Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
     29 // in the CFG.  There can be strongly connected components in the CFG which
     30 // this analysis will not recognize and that will not be represented by a Loop
     31 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
     32 // non-loop SCC might contain a sub-SCC which is a Loop.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     37 #define LLVM_ANALYSIS_LOOPINFO_H
     38 
     39 #include "llvm/ADT/DenseMap.h"
     40 #include "llvm/ADT/DenseSet.h"
     41 #include "llvm/ADT/GraphTraits.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/SmallVector.h"
     44 #include "llvm/IR/CFG.h"
     45 #include "llvm/IR/Instruction.h"
     46 #include "llvm/IR/Instructions.h"
     47 #include "llvm/IR/PassManager.h"
     48 #include "llvm/Pass.h"
     49 #include "llvm/Support/Allocator.h"
     50 #include <algorithm>
     51 #include <utility>
     52 
     53 namespace llvm {
     54 
     55 class DominatorTree;
     56 class LoopInfo;
     57 class Loop;
     58 class MDNode;
     59 class PHINode;
     60 class raw_ostream;
     61 template <class N, bool IsPostDom> class DominatorTreeBase;
     62 template <class N, class M> class LoopInfoBase;
     63 template <class N, class M> class LoopBase;
     64 
     65 //===----------------------------------------------------------------------===//
     66 /// Instances of this class are used to represent loops that are detected in the
     67 /// flow graph.
     68 ///
     69 template <class BlockT, class LoopT> class LoopBase {
     70   LoopT *ParentLoop;
     71   // Loops contained entirely within this one.
     72   std::vector<LoopT *> SubLoops;
     73 
     74   // The list of blocks in this loop. First entry is the header node.
     75   std::vector<BlockT *> Blocks;
     76 
     77   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
     78 
     79 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
     80   /// Indicator that this loop is no longer a valid loop.
     81   bool IsInvalid = false;
     82 #endif
     83 
     84   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
     85   const LoopBase<BlockT, LoopT> &
     86   operator=(const LoopBase<BlockT, LoopT> &) = delete;
     87 
     88 public:
     89   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
     90   /// for consistency with loop depth values used for basic blocks, where depth
     91   /// 0 is used for blocks not inside any loops.
     92   unsigned getLoopDepth() const {
     93     assert(!isInvalid() && "Loop not in a valid state!");
     94     unsigned D = 1;
     95     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     96          CurLoop = CurLoop->ParentLoop)
     97       ++D;
     98     return D;
     99   }
    100   BlockT *getHeader() const { return getBlocks().front(); }
    101   LoopT *getParentLoop() const { return ParentLoop; }
    102 
    103   /// This is a raw interface for bypassing addChildLoop.
    104   void setParentLoop(LoopT *L) {
    105     assert(!isInvalid() && "Loop not in a valid state!");
    106     ParentLoop = L;
    107   }
    108 
    109   /// Return true if the specified loop is contained within in this loop.
    110   bool contains(const LoopT *L) const {
    111     assert(!isInvalid() && "Loop not in a valid state!");
    112     if (L == this)
    113       return true;
    114     if (!L)
    115       return false;
    116     return contains(L->getParentLoop());
    117   }
    118 
    119   /// Return true if the specified basic block is in this loop.
    120   bool contains(const BlockT *BB) const {
    121     assert(!isInvalid() && "Loop not in a valid state!");
    122     return DenseBlockSet.count(BB);
    123   }
    124 
    125   /// Return true if the specified instruction is in this loop.
    126   template <class InstT> bool contains(const InstT *Inst) const {
    127     return contains(Inst->getParent());
    128   }
    129 
    130   /// Return the loops contained entirely within this loop.
    131   const std::vector<LoopT *> &getSubLoops() const {
    132     assert(!isInvalid() && "Loop not in a valid state!");
    133     return SubLoops;
    134   }
    135   std::vector<LoopT *> &getSubLoopsVector() {
    136     assert(!isInvalid() && "Loop not in a valid state!");
    137     return SubLoops;
    138   }
    139   typedef typename std::vector<LoopT *>::const_iterator iterator;
    140   typedef
    141       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
    142   iterator begin() const { return getSubLoops().begin(); }
    143   iterator end() const { return getSubLoops().end(); }
    144   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
    145   reverse_iterator rend() const { return getSubLoops().rend(); }
    146   bool empty() const { return getSubLoops().empty(); }
    147 
    148   /// Get a list of the basic blocks which make up this loop.
