Home | History | Annotate | Download | only in Utils
      1 #include "llvm/Transforms/Utils/VNCoercion.h"
      2 #include "llvm/Analysis/AliasAnalysis.h"
      3 #include "llvm/Analysis/ConstantFolding.h"
      4 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
      5 #include "llvm/Analysis/ValueTracking.h"
      6 #include "llvm/IR/IRBuilder.h"
      7 #include "llvm/IR/IntrinsicInst.h"
      8 #include "llvm/Support/Debug.h"
      9 
     10 #define DEBUG_TYPE "vncoerce"
     11 namespace llvm {
     12 namespace VNCoercion {
     13 
     14 /// Return true if coerceAvailableValueToLoadType will succeed.
     15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
     16                                      const DataLayout &DL) {
     17   // If the loaded or stored value is an first class array or struct, don't try
     18   // to transform them.  We need to be able to bitcast to integer.
     19   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
     20       StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy())
     21     return false;
     22 
     23   uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType());
     24 
     25   // The store size must be byte-aligned to support future type casts.
     26   if (llvm::alignTo(StoreSize, 8) != StoreSize)
     27     return false;
     28 
     29   // The store has to be at least as big as the load.
     30   if (StoreSize < DL.getTypeSizeInBits(LoadTy))
     31     return false;
     32 
     33   // Don't coerce non-integral pointers to integers or vice versa.
     34   if (DL.isNonIntegralPointerType(StoredVal->getType()) !=
     35       DL.isNonIntegralPointerType(LoadTy))
     36     return false;
     37 
     38   return true;
     39 }
     40 
     41 template <class T, class HelperClass>
     42 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
     43                                                HelperClass &Helper,
     44                                                const DataLayout &DL) {
     45   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
     46          "precondition violation - materialization can't fail");
     47   if (auto *C = dyn_cast<Constant>(StoredVal))
     48     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
     49       StoredVal = FoldedStoredVal;
     50 
     51   // If this is already the right type, just return it.
     52   Type *StoredValTy = StoredVal->getType();
     53 
     54   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
     55   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
     56 
     57   // If the store and reload are the same size, we can always reuse it.
     58   if (StoredValSize == LoadedValSize) {
     59     // Pointer to Pointer -> use bitcast.
     60     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
     61       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
     62     } else {
     63       // Convert source pointers to integers, which can be bitcast.
     64       if (StoredValTy->isPtrOrPtrVectorTy()) {
     65         StoredValTy = DL.getIntPtrType(StoredValTy);
     66         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
     67       }
     68 
     69       Type *TypeToCastTo = LoadedTy;
     70       if (TypeToCastTo->isPtrOrPtrVectorTy())
     71         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
     72 
     73       if (StoredValTy != TypeToCastTo)
     74         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
     75 
     76       // Cast to pointer if the load needs a pointer type.
     77       if (LoadedTy->isPtrOrPtrVectorTy())
     78         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
     79     }
     80 
     81     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
     82       if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
     83         StoredVal = FoldedStoredVal;
     84 
     85     return StoredVal;
     86   }
     87   // If the loaded value is smaller than the available value, then we can
     88   // extract out a piece from it.  If the available value is too small, then we
     89   // can't do anything.
     90   assert(StoredValSize >= LoadedValSize &&
     91          "canCoerceMustAliasedValueToLoad fail");
     92 
     93   // Convert source pointers to integers, which can be manipulated.
     94   if (StoredValTy->isPtrOrPtrVectorTy()) {
     95     StoredValTy = DL.getIntPtrType(StoredValTy);
     96     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
     97   }
     98 
     99   // Convert vectors and fp to integer, which can be manipulated.
    100   if (!StoredValTy->isIntegerTy()) {
    101     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
    102     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
    103   }
    104 
    105   // If this is a big-endian system, we need to shift the value down to the low
    106   // bits so that a truncate will work.
