Home | History | Annotate | Download | only in MachineIndependent
      1 //
      2 // Copyright (C) 2002-2005  3Dlabs Inc. Ltd.
      3 // Copyright (C) 2013 LunarG, Inc.
      4 // Copyright (C) 2015-2018 Google, Inc.
      5 //
      6 // All rights reserved.
      7 //
      8 // Redistribution and use in source and binary forms, with or without
      9 // modification, are permitted provided that the following conditions
     10 // are met:
     11 //
     12 //    Redistributions of source code must retain the above copyright
     13 //    notice, this list of conditions and the following disclaimer.
     14 //
     15 //    Redistributions in binary form must reproduce the above
     16 //    copyright notice, this list of conditions and the following
     17 //    disclaimer in the documentation and/or other materials provided
     18 //    with the distribution.
     19 //
     20 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
     21 //    contributors may be used to endorse or promote products derived
     22 //    from this software without specific prior written permission.
     23 //
     24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     27 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     28 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     29 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     30 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     31 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     32 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     34 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35 // POSSIBILITY OF SUCH DAMAGE.
     36 //
     37 
     38 #ifndef _SYMBOL_TABLE_INCLUDED_
     39 #define _SYMBOL_TABLE_INCLUDED_
     40 
     41 //
     42 // Symbol table for parsing.  Has these design characteristics:
     43 //
     44 // * Same symbol table can be used to compile many shaders, to preserve
     45 //   effort of creating and loading with the large numbers of built-in
     46 //   symbols.
     47 //
     48 // -->  This requires a copy mechanism, so initial pools used to create
     49 //   the shared information can be popped.  Done through "clone"
     50 //   methods.
     51 //
     52 // * Name mangling will be used to give each function a unique name
     53 //   so that symbol table lookups are never ambiguous.  This allows
     54 //   a simpler symbol table structure.
     55 //
     56 // * Pushing and popping of scope, so symbol table will really be a stack
     57 //   of symbol tables.  Searched from the top, with new inserts going into
     58 //   the top.
     59 //
     60 // * Constants:  Compile time constant symbols will keep their values
     61 //   in the symbol table.  The parser can substitute constants at parse
     62 //   time, including doing constant folding and constant propagation.
     63 //
     64 // * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
     65 //   are tracked in the intermediate representation, not the symbol table.
     66 //
     67 
     68 #include "../Include/Common.h"
     69 #include "../Include/intermediate.h"
     70 #include "../Include/InfoSink.h"
     71 
     72 namespace glslang {
     73 
     74 //
     75 // Symbol base class.  (Can build functions or variables out of these...)
     76 //
     77 
     78 class TVariable;
     79 class TFunction;
     80 class TAnonMember;
     81 
     82 class TSymbol {
     83 public:
     84     POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
     85     explicit TSymbol(const TString *n) :  name(n), numExtensions(0), extensions(0), writable(true) { }
     86     virtual TSymbol* clone() const = 0;
     87     virtual ~TSymbol() { }  // rely on all symbol owned memory coming from the pool
     88 
     89     virtual const TString& getName() const { return *name; }
     90     virtual void changeName(const TString* newName) { name = newName; }
     91     virtual void addPrefix(const char* prefix)
     92     {
     93         TString newName(prefix);
     94         newName.append(*name);
     95         changeName(NewPoolTString(newName.c_str()));
     96     }
     97     virtual const TString& getMangledName() const { return getName(); }
     98     virtual TFunction* getAsFunction() { return 0; }
     99     virtual const TFunction* getAsFunction() const { return 0; }
    100     virtual TVariable* getAsVariable() { return 0; }
    101     virtual const TVariable* getAsVariable() const { return 0; }
    102     virtual const TAnonMember* getAsAnonMember() const { return 0; }
    103     virtual const TType& getType() const = 0;
    104     virtual TType& getWritableType() = 0;
    105     virtual void setUniqueId(int id) { uniqueId = id; }
    106     virtual int getUniqueId() const { return uniqueId; }
    107     virtual void setExtensions(int num, const char* const exts[])
    108     {
    109         assert(extensions == 0);
    110         assert(num > 0);
    111         numExtensions = num;
    112         extensions = NewPoolObject(exts[0], num);
    113         for (int e = 0; e < num; ++e)
    114             extensions[e] = exts[e];
    115     }
    116     virtual int getNumExtensions() const { return numExtensions; }
    117     virtual const char** getExtensions() const { return extensions; }
    118     virtual void dump(TInfoSink &infoSink) const = 0;
    119 
    120     virtual bool isReadOnly() const { return ! writable; }
    121     virtual void makeReadOnly() { writable = false; }
    122 
    123 protected:
    124     explicit TSymbol(const TSymbol&);
    125     TSymbol& operator=(const TSymbol&);
    126 
    127     const TString *name;
    128     unsigned int uniqueId;      // For cross-scope comparing during code generation
    129 
    130     // For tracking what extensions must be present
    131     // (don't use if correct version/profile is present).
