->gc.gc_prev; 175 PyGC_Head *current_next = node->gc.gc_next; 176 /* Unlink from current list. */ 177 current_prev->gc.gc_next = current_next; 178 current_next->gc.gc_prev = current_prev; 179 /* Relink at end of new list. */ 180 new_prev = node->gc.gc_prev = list->gc.gc_prev; 181 new_prev->gc.gc_next = list->gc.gc_prev = node; 182 node->gc.gc_next = list; 183 } 184 185 /* append list `from` onto list `to`; `from` becomes an empty list */ 186 static void 187 gc_list_merge(PyGC_Head *from, PyGC_Head *to) 188 { 189 PyGC_Head *tail; 190 assert(from != to); 191 if (!gc_list_is_empty(from)) { 192 tail = to->gc.gc_prev; 193 tail->gc.gc_next = from->gc.gc_next; 194 tail->gc.gc_next->gc.gc_prev = tail; 195 to->gc.gc_prev = from->gc.gc_prev; 196 to->gc.gc_prev->gc.gc_next = to; 197 } 198 gc_list_init(from); 199 } 200 201 static Py_ssize_t 202 gc_list_size(PyGC_Head *list) 203 { 204 PyGC_Head *gc; 205 Py_ssize_t n = 0; 206 for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { 207 n++; 208 } 209 return n; 210 } 211 212 /* Append objects in a GC list to a Python list. 213 * Return 0 if all OK, < 0 if error (out of memory for list). 214 */ 215 static int 216 append_objects(PyObject *py_list, PyGC_Head *gc_list) 217 { 218 PyGC_Head *gc; 219 for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) { 220 PyObject *op = FROM_GC(gc); 221 if (op != py_list) { 222 if (PyList_Append(py_list, op)) { 223 return -1; /* exception */ 224 } 225 } 226 } 227 return 0; 228 } 229 230 /*** end of list stuff ***/ 231 232 233 /* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects 234 * in containers, and is GC_REACHABLE for all tracked gc objects not in 235 * containers. 236 */ 237 static void 238 update_refs(PyGC_Head *containers) 239 { 240 PyGC_Head *gc = containers->gc.gc_next; 241 for (; gc != containers; gc = gc->gc.gc_next) { 242 assert(_PyGCHead_REFS(gc) == GC_REACHABLE); 243 _PyGCHead_SET_REFS(gc, Py_REFCNT(FROM_GC(gc))); 244 /* Python's cyclic gc should never see an incoming refcount 245 * of 0: if something decref'ed to 0, it should have been 246 * deallocated immediately at that time. 247 * Possible cause (if the assert triggers): a tp_dealloc 248 * routine left a gc-aware object tracked during its teardown 249 * phase, and did something-- or allowed something to happen -- 250 * that called back into Python. gc can trigger then, and may 251 * see the still-tracked dying object. Before this assert 252 * was added, such mistakes went on to allow gc to try to 253 * delete the object again. In a debug build, that caused 254 * a mysterious segfault, when _Py_ForgetReference tried 255 * to remove the object from the doubly-linked list of all 256 * objects a second time. In a release build, an actual 257 * double deallocation occurred, which leads to corruption 258 * of the allocator's internal bookkeeping pointers. That's 259 * so serious that maybe this should be a release-build 260 * check instead of an assert? 261 */ 262 assert(_PyGCHead_REFS(gc) != 0); 263 } 264 } 265 266 /* A traversal callback for subtract_refs. */ 267 static int 268 visit_decref(PyObject *op, void *data) 269 { 270 assert(op != NULL); 271 if (PyObject_IS_GC(op)) { 272 PyGC_Head *gc = AS_GC(op); 273 /* We're only interested in gc_refs for objects in the 274 * generation being collected, which can be recognized 275 * because only they have positive gc_refs. 276 */ 277 assert(_PyGCHead_REFS(gc) != 0); /* else refcount was too small */ 278 if (_PyGCHead_REFS(gc) > 0) 279 _PyGCHead_DECREF(gc); 280 } 281 return 0; 282 } 283 284 /* Subtract internal references from gc_refs. After this, gc_refs is >= 0 285 * for all objects in containers, and is GC_REACHABLE for all tracked gc 286 * objects not in containers. The ones with gc_refs > 0 are directly 287 * reachable from outside containers, and so can't be collected. 288 */ 289 static void 290 subtract_refs(PyGC_Head *containers) 291 { 292 traverseproc traverse; 293 PyGC_Head *gc = containers->gc.gc_next; 294 for (; gc != containers; gc=gc->gc.gc_next) { 295 traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; 296 (void) traverse(FROM_GC(gc), 297 (visitproc)visit_decref, 298 NULL); 299 } 300 } 301 302 /* A traversal callback for move_unreachable. */ 303 static int 304 visit_reachable(PyObject *op, PyGC_Head *reachable) 305 { 306 if (PyObject_IS_GC(op)) { 307 PyGC_Head *gc = AS_GC(op); 308 const Py_ssize_t gc_refs = _PyGCHead_REFS(gc); 309 310 if (gc_refs == 0) { 311 /* This is in move_unreachable's 'young' list, but 312 * the traversal hasn't yet gotten to it. All 313 * we need to do is tell move_unreachable that it's 314 * reachable. 315 */ 316 _PyGCHead_SET_REFS(gc, 1); 317 } 318 else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) { 319 /* This had gc_refs = 0 when move_unreachable got 320 * to it, but turns out it's reachable after all. 321 * Move it back to move_unreachable's 'young' list, 322 * and move_unreachable will eventually get to it 323 * again. 324 */ 325 gc_list_move(gc, reachable); 326 _PyGCHead_SET_REFS(gc, 1); 327 } 328 /* Else there's nothing to do. 329 * If gc_refs > 0, it must be in move_unreachable's 'young' 330 * list, and move_unreachable will eventually get to it. 331 * If gc_refs == GC_REACHABLE, it's either in some other 332 * generation so we don't care about it, or move_unreachable 333 * already dealt with it. 334 * If gc_refs == GC_UNTRACKED, it must be ignored. 335 */ 336 else { 337 assert(gc_refs > 0 338 || gc_refs == GC_REACHABLE 339 || gc_refs == GC_UNTRACKED); 340 } 341 } 342 return 0; 343 } 344 345 /* Move the unreachable objects from young to unreachable. After this, 346 * all objects in young have gc_refs = GC_REACHABLE, and all objects in 347 * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked 348 * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE. 349 * All objects in young after this are directly or indirectly reachable 350 * from outside the original young; and all objects in unreachable are 351 * not. 352 */ 353 static void 354 move_unreachable(PyGC_Head *young, PyGC_Head *unreachable) 355 { 356 PyGC_Head *gc = young->gc.gc_next; 357 358 /* Invariants: all objects "to the left" of us in young have gc_refs 359 * = GC_REACHABLE, and are indeed reachable (directly or indirectly) 360 * from outside the young list as it was at entry. All other objects 361 * from the original young "to the left" of us are in unreachable now, 362 * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the 363 * left of us in 'young' now have been scanned, and no objects here 364 * or to the right have been scanned yet. 365 */ 366 367 while (gc != young) { 368 PyGC_Head *next; 369 370 if (_PyGCHead_REFS(gc)) { 371 /* gc is definitely reachable from outside the 372 * original 'young'. Mark it as such, and traverse 373 * its pointers to find any other objects that may 374 * be directly reachable from it. Note that the 375 * call to tp_traverse may append objects to young, 376 * so we have to wait until it returns to determine 377 * the next object to visit. 