Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: moduli.c,v 1.31 2016/09/12 01:22:38 deraadt Exp $ */
      2 /*
      3  * Copyright 1994 Phil Karn <karn (at) qualcomm.com>
      4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson (at) greendragon.com>
      5  * Copyright 2000 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Two-step process to generate safe primes for DHGEX
     31  *
     32  *  Sieve candidates for "safe" primes,
     33  *  suitable for use as Diffie-Hellman moduli;
     34  *  that is, where q = (p-1)/2 is also prime.
     35  *
     36  * First step: generate candidate primes (memory intensive)
     37  * Second step: test primes' safety (processor intensive)
     38  */
     39 
     40 #include "includes.h"
     41 
     42 #ifdef WITH_OPENSSL
     43 
     44 #include <sys/types.h>
     45 
     46 #include <openssl/bn.h>
     47 #include <openssl/dh.h>
     48 
     49 #include <errno.h>
     50 #include <stdio.h>
     51 #include <stdlib.h>
     52 #include <string.h>
     53 #include <stdarg.h>
     54 #include <time.h>
     55 #include <unistd.h>
     56 #include <limits.h>
     57 
     58 #include "xmalloc.h"
     59 #include "dh.h"
     60 #include "log.h"
     61 #include "misc.h"
     62 
     63 #include "openbsd-compat/openssl-compat.h"
     64 
     65 /*
     66  * File output defines
     67  */
     68 
     69 /* need line long enough for largest moduli plus headers */
     70 #define QLINESIZE		(100+8192)
     71 
     72 /*
     73  * Size: decimal.
     74  * Specifies the number of the most significant bit (0 to M).
     75  * WARNING: internally, usually 1 to N.
     76  */
     77 #define QSIZE_MINIMUM		(511)
     78 
     79 /*
     80  * Prime sieving defines
     81  */
     82 
     83 /* Constant: assuming 8 bit bytes and 32 bit words */
     84 #define SHIFT_BIT	(3)
     85 #define SHIFT_BYTE	(2)
     86 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
     87 #define SHIFT_MEGABYTE	(20)
     88 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
     89 
     90 /*
     91  * Using virtual memory can cause thrashing.  This should be the largest
     92  * number that is supported without a large amount of disk activity --
     93  * that would increase the run time from hours to days or weeks!
     94  */
     95 #define LARGE_MINIMUM	(8UL)	/* megabytes */
     96 
     97 /*
     98  * Do not increase this number beyond the unsigned integer bit size.
     99  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
    100  */
    101 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
    102 
    103 /*
    104  * Constant: when used with 32-bit integers, the largest sieve prime
    105  * has to be less than 2**32.
    106  */
    107 #define SMALL_MAXIMUM	(0xffffffffUL)
    108 
    109 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
    110 #define TINY_NUMBER	(1UL<<16)
    111 
    112 /* Ensure enough bit space for testing 2*q. */
    113 #define TEST_MAXIMUM	(1UL<<16)
    114 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
    115 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
    116 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
    117 
    118 /* bit operations on 32-bit words */
    119 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
    120 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
    121 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
    122 
    123 /*
    124  * Prime testing defines
    125  */
    126 
    127 /* Minimum number of primality tests to perform */
    128 #define TRIAL_MINIMUM	(4)
    129 
    130 /*
    131  * Sieving data (XXX - move to struct)
    132  */
    133 
    134 /* sieve 2**16 */
    135 static u_int32_t *TinySieve, tinybits;
    136 
    137 /* sieve 2**30 in 2**16 parts */
    138 static u_int32_t *SmallSieve, smallbits, smallbase;
    139 
    140 /* sieve relative to the initial value */
    141 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
    142 static u_int32_t largebits, largememory;	/* megabytes */
    143 static BIGNUM *largebase;
    144 
    145 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
    146 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
    147     unsigned long);
    148 
    149 /*