    132     int numExtensions;
    133     const char** extensions; // an array of pointers to existing constant char strings
    134 
    135     //
    136     // N.B.: Non-const functions that will be generally used should assert on this,
    137     // to avoid overwriting shared symbol-table information.
    138     //
    139     bool writable;
    140 };
    141 
    142 //
    143 // Variable class, meaning a symbol that's not a function.
    144 //
    145 // There could be a separate class hierarchy for Constant variables;
    146 // Only one of int, bool, or float, (or none) is correct for
    147 // any particular use, but it's easy to do this way, and doesn't
    148 // seem worth having separate classes, and "getConst" can't simply return
    149 // different values for different types polymorphically, so this is
    150 // just simple and pragmatic.
    151 //
    152 class TVariable : public TSymbol {
    153 public:
    154     TVariable(const TString *name, const TType& t, bool uT = false )
    155         : TSymbol(name),
    156           userType(uT),
    157           constSubtree(nullptr),
    158           anonId(-1) { type.shallowCopy(t); }
    159     virtual TVariable* clone() const;
    160     virtual ~TVariable() { }
    161 
    162     virtual TVariable* getAsVariable() { return this; }
    163     virtual const TVariable* getAsVariable() const { return this; }
    164     virtual const TType& getType() const { return type; }
    165     virtual TType& getWritableType() { assert(writable); return type; }
    166     virtual bool isUserType() const { return userType; }
    167     virtual const TConstUnionArray& getConstArray() const { return constArray; }
    168     virtual TConstUnionArray& getWritableConstArray() { assert(writable); return constArray; }
    169     virtual void setConstArray(const TConstUnionArray& array) { constArray = array; }
    170     virtual void setConstSubtree(TIntermTyped* subtree) { constSubtree = subtree; }
    171     virtual TIntermTyped* getConstSubtree() const { return constSubtree; }
    172     virtual void setAnonId(int i) { anonId = i; }
    173     virtual int getAnonId() const { return anonId; }
    174 
    175     virtual void dump(TInfoSink &infoSink) const;
    176 
    177 protected:
    178     explicit TVariable(const TVariable&);
    179     TVariable& operator=(const TVariable&);
    180 
    181     TType type;
    182     bool userType;
    183     // we are assuming that Pool Allocator will free the memory allocated to unionArray
    184     // when this object is destroyed
    185 
    186     // TODO: these two should be a union
    187     // A variable could be a compile-time constant, or a specialization
    188     // constant, or neither, but never both.
    189     TConstUnionArray constArray;  // for compile-time constant value
    190     TIntermTyped* constSubtree;   // for specialization constant computation
    191     int anonId;                   // the ID used for anonymous blocks: TODO: see if uniqueId could serve a dual purpose
    192 };
    193 
    194 //
    195 // The function sub-class of symbols and the parser will need to
    196 // share this definition of a function parameter.