378 */ 379 PyObject *op = FROM_GC(gc); 380 traverseproc traverse = Py_TYPE(op)->tp_traverse; 381 assert(_PyGCHead_REFS(gc) > 0); 382 _PyGCHead_SET_REFS(gc, GC_REACHABLE); 383 (void) traverse(op, 384 (visitproc)visit_reachable, 385 (void *)young); 386 next = gc->gc.gc_next; 387 if (PyTuple_CheckExact(op)) { 388 _PyTuple_MaybeUntrack(op); 389 } 390 } 391 else { 392 /* This *may* be unreachable. To make progress, 393 * assume it is. gc isn't directly reachable from 394 * any object we've already traversed, but may be 395 * reachable from an object we haven't gotten to yet. 396 * visit_reachable will eventually move gc back into 397 * young if that's so, and we'll see it again. 398 */ 399 next = gc->gc.gc_next; 400 gc_list_move(gc, unreachable); 401 _PyGCHead_SET_REFS(gc, GC_TENTATIVELY_UNREACHABLE); 402 } 403 gc = next; 404 } 405 } 406 407 /* Try to untrack all currently tracked dictionaries */ 408 static void 409 untrack_dicts(PyGC_Head *head) 410 { 411 PyGC_Head *next, *gc = head->gc.gc_next; 412 while (gc != head) { 413 PyObject *op = FROM_GC(gc); 414 next = gc->gc.gc_next; 415 if (PyDict_CheckExact(op)) 416 _PyDict_MaybeUntrack(op); 417 gc = next; 418 } 419 } 420 421 /* Return true if object has a pre-PEP 442 finalization method. */ 422 static int 423 has_legacy_finalizer(PyObject *op) 424 { 425 return op->ob_type->tp_del != NULL; 426 } 427 428 /* Move the objects in unreachable with tp_del slots into `finalizers`. 429 * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the 430 * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE. 431 */ 432 static void 433 move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers) 434 { 435 PyGC_Head *gc; 436 PyGC_Head *next; 437 438 /* March over unreachable. Move objects with finalizers into 439 * `finalizers`. 440 */ 441 for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { 442 PyObject *op = FROM_GC(gc); 443 444 assert(IS_TENTATIVELY_UNREACHABLE(op)); 445 next = gc->gc.gc_next; 446 447 if (has_legacy_finalizer(op)) { 448 gc_list_move(gc, finalizers); 449 _PyGCHead_SET_REFS(gc, GC_REACHABLE); 450 } 451 } 452 } 453 454 /* A traversal callback for move_legacy_finalizer_reachable. */ 455 static int 456 visit_move(PyObject *op, PyGC_Head *tolist) 457 { 458 if (PyObject_IS_GC(op)) { 459 if (IS_TENTATIVELY_UNREACHABLE(op)) { 460 PyGC_Head *gc = AS_GC(op); 461 gc_list_move(gc, tolist); 462 _PyGCHead_SET_REFS(gc, GC_REACHABLE); 463 } 464 } 465 return 0; 466 } 467 468 /* Move objects that are reachable from finalizers, from the unreachable set 469 * into finalizers set. 470 */ 471 static void 472 move_legacy_finalizer_reachable(PyGC_Head *finalizers) 473 { 474 traverseproc traverse; 475 PyGC_Head *gc = finalizers->gc.gc_next; 476 for (; gc != finalizers; gc = gc->gc.gc_next) { 477 /* Note that the finalizers list may grow during this. */ 478 traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; 479 (void) traverse(FROM_GC(gc), 480 (visitproc)visit_move, 481 (void *)finalizers); 482 } 483 } 484 485 /* Clear all weakrefs to unreachable objects, and if such a weakref has a 486 * callback, invoke it if necessary. Note that it's possible for such 487 * weakrefs to be outside the unreachable set -- indeed, those are precisely 488 * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for 489 * overview & some details. Some weakrefs with callbacks may be reclaimed 490 * directly by this routine; the number reclaimed is the return value. Other 491 * weakrefs with callbacks may be moved into the `old` generation. Objects 492 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in 493 * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns, 494 * no object in `unreachable` is weakly referenced anymore. 495 */ 496 static int 497 handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old) 498 { 499 PyGC_Head *gc; 500 PyObject *op; /* generally FROM_GC(gc) */ 501 PyWeakReference *wr; /* generally a cast of op */ 502 PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */ 503 PyGC_Head *next; 504 int num_freed = 0; 505 506 gc_list_init(&wrcb_to_call); 507 508 /* Clear all weakrefs to the objects in unreachable. If such a weakref 509 * also has a callback, move it into `wrcb_to_call` if the callback 510 * needs to be invoked. Note that we cannot invoke any callbacks until 511 * all weakrefs to unreachable objects are cleared, lest the callback 512 * resurrect an unreachable object via a still-active weakref. We 513 * make another pass over wrcb_to_call, invoking callbacks, after this 514 * pass completes. 515 */ 516 for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { 517 PyWeakReference **wrlist; 518 519 op = FROM_GC(gc); 520 assert(IS_TENTATIVELY_UNREACHABLE(op)); 521 next = gc->gc.gc_next; 522 523 if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) 524 continue; 525 526 /* It supports weakrefs. Does it have any? */ 527 wrlist = (PyWeakReference **) 528 PyObject_GET_WEAKREFS_LISTPTR(op); 529 530 /* `op` may have some weakrefs. March over the list, clear 531 * all the weakrefs, and move the weakrefs with callbacks 532 * that must be called into wrcb_to_call. 533 */ 534 for (wr = *wrlist; wr != NULL; wr = *wrlist) { 535 PyGC_Head *wrasgc; /* AS_GC(wr) */ 536 537 /* _PyWeakref_ClearRef clears the weakref but leaves 538 * the callback pointer intact. Obscure: it also 539 * changes *wrlist. 