    150  * print moduli out in consistent form,
    151  */
    152 static int
    153 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
    154     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
    155 {
    156 	struct tm *gtm;
    157 	time_t time_now;
    158 	int res;
    159 
    160 	time(&time_now);
    161 	gtm = gmtime(&time_now);
    162 
    163 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
    164 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
    165 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
    166 	    otype, otests, otries, osize, ogenerator);
    167 
    168 	if (res < 0)
    169 		return (-1);
    170 
    171 	if (BN_print_fp(ofile, omodulus) < 1)
    172 		return (-1);
    173 
    174 	res = fprintf(ofile, "\n");
    175 	fflush(ofile);
    176 
    177 	return (res > 0 ? 0 : -1);
    178 }
    179 
    180 
    181 /*
    182  ** Sieve p's and q's with small factors
    183  */
    184 static void
    185 sieve_large(u_int32_t s)
    186 {
    187 	u_int32_t r, u;
    188 
    189 	debug3("sieve_large %u", s);
    190 	largetries++;
    191 	/* r = largebase mod s */
    192 	r = BN_mod_word(largebase, s);
    193 	if (r == 0)
    194 		u = 0; /* s divides into largebase exactly */
    195 	else
    196 		u = s - r; /* largebase+u is first entry divisible by s */
    197 
    198 	if (u < largebits * 2) {
    199 		/*
    200 		 * The sieve omits p's and q's divisible by 2, so ensure that
    201 		 * largebase+u is odd. Then, step through the sieve in
    202 		 * increments of 2*s
    203 		 */
    204 		if (u & 0x1)
    205 			u += s; /* Make largebase+u odd, and u even */
    206 
    207 		/* Mark all multiples of 2*s */
    208 		for (u /= 2; u < largebits; u += s)
    209 			BIT_SET(LargeSieve, u);
    210 	}
    211 
    212 	/* r = p mod s */
    213 	r = (2 * r + 1) % s;
    214 	if (r == 0)
    215 		u = 0; /* s divides p exactly */
    216 	else
    217 		u = s - r; /* p+u is first entry divisible by s */
    218 
    219 	if (u < largebits * 4) {
    220 		/*
    221 		 * The sieve omits p's divisible by 4, so ensure that
    222 		 * largebase+u is not. Then, step through the sieve in
    223 		 * increments of 4*s
    224 		 */
    225 		while (u & 0x3) {
    226 			if (SMALL_MAXIMUM - u < s)
    227 				return;
    228 			u += s;
    229 		}
    230 
    231 		/* Mark all multiples of 4*s */
    232 		for (u /= 4; u < largebits; u += s)
    233 			BIT_SET(LargeSieve, u);
    234 	}
    235 }
    236 
    237 /*
    238  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
    239  * to standard output.
    240  * The list is checked against small known primes (less than 2**30).
    241  */
    242 int
    243 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
    244 {
    245 	BIGNUM *q;
    246 	u_int32_t j, r, s, t;
    247 	u_int32_t smallwords = TINY_NUMBER >> 6;
    248 	u_int32_t tinywords = TINY_NUMBER >> 6;
    249 	time_t time_start, time_stop;
    250 	u_int32_t i;
    251 	int ret = 0;
    252 
    253 	largememory = memory;
    254 
    255 	if (memory != 0 &&
    256 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
    257 		error("Invalid memory amount (min %ld, max %ld)",
    258 		    LARGE_MINIMUM, LARGE_MAXIMUM);
    259 		return (-1);
    260 	}
    261 
    262 	/*
    263 	 * Set power to the length in bits of the prime to be generated.
    264 	 * This is changed to 1 less than the desired safe prime moduli p.
    265 	 */
    266 	if (power > TEST_MAXIMUM) {
    267 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
    268 		return (-1);
    269 	} else if (power < TEST_MINIMUM) {
    270 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
    271 		return (-1);
    272 	}
    273 	power--; /* decrement before squaring */
    274 
    275 	/*
    276 	 * The density of ordinary primes is on the order of 1/bits, so the
    277 	 * density of safe primes should be about (1/bits)**2. Set test range
    278 	 * to something well above bits**2 to be reasonably sure (but not
    279 	 * guaranteed) of catching at least one safe prime.
    280 	 */
    281 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
    282 
    283 	/*
    284 	 * Need idea of how much memory is available. We don't have to use all
    285 	 * of it.