    107   if (DL.isBigEndian()) {
    108     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
    109                         DL.getTypeStoreSizeInBits(LoadedTy);
    110     StoredVal = Helper.CreateLShr(
    111         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
    112   }
    113 
    114   // Truncate the integer to the right size now.
    115   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
    116   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
    117 
    118   if (LoadedTy != NewIntTy) {
    119     // If the result is a pointer, inttoptr.
    120     if (LoadedTy->isPtrOrPtrVectorTy())
    121       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
    122     else
    123       // Otherwise, bitcast.
    124       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
    125   }
    126 
    127   if (auto *C = dyn_cast<Constant>(StoredVal))
    128     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
    129       StoredVal = FoldedStoredVal;
    130 
    131   return StoredVal;
    132 }
    133 
    134 /// If we saw a store of a value to memory, and
    135 /// then a load from a must-aliased pointer of a different type, try to coerce
    136 /// the stored value.  LoadedTy is the type of the load we want to replace.
    137 /// IRB is IRBuilder used to insert new instructions.
    138 ///
    139 /// If we can't do it, return null.
    140 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
    141                                       IRBuilder<> &IRB, const DataLayout &DL) {
    142   return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
    143 }
    144 
    145 /// This function is called when we have a memdep query of a load that ends up
    146 /// being a clobbering memory write (store, memset, memcpy, memmove).  This
    147 /// means that the write *may* provide bits used by the load but we can't be
    148 /// sure because the pointers don't must-alias.
    149 ///
    150 /// Check this case to see if there is anything more we can do before we give
    151 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    152 /// value of the piece that feeds the load.
    153 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    154                                           Value *WritePtr,
    155                                           uint64_t WriteSizeInBits,
    156                                           const DataLayout &DL) {
    157   // If the loaded or stored value is a first class array or struct, don't try
    158   // to transform them.  We need to be able to bitcast to integer.
    159   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    160     return -1;
    161 
    162   int64_t StoreOffset = 0, LoadOffset = 0;
    163   Value *StoreBase =
    164       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
    165   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
    166   if (StoreBase != LoadBase)
    167     return -1;
    168 
    169   // If the load and store are to the exact same address, they should have been
    170   // a must alias.  AA must have gotten confused.
    171   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    172   // to a load from the base of the memset.
    173 
    174   // If the load and store don't overlap at all, the store doesn't provide
    175   // anything to the load.  In this case, they really don't alias at all, AA
    176   // must have gotten confused.
    177   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
    178 
    179   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    180     return -1;
    181   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
    182   LoadSize /= 8;
    183 
    184   bool isAAFailure = false;
    185   if (StoreOffset < LoadOffset)
    186     isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
    187   else
    188     isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
    189 
    190   if (isAAFailure)
    191     return -1;
    192 
    193   // If the Load isn't completely contained within the stored bits, we don't
    194   // have all the bits to feed it.  We could do something crazy in the future
    195   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    196   // valuable.
    197   if (StoreOffset > LoadOffset ||
    198       StoreOffset + StoreSize < LoadOffset + LoadSize)
    199     return -1;
    200 
    201   // Okay, we can do this transformation.  Return the number of bytes into the
    202   // store that the load is.
    203   return LoadOffset - StoreOffset;
    204 }
    205 
    206 /// This function is called when we have a
    207 /// memdep query of a load that ends up being a clobbering store.
    208 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    209                                    StoreInst *DepSI, const DataLayout &DL) {
    210   // Cannot handle reading from store of first-class aggregate yet.
    211   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    212       DepSI->getValueOperand()->getType()->isArrayTy())
    213     return -1;
    214 
    215   Value *StorePtr = DepSI->getPointerOperand();
    216   uint64_t StoreSize =
    217       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    218   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
    219                                         DL);
    220 }
    221 
    222 /// This function is called when we have a
    223 /// memdep query of a load that ends up being clobbered by another load.  See if
    224 /// the other load can feed into the second load.