540 */ 541 assert(wr->wr_object == op); 542 _PyWeakref_ClearRef(wr); 543 assert(wr->wr_object == Py_None); 544 if (wr->wr_callback == NULL) 545 continue; /* no callback */ 546 547 /* Headache time. `op` is going away, and is weakly referenced by 548 * `wr`, which has a callback. Should the callback be invoked? If wr 549 * is also trash, no: 550 * 551 * 1. There's no need to call it. The object and the weakref are 552 * both going away, so it's legitimate to pretend the weakref is 553 * going away first. The user has to ensure a weakref outlives its 554 * referent if they want a guarantee that the wr callback will get 555 * invoked. 556 * 557 * 2. It may be catastrophic to call it. If the callback is also in 558 * cyclic trash (CT), then although the CT is unreachable from 559 * outside the current generation, CT may be reachable from the 560 * callback. Then the callback could resurrect insane objects. 561 * 562 * Since the callback is never needed and may be unsafe in this case, 563 * wr is simply left in the unreachable set. Note that because we 564 * already called _PyWeakref_ClearRef(wr), its callback will never 565 * trigger. 566 * 567 * OTOH, if wr isn't part of CT, we should invoke the callback: the 568 * weakref outlived the trash. Note that since wr isn't CT in this 569 * case, its callback can't be CT either -- wr acted as an external 570 * root to this generation, and therefore its callback did too. So 571 * nothing in CT is reachable from the callback either, so it's hard 572 * to imagine how calling it later could create a problem for us. wr 573 * is moved to wrcb_to_call in this case. 574 */ 575 if (IS_TENTATIVELY_UNREACHABLE(wr)) 576 continue; 577 assert(IS_REACHABLE(wr)); 578 579 /* Create a new reference so that wr can't go away 580 * before we can process it again. 581 */ 582 Py_INCREF(wr); 583 584 /* Move wr to wrcb_to_call, for the next pass. */ 585 wrasgc = AS_GC(wr); 586 assert(wrasgc != next); /* wrasgc is reachable, but 587 next isn't, so they can't 588 be the same */ 589 gc_list_move(wrasgc, &wrcb_to_call); 590 } 591 } 592 593 /* Invoke the callbacks we decided to honor. It's safe to invoke them 594 * because they can't reference unreachable objects. 595 */ 596 while (! gc_list_is_empty(&wrcb_to_call)) { 597 PyObject *temp; 598 PyObject *callback; 599 600 gc = wrcb_to_call.gc.gc_next; 601 op = FROM_GC(gc); 602 assert(IS_REACHABLE(op)); 603 assert(PyWeakref_Check(op)); 604 wr = (PyWeakReference *)op; 605 callback = wr->wr_callback; 606 assert(callback != NULL); 607 608 /* copy-paste of weakrefobject.c's handle_callback() */ 609 temp = PyObject_CallFunctionObjArgs(callback, wr, NULL); 610 if (temp == NULL) 611 PyErr_WriteUnraisable(callback); 612 else 613 Py_DECREF(temp); 614 615 /* Give up the reference we created in the first pass. When 616 * op's refcount hits 0 (which it may or may not do right now), 617 * op's tp_dealloc will decref op->wr_callback too. Note 618 * that the refcount probably will hit 0 now, and because this 619 * weakref was reachable to begin with, gc didn't already 620 * add it to its count of freed objects. Example: a reachable 621 * weak value dict maps some key to this reachable weakref. 622 * The callback removes this key->weakref mapping from the 623 * dict, leaving no other references to the weakref (excepting 624 * ours). 625 */ 626 Py_DECREF(op); 627 if (wrcb_to_call.gc.gc_next == gc) { 628 /* object is still alive -- move it */ 629 gc_list_move(gc, old); 630 } 631 else 632 ++num_freed; 633 } 634 635 return num_freed; 636 } 637 638 static void 639 debug_cycle(const char *msg, PyObject *op) 640 { 641 PySys_FormatStderr("gc: %s <%s %p>\n", 642 msg, Py_TYPE(op)->tp_name, op); 643 } 644 645 /* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable 646 * only from such cycles). 647 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module 648 * garbage list (a Python list), else only the objects in finalizers with 649 * __del__ methods are appended to garbage. All objects in finalizers are 650 * merged into the old list regardless. 651 */ 652 static void 653 handle_legacy_finalizers(PyGC_Head *finalizers, PyGC_Head *old) 654 { 655 PyGC_Head *gc = finalizers->gc.gc_next; 656 657 if (_PyRuntime.gc.garbage == NULL) { 658 _PyRuntime.gc.garbage = PyList_New(0); 659 if (_PyRuntime.gc.garbage == NULL) 660 Py_FatalError("gc couldn't create gc.garbage list"); 661 } 662 for (; gc != finalizers; gc = gc->gc.gc_next) { 663 PyObject *op = FROM_GC(gc); 664 665 if ((_PyRuntime.gc.debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) { 666 if (PyList_Append(_PyRuntime.gc.garbage, op) < 0) 667 break; 668 } 669 } 670 671 gc_list_merge(finalizers, old); 672 } 673 674 /* Run first-time finalizers (if any) on all the objects in collectable. 675 * Note that this may remove some (or even all) of the objects from the 676 * list, due to refcounts falling to 0. 677 */ 678 static void 679 finalize_garbage(PyGC_Head *collectable) 680 { 681 destructor finalize; 682 PyGC_Head seen; 683 684 /* While we're going through the loop, `finalize(op)` may cause op, or 685 * other objects, to be reclaimed via refcounts falling to zero. So 686 * there's little we can rely on about the structure of the input 687 * `collectable` list across iterations. For safety, we always take the 688 * first object in that list and move it to a temporary `seen` list. 689 * If objects vanish from the `collectable` and `seen` lists we don't 690 * care. 691 */ 692 gc_list_init(&seen); 693 694 while (!gc_list_is_empty(collectable)) { 695 PyGC_Head *gc = collectable->gc.gc_next; 696 PyObject *op = FROM_GC(gc); 697 gc_list_move(gc, &seen); 698 if (!