    197 //
    198 struct TParameter {
    199     TString *name;
    200     TType* type;
    201     TIntermTyped* defaultValue;
    202     void copyParam(const TParameter& param)
    203     {
    204         if (param.name)
    205             name = NewPoolTString(param.name->c_str());
    206         else
    207             name = 0;
    208         type = param.type->clone();
    209         defaultValue = param.defaultValue;
    210     }
    211     TBuiltInVariable getDeclaredBuiltIn() const { return type->getQualifier().declaredBuiltIn; }
    212 };
    213 
    214 //
    215 // The function sub-class of a symbol.
    216 //
    217 class TFunction : public TSymbol {
    218 public:
    219     explicit TFunction(TOperator o) :
    220         TSymbol(0),
    221         op(o),
    222         defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0) { }
    223     TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
    224         TSymbol(name),
    225         mangledName(*name + '('),
    226         op(tOp),
    227         defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0)
    228     {
    229         returnType.shallowCopy(retType);
    230         declaredBuiltIn = retType.getQualifier().builtIn;
    231     }
    232     virtual TFunction* clone() const override;
    233     virtual ~TFunction();
    234 
    235     virtual TFunction* getAsFunction() override { return this; }
    236     virtual const TFunction* getAsFunction() const override { return this; }
    237 
    238     // Install 'p' as the (non-'this') last parameter.
    239     // Non-'this' parameters are reflected in both the list of parameters and the
    240     // mangled name.
    241     virtual void addParameter(TParameter& p)
    242     {
    243         assert(writable);
    244         parameters.push_back(p);
    245         p.type->appendMangledName(mangledName);
    246 
    247         if (p.defaultValue != nullptr)
    248             defaultParamCount++;
    249     }
    250 
    251     // Install 'this' as the first parameter.
    252     // 'this' is reflected in the list of parameters, but not the mangled name.
    253     virtual void addThisParameter(TType& type, const char* name)
    254     {
    255         TParameter p = { NewPoolTString(name), new TType, nullptr };
    256         p.type->shallowCopy(type);
    257         parameters.insert(parameters.begin(), p);
    258     }
    259 
    260     virtual void addPrefix(const char* prefix) override
    261     {
    262         TSymbol::addPrefix(prefix);
    263         mangledName.insert(0, prefix);
    264     }
    265 
    266     virtual void removePrefix(const TString& prefix)
    267     {
    268         assert(mangledName.compare(0, prefix.size(), prefix) == 0);
    269         mangledName.erase(0, prefix.size());
    270     }
    271 
    272     virtual const TString& getMangledName() const override { return mangledName; }
    273     virtual const TType& getType() const override { return returnType; }
    274     virtual TBuiltInVariable getDeclaredBuiltInType() const { return declaredBuiltIn; }
    275     virtual TType& getWritableType() override { return returnType; }
    276     virtual void relateToOperator(TOperator o) { assert(writable); op = o; }
    277     virtual TOperator getBuiltInOp() const { return op; }
    278     virtual void setDefined() { assert(writable); defined = true; }
    279     virtual bool isDefined() const { return defined; }
    280     virtual void setPrototyped() { assert(writable); prototyped = true; }
    281     virtual bool isPrototyped() const { return prototyped; }
    282     virtual void setImplicitThis() { assert(writable); implicitThis = true; }
    283     virtual bool hasImplicitThis() const { return implicitThis; }
    284     virtual void setIllegalImplicitThis() { assert(writable); illegalImplicitThis = true; }
    285     virtual bool hasIllegalImplicitThis() const { return illegalImplicitThis; }
    286 
    287     // Return total number of parameters
    288     virtual int getParamCount() const { return static_cast<int>(parameters.size()); }
    289     // Return number of parameters with default values.