    149   ArrayRef<BlockT *> getBlocks() const {
    150     assert(!isInvalid() && "Loop not in a valid state!");
    151     return Blocks;
    152   }
    153   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
    154   block_iterator block_begin() const { return getBlocks().begin(); }
    155   block_iterator block_end() const { return getBlocks().end(); }
    156   inline iterator_range<block_iterator> blocks() const {
    157     assert(!isInvalid() && "Loop not in a valid state!");
    158     return make_range(block_begin(), block_end());
    159   }
    160 
    161   /// Get the number of blocks in this loop in constant time.
    162   /// Invalidate the loop, indicating that it is no longer a loop.
    163   unsigned getNumBlocks() const {
    164     assert(!isInvalid() && "Loop not in a valid state!");
    165     return Blocks.size();
    166   }
    167 
    168   /// Return a direct, mutable handle to the blocks vector so that we can
    169   /// mutate it efficiently with techniques like `std::remove`.
    170   std::vector<BlockT *> &getBlocksVector() {
    171     assert(!isInvalid() && "Loop not in a valid state!");
    172     return Blocks;
    173   }
    174   /// Return a direct, mutable handle to the blocks set so that we can
    175   /// mutate it efficiently.
    176   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
    177     assert(!isInvalid() && "Loop not in a valid state!");
    178     return DenseBlockSet;
    179   }
    180 
    181   /// Return a direct, immutable handle to the blocks set.
    182   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
    183     assert(!isInvalid() && "Loop not in a valid state!");
    184     return DenseBlockSet;
    185   }
    186 
    187   /// Return true if this loop is no longer valid.  The only valid use of this
    188   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
    189   /// true by the destructor.  In other words, if this accessor returns true,
    190   /// the caller has already triggered UB by calling this accessor; and so it
    191   /// can only be called in a context where a return value of true indicates a
    192   /// programmer error.
    193   bool isInvalid() const {
    194 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
    195     return IsInvalid;
    196 #else
    197     return false;
    198 #endif
    199   }
    200 
    201   /// True if terminator in the block can branch to another block that is
    202   /// outside of the current loop.
    203   bool isLoopExiting(const BlockT *BB) const {
    204     assert(!isInvalid() && "Loop not in a valid state!");
    205     for (const auto &Succ : children<const BlockT *>(BB)) {
    206       if (!contains(Succ))
    207         return true;
    208     }
    209     return false;
    210   }
    211 
    212   /// Returns true if \p BB is a loop-latch.
    213   /// A latch block is a block that contains a branch back to the header.
    214   /// This function is useful when there are multiple latches in a loop
    215   /// because \fn getLoopLatch will return nullptr in that case.
    216   bool isLoopLatch(const BlockT *BB) const {
    217     assert(!isInvalid() && "Loop not in a valid state!");
    218     assert(contains(BB) && "block does not belong to the loop");
    219 
    220     BlockT *Header = getHeader();
    221     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
    222     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
    223     return std::find(PredBegin, PredEnd, BB) != PredEnd;
    224   }
    225 
    226   /// Calculate the number of back edges to the loop header.
    227   unsigned getNumBackEdges() const {
    228     assert(!isInvalid() && "Loop not in a valid state!");
    229     unsigned NumBackEdges = 0;
    230     BlockT *H = getHeader();
    231 
    232     for (const auto Pred : children<Inverse<BlockT *>>(H))
    233       if (contains(Pred))
    234         ++NumBackEdges;
    235 
    236     return NumBackEdges;
    237   }
    238 
    239   //===--------------------------------------------------------------------===//
    240   // APIs for simple analysis of the loop.
    241   //
    242   // Note that all of these methods can fail on general loops (ie, there may not
    243   // be a preheader, etc).  For best success, the loop simplification and
    244   // induction variable canonicalization pass should be used to normalize loops
    245   // for easy analysis.  These methods assume canonical loops.
    246 
    247   /// Return all blocks inside the loop that have successors outside of the
    248   /// loop. These are the blocks _inside of the current loop_ which branch out.
    249   /// The returned list is always unique.
    250   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    251 
    252   /// If getExitingBlocks would return exactly one block, return that block.
    253   /// Otherwise return null.
    254   BlockT *getExitingBlock() const;
    255 
    256   /// Return all of the successor blocks of this loop. These are the blocks
    257   /// _outside of the current loop_ which are branched to.
    258   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
    259 
    260   /// If getExitBlocks would return exactly one block, return that block.
    261   /// Otherwise return null.
    262   BlockT *getExitBlock() const;
    263 
    264   /// Return true if no exit block for the loop has a predecessor that is
    265   /// outside the loop.