_PyGCHead_FINALIZED(gc) && 699 PyType_HasFeature(Py_TYPE(op), Py_TPFLAGS_HAVE_FINALIZE) && 700 (finalize = Py_TYPE(op)->tp_finalize) != NULL) { 701 _PyGCHead_SET_FINALIZED(gc, 1); 702 Py_INCREF(op); 703 finalize(op); 704 Py_DECREF(op); 705 } 706 } 707 gc_list_merge(&seen, collectable); 708 } 709 710 /* Walk the collectable list and check that they are really unreachable 711 from the outside (some objects could have been resurrected by a 712 finalizer). */ 713 static int 714 check_garbage(PyGC_Head *collectable) 715 { 716 PyGC_Head *gc; 717 for (gc = collectable->gc.gc_next; gc != collectable; 718 gc = gc->gc.gc_next) { 719 _PyGCHead_SET_REFS(gc, Py_REFCNT(FROM_GC(gc))); 720 assert(_PyGCHead_REFS(gc) != 0); 721 } 722 subtract_refs(collectable); 723 for (gc = collectable->gc.gc_next; gc != collectable; 724 gc = gc->gc.gc_next) { 725 assert(_PyGCHead_REFS(gc) >= 0); 726 if (_PyGCHead_REFS(gc) != 0) 727 return -1; 728 } 729 return 0; 730 } 731 732 static void 733 revive_garbage(PyGC_Head *collectable) 734 { 735 PyGC_Head *gc; 736 for (gc = collectable->gc.gc_next; gc != collectable; 737 gc = gc->gc.gc_next) { 738 _PyGCHead_SET_REFS(gc, GC_REACHABLE); 739 } 740 } 741 742 /* Break reference cycles by clearing the containers involved. This is 743 * tricky business as the lists can be changing and we don't know which 744 * objects may be freed. It is possible I screwed something up here. 745 */ 746 static void 747 delete_garbage(PyGC_Head *collectable, PyGC_Head *old) 748 { 749 inquiry clear; 750 751 while (!gc_list_is_empty(collectable)) { 752 PyGC_Head *gc = collectable->gc.gc_next; 753 PyObject *op = FROM_GC(gc); 754 755 if (_PyRuntime.gc.debug & DEBUG_SAVEALL) { 756 PyList_Append(_PyRuntime.gc.garbage, op); 757 } 758 else { 759 if ((clear = Py_TYPE(op)->tp_clear) != NULL) { 760 Py_INCREF(op); 761 clear(op); 762 Py_DECREF(op); 763 } 764 } 765 if (collectable->gc.gc_next == gc) { 766 /* object is still alive, move it, it may die later */ 767 gc_list_move(gc, old); 768 _PyGCHead_SET_REFS(gc, GC_REACHABLE); 769 } 770 } 771 } 772 773 /* Clear all free lists 774 * All free lists are cleared during the collection of the highest generation. 775 * Allocated items in the free list may keep a pymalloc arena occupied. 776 * Clearing the free lists may give back memory to the OS earlier. 777 */ 778 static void 779 clear_freelists(void) 780 { 781 (void)PyMethod_ClearFreeList(); 782 (void)PyFrame_ClearFreeList(); 783 (void)PyCFunction_ClearFreeList(); 784 (void)PyTuple_ClearFreeList(); 785 (void)PyUnicode_ClearFreeList(); 786 (void)PyFloat_ClearFreeList(); 787 (void)PyList_ClearFreeList(); 788 (void)PyDict_ClearFreeList(); 789 (void)PySet_ClearFreeList(); 790 (void)PyAsyncGen_ClearFreeLists(); 791 (void)PyContext_ClearFreeList(); 792 } 793 794 /* This is the main function. Read this to understand how the 795 * collection process works. */ 796 static Py_ssize_t 797 collect(int generation, Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, 798 int nofail) 799 { 800 int i; 801 Py_ssize_t m = 0; /* # objects collected */ 802 Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */ 803 PyGC_Head *young; /* the generation we are examining */ 804 PyGC_Head *old; /* next older generation */ 805 PyGC_Head unreachable; /* non-problematic unreachable trash */ 806 PyGC_Head finalizers; /* objects with, & reachable from, __del__ */ 807 PyGC_Head *gc; 808 _PyTime_t t1 = 0; /* initialize to prevent a compiler warning */ 809 810 struct gc_generation_stats *stats = &_PyRuntime.gc.generation_stats[generation]; 811 812 if (_PyRuntime.gc.debug & DEBUG_STATS) { 813 PySys_WriteStderr("gc: collecting generation %d...\n", 814 generation); 815 PySys_WriteStderr("gc: objects in each generation:"); 816 for (i = 0; i < NUM_GENERATIONS; i++) 817 PySys_FormatStderr(" %zd", 818 gc_list_size(GEN_HEAD(i))); 819 PySys_WriteStderr("\ngc: objects in permanent generation: %zd", 820 gc_list_size(&_PyRuntime.gc.permanent_generation.head)); 821 t1 = _PyTime_GetMonotonicClock(); 822 823 PySys_WriteStderr("\n"); 824 } 825 826 if (PyDTrace_GC_START_ENABLED()) 827 PyDTrace_GC_START(generation); 828 829 /* update collection and allocation counters */ 830 if (generation+1 < NUM_GENERATIONS) 831 _PyRuntime.gc.generations[generation+1].count += 1; 832 for (i = 0; i <= generation; i++) 833 _PyRuntime.gc.generations[i].count = 0; 834 835 /* merge younger generations with one we are currently collecting */ 836 for (i = 0; i < generation; i++) { 837 gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); 838 } 839 840 /* handy references */ 841 young = GEN_HEAD(generation); 842 if (generation < NUM_GENERATIONS-1) 843 old = GEN_HEAD(generation+1); 844 else 845 old = young; 846 847 /* Using ob_refcnt and gc_refs, calculate which objects in the 848 * container set are reachable from outside the set (i.e., have a 849 * refcount greater than 0 when all the references within the 850 * set are taken into account). 851 */ 852 update_refs(young); 853 subtract_refs(young); 854 855 /* Leave everything reachable from outside young in young, and move 856 * everything else (in young) to unreachable. 857 * NOTE: This used to move the reachable objects into a reachable 858 * set instead. But most things usually turn out to be reachable, 859 * so it's more efficient to move the unreachable things. 860 */ 861 gc_list_init(&unreachable); 862 move_unreachable(young, &unreachable); 863 864 /* Move reachable objects to next generation. */ 865 if (young != old) { 866 if (generation == NUM_GENERATIONS - 2) { 867 _PyRuntime.gc.long_lived_pending += gc_list_size(young); 868 } 869 gc_list_merge(young, old); 870 } 871 else { 872 /* We only untrack dicts in full collections, to avoid quadratic 873 dict build-up. See issue #14775. */ 874 untrack_dicts(young); 875 _PyRuntime.gc.long_lived_pending = 0; 876 _PyRuntime.gc.long_lived_total = gc_list_size(young); 877 } 878 879 /* All objects in unreachable are trash, but objects reachable from 880 * legacy finalizers (e.g. tp_del) can't safely be deleted. 881 */ 882 gc_list_init(&finalizers); 883 move_legacy_finalizers(&unreachable, &finalizers); 884 /* finalizers contains the unreachable objects with a legacy finalizer; 885 * unreachable objects reachable *from* those are also uncollectable, 886 * and we move those into the finalizers list too. 887 */ 888 move_legacy_finalizer_reachable(&finalizers); 889 890 /* Collect statistics on collectable objects found and print 891 * debugging information. 892 */ 893 for (gc = unreachable.gc.gc_next; gc != &unreachable; 894 gc = gc->gc.gc_next) { 895 m++; 896 if (_PyRuntime.gc.debug & DEBUG_COLLECTABLE) { 897 debug_cycle("collectable", FROM_GC(gc)); 898 } 899 } 900 901 /* Clear weakrefs and invoke callbacks as necessary. */ 902 m += handle_weakrefs(&unreachable, old); 903 904 /* Call tp_finalize on objects which have one. */ 905 finalize_garbage(&unreachable); 906 907 if (check_garbage(&unreachable)) { 908 revive_garbage(&unreachable); 909 gc_list_merge(&unreachable, old); 910 } 911 else { 912 /* Call tp_clear on objects in the unreachable set. This will cause 913 * the reference cycles to be broken. It may also cause some objects 914 * in finalizers to be freed. 