    286 	 */
    287 	if (largememory > LARGE_MAXIMUM) {
    288 		logit("Limited memory: %u MB; limit %lu MB",
    289 		    largememory, LARGE_MAXIMUM);
    290 		largememory = LARGE_MAXIMUM;
    291 	}
    292 
    293 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
    294 		logit("Increased memory: %u MB; need %u bytes",
    295 		    largememory, (largewords << SHIFT_BYTE));
    296 		largewords = (largememory << SHIFT_MEGAWORD);
    297 	} else if (largememory > 0) {
    298 		logit("Decreased memory: %u MB; want %u bytes",
    299 		    largememory, (largewords << SHIFT_BYTE));
    300 		largewords = (largememory << SHIFT_MEGAWORD);
    301 	}
    302 
    303 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
    304 	tinybits = tinywords << SHIFT_WORD;
    305 
    306 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
    307 	smallbits = smallwords << SHIFT_WORD;
    308 
    309 	/*
    310 	 * dynamically determine available memory
    311 	 */
    312 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
    313 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
    314 
    315 	largebits = largewords << SHIFT_WORD;
    316 	largenumbers = largebits * 2;	/* even numbers excluded */
    317 
    318 	/* validation check: count the number of primes tried */
    319 	largetries = 0;
    320 	if ((q = BN_new()) == NULL)
    321 		fatal("BN_new failed");
    322 
    323 	/*
    324 	 * Generate random starting point for subprime search, or use
    325 	 * specified parameter.
    326 	 */
    327 	if ((largebase = BN_new()) == NULL)
    328 		fatal("BN_new failed");
    329 	if (start == NULL) {
    330 		if (BN_rand(largebase, power, 1, 1) == 0)
    331 			fatal("BN_rand failed");
    332 	} else {
    333 		if (BN_copy(largebase, start) == NULL)
    334 			fatal("BN_copy: failed");
    335 	}
    336 
    337 	/* ensure odd */
    338 	if (BN_set_bit(largebase, 0) == 0)
    339 		fatal("BN_set_bit: failed");
    340 
    341 	time(&time_start);
    342 
    343 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
    344 	    largenumbers, power);
    345 	debug2("start point: 0x%s", BN_bn2hex(largebase));
    346 
    347 	/*
    348 	 * TinySieve
    349 	 */
    350 	for (i = 0; i < tinybits; i++) {
    351 		if (BIT_TEST(TinySieve, i))
    352 			continue; /* 2*i+3 is composite */
    353 
    354 		/* The next tiny prime */
    355 		t = 2 * i + 3;
    356 
    357 		/* Mark all multiples of t */
    358 		for (j = i + t; j < tinybits; j += t)
    359 			BIT_SET(TinySieve, j);
    360 
    361 		sieve_large(t);
    362 	}
    363 
    364 	/*
    365 	 * Start the small block search at the next possible prime. To avoid
    366 	 * fencepost errors, the last pass is skipped.
    367 	 */
    368 	for (smallbase = TINY_NUMBER + 3;
    369 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
    370 	    smallbase += TINY_NUMBER) {
    371 		for (i = 0; i < tinybits; i++) {
    372 			if (BIT_TEST(TinySieve, i))
    373 				continue; /* 2*i+3 is composite */
    374 
    375 			/* The next tiny prime */
    376 			t = 2 * i + 3;
    377 			r = smallbase % t;
    378 
    379 			if (r == 0) {
    380 				s = 0; /* t divides into smallbase exactly */
    381 			} else {
    382 				/* smallbase+s is first entry divisible by t */
    383 				s = t - r;
    384 			}
    385 
    386 			/*
    387 			 * The sieve omits even numbers, so ensure that
    388 			 * smallbase+s is odd. Then, step through the sieve
    389 			 * in increments of 2*t
    390 			 */
    391 			if (s & 1)
    392 				s += t; /* Make smallbase+s odd, and s even */
    393 
    394 			/* Mark all multiples of 2*t */
    395 			for (s /= 2; s < smallbits; s += t)
    396 				BIT_SET(SmallSieve, s);
    397 		}
    398 
    399 		/*
    400 		 * SmallSieve
    401 		 */
    402 		for (i = 0; i < smallbits; i++) {
    403 			if (BIT_TEST(SmallSieve, i))
    404 				continue; /* 2*i+smallbase is composite */
    405 
    406 			/* The next small prime */
    407 			sieve_large((2 * i) + smallbase);
    408 		}
    409 
    410 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
    411 	}
    412 
    413 	time(&time_stop);
    414 
    415 	logit("%.24s Sieved with %u small primes in %ld seconds",
    416 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
    417 
    418 	for (j = r = 0; j < largebits; j++) {
    419 		if (BIT_TEST(LargeSieve, j))
    420 			continue; /* Definitely composite, skip */