    266   bool hasDedicatedExits() const;
    267 
    268   /// Return all unique successor blocks of this loop.
    269   /// These are the blocks _outside of the current loop_ which are branched to.
    270   /// This assumes that loop exits are in canonical form, i.e. all exits are
    271   /// dedicated exits.
    272   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
    273 
    274   /// If getUniqueExitBlocks would return exactly one block, return that block.
    275   /// Otherwise return null.
    276   BlockT *getUniqueExitBlock() const;
    277 
    278   /// Edge type.
    279   typedef std::pair<const BlockT *, const BlockT *> Edge;
    280 
    281   /// Return all pairs of (_inside_block_,_outside_block_).
    282   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    283 
    284   /// If there is a preheader for this loop, return it. A loop has a preheader
    285   /// if there is only one edge to the header of the loop from outside of the
    286   /// loop. If this is the case, the block branching to the header of the loop
    287   /// is the preheader node.
    288   ///
    289   /// This method returns null if there is no preheader for the loop.
    290   BlockT *getLoopPreheader() const;
    291 
    292   /// If the given loop's header has exactly one unique predecessor outside the
    293   /// loop, return it. Otherwise return null.
    294   ///  This is less strict that the loop "preheader" concept, which requires
    295   /// the predecessor to have exactly one successor.
    296   BlockT *getLoopPredecessor() const;
    297 
    298   /// If there is a single latch block for this loop, return it.
    299   /// A latch block is a block that contains a branch back to the header.
    300   BlockT *getLoopLatch() const;
    301 
    302   /// Return all loop latch blocks of this loop. A latch block is a block that
    303   /// contains a branch back to the header.
    304   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
    305     assert(!isInvalid() && "Loop not in a valid state!");
    306     BlockT *H = getHeader();
    307     for (const auto Pred : children<Inverse<BlockT *>>(H))
    308       if (contains(Pred))
    309         LoopLatches.push_back(Pred);
    310   }
    311 
    312   //===--------------------------------------------------------------------===//
    313   // APIs for updating loop information after changing the CFG
    314   //
    315 
    316   /// This method is used by other analyses to update loop information.
    317   /// NewBB is set to be a new member of the current loop.
    318   /// Because of this, it is added as a member of all parent loops, and is added
    319   /// to the specified LoopInfo object as being in the current basic block.  It
    320   /// is not valid to replace the loop header with this method.
    321   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    322 
    323   /// This is used when splitting loops up. It replaces the OldChild entry in
    324   /// our children list with NewChild, and updates the parent pointer of
    325   /// OldChild to be null and the NewChild to be this loop.
    326   /// This updates the loop depth of the new child.
    327   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    328 
    329   /// Add the specified loop to be a child of this loop.
    330   /// This updates the loop depth of the new child.
    331   void addChildLoop(LoopT *NewChild) {
    332     assert(!isInvalid() && "Loop not in a valid state!");
    333     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    334     NewChild->ParentLoop = static_cast<LoopT *>(this);
    335     SubLoops.push_back(NewChild);
    336   }
    337 
    338   /// This removes the specified child from being a subloop of this loop. The
    339   /// loop is not deleted, as it will presumably be inserted into another loop.
    340   LoopT *removeChildLoop(iterator I) {
    341     assert(!isInvalid() && "Loop not in a valid state!");
    342     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    343     LoopT *Child = *I;
    344     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    345     SubLoops.erase(SubLoops.begin() + (I - begin()));
    346     Child->ParentLoop = nullptr;
    347     return Child;
    348   }
    349 
    350   /// This removes the specified child from being a subloop of this loop. The
    351   /// loop is not deleted, as it will presumably be inserted into another loop.
    352   LoopT *removeChildLoop(LoopT *Child) {
    353     return removeChildLoop(llvm::find(*this, Child));
    354   }
    355 
    356   /// This adds a basic block directly to the basic block list.
    357   /// This should only be used by transformations that create new loops.  Other
    358   /// transformations should use addBasicBlockToLoop.
    359   void addBlockEntry(BlockT *BB) {
    360     assert(!isInvalid() && "Loop not in a valid state!");
    361     Blocks.push_back(BB);
    362     DenseBlockSet.insert(BB);
    363   }
    364 
    365   /// interface to reverse Blocks[from, end of loop] in this loop
    366   void reverseBlock(unsigned from) {
    367     assert(!isInvalid() && "Loop not in a valid state!");
    368     std::reverse(Blocks.begin() + from, Blocks.end());
    369   }
    370 
    371   /// interface to do reserve() for Blocks
    372   void reserveBlocks(unsigned size) {
    373     assert(!isInvalid() && "Loop not in a valid state!");
    374     Blocks.reserve(size);
    375   }
    376 
    377   /// This method is used to move BB (which must be part of this loop) to be the
    378   /// loop header of the loop (the block that dominates all others).