915 */ 916 delete_garbage(&unreachable, old); 917 } 918 919 /* Collect statistics on uncollectable objects found and print 920 * debugging information. */ 921 for (gc = finalizers.gc.gc_next; 922 gc != &finalizers; 923 gc = gc->gc.gc_next) { 924 n++; 925 if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) 926 debug_cycle("uncollectable", FROM_GC(gc)); 927 } 928 if (_PyRuntime.gc.debug & DEBUG_STATS) { 929 _PyTime_t t2 = _PyTime_GetMonotonicClock(); 930 931 if (m == 0 && n == 0) 932 PySys_WriteStderr("gc: done"); 933 else 934 PySys_FormatStderr( 935 "gc: done, %zd unreachable, %zd uncollectable", 936 n+m, n); 937 PySys_WriteStderr(", %.4fs elapsed\n", 938 _PyTime_AsSecondsDouble(t2 - t1)); 939 } 940 941 /* Append instances in the uncollectable set to a Python 942 * reachable list of garbage. The programmer has to deal with 943 * this if they insist on creating this type of structure. 944 */ 945 handle_legacy_finalizers(&finalizers, old); 946 947 /* Clear free list only during the collection of the highest 948 * generation */ 949 if (generation == NUM_GENERATIONS-1) { 950 clear_freelists(); 951 } 952 953 if (PyErr_Occurred()) { 954 if (nofail) { 955 PyErr_Clear(); 956 } 957 else { 958 if (gc_str == NULL) 959 gc_str = PyUnicode_FromString("garbage collection"); 960 PyErr_WriteUnraisable(gc_str); 961 Py_FatalError("unexpected exception during garbage collection"); 962 } 963 } 964 965 /* Update stats */ 966 if (n_collected) 967 *n_collected = m; 968 if (n_uncollectable) 969 *n_uncollectable = n; 970 stats->collections++; 971 stats->collected += m; 972 stats->uncollectable += n; 973 974 if (PyDTrace_GC_DONE_ENABLED()) 975 PyDTrace_GC_DONE(n+m); 976 977 return n+m; 978 } 979 980 /* Invoke progress callbacks to notify clients that garbage collection 981 * is starting or stopping 982 */ 983 static void 984 invoke_gc_callback(const char *phase, int generation, 985 Py_ssize_t collected, Py_ssize_t uncollectable) 986 { 987 Py_ssize_t i; 988 PyObject *info = NULL; 989 990 /* we may get called very early */ 991 if (_PyRuntime.gc.callbacks == NULL) 992 return; 993 /* The local variable cannot be rebound, check it for sanity */ 994 assert(_PyRuntime.gc.callbacks != NULL && PyList_CheckExact(_PyRuntime.gc.callbacks)); 995 if (PyList_GET_SIZE(_PyRuntime.gc.callbacks) != 0) { 996 info = Py_BuildValue("{sisnsn}", 997 "generation", generation, 998 "collected", collected, 999 "uncollectable", uncollectable); 1000 if (info == NULL) { 1001 PyErr_WriteUnraisable(NULL); 1002 return; 1003 } 1004 } 1005 for (i=0; i<PyList_GET_SIZE(_PyRuntime.gc.callbacks); i++) { 1006 PyObject *r, *cb = PyList_GET_ITEM(_PyRuntime.gc.callbacks, i); 1007 Py_INCREF(cb); /* make sure cb doesn't go away */ 1008 r = PyObject_CallFunction(cb, "sO", phase, info); 1009 if (r == NULL) { 1010 PyErr_WriteUnraisable(cb); 1011 } 1012 else { 1013 Py_DECREF(r); 1014 } 1015 Py_DECREF(cb); 1016 } 1017 Py_XDECREF(info); 1018 } 1019 1020 /* Perform garbage collection of a generation and invoke 1021 * progress callbacks. 1022 */ 1023 static Py_ssize_t 1024 collect_with_callback(int generation) 1025 { 1026 Py_ssize_t result, collected, uncollectable; 1027 invoke_gc_callback("start", generation, 0, 0); 1028 result = collect(generation, &collected, &uncollectable, 0); 1029 invoke_gc_callback("stop", generation, collected, uncollectable); 1030 return result; 1031 } 1032 1033 static Py_ssize_t 1034 collect_generations(void) 1035 { 1036 int i; 1037 Py_ssize_t n = 0; 1038 1039 /* Find the oldest generation (highest numbered) where the count 1040 * exceeds the threshold. Objects in the that generation and 1041 * generations younger than it will be collected. */ 1042 for (i = NUM_GENERATIONS-1; i >= 0; i--) { 1043 if (_PyRuntime.gc.generations[i].count > _PyRuntime.gc.generations[i].threshold) { 1044 /* Avoid quadratic performance degradation in number 1045 of tracked objects. See comments at the beginning 1046 of this file, and issue #4074. 1047 */ 1048 if (i == NUM_GENERATIONS - 1 1049 && _PyRuntime.gc.long_lived_pending < _PyRuntime.gc.long_lived_total / 4) 1050 continue; 1051 n = collect_with_callback(i); 1052 break; 1053 } 1054 } 1055 return n; 1056 } 1057 1058 #include "clinic/gcmodule.c.h" 1059 1060 /*[clinic input] 1061 gc.enable 1062 1063 Enable automatic garbage collection. 1064 [clinic start generated code]*/ 1065 1066 static PyObject * 1067 gc_enable_impl(PyObject *module) 1068 /*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/ 1069 { 1070 _PyRuntime.gc.enabled = 1; 1071 Py_RETURN_NONE; 1072 } 1073 1074 /*[clinic input] 1075 gc.disable 1076 1077 Disable automatic garbage collection. 1078 [clinic start generated code]*/ 1079 1080 static PyObject * 1081 gc_disable_impl(PyObject *module) 1082 /*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/ 1083 { 1084 _PyRuntime.gc.enabled = 0; 1085 Py_RETURN_NONE; 1086 } 1087 1088 /*[clinic input] 1089 gc.isenabled -> bool 1090 1091 Returns true if automatic garbage collection is enabled. 1092 [clinic start generated code]*/ 1093 1094 static int 1095 gc_isenabled_impl(PyObject *module) 1096 /*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/ 1097 { 1098 return _PyRuntime.gc.enabled; 1099 } 1100 1101 /*[clinic input] 1102 gc.collect -> Py_ssize_t 1103 1104 generation: int(c_default="NUM_GENERATIONS - 1") = 2 1105 1106 Run the garbage collector. 1107 1108 With no arguments, run a full collection. The optional argument 1109 may be an integer specifying which generation to collect. A ValueError 1110 is raised if the generation number is invalid. 1111 1112 The number of unreachable objects is returned. 