    421 
    422 		debug2("test q = largebase+%u", 2 * j);
    423 		if (BN_set_word(q, 2 * j) == 0)
    424 			fatal("BN_set_word failed");
    425 		if (BN_add(q, q, largebase) == 0)
    426 			fatal("BN_add failed");
    427 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
    428 		    MODULI_TESTS_SIEVE, largetries,
    429 		    (power - 1) /* MSB */, (0), q) == -1) {
    430 			ret = -1;
    431 			break;
    432 		}
    433 
    434 		r++; /* count q */
    435 	}
    436 
    437 	time(&time_stop);
    438 
    439 	free(LargeSieve);
    440 	free(SmallSieve);
    441 	free(TinySieve);
    442 
    443 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
    444 
    445 	return (ret);
    446 }
    447 
    448 static void
    449 write_checkpoint(char *cpfile, u_int32_t lineno)
    450 {
    451 	FILE *fp;
    452 	char tmp[PATH_MAX];
    453 	int r;
    454 
    455 	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
    456 	if (r == -1 || r >= PATH_MAX) {
    457 		logit("write_checkpoint: temp pathname too long");
    458 		return;
    459 	}
    460 	if ((r = mkstemp(tmp)) == -1) {
    461 		logit("mkstemp(%s): %s", tmp, strerror(errno));
    462 		return;
    463 	}
    464 	if ((fp = fdopen(r, "w")) == NULL) {
    465 		logit("write_checkpoint: fdopen: %s", strerror(errno));
    466 		unlink(tmp);
    467 		close(r);
    468 		return;
    469 	}
    470 	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
    471 	    && rename(tmp, cpfile) == 0)
    472 		debug3("wrote checkpoint line %lu to '%s'",
    473 		    (unsigned long)lineno, cpfile);
    474 	else
    475 		logit("failed to write to checkpoint file '%s': %s", cpfile,
    476 		    strerror(errno));
    477 }
    478 
    479 static unsigned long
    480 read_checkpoint(char *cpfile)
    481 {
    482 	FILE *fp;
    483 	unsigned long lineno = 0;
    484 
    485 	if ((fp = fopen(cpfile, "r")) == NULL)
    486 		return 0;
    487 	if (fscanf(fp, "%lu\n", &lineno) < 1)
    488 		logit("Failed to load checkpoint from '%s'", cpfile);
    489 	else
    490 		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
    491 	fclose(fp);
    492 	return lineno;
    493 }
    494 
    495 static unsigned long
    496 count_lines(FILE *f)
    497 {
    498 	unsigned long count = 0;
    499 	char lp[QLINESIZE + 1];
    500 
    501 	if (fseek(f, 0, SEEK_SET) != 0) {
    502 		debug("input file is not seekable");
    503 		return ULONG_MAX;
    504 	}
    505 	while (fgets(lp, QLINESIZE + 1, f) != NULL)
    506 		count++;
    507 	rewind(f);
    508 	debug("input file has %lu lines", count);
    509 	return count;
    510 }
    511 
    512 static char *
    513 fmt_time(time_t seconds)
    514 {
    515 	int day, hr, min;
    516 	static char buf[128];
    517 
    518 	min = (seconds / 60) % 60;
    519 	hr = (seconds / 60 / 60) % 24;
    520 	day = seconds / 60 / 60 / 24;
    521 	if (day > 0)
    522 		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
    523 	else
    524 		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
    525 	return buf;
    526 }
    527 
    528 static void
    529 print_progress(unsigned long start_lineno, unsigned long current_lineno,
    530     unsigned long end_lineno)
    531 {
    532 	static time_t time_start, time_prev;
    533 	time_t time_now, elapsed;
    534 	unsigned long num_to_process, processed, remaining, percent, eta;
    535 	double time_per_line;
    536 	char *eta_str;
    537 
    538 	time_now = monotime();
    539 	if (time_start == 0) {
    540 		time_start = time_prev = time_now;
    541 		return;
    542 	}
    543 	/* print progress after 1m then once per 5m */
    544 	if (time_now - time_prev < 5 * 60)
    545 		return;
    546 	time_prev = time_now;
    547 	elapsed = time_now - time_start;
    548 	processed = current_lineno - start_lineno;
    549 	remaining = end_lineno - current_lineno;
    550 	num_to_process = end_lineno - start_lineno;
    551 	time_per_line = (double)elapsed / processed;
    552 	/* if we don't know how many we're processing just report count+time */
    553 	time(&time_now);
    554 	if (end_lineno == ULONG_MAX) {
    555 		logit("%.24s processed %lu in %s", ctime(&time_now),
    556 		    processed, fmt_time(elapsed));
    557 		return;
    558 	}
    559 	percent = 100 * processed / num_to_process;
    560 	eta = time_per_line * remaining;
    561 	eta_str = xstrdup(fmt_time(eta));
    562 	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