    379   void moveToHeader(BlockT *BB) {
    380     assert(!isInvalid() && "Loop not in a valid state!");
    381     if (Blocks[0] == BB)
    382       return;
    383     for (unsigned i = 0;; ++i) {
    384       assert(i != Blocks.size() && "Loop does not contain BB!");
    385       if (Blocks[i] == BB) {
    386         Blocks[i] = Blocks[0];
    387         Blocks[0] = BB;
    388         return;
    389       }
    390     }
    391   }
    392 
    393   /// This removes the specified basic block from the current loop, updating the
    394   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
    395   /// class.
    396   void removeBlockFromLoop(BlockT *BB) {
    397     assert(!isInvalid() && "Loop not in a valid state!");
    398     auto I = find(Blocks, BB);
    399     assert(I != Blocks.end() && "N is not in this list!");
    400     Blocks.erase(I);
    401 
    402     DenseBlockSet.erase(BB);
    403   }
    404 
    405   /// Verify loop structure
    406   void verifyLoop() const;
    407 
    408   /// Verify loop structure of this loop and all nested loops.
    409   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
    410 
    411   /// Print loop with all the BBs inside it.
    412   void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
    413 
    414 protected:
    415   friend class LoopInfoBase<BlockT, LoopT>;
    416 
    417   /// This creates an empty loop.
    418   LoopBase() : ParentLoop(nullptr) {}
    419 
    420   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
    421     Blocks.push_back(BB);
    422     DenseBlockSet.insert(BB);
    423   }
    424 
    425   // Since loop passes like SCEV are allowed to key analysis results off of
    426   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
    427   // This means loop passes should not be `delete` ing `Loop` objects directly
    428   // (and risk a later `Loop` allocation re-using the address of a previous one)
    429   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
    430   // pointer till the end of the lifetime of the `LoopInfo` object.
    431   //
    432   // To make it easier to follow this rule, we mark the destructor as
    433   // non-public.
    434   ~LoopBase() {
    435     for (auto *SubLoop : SubLoops)
    436       SubLoop->~LoopT();
    437 
    438 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
    439     IsInvalid = true;
    440 #endif
    441     SubLoops.clear();
    442     Blocks.clear();
    443     DenseBlockSet.clear();
    444     ParentLoop = nullptr;
    445   }
    446 };
    447 
    448 template <class BlockT, class LoopT>
    449 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    450   Loop.print(OS);
    451   return OS;
    452 }
    453 
    454 // Implementation in LoopInfoImpl.h
    455 extern template class LoopBase<BasicBlock, Loop>;
    456 
    457 /// Represents a single loop in the control flow graph.  Note that not all SCCs
    458 /// in the CFG are necessarily loops.
    459 class Loop : public LoopBase<BasicBlock, Loop> {
    460 public:
    461   /// A range representing the start and end location of a loop.
    462   class LocRange {
    463     DebugLoc Start;
    464     DebugLoc End;
    465 
    466   public:
    467     LocRange() {}
    468     LocRange(DebugLoc Start) : Start(std::move(Start)), End(std::move(Start)) {}
    469     LocRange(DebugLoc Start, DebugLoc End)
    470         : Start(std::move(Start)), End(std::move(End)) {}
    471 
    472     const DebugLoc &getStart() const { return Start; }
    473     const DebugLoc &getEnd() const { return End; }
    474 
    475     /// Check for null.
    476     ///
    477     explicit operator bool() const { return Start && End; }
    478   };
    479 
    480   /// Return true if the specified value is loop invariant.
    481   bool isLoopInvariant(const Value *V) const;
    482 
    483   /// Return true if all the operands of the specified instruction are loop
    484   /// invariant.
    485   bool hasLoopInvariantOperands(const Instruction *I) const;
    486 
    487   /// If the given value is an instruction inside of the loop and it can be
    488   /// hoisted, do so to make it trivially loop-invariant.
    489   /// Return true if the value after any hoisting is loop invariant. This
    490   /// function can be used as a slightly more aggressive replacement for
    491   /// isLoopInvariant.
    492   ///
    493   /// If InsertPt is specified, it is the point to hoist instructions to.
    494   /// If null, the terminator of the loop preheader is used.