    290     virtual int getDefaultParamCount() const { return defaultParamCount; }
    291     // Return number of fixed parameters (without default values)
    292     virtual int getFixedParamCount() const { return getParamCount() - getDefaultParamCount(); }
    293 
    294     virtual TParameter& operator[](int i) { assert(writable); return parameters[i]; }
    295     virtual const TParameter& operator[](int i) const { return parameters[i]; }
    296 
    297     virtual void dump(TInfoSink &infoSink) const override;
    298 
    299 protected:
    300     explicit TFunction(const TFunction&);
    301     TFunction& operator=(const TFunction&);
    302 
    303     typedef TVector<TParameter> TParamList;
    304     TParamList parameters;
    305     TType returnType;
    306     TBuiltInVariable declaredBuiltIn;
    307 
    308     TString mangledName;
    309     TOperator op;
    310     bool defined;
    311     bool prototyped;
    312     bool implicitThis;         // True if this function is allowed to see all members of 'this'
    313     bool illegalImplicitThis;  // True if this function is not supposed to have access to dynamic members of 'this',
    314                                // even if it finds member variables in the symbol table.
    315                                // This is important for a static member function that has member variables in scope,
    316                                // but is not allowed to use them, or see hidden symbols instead.
    317     int  defaultParamCount;
    318 };
    319 
    320 //
    321 // Members of anonymous blocks are a kind of TSymbol.  They are not hidden in
    322 // the symbol table behind a container; rather they are visible and point to
    323 // their anonymous container.  (The anonymous container is found through the
    324 // member, not the other way around.)
    325 //
    326 class TAnonMember : public TSymbol {
    327 public:
    328     TAnonMember(const TString* n, unsigned int m, const TVariable& a, int an) : TSymbol(n), anonContainer(a), memberNumber(m), anonId(an) { }
    329     virtual TAnonMember* clone() const;
    330     virtual ~TAnonMember() { }
    331 
    332     virtual const TAnonMember* getAsAnonMember() const { return this; }
    333     virtual const TVariable& getAnonContainer() const { return anonContainer; }
    334     virtual unsigned int getMemberNumber() const { return memberNumber; }
    335 
    336     virtual const TType& getType() const
    337     {
    338         const TTypeList& types = *anonContainer.getType().getStruct();
    339         return *types[memberNumber].type;
    340     }
    341 
    342     virtual TType& getWritableType()
    343     {
    344         assert(writable);
    345         const TTypeList& types = *anonContainer.getType().getStruct();
    346         return *types[memberNumber].type;
    347     }
    348 
    349     virtual int getAnonId() const { return anonId; }
    350     virtual void dump(TInfoSink &infoSink) const;
    351 
    352 protected:
    353     explicit TAnonMember(const TAnonMember&);
    354     TAnonMember& operator=(const TAnonMember&);
    355 
    356     const TVariable& anonContainer;
    357     unsigned int memberNumber;
    358     int anonId;
    359 };
    360 
    361 class TSymbolTableLevel {
    362 public:
    363     POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
    364     TSymbolTableLevel() : defaultPrecision(0), anonId(0), thisLevel(false) { }
    365     ~TSymbolTableLevel();
    366 
    367     bool insert(TSymbol& symbol, bool separateNameSpaces)
    368     {
    369         //
    370         // returning true means symbol was added to the table with no semantic errors
    371         //
    372         const TString& name = symbol.getName();
    373         if (name == "") {
    374             symbol.getAsVariable()->setAnonId(anonId++);
    375             // An empty name means an anonymous container, exposing its members to the external scope.
    376             // Give it a name and insert its members in the symbol table, pointing to the container.
    377             char buf[20];
    378             snprintf(buf, 20, "%s%d", AnonymousPrefix, symbol.getAsVariable()->getAnonId());
    379             symbol.changeName(NewPoolTString(buf));
    380 
    381             return insertAnonymousMembers(symbol, 0);
    382         } else {
    383             // Check for redefinition errors:
    384             // - STL itself will tell us if there is a direct name collision, with name mangling, at this level
    385             // - additionally, check for function-redefining-variable name collisions
    386             const TString& insertName = symbol.getMangledName();
    387             if (symbol.getAsFunction()) {
    388                 // make sure there isn't a variable of this name
    389                 if (! separateNameSpaces && level.find(name) != level.end())
    390                     return false;
    391 
    392                 // insert, and whatever happens is okay
    393                 level.insert(tLevelPair(insertName, &symbol));
    394 
    395                 return true;
    396             } else
    397                 return level.insert(tLevelPair(insertName, &symbol)).second;
    398         }
    399     }
    400 
    401     // Add more members to an already inserted aggregate object
    402     bool amend(TSymbol& symbol, int firstNewMember)
    403     {
    404         // See insert() for comments on basic explanation of insert.