1113 [clinic start generated code]*/ 1114 1115 static Py_ssize_t 1116 gc_collect_impl(PyObject *module, int generation) 1117 /*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/ 1118 { 1119 Py_ssize_t n; 1120 1121 if (generation < 0 || generation >= NUM_GENERATIONS) { 1122 PyErr_SetString(PyExc_ValueError, "invalid generation"); 1123 return -1; 1124 } 1125 1126 if (_PyRuntime.gc.collecting) 1127 n = 0; /* already collecting, don't do anything */ 1128 else { 1129 _PyRuntime.gc.collecting = 1; 1130 n = collect_with_callback(generation); 1131 _PyRuntime.gc.collecting = 0; 1132 } 1133 1134 return n; 1135 } 1136 1137 /*[clinic input] 1138 gc.set_debug 1139 1140 flags: int 1141 An integer that can have the following bits turned on: 1142 DEBUG_STATS - Print statistics during collection. 1143 DEBUG_COLLECTABLE - Print collectable objects found. 1144 DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects 1145 found. 1146 DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them. 1147 DEBUG_LEAK - Debug leaking programs (everything but STATS). 1148 / 1149 1150 Set the garbage collection debugging flags. 1151 1152 Debugging information is written to sys.stderr. 1153 [clinic start generated code]*/ 1154 1155 static PyObject * 1156 gc_set_debug_impl(PyObject *module, int flags) 1157 /*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/ 1158 { 1159 _PyRuntime.gc.debug = flags; 1160 1161 Py_RETURN_NONE; 1162 } 1163 1164 /*[clinic input] 1165 gc.get_debug -> int 1166 1167 Get the garbage collection debugging flags. 1168 [clinic start generated code]*/ 1169 1170 static int 1171 gc_get_debug_impl(PyObject *module) 1172 /*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/ 1173 { 1174 return _PyRuntime.gc.debug; 1175 } 1176 1177 PyDoc_STRVAR(gc_set_thresh__doc__, 1178 "set_threshold(threshold0, [threshold1, threshold2]) -> None\n" 1179 "\n" 1180 "Sets the collection thresholds. Setting threshold0 to zero disables\n" 1181 "collection.\n"); 1182 1183 static PyObject * 1184 gc_set_thresh(PyObject *self, PyObject *args) 1185 { 1186 int i; 1187 if (!PyArg_ParseTuple(args, "i|ii:set_threshold", 1188 &_PyRuntime.gc.generations[0].threshold, 1189 &_PyRuntime.gc.generations[1].threshold, 1190 &_PyRuntime.gc.generations[2].threshold)) 1191 return NULL; 1192 for (i = 2; i < NUM_GENERATIONS; i++) { 1193 /* generations higher than 2 get the same threshold */ 1194 _PyRuntime.gc.generations[i].threshold = _PyRuntime.gc.generations[2].threshold; 1195 } 1196 1197 Py_RETURN_NONE; 1198 } 1199 1200 /*[clinic input] 1201 gc.get_threshold 1202 1203 Return the current collection thresholds. 1204 [clinic start generated code]*/ 1205 1206 static PyObject * 1207 gc_get_threshold_impl(PyObject *module) 1208 /*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/ 1209 { 1210 return Py_BuildValue("(iii)", 1211 _PyRuntime.gc.generations[0].threshold, 1212 _PyRuntime.gc.generations[1].threshold, 1213 _PyRuntime.gc.generations[2].threshold); 1214 } 1215 1216 /*[clinic input] 1217 gc.get_count 1218 1219 Return a three-tuple of the current collection counts. 1220 [clinic start generated code]*/ 1221 1222 static PyObject * 1223 gc_get_count_impl(PyObject *module) 1224 /*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/ 1225 { 1226 return Py_BuildValue("(iii)", 1227 _PyRuntime.gc.generations[0].count, 1228 _PyRuntime.gc.generations[1].count, 1229 _PyRuntime.gc.generations[2].count); 1230 } 1231 1232 static int 1233 referrersvisit(PyObject* obj, PyObject *objs) 1234 { 1235 Py_ssize_t i; 1236 for (i = 0; i < PyTuple_GET_SIZE(objs); i++) 1237 if (PyTuple_GET_ITEM(objs, i) == obj) 1238 return 1; 1239 return 0; 1240 } 1241 1242 static int 1243 gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist) 1244 { 1245 PyGC_Head *gc; 1246 PyObject *obj; 1247 traverseproc traverse; 1248 for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { 1249 obj = FROM_GC(gc); 1250 traverse = Py_TYPE(obj)->tp_traverse; 1251 if (obj == objs || obj == resultlist) 1252 continue; 1253 if (traverse(obj, (visitproc)referrersvisit, objs)) { 1254 if (PyList_Append(resultlist, obj) < 0) 1255 return 0; /* error */ 1256 } 1257 } 1258 return 1; /* no error */ 1259 } 1260 1261 PyDoc_STRVAR(gc_get_referrers__doc__, 1262 "get_referrers(*objs) -> list\n\ 1263 Return the list of objects that directly refer to any of objs."); 1264 1265 static PyObject * 1266 gc_get_referrers(PyObject *self, PyObject *args) 1267 { 1268 int i; 1269 PyObject *result = PyList_New(0); 1270 if (!result) return NULL; 1271 1272 for (i = 0; i < NUM_GENERATIONS; i++) { 1273 if (!(gc_referrers_for(args, GEN_HEAD(i), result))) { 1274 Py_DECREF(result); 1275 return NULL; 1276 } 1277 } 1278 return result; 1279 } 1280 1281 /* Append obj to list; return true if error (out of memory), false if OK. */ 1282 static int 1283 referentsvisit(PyObject *obj, PyObject *list) 1284 { 1285 return PyList_Append(list, obj) < 0; 1286 } 1287 1288 PyDoc_STRVAR(gc_get_referents__doc__, 1289 "get_referents(*objs) -> list\n\ 1290 Return the list of objects that are directly referred to by objs."); 1291 1292 static PyObject * 1293 gc_get_referents(PyObject *self, PyObject *args) 1294 { 1295 Py_ssize_t i; 1296 PyObject *result = PyList_New(0); 1297 1298 if (result == NULL) 1299 return NULL; 1300 1301 for (i = 0; i < PyTuple_GET_SIZE(args); i++) { 1302 traverseproc traverse; 1303 PyObject *obj = PyTuple_GET_ITEM(args, i); 1304 1305 if (! PyObject_IS_GC(obj)) 1306 continue; 1307 traverse = Py_TYPE(obj)->tp_traverse; 1308 if (! traverse) 1309 continue; 1310 if (traverse(obj, (visitproc)referentsvisit, result)) { 1311 Py_DECREF(result); 1312 return NULL; 1313 } 1314 } 1315 return result; 1316 } 1317 1318 /*[clinic input] 1319 gc.get_objects 1320 1321 Return a list of objects tracked by the collector (excluding the list returned). 1322 [clinic start generated code]*/ 1323 1324 static PyObject * 1325 gc_get_objects_impl(PyObject *module) 1326 /*[clinic end generated code: output=fcb95d2e23e1f750 input=9439fe8170bf35d8]*/ 1327 { 1328 int i; 1329 PyObject* result; 1330 1331 result = PyList_New(0); 1332 if (result == NULL) 1333 return NULL; 1334 for (i = 0; i < NUM_GENERATIONS; i++) { 1335 if (append_objects(result, GEN_HEAD(i))) { 1336 Py_DECREF(result); 1337 return NULL; 1338 } 1339 } 1340 return result; 1341 } 1342 1343 /*[clinic input] 1344 gc.get_stats 1345 1346 Return a list of dictionaries containing per-generation statistics. 