    495   bool makeLoopInvariant(Value *V, bool &Changed,
    496                          Instruction *InsertPt = nullptr) const;
    497 
    498   /// If the given instruction is inside of the loop and it can be hoisted, do
    499   /// so to make it trivially loop-invariant.
    500   /// Return true if the instruction after any hoisting is loop invariant. This
    501   /// function can be used as a slightly more aggressive replacement for
    502   /// isLoopInvariant.
    503   ///
    504   /// If InsertPt is specified, it is the point to hoist instructions to.
    505   /// If null, the terminator of the loop preheader is used.
    506   ///
    507   bool makeLoopInvariant(Instruction *I, bool &Changed,
    508                          Instruction *InsertPt = nullptr) const;
    509 
    510   /// Check to see if the loop has a canonical induction variable: an integer
    511   /// recurrence that starts at 0 and increments by one each time through the
    512   /// loop. If so, return the phi node that corresponds to it.
    513   ///
    514   /// The IndVarSimplify pass transforms loops to have a canonical induction
    515   /// variable.
    516   ///
    517   PHINode *getCanonicalInductionVariable() const;
    518 
    519   /// Return true if the Loop is in LCSSA form.
    520   bool isLCSSAForm(DominatorTree &DT) const;
    521 
    522   /// Return true if this Loop and all inner subloops are in LCSSA form.
    523   bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const;
    524 
    525   /// Return true if the Loop is in the form that the LoopSimplify form
    526   /// transforms loops to, which is sometimes called normal form.
    527   bool isLoopSimplifyForm() const;
    528 
    529   /// Return true if the loop body is safe to clone in practice.
    530   bool isSafeToClone() const;
    531 
    532   /// Returns true if the loop is annotated parallel.
    533   ///
    534   /// A parallel loop can be assumed to not contain any dependencies between
    535   /// iterations by the compiler. That is, any loop-carried dependency checking
    536   /// can be skipped completely when parallelizing the loop on the target
    537   /// machine. Thus, if the parallel loop information originates from the
    538   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    539   /// programmer's responsibility to ensure there are no loop-carried
    540   /// dependencies. The final execution order of the instructions across
    541   /// iterations is not guaranteed, thus, the end result might or might not
    542   /// implement actual concurrent execution of instructions across multiple
    543   /// iterations.
    544   bool isAnnotatedParallel() const;
    545 
    546   /// Return the llvm.loop loop id metadata node for this loop if it is present.
    547   ///
    548   /// If this loop contains the same llvm.loop metadata on each branch to the
    549   /// header then the node is returned. If any latch instruction does not
    550   /// contain llvm.loop or if multiple latches contain different nodes then
    551   /// 0 is returned.
    552   MDNode *getLoopID() const;
    553   /// Set the llvm.loop loop id metadata for this loop.
    554   ///
    555   /// The LoopID metadata node will be added to each terminator instruction in
    556   /// the loop that branches to the loop header.
    557   ///
    558   /// The LoopID metadata node should have one or more operands and the first
    559   /// operand should be the node itself.
    560   void setLoopID(MDNode *LoopID) const;
    561 
    562   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
    563   ///
    564   /// Remove existing unroll metadata and add unroll disable metadata to
    565   /// indicate the loop has already been unrolled.  This prevents a loop
    566   /// from being unrolled more than is directed by a pragma if the loop
    567   /// unrolling pass is run more than once (which it generally is).
    568   void setLoopAlreadyUnrolled();
    569 
    570   void dump() const;
    571   void dumpVerbose() const;
    572 
    573   /// Return the debug location of the start of this loop.
    574   /// This looks for a BB terminating instruction with a known debug
    575   /// location by looking at the preheader and header blocks. If it
    576   /// cannot find a terminating instruction with location information,
    577   /// it returns an unknown location.
    578   DebugLoc getStartLoc() const;
    579 
    580   /// Return the source code span of the loop.
    581   LocRange getLocRange() const;
    582 
    583   StringRef getName() const {
    584     if (BasicBlock *Header = getHeader())
    585       if (Header->hasName())
    586         return Header->getName();
    587     return "<unnamed loop>";
    588   }
    589 
    590 private:
    591   Loop() = default;
    592 
    593   friend class LoopInfoBase<BasicBlock, Loop>;
    594   friend class LoopBase<BasicBlock, Loop>;
    595   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    596   ~Loop() = default;
    597 };
    598 
    599 //===----------------------------------------------------------------------===//
    600 /// This class builds and contains all of the top-level loop
    601 /// structures in the specified function.