    405         // This operates similarly, but more simply.
    406         // Only supporting amend of anonymous blocks so far.
    407         if (IsAnonymous(symbol.getName()))
    408             return insertAnonymousMembers(symbol, firstNewMember);
    409         else
    410             return false;
    411     }
    412 
    413     bool insertAnonymousMembers(TSymbol& symbol, int firstMember)
    414     {
    415         const TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
    416         for (unsigned int m = firstMember; m < types.size(); ++m) {
    417             TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, *symbol.getAsVariable(), symbol.getAsVariable()->getAnonId());
    418             if (! level.insert(tLevelPair(member->getMangledName(), member)).second)
    419                 return false;
    420         }
    421 
    422         return true;
    423     }
    424 
    425     TSymbol* find(const TString& name) const
    426     {
    427         tLevel::const_iterator it = level.find(name);
    428         if (it == level.end())
    429             return 0;
    430         else
    431             return (*it).second;
    432     }
    433 
    434     void findFunctionNameList(const TString& name, TVector<const TFunction*>& list)
    435     {
    436         size_t parenAt = name.find_first_of('(');
    437         TString base(name, 0, parenAt + 1);
    438 
    439         tLevel::const_iterator begin = level.lower_bound(base);
    440         base[parenAt] = ')';  // assume ')' is lexically after '('
    441         tLevel::const_iterator end = level.upper_bound(base);
    442         for (tLevel::const_iterator it = begin; it != end; ++it)
    443             list.push_back(it->second->getAsFunction());
    444     }
    445 
    446     // See if there is already a function in the table having the given non-function-style name.
    447     bool hasFunctionName(const TString& name) const
    448     {
    449         tLevel::const_iterator candidate = level.lower_bound(name);
    450         if (candidate != level.end()) {
    451             const TString& candidateName = (*candidate).first;
    452             TString::size_type parenAt = candidateName.find_first_of('(');
    453             if (parenAt != candidateName.npos && candidateName.compare(0, parenAt, name) == 0)
    454 
    455                 return true;
    456         }
    457 
    458         return false;
    459     }
    460 
    461     // See if there is a variable at this level having the given non-function-style name.
    462     // Return true if name is found, and set variable to true if the name was a variable.
    463     bool findFunctionVariableName(const TString& name, bool& variable) const
    464     {
    465         tLevel::const_iterator candidate = level.lower_bound(name);
    466         if (candidate != level.end()) {
    467             const TString& candidateName = (*candidate).first;
    468             TString::size_type parenAt = candidateName.find_first_of('(');
    469             if (parenAt == candidateName.npos) {
    470                 // not a mangled name
    471                 if (candidateName == name) {
    472                     // found a variable name match
    473                     variable = true;
    474                     return true;
    475                 }
    476             } else {
    477                 // a mangled name
    478                 if (candidateName.compare(0, parenAt, name) == 0) {
    479                     // found a function name match
    480                     variable = false;
    481                     return true;
    482                 }
    483             }
    484         }
    485 
    486         return false;
    487     }
    488 
    489     // Use this to do a lazy 'push' of precision defaults the first time
    490     // a precision statement is seen in a new scope.  Leave it at 0 for
    491     // when no push was needed.  Thus, it is not the current defaults,
    492     // it is what to restore the defaults to when popping a level.