    563 	    ctime(&time_now), processed, num_to_process, percent,
    564 	    fmt_time(elapsed), eta_str);
    565 	free(eta_str);
    566 }
    567 
    568 /*
    569  * perform a Miller-Rabin primality test
    570  * on the list of candidates
    571  * (checking both q and p)
    572  * The result is a list of so-call "safe" primes
    573  */
    574 int
    575 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
    576     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
    577 {
    578 	BIGNUM *q, *p, *a;
    579 	BN_CTX *ctx;
    580 	char *cp, *lp;
    581 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
    582 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
    583 	unsigned long last_processed = 0, end_lineno;
    584 	time_t time_start, time_stop;
    585 	int res;
    586 
    587 	if (trials < TRIAL_MINIMUM) {
    588 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
    589 		return (-1);
    590 	}
    591 
    592 	if (num_lines == 0)
    593 		end_lineno = count_lines(in);
    594 	else
    595 		end_lineno = start_lineno + num_lines;
    596 
    597 	time(&time_start);
    598 
    599 	if ((p = BN_new()) == NULL)
    600 		fatal("BN_new failed");
    601 	if ((q = BN_new()) == NULL)
    602 		fatal("BN_new failed");
    603 	if ((ctx = BN_CTX_new()) == NULL)
    604 		fatal("BN_CTX_new failed");
    605 
    606 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
    607 	    ctime(&time_start), trials, generator_wanted);
    608 
    609 	if (checkpoint_file != NULL)
    610 		last_processed = read_checkpoint(checkpoint_file);
    611 	last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
    612 	if (end_lineno == ULONG_MAX)
    613 		debug("process from line %lu from pipe", last_processed);
    614 	else
    615 		debug("process from line %lu to line %lu", last_processed,
    616 		    end_lineno);
    617 
    618 	res = 0;
    619 	lp = xmalloc(QLINESIZE + 1);
    620 	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
    621 		count_in++;
    622 		if (count_in <= last_processed) {
    623 			debug3("skipping line %u, before checkpoint or "
    624 			    "specified start line", count_in);
    625 			continue;
    626 		}
    627 		if (checkpoint_file != NULL)
    628 			write_checkpoint(checkpoint_file, count_in);
    629 		print_progress(start_lineno, count_in, end_lineno);
    630 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
    631 			debug2("%10u: comment or short line", count_in);
    632 			continue;
    633 		}
    634 
    635 		/* XXX - fragile parser */
    636 		/* time */
    637 		cp = &lp[14];	/* (skip) */
    638 
    639 		/* type */
    640 		in_type = strtoul(cp, &cp, 10);
    641 
    642 		/* tests */
    643 		in_tests = strtoul(cp, &cp, 10);
    644 
    645 		if (in_tests & MODULI_TESTS_COMPOSITE) {
    646 			debug2("%10u: known composite", count_in);
    647 			continue;
    648 		}
    649 
    650 		/* tries */
    651 		in_tries = strtoul(cp, &cp, 10);
    652 
    653 		/* size (most significant bit) */
    654 		in_size = strtoul(cp, &cp, 10);
    655 
    656 		/* generator (hex) */
    657 		generator_known = strtoul(cp, &cp, 16);
    658 
    659 		/* Skip white space */
    660 		cp += strspn(cp, " ");
    661 
    662 		/* modulus (hex) */
    663 		switch (in_type) {
    664 		case MODULI_TYPE_SOPHIE_GERMAIN:
    665 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
    666 			a = q;
    667 			if (BN_hex2bn(&a, cp) == 0)
    668 				fatal("BN_hex2bn failed");
    669 			/* p = 2*q + 1 */
    670 			if (BN_lshift(p, q, 1) == 0)
    671 				fatal("BN_lshift failed");
    672 			if (BN_add_word(p, 1) == 0)
    673 				fatal("BN_add_word failed");
    674 			in_size += 1;
    675 			generator_known = 0;
    676 			break;
    677 		case MODULI_TYPE_UNSTRUCTURED:
    678 		case MODULI_TYPE_SAFE:
    679 		case MODULI_TYPE_SCHNORR:
    680 		case MODULI_TYPE_STRONG:
    681 		case MODULI_TYPE_UNKNOWN:
    682 			debug2("%10u: (%u)", count_in, in_type);
    683 			a = p;
    684 			if (BN_hex2bn(&a, cp) == 0)
    685 				fatal("BN_hex2bn failed");
    686 			/* q = (p-1) / 2 */
    687 			if (BN_rshift(q, p, 1) == 0)
    688 				fatal("BN_rshift failed");
    689 			break;
    690 		default:
    691 			debug2("Unknown prime type");
    692 			break;
    693 		}
    694 
    695 		/*
    696 		 * due to earlier inconsistencies in interpretation, check
    697 		 * the proposed bit size.