    602 ///
    603 
    604 template <class BlockT, class LoopT> class LoopInfoBase {
    605   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    606   DenseMap<const BlockT *, LoopT *> BBMap;
    607   std::vector<LoopT *> TopLevelLoops;
    608   BumpPtrAllocator LoopAllocator;
    609 
    610   friend class LoopBase<BlockT, LoopT>;
    611   friend class LoopInfo;
    612 
    613   void operator=(const LoopInfoBase &) = delete;
    614   LoopInfoBase(const LoopInfoBase &) = delete;
    615 
    616 public:
    617   LoopInfoBase() {}
    618   ~LoopInfoBase() { releaseMemory(); }
    619 
    620   LoopInfoBase(LoopInfoBase &&Arg)
    621       : BBMap(std::move(Arg.BBMap)),
    622         TopLevelLoops(std::move(Arg.TopLevelLoops)),
    623         LoopAllocator(std::move(Arg.LoopAllocator)) {
    624     // We have to clear the arguments top level loops as we've taken ownership.
    625     Arg.TopLevelLoops.clear();
    626   }
    627   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
    628     BBMap = std::move(RHS.BBMap);
    629 
    630     for (auto *L : TopLevelLoops)
    631       L->~LoopT();
    632 
    633     TopLevelLoops = std::move(RHS.TopLevelLoops);
    634     LoopAllocator = std::move(RHS.LoopAllocator);
    635     RHS.TopLevelLoops.clear();
    636     return *this;
    637   }
    638 
    639   void releaseMemory() {
    640     BBMap.clear();
    641 
    642     for (auto *L : TopLevelLoops)
    643       L->~LoopT();
    644     TopLevelLoops.clear();
    645     LoopAllocator.Reset();
    646   }
    647 
    648   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
    649     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
    650     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
    651   }
    652 
    653   /// iterator/begin/end - The interface to the top-level loops in the current
    654   /// function.
    655   ///
    656   typedef typename std::vector<LoopT *>::const_iterator iterator;
    657   typedef
    658       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
    659   iterator begin() const { return TopLevelLoops.begin(); }
    660   iterator end() const { return TopLevelLoops.end(); }
    661   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    662   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    663   bool empty() const { return TopLevelLoops.empty(); }
    664 
    665   /// Return all of the loops in the function in preorder across the loop
    666   /// nests, with siblings in forward program order.
    667   ///
    668   /// Note that because loops form a forest of trees, preorder is equivalent to
    669   /// reverse postorder.
    670   SmallVector<LoopT *, 4> getLoopsInPreorder();
    671 
    672   /// Return all of the loops in the function in preorder across the loop
    673   /// nests, with siblings in *reverse* program order.
    674   ///
    675   /// Note that because loops form a forest of trees, preorder is equivalent to
    676   /// reverse postorder.
    677   ///
    678   /// Also note that this is *not* a reverse preorder. Only the siblings are in
    679   /// reverse program order.
    680   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
    681 
    682   /// Return the inner most loop that BB lives in. If a basic block is in no
    683   /// loop (for example the entry node), null is returned.
    684   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
    685 
    686   /// Same as getLoopFor.
    687   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
    688 
    689   /// Return the loop nesting level of the specified block. A depth of 0 means
    690   /// the block is not inside any loop.
    691   unsigned getLoopDepth(const BlockT *BB) const {
    692     const LoopT *L = getLoopFor(BB);
    693     return L ? L->getLoopDepth() : 0;
    694   }
    695 
    696   // True if the block is a loop header node
    697   bool isLoopHeader(const BlockT *BB) const {
    698     const LoopT *L = getLoopFor(BB);
    699     return L && L->getHeader() == BB;
    700   }
    701 
    702   /// This removes the specified top-level loop from this loop info object.
    703   /// The loop is not deleted, as it will presumably be inserted into
    704   /// another loop.
    705   LoopT *removeLoop(iterator I) {
    706     assert(I != end() && "Cannot remove end iterator!");
    707     LoopT *L = *I;
    708     assert(!L->getParentLoop() && "Not a top-level loop!");
    709     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
    710     return L;
    711   }
    712 
    713   /// Change the top-level loop that contains BB to the specified loop.
    714   /// This should be used by transformations that restructure the loop hierarchy
    715   /// tree.
    716   void changeLoopFor(BlockT *BB, LoopT *L) {
    717     if (!L) {
    718       BBMap.erase(BB);
    719       return;
    720     }
    721     BBMap[BB] = L;
    722   }
    723 
    724   /// Replace the specified loop in the top-level loops list with the indicated
    725   /// loop.