    493     void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
    494     {
    495         // can call multiple times at one scope, will only latch on first call,
    496         // as we're tracking the previous scope's values, not the current values
    497         if (defaultPrecision != 0)
    498             return;
    499 
    500         defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
    501         for (int t = 0; t < EbtNumTypes; ++t)
    502             defaultPrecision[t] = p[t];
    503     }
    504 
    505     void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
    506     {
    507         // can be called for table level pops that didn't set the
    508         // defaults
    509         if (defaultPrecision == 0 || p == 0)
    510             return;
    511 
    512         for (int t = 0; t < EbtNumTypes; ++t)
    513             p[t] = defaultPrecision[t];
    514     }
    515 
    516     void relateToOperator(const char* name, TOperator op);
    517     void setFunctionExtensions(const char* name, int num, const char* const extensions[]);
    518     void dump(TInfoSink &infoSink) const;
    519     TSymbolTableLevel* clone() const;
    520     void readOnly();
    521 
    522     void setThisLevel() { thisLevel = true; }
    523     bool isThisLevel() const { return thisLevel; }
    524 
    525 protected:
    526     explicit TSymbolTableLevel(TSymbolTableLevel&);
    527     TSymbolTableLevel& operator=(TSymbolTableLevel&);
    528 
    529     typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
    530     typedef const tLevel::value_type tLevelPair;
    531     typedef std::pair<tLevel::iterator, bool> tInsertResult;
    532 
    533     tLevel level;  // named mappings
    534     TPrecisionQualifier *defaultPrecision;
    535     int anonId;
    536     bool thisLevel;  // True if this level of the symbol table is a structure scope containing member function
    537                      // that are supposed to see anonymous access to member variables.
    538 };
    539 
    540 class TSymbolTable {
    541 public:
    542     TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), separateNameSpaces(false), adoptedLevels(0)
    543     {
    544         //
    545         // This symbol table cannot be used until push() is called.
    546         //
    547     }
    548     ~TSymbolTable()
    549     {
    550         // this can be called explicitly; safest to code it so it can be called multiple times
    551 
    552         // don't deallocate levels passed in from elsewhere
    553         while (table.size() > adoptedLevels)
    554             pop(0);
    555     }
    556 
    557     void adoptLevels(TSymbolTable& symTable)
    558     {
    559         for (unsigned int level = 0; level < symTable.table.size(); ++level) {
    560             table.push_back(symTable.table[level]);
    561             ++adoptedLevels;
    562         }
    563         uniqueId = symTable.uniqueId;
    564         noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
    565         separateNameSpaces = symTable.separateNameSpaces;
    566     }
    567 
    568     //
    569     // While level adopting is generic, the methods below enact a the following
    570     // convention for levels:
    571     //   0: common built-ins shared across all stages, all compiles, only one copy for all symbol tables
    572     //   1: per-stage built-ins, shared across all compiles, but a different copy per stage
    573     //   2: built-ins specific to a compile, like resources that are context-dependent, or redeclared built-ins
    574     //   3: user-shader globals
    575     //
    576 protected:
    577     static const int globalLevel = 3;
    578     bool isSharedLevel(int level)  { return level <= 1; }              // exclude all per-compile levels
    579     bool isBuiltInLevel(int level) { return level <= 2; }              // exclude user globals
    580     bool isGlobalLevel(int level)  { return level <= globalLevel; }    // include user globals
    581 public:
    582     bool isEmpty() { return table.size() == 0; }
    583     bool atBuiltInLevel() { return isBuiltInLevel(currentLevel()); }
    584     bool atGlobalLevel()  { return isGlobalLevel(currentLevel()); }
    585 
    586     void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
    587     void setSeparateNameSpaces() { separateNameSpaces = true; }
    588 
    589     void push()
    590     {
    591         table.push_back(new TSymbolTableLevel);
    592     }
    593 
    594     // Make a new symbol-table level to represent the scope introduced by a structure
    595     // containing member functions, such that the member functions can find anonymous
    596     // references to member variables.
    597     //
    598     // 'thisSymbol' should have a name of "" to trigger anonymous structure-member
    599     // symbol finds.