1347 [clinic start generated code]*/ 1348 1349 static PyObject * 1350 gc_get_stats_impl(PyObject *module) 1351 /*[clinic end generated code: output=a8ab1d8a5d26f3ab input=1ef4ed9d17b1a470]*/ 1352 { 1353 int i; 1354 PyObject *result; 1355 struct gc_generation_stats stats[NUM_GENERATIONS], *st; 1356 1357 /* To get consistent values despite allocations while constructing 1358 the result list, we use a snapshot of the running stats. */ 1359 for (i = 0; i < NUM_GENERATIONS; i++) { 1360 stats[i] = _PyRuntime.gc.generation_stats[i]; 1361 } 1362 1363 result = PyList_New(0); 1364 if (result == NULL) 1365 return NULL; 1366 1367 for (i = 0; i < NUM_GENERATIONS; i++) { 1368 PyObject *dict; 1369 st = &stats[i]; 1370 dict = Py_BuildValue("{snsnsn}", 1371 "collections", st->collections, 1372 "collected", st->collected, 1373 "uncollectable", st->uncollectable 1374 ); 1375 if (dict == NULL) 1376 goto error; 1377 if (PyList_Append(result, dict)) { 1378 Py_DECREF(dict); 1379 goto error; 1380 } 1381 Py_DECREF(dict); 1382 } 1383 return result; 1384 1385 error: 1386 Py_XDECREF(result); 1387 return NULL; 1388 } 1389 1390 1391 /*[clinic input] 1392 gc.is_tracked 1393 1394 obj: object 1395 / 1396 1397 Returns true if the object is tracked by the garbage collector. 1398 1399 Simple atomic objects will return false. 1400 [clinic start generated code]*/ 1401 1402 static PyObject * 1403 gc_is_tracked(PyObject *module, PyObject *obj) 1404 /*[clinic end generated code: output=14f0103423b28e31 input=d83057f170ea2723]*/ 1405 { 1406 PyObject *result; 1407 1408 if (PyObject_IS_GC(obj) && IS_TRACKED(obj)) 1409 result = Py_True; 1410 else 1411 result = Py_False; 1412 Py_INCREF(result); 1413 return result; 1414 } 1415 1416 /*[clinic input] 1417 gc.freeze 1418 1419 Freeze all current tracked objects and ignore them for future collections. 1420 1421 This can be used before a POSIX fork() call to make the gc copy-on-write friendly. 1422 Note: collection before a POSIX fork() call may free pages for future allocation 1423 which can cause copy-on-write. 1424 [clinic start generated code]*/ 1425 1426 static PyObject * 1427 gc_freeze_impl(PyObject *module) 1428 /*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/ 1429 { 1430 for (int i = 0; i < NUM_GENERATIONS; ++i) { 1431 gc_list_merge(GEN_HEAD(i), &_PyRuntime.gc.permanent_generation.head); 1432 _PyRuntime.gc.generations[i].count = 0; 1433 } 1434 Py_RETURN_NONE; 1435 } 1436 1437 /*[clinic input] 1438 gc.unfreeze 1439 1440 Unfreeze all objects in the permanent generation. 1441 1442 Put all objects in the permanent generation back into oldest generation. 1443 [clinic start generated code]*/ 1444 1445 static PyObject * 1446 gc_unfreeze_impl(PyObject *module) 1447 /*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/ 1448 { 1449 gc_list_merge(&_PyRuntime.gc.permanent_generation.head, GEN_HEAD(NUM_GENERATIONS-1)); 1450 Py_RETURN_NONE; 1451 } 1452 1453 /*[clinic input] 1454 gc.get_freeze_count -> Py_ssize_t 1455 1456 Return the number of objects in the permanent generation. 1457 [clinic start generated code]*/ 1458 1459 static Py_ssize_t 1460 gc_get_freeze_count_impl(PyObject *module) 1461 /*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/ 1462 { 1463 return gc_list_size(&_PyRuntime.gc.permanent_generation.head); 1464 } 1465 1466 1467 PyDoc_STRVAR(gc__doc__, 1468 "This module provides access to the garbage collector for reference cycles.\n" 1469 "\n" 1470 "enable() -- Enable automatic garbage collection.\n" 1471 "disable() -- Disable automatic garbage collection.\n" 1472 "isenabled() -- Returns true if automatic collection is enabled.\n" 1473 "collect() -- Do a full collection right now.\n" 1474 "get_count() -- Return the current collection counts.\n" 1475 "get_stats() -- Return list of dictionaries containing per-generation stats.\n" 1476 "set_debug() -- Set debugging flags.\n" 1477 "get_debug() -- Get debugging flags.\n" 1478 "set_threshold() -- Set the collection thresholds.\n" 1479 "get_threshold() -- Return the current the collection thresholds.\n" 1480 "get_objects() -- Return a list of all objects tracked by the collector.\n" 1481 "is_tracked() -- Returns true if a given object is tracked.\n" 1482 "get_referrers() -- Return the list of objects that refer to an object.\n" 1483 "get_referents() -- Return the list of objects that an object refers to.\n" 1484 "freeze() -- Freeze all tracked objects and ignore them for future collections.\n" 1485 "unfreeze() -- Unfreeze all objects in the permanent generation.\n" 1486 "get_freeze_count() -- Return the number of objects in the permanent generation.\n"); 1487 1488 static PyMethodDef GcMethods[] = { 1489 GC_ENABLE_METHODDEF 1490 GC_DISABLE_METHODDEF 1491 GC_ISENABLED_METHODDEF 1492 GC_SET_DEBUG_METHODDEF 1493 GC_GET_DEBUG_METHODDEF 1494 GC_GET_COUNT_METHODDEF 1495 {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__}, 1496 GC_GET_THRESHOLD_METHODDEF 1497 GC_COLLECT_METHODDEF 1498 GC_GET_OBJECTS_METHODDEF 1499 GC_GET_STATS_METHODDEF 1500 GC_IS_TRACKED_METHODDEF 1501 {"get_referrers", gc_get_referrers, METH_VARARGS, 1502 gc_get_referrers__doc__}, 1503 {"get_referents", gc_get_referents, METH_VARARGS, 1504 gc_get_referents__doc__}, 1505 GC_FREEZE_METHODDEF 1506 GC_UNFREEZE_METHODDEF 1507 GC_GET_FREEZE_COUNT_METHODDEF 1508 {NULL, NULL} /* Sentinel */ 1509 }; 1510 1511 static struct PyModuleDef gcmodule = { 1512 PyModuleDef_HEAD_INIT, 1513 "gc", /* m_name */ 1514 gc__doc__, /* m_doc */ 1515 -1, /* m_size */ 1516 GcMethods, /* m_methods */ 1517 NULL, /* m_reload */ 1518 NULL, /* m_traverse */ 1519 NULL, /* m_clear */ 1520 NULL /* m_free */ 1521 }; 1522 1523 PyMODINIT_FUNC 1524 PyInit_gc(void) 1525 { 1526 PyObject *m; 1527 1528 m = PyModule_Create(&gcmodule); 1529 1530 if (m == NULL) 1531 return NULL; 1532 1533 if (_PyRuntime.gc.garbage == NULL) { 1534 _PyRuntime.gc.garbage = PyList_New(0); 1535 if (_PyRuntime.gc.garbage == NULL) 1536 return NULL; 1537 } 1538 Py_INCREF(_PyRuntime.gc.garbage); 1539 if (PyModule_AddObject(m, "garbage", _PyRuntime.gc.garbage) < 0) 1540 return NULL; 1541 1542 if (_PyRuntime.gc.callbacks == NULL) { 1543 _PyRuntime.gc.callbacks = PyList_New(0); 1544 if (_PyRuntime.gc.callbacks == NULL) 1545 return NULL; 1546 } 1547 Py_INCREF(_PyRuntime.gc.callbacks); 1548 if (PyModule_AddObject(m, "callbacks", _PyRuntime.gc.callbacks) < 0) 1549 return NULL; 1550 1551 #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return NULL 1552 ADD_INT(DEBUG_STATS); 1553 ADD_INT(DEBUG_COLLECTABLE); 1554 ADD_INT(DEBUG_UNCOLLECTABLE); 1555 ADD_INT(DEBUG_SAVEALL); 1556 ADD_INT(DEBUG_LEAK); 1557 #undef ADD_INT 1558 return m; 1559 } 1560 1561 /* API to invoke gc.collect() from C */ 1562 Py_ssize_t 1563 PyGC_Collect(void) 1564 { 1565 Py_ssize_t n; 1566 1567 if (_PyRuntime.gc.collecting) 1568 n = 0; /* already collecting, don't do anything */ 1569 else { 1570 PyObject *exc, *value, *tb; 1571 _PyRuntime.gc.collecting = 1; 1572 PyErr_Fetch(&exc, &value, &tb); 1573 n = collect_with_callback(NUM_GENERATIONS - 1); 1574 PyErr_Restore(exc, value, tb); 1575 _PyRuntime.gc.collecting = 0; 1576 } 1577 1578 return n; 1579 } 1580 1581 Py_ssize_t 1582 _PyGC_CollectIfEnabled(void) 1583 { 1584 if (!