    726   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
    727     auto I = find(TopLevelLoops, OldLoop);
    728     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    729     *I = NewLoop;
    730     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
    731            "Loops already embedded into a subloop!");
    732   }
    733 
    734   /// This adds the specified loop to the collection of top-level loops.
    735   void addTopLevelLoop(LoopT *New) {
    736     assert(!New->getParentLoop() && "Loop already in subloop!");
    737     TopLevelLoops.push_back(New);
    738   }
    739 
    740   /// This method completely removes BB from all data structures,
    741   /// including all of the Loop objects it is nested in and our mapping from
    742   /// BasicBlocks to loops.
    743   void removeBlock(BlockT *BB) {
    744     auto I = BBMap.find(BB);
    745     if (I != BBMap.end()) {
    746       for (LoopT *L = I->second; L; L = L->getParentLoop())
    747         L->removeBlockFromLoop(BB);
    748 
    749       BBMap.erase(I);
    750     }
    751   }
    752 
    753   // Internals
    754 
    755   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    756                                       const LoopT *ParentLoop) {
    757     if (!SubLoop)
    758       return true;
    759     if (SubLoop == ParentLoop)
    760       return false;
    761     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    762   }
    763 
    764   /// Create the loop forest using a stable algorithm.
    765   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
    766 
    767   // Debugging
    768   void print(raw_ostream &OS) const;
    769 
    770   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
    771 
    772   /// Destroy a loop that has been removed from the `LoopInfo` nest.
    773   ///
    774   /// This runs the destructor of the loop object making it invalid to
    775   /// reference afterward. The memory is retained so that the *pointer* to the
    776   /// loop remains valid.
    777   ///
    778   /// The caller is responsible for removing this loop from the loop nest and
    779   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
    780   /// Callers that don't naturally handle this themselves should probably call
    781   /// `erase' instead.
    782   void destroy(LoopT *L) {
    783     L->~LoopT();
    784 
    785     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
    786     // \c L, but the pointer remains valid for non-dereferencing uses.
    787     LoopAllocator.Deallocate(L);
    788   }
    789 };
    790 
    791 // Implementation in LoopInfoImpl.h
    792 extern template class LoopInfoBase<BasicBlock, Loop>;
    793 
    794 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
    795   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
    796 
    797   friend class LoopBase<BasicBlock, Loop>;
    798 
    799   void operator=(const LoopInfo &) = delete;
    800   LoopInfo(const LoopInfo &) = delete;
    801 
    802 public:
    803   LoopInfo() {}
    804   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
    805 
    806   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
    807   LoopInfo &operator=(LoopInfo &&RHS) {
    808     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
    809     return *this;
    810   }
    811 
    812   /// Handle invalidation explicitly.
    813   bool invalidate(Function &F, const PreservedAnalyses &PA,
    814                   FunctionAnalysisManager::Invalidator &);
    815 
    816   // Most of the public interface is provided via LoopInfoBase.
    817 
    818   /// Update LoopInfo after removing the last backedge from a loop. This updates
    819   /// the loop forest and parent loops for each block so that \c L is no longer
    820   /// referenced, but does not actually delete \c L immediately. The pointer
    821   /// will remain valid until this LoopInfo's memory is released.
    822   void erase(Loop *L);
    823 
    824   /// Returns true if replacing From with To everywhere is guaranteed to
    825   /// preserve LCSSA form.
    826   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    827     // Preserving LCSSA form is only problematic if the replacing value is an
    828     // instruction.
    829     Instruction *I = dyn_cast<Instruction>(To);
    830     if (!I)
    831       return true;
    832     // If both instructions are defined in the same basic block then replacement
    833     // cannot break LCSSA form.
    834     if (I->getParent() == From->getParent())
    835       return true;
    836     // If the instruction is not defined in a loop then it can safely replace
    837     // anything.
    838     Loop *ToLoop = getLoopFor(I->getParent());
    839     if (!ToLoop)
    840       return true;
    841     // If the replacing instruction is defined in the same loop as the original
    842     // instruction, or in a loop that contains it as an inner loop, then using
    843     // it as a replacement will not break LCSSA form.
    844     return ToLoop->contains(getLoopFor(From->getParent()));
    845   }
    846 
    847   /// Checks if moving a specific instruction can break LCSSA in any loop.
    848   ///
    849   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
    850   /// assuming that the function containing \p Inst and \p NewLoc is currently
    851   /// in LCSSA form.