    600     void pushThis(TSymbol& thisSymbol)
    601     {
    602         assert(thisSymbol.getName().size() == 0);
    603         table.push_back(new TSymbolTableLevel);
    604         table.back()->setThisLevel();
    605         insert(thisSymbol);
    606     }
    607 
    608     void pop(TPrecisionQualifier *p)
    609     {
    610         table[currentLevel()]->getPreviousDefaultPrecisions(p);
    611         delete table.back();
    612         table.pop_back();
    613     }
    614 
    615     //
    616     // Insert a visible symbol into the symbol table so it can
    617     // be found later by name.
    618     //
    619     // Returns false if the was a name collision.
    620     //
    621     bool insert(TSymbol& symbol)
    622     {
    623         symbol.setUniqueId(++uniqueId);
    624 
    625         // make sure there isn't a function of this variable name
    626         if (! separateNameSpaces && ! symbol.getAsFunction() && table[currentLevel()]->hasFunctionName(symbol.getName()))
    627             return false;
    628 
    629         // check for not overloading or redefining a built-in function
    630         if (noBuiltInRedeclarations) {
    631             if (atGlobalLevel() && currentLevel() > 0) {
    632                 if (table[0]->hasFunctionName(symbol.getName()))
    633                     return false;
    634                 if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
    635                     return false;
    636             }
    637         }
    638 
    639         return table[currentLevel()]->insert(symbol, separateNameSpaces);
    640     }
    641 
    642     // Add more members to an already inserted aggregate object
    643     bool amend(TSymbol& symbol, int firstNewMember)
    644     {
    645         // See insert() for comments on basic explanation of insert.
    646         // This operates similarly, but more simply.
    647         return table[currentLevel()]->amend(symbol, firstNewMember);
    648     }
    649 
    650     //
    651     // To allocate an internal temporary, which will need to be uniquely
    652     // identified by the consumer of the AST, but never need to
    653     // found by doing a symbol table search by name, hence allowed an
    654     // arbitrary name in the symbol with no worry of collision.
    655     //
    656     void makeInternalVariable(TSymbol& symbol)
    657     {
    658         symbol.setUniqueId(++uniqueId);
    659     }
    660 
    661     //
    662     // Copy a variable or anonymous member's structure from a shared level so that
    663     // it can be added (soon after return) to the symbol table where it can be
    664     // modified without impacting other users of the shared table.
    665     //
    666     TSymbol* copyUpDeferredInsert(TSymbol* shared)
    667     {
    668         if (shared->getAsVariable()) {
    669             TSymbol* copy = shared->clone();
    670             copy->setUniqueId(shared->getUniqueId());
    671             return copy;
    672         } else {
    673             const TAnonMember* anon = shared->getAsAnonMember();
    674             assert(anon);
    675             TVariable* container = anon->getAnonContainer().clone();
    676             container->changeName(NewPoolTString(""));
    677             container->setUniqueId(anon->getAnonContainer().getUniqueId());
    678             return container;
    679         }
    680     }
    681 
    682     TSymbol* copyUp(TSymbol* shared)
    683     {
    684         TSymbol* copy = copyUpDeferredInsert(shared);
    685         table[globalLevel]->insert(*copy, separateNameSpaces);
    686         if (shared->getAsVariable())
    687             return copy;
    688         else {
    689             // return the copy of the anonymous member
    690             return table[globalLevel]->find(shared->getName());
    691         }
    692     }
    693 
    694     // Normal find of a symbol, that can optionally say whether the symbol was found
    695     // at a built-in level or the current top-scope level.