    698 		 */
    699 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
    700 			debug2("%10u: bit size %u mismatch", count_in, in_size);
    701 			continue;
    702 		}
    703 		if (in_size < QSIZE_MINIMUM) {
    704 			debug2("%10u: bit size %u too short", count_in, in_size);
    705 			continue;
    706 		}
    707 
    708 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
    709 			in_tries += trials;
    710 		else
    711 			in_tries = trials;
    712 
    713 		/*
    714 		 * guess unknown generator
    715 		 */
    716 		if (generator_known == 0) {
    717 			if (BN_mod_word(p, 24) == 11)
    718 				generator_known = 2;
    719 			else if (BN_mod_word(p, 12) == 5)
    720 				generator_known = 3;
    721 			else {
    722 				u_int32_t r = BN_mod_word(p, 10);
    723 
    724 				if (r == 3 || r == 7)
    725 					generator_known = 5;
    726 			}
    727 		}
    728 		/*
    729 		 * skip tests when desired generator doesn't match
    730 		 */
    731 		if (generator_wanted > 0 &&
    732 		    generator_wanted != generator_known) {
    733 			debug2("%10u: generator %d != %d",
    734 			    count_in, generator_known, generator_wanted);
    735 			continue;
    736 		}
    737 
    738 		/*
    739 		 * Primes with no known generator are useless for DH, so
    740 		 * skip those.
    741 		 */
    742 		if (generator_known == 0) {
    743 			debug2("%10u: no known generator", count_in);
    744 			continue;
    745 		}
    746 
    747 		count_possible++;
    748 
    749 		/*
    750 		 * The (1/4)^N performance bound on Miller-Rabin is
    751 		 * extremely pessimistic, so don't spend a lot of time
    752 		 * really verifying that q is prime until after we know
    753 		 * that p is also prime. A single pass will weed out the
    754 		 * vast majority of composite q's.
    755 		 */
    756 		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
    757 			debug("%10u: q failed first possible prime test",
    758 			    count_in);
    759 			continue;
    760 		}
    761 
    762 		/*
    763 		 * q is possibly prime, so go ahead and really make sure
    764 		 * that p is prime. If it is, then we can go back and do
    765 		 * the same for q. If p is composite, chances are that
    766 		 * will show up on the first Rabin-Miller iteration so it
    767 		 * doesn't hurt to specify a high iteration count.
    768 		 */
    769 		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
    770 			debug("%10u: p is not prime", count_in);
    771 			continue;
    772 		}
    773 		debug("%10u: p is almost certainly prime", count_in);
    774 
    775 		/* recheck q more rigorously */
    776 		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
    777 			debug("%10u: q is not prime", count_in);
    778 			continue;
    779 		}
    780 		debug("%10u: q is almost certainly prime", count_in);
    781 
    782 		if (qfileout(out, MODULI_TYPE_SAFE,
    783 		    in_tests | MODULI_TESTS_MILLER_RABIN,
    784 		    in_tries, in_size, generator_known, p)) {
    785 			res = -1;
    786 			break;
    787 		}
    788 
    789 		count_out++;
    790 	}
    791 
    792 	time(&time_stop);
    793 	free(lp);
    794 	BN_free(p);
    795 	BN_free(q);
    796 	BN_CTX_free(ctx);
    797 
    798 	if (checkpoint_file != NULL)
    799 		unlink(checkpoint_file);
    800 
    801 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
    802 	    ctime(&time_stop), count_out, count_possible,
    803 	    (long) (time_stop - time_start));
    804 
    805 	return (res);
    806 }
    807 
    808 #endif /* WITH_OPENSSL */
    809