    852   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
    853     assert(Inst->getFunction() == NewLoc->getFunction() &&
    854            "Can't reason about IPO!");
    855 
    856     auto *OldBB = Inst->getParent();
    857     auto *NewBB = NewLoc->getParent();
    858 
    859     // Movement within the same loop does not break LCSSA (the equality check is
    860     // to avoid doing a hashtable lookup in case of intra-block movement).
    861     if (OldBB == NewBB)
    862       return true;
    863 
    864     auto *OldLoop = getLoopFor(OldBB);
    865     auto *NewLoop = getLoopFor(NewBB);
    866 
    867     if (OldLoop == NewLoop)
    868       return true;
    869 
    870     // Check if Outer contains Inner; with the null loop counting as the
    871     // "outermost" loop.
    872     auto Contains = [](const Loop *Outer, const Loop *Inner) {
    873       return !Outer || Outer->contains(Inner);
    874     };
    875 
    876     // To check that the movement of Inst to before NewLoc does not break LCSSA,
    877     // we need to check two sets of uses for possible LCSSA violations at
    878     // NewLoc: the users of NewInst, and the operands of NewInst.
    879 
    880     // If we know we're hoisting Inst out of an inner loop to an outer loop,
    881     // then the uses *of* Inst don't need to be checked.
    882 
    883     if (!Contains(NewLoop, OldLoop)) {
    884       for (Use &U : Inst->uses()) {
    885         auto *UI = cast<Instruction>(U.getUser());
    886         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
    887                                      : UI->getParent();
    888         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
    889           return false;
    890       }
    891     }
    892 
    893     // If we know we're sinking Inst from an outer loop into an inner loop, then
    894     // the *operands* of Inst don't need to be checked.
    895 
    896     if (!Contains(OldLoop, NewLoop)) {
    897       // See below on why we can't handle phi nodes here.
    898       if (isa<PHINode>(Inst))
    899         return false;
    900 
    901       for (Use &U : Inst->operands()) {
    902         auto *DefI = dyn_cast<Instruction>(U.get());
    903         if (!DefI)
    904           return false;
    905 
    906         // This would need adjustment if we allow Inst to be a phi node -- the
    907         // new use block won't simply be NewBB.
    908 
    909         auto *DefBlock = DefI->getParent();
    910         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
    911           return false;
    912       }
    913     }
    914 
    915     return true;
    916   }
    917 };
    918 
    919 // Allow clients to walk the list of nested loops...
    920 template <> struct GraphTraits<const Loop *> {
    921   typedef const Loop *NodeRef;
    922   typedef LoopInfo::iterator ChildIteratorType;
    923 
    924   static NodeRef getEntryNode(const Loop *L) { return L; }
    925   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
    926   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
    927 };
    928 
    929 template <> struct GraphTraits<Loop *> {
    930   typedef Loop *NodeRef;
    931   typedef LoopInfo::iterator ChildIteratorType;
    932 
    933   static NodeRef getEntryNode(Loop *L) { return L; }
    934   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
    935   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
    936 };
    937 
    938 /// Analysis pass that exposes the \c LoopInfo for a function.
    939 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
    940   friend AnalysisInfoMixin<LoopAnalysis>;
    941   static AnalysisKey Key;
    942 
    943 public:
    944   typedef LoopInfo Result;
    945 
    946   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
    947 };
    948 
    949 /// Printer pass for the \c LoopAnalysis results.
    950 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
    951   raw_ostream &OS;
    952 
    953 public:
    954   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
    955   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    956 };
    957 
    958 /// Verifier pass for the \c LoopAnalysis results.
    959 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
    960   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    961 };
    962 
    963 /// The legacy pass manager's analysis pass to compute loop information.
    964 class LoopInfoWrapperPass : public FunctionPass {
    965   LoopInfo LI;
    966 
    967 public:
    968   static char ID; // Pass identification, replacement for typeid
    969 
    970   LoopInfoWrapperPass() : FunctionPass(ID) {
    971     initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
    972   }
    973 
    974   LoopInfo &getLoopInfo() { return LI; }
    975   const LoopInfo &getLoopInfo() const { return LI; }
    976 
    977   /// Calculate the natural loop information for a given function.
    978   bool runOnFunction(Function &F) override;
    979 
    980   void verifyAnalysis() const override;
    981 
    982   void releaseMemory() override { LI.releaseMemory(); }
    983 
    984   void print(raw_ostream &O, const Module *M = nullptr) const override;
    985 
    986   void getAnalysisUsage(AnalysisUsage &AU) const override;
    987 };
    988 
    989 /// Function to print a loop's contents as LLVM's text IR assembly.
    990 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
    991 
    992 } // End llvm namespace
    993 
    994 #endif
    995