    696     TSymbol* find(const TString& name, bool* builtIn = 0, bool* currentScope = 0, int* thisDepthP = 0)
    697     {
    698         int level = currentLevel();
    699         TSymbol* symbol;
    700         int thisDepth = 0;
    701         do {
    702             if (table[level]->isThisLevel())
    703                 ++thisDepth;
    704             symbol = table[level]->find(name);
    705             --level;
    706         } while (symbol == nullptr && level >= 0);
    707         level++;
    708         if (builtIn)
    709             *builtIn = isBuiltInLevel(level);
    710         if (currentScope)
    711             *currentScope = isGlobalLevel(currentLevel()) || level == currentLevel();  // consider shared levels as "current scope" WRT user globals
    712         if (thisDepthP != nullptr) {
    713             if (! table[level]->isThisLevel())
    714                 thisDepth = 0;
    715             *thisDepthP = thisDepth;
    716         }
    717 
    718         return symbol;
    719     }
    720 
    721     // Find of a symbol that returns how many layers deep of nested
    722     // structures-with-member-functions ('this' scopes) deep the symbol was
    723     // found in.
    724     TSymbol* find(const TString& name, int& thisDepth)
    725     {
    726         int level = currentLevel();
    727         TSymbol* symbol;
    728         thisDepth = 0;
    729         do {
    730             if (table[level]->isThisLevel())
    731                 ++thisDepth;
    732             symbol = table[level]->find(name);
    733             --level;
    734         } while (symbol == 0 && level >= 0);
    735 
    736         if (! table[level + 1]->isThisLevel())
    737             thisDepth = 0;
    738 
    739         return symbol;
    740     }
    741 
    742     bool isFunctionNameVariable(const TString& name) const
    743     {
    744         if (separateNameSpaces)
    745             return false;
    746 
    747         int level = currentLevel();
    748         do {
    749             bool variable;
    750             bool found = table[level]->findFunctionVariableName(name, variable);
    751             if (found)
    752                 return variable;
    753             --level;
    754         } while (level >= 0);
    755 
    756         return false;
    757     }
    758 
    759     void findFunctionNameList(const TString& name, TVector<const TFunction*>& list, bool& builtIn)
    760     {
    761         // For user levels, return the set found in the first scope with a match
    762         builtIn = false;
    763         int level = currentLevel();
    764         do {
    765             table[level]->findFunctionNameList(name, list);
    766             --level;
    767         } while (list.empty() && level >= globalLevel);
    768 
    769         if (! list.empty())
    770             return;
    771 
    772         // Gather across all built-in levels; they don't hide each other
    773         builtIn = true;
    774         do {
    775             table[level]->findFunctionNameList(name, list);
    776             --level;
    777         } while (level >= 0);
    778     }
    779 
    780     void relateToOperator(const char* name, TOperator op)
    781     {
    782         for (unsigned int level = 0; level < table.size(); ++level)
    783             table[level]->relateToOperator(name, op);
    784     }
    785 
    786     void setFunctionExtensions(const char* name, int num, const char* const extensions[])
    787     {
    788         for (unsigned int level = 0; level < table.size(); ++level)
    789             table[level]->setFunctionExtensions(name, num, extensions);
    790     }
    791 
    792     void setVariableExtensions(const char* name, int num, const char* const extensions[])
    793     {
    794         TSymbol* symbol = find(TString(name));
    795         if (symbol)
    796             symbol->setExtensions(num, extensions);
    797     }
    798 
    799     int getMaxSymbolId() { return uniqueId; }
    800     void dump(TInfoSink &infoSink) const;
    801     void copyTable(const TSymbolTable& copyOf);
    802 
    803     void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }
    804 
    805     void readOnly()
    806     {
    807         for (unsigned int level = 0; level < table.size(); ++level)
    808             table[level]->readOnly();
    809     }
    810 
    811 protected:
    812     TSymbolTable(TSymbolTable&);
    813     TSymbolTable& operator=(TSymbolTableLevel&);
    814 
    815     int currentLevel() const { return static_cast<int>(table.size()) - 1; }
    816 
    817     std::vector<TSymbolTableLevel*> table;
    818     int uniqueId;     // for unique identification in code generation
    819     bool noBuiltInRedeclarations;
    820     bool separateNameSpaces;
    821     unsigned int adoptedLevels;
    822 };
    823 
    824 } // end namespace glslang
    825 
    826 #endif // _SYMBOL_TABLE_INCLUDED_
    827