_PyRuntime.gc.enabled) 1585 return 0; 1586 1587 return PyGC_Collect(); 1588 } 1589 1590 Py_ssize_t 1591 _PyGC_CollectNoFail(void) 1592 { 1593 Py_ssize_t n; 1594 1595 /* Ideally, this function is only called on interpreter shutdown, 1596 and therefore not recursively. Unfortunately, when there are daemon 1597 threads, a daemon thread can start a cyclic garbage collection 1598 during interpreter shutdown (and then never finish it). 1599 See http://bugs.python.org/issue8713#msg195178 for an example. 1600 */ 1601 if (_PyRuntime.gc.collecting) 1602 n = 0; 1603 else { 1604 _PyRuntime.gc.collecting = 1; 1605 n = collect(NUM_GENERATIONS - 1, NULL, NULL, 1); 1606 _PyRuntime.gc.collecting = 0; 1607 } 1608 return n; 1609 } 1610 1611 void 1612 _PyGC_DumpShutdownStats(void) 1613 { 1614 if (!(_PyRuntime.gc.debug & DEBUG_SAVEALL) 1615 && _PyRuntime.gc.garbage != NULL && PyList_GET_SIZE(_PyRuntime.gc.garbage) > 0) { 1616 const char *message; 1617 if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) 1618 message = "gc: %zd uncollectable objects at " \ 1619 "shutdown"; 1620 else 1621 message = "gc: %zd uncollectable objects at " \ 1622 "shutdown; use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them"; 1623 /* PyErr_WarnFormat does too many things and we are at shutdown, 1624 the warnings module's dependencies (e.g. linecache) may be gone 1625 already. */ 1626 if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0, 1627 "gc", NULL, message, 1628 PyList_GET_SIZE(_PyRuntime.gc.garbage))) 1629 PyErr_WriteUnraisable(NULL); 1630 if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) { 1631 PyObject *repr = NULL, *bytes = NULL; 1632 repr = PyObject_Repr(_PyRuntime.gc.garbage); 1633 if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) 1634 PyErr_WriteUnraisable(_PyRuntime.gc.garbage); 1635 else { 1636 PySys_WriteStderr( 1637 " %s\n", 1638 PyBytes_AS_STRING(bytes) 1639 ); 1640 } 1641 Py_XDECREF(repr); 1642 Py_XDECREF(bytes); 1643 } 1644 } 1645 } 1646 1647 void 1648 _PyGC_Fini(void) 1649 { 1650 Py_CLEAR(_PyRuntime.gc.callbacks); 1651 } 1652 1653 /* for debugging */ 1654 void 1655 _PyGC_Dump(PyGC_Head *g) 1656 { 1657 _PyObject_Dump(FROM_GC(g)); 1658 } 1659 1660 /* extension modules might be compiled with GC support so these 1661 functions must always be available */ 1662 1663 #undef PyObject_GC_Track 1664 #undef PyObject_GC_UnTrack 1665 #undef PyObject_GC_Del 1666 #undef _PyObject_GC_Malloc 1667 1668 void 1669 PyObject_GC_Track(void *op) 1670 { 1671 _PyObject_GC_TRACK(op); 1672 } 1673 1674 void 1675 PyObject_GC_UnTrack(void *op) 1676 { 1677 /* Obscure: the Py_TRASHCAN mechanism requires that we be able to 1678 * call PyObject_GC_UnTrack twice on an object. 1679 */ 1680 if (IS_TRACKED(op)) 1681 _PyObject_GC_UNTRACK(op); 1682 } 1683 1684 static PyObject * 1685 _PyObject_GC_Alloc(int use_calloc, size_t basicsize) 1686 { 1687 PyObject *op; 1688 PyGC_Head *g; 1689 size_t size; 1690 if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) 1691 return PyErr_NoMemory(); 1692 size = sizeof(PyGC_Head) + basicsize; 1693 if (use_calloc) 1694 g = (PyGC_Head *)PyObject_Calloc(1, size); 1695 else 1696 g = (PyGC_Head *)PyObject_Malloc(size); 1697 if (g == NULL) 1698 return PyErr_NoMemory(); 1699 g->gc.gc_refs = 0; 1700 _PyGCHead_SET_REFS(g, GC_UNTRACKED); 1701 _PyRuntime.gc.generations[0].count++; /* number of allocated GC objects */ 1702 if (_PyRuntime.gc.generations[0].count > _PyRuntime.gc.generations[0].threshold && 1703 _PyRuntime.gc.enabled && 1704 _PyRuntime.gc.generations[0].threshold && 1705 !_PyRuntime.gc.collecting && 1706 !PyErr_Occurred()) { 1707 _PyRuntime.gc.collecting = 1; 1708 collect_generations(); 1709 _PyRuntime.gc.collecting = 0; 1710 } 1711 op = FROM_GC(g); 1712 return op; 1713 } 1714 1715 PyObject * 1716 _PyObject_GC_Malloc(size_t basicsize) 1717 { 1718 return _PyObject_GC_Alloc(0, basicsize); 1719 } 1720 1721 PyObject * 1722 _PyObject_GC_Calloc(size_t basicsize) 1723 { 1724 return _PyObject_GC_Alloc(1, basicsize); 1725 } 1726 1727 PyObject * 1728 _PyObject_GC_New(PyTypeObject *tp) 1729 { 1730 PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp)); 1731 if (op != NULL) 1732 op = PyObject_INIT(op, tp); 1733 return op; 1734 } 1735 1736 PyVarObject * 1737 _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems) 1738 { 1739 size_t size; 1740 PyVarObject *op; 1741 1742 if (nitems < 0) { 1743 PyErr_BadInternalCall(); 1744 return NULL; 1745 } 1746 size = _PyObject_VAR_SIZE(tp, nitems); 1747 op = (PyVarObject *) _PyObject_GC_Malloc(size); 1748 if (op != NULL) 1749 op = PyObject_INIT_VAR(op, tp, nitems); 1750 return op; 1751 } 1752 1753 PyVarObject * 1754 _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems) 1755 { 1756 const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems); 1757 PyGC_Head *g = AS_GC(op); 1758 assert(!IS_TRACKED(op)); 1759 if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) 1760 return (PyVarObject *)PyErr_NoMemory(); 1761 g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize); 1762 if (g == NULL) 1763 return (PyVarObject *)PyErr_NoMemory(); 1764 op = (PyVarObject *) FROM_GC(g); 1765 Py_SIZE(op) = nitems; 1766 return op; 1767 } 1768 1769 void 1770 PyObject_GC_Del(void *op) 1771 { 1772 PyGC_Head *g = AS_GC(op); 1773 if (IS_TRACKED(op)) 1774 gc_list_remove(g); 1775 if (_PyRuntime.gc.generations[0].count > 0) { 1776 _PyRuntime.gc.generations[0].count--; 1777 } 1778 PyObject_FREE(g); 1779 } 1780