    225 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
    226                                   const DataLayout &DL) {
    227   // Cannot handle reading from store of first-class aggregate yet.
    228   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    229     return -1;
    230 
    231   Value *DepPtr = DepLI->getPointerOperand();
    232   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
    233   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
    234   if (R != -1)
    235     return R;
    236 
    237   // If we have a load/load clobber an DepLI can be widened to cover this load,
    238   // then we should widen it!
    239   int64_t LoadOffs = 0;
    240   const Value *LoadBase =
    241       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
    242   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
    243 
    244   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
    245       LoadBase, LoadOffs, LoadSize, DepLI);
    246   if (Size == 0)
    247     return -1;
    248 
    249   // Check non-obvious conditions enforced by MDA which we rely on for being
    250   // able to materialize this potentially available value
    251   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
    252   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
    253 
    254   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
    255 }
    256 
    257 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    258                                      MemIntrinsic *MI, const DataLayout &DL) {
    259   // If the mem operation is a non-constant size, we can't handle it.
    260   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    261   if (!SizeCst)
    262     return -1;
    263   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
    264 
    265   // If this is memset, we just need to see if the offset is valid in the size
    266   // of the memset..
    267   if (MI->getIntrinsicID() == Intrinsic::memset)
    268     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    269                                           MemSizeInBits, DL);
    270 
    271   // If we have a memcpy/memmove, the only case we can handle is if this is a
    272   // copy from constant memory.  In that case, we can read directly from the
    273   // constant memory.
    274   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    275 
    276   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    277   if (!Src)
    278     return -1;
    279 
    280   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
    281   if (!GV || !GV->isConstant())
    282     return -1;
    283 
    284   // See if the access is within the bounds of the transfer.
    285   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    286                                               MemSizeInBits, DL);
    287   if (Offset == -1)
    288     return Offset;
    289 
    290   unsigned AS = Src->getType()->getPointerAddressSpace();
    291   // Otherwise, see if we can constant fold a load from the constant with the
    292   // offset applied as appropriate.
    293   Src =
    294       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
    295   Constant *OffsetCst =
    296       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    297   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
    298                                        OffsetCst);
    299   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
    300   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
    301     return Offset;
    302   return -1;
    303 }
    304 
    305 template <class T, class HelperClass>
    306 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
    307                                      HelperClass &Helper,
    308                                      const DataLayout &DL) {
    309   LLVMContext &Ctx = SrcVal->getType()->getContext();
    310 
    311   // If two pointers are in the same address space, they have the same size,
    312   // so we don't need to do any truncation, etc. This avoids introducing
    313   // ptrtoint instructions for pointers that may be non-integral.
    314   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
    315       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
    316           cast<PointerType>(LoadTy)->getAddressSpace()) {
    317     return SrcVal;
    318   }
    319 
    320   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
    321   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
    322   // Compute which bits of the stored value are being used by the load.  Convert
    323   // to an integer type to start with.
    324   if (SrcVal->getType()->isPtrOrPtrVectorTy())
    325     SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
    326   if (!SrcVal->getType()->isIntegerTy())
    327     SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
    328 
    329   // Shift the bits to the least significant depending on endianness.
    330   unsigned ShiftAmt;
    331   if (DL.isLittleEndian())
    332     ShiftAmt = Offset * 8;
    333   else
    334     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
    335   if (ShiftAmt)
    336     SrcVal = Helper.CreateLShr(SrcVal,
    337                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
    338 
    339   if (LoadSize != StoreSize)
    340     SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
    341                                          IntegerType::get(Ctx, LoadSize * 8));
    342   return SrcVal;
    343 }
    344 
    345 /// This function is called when we have a memdep query of a load that ends up
    346 /// being a clobbering store.  This means that the store provides bits used by
    347 /// the load but the pointers don't must-alias.  Check this case to see if
    348 /// there is anything more we can do before we give up.
    349 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
    350                             Instruction *InsertPt, const DataLayout &DL) {
    351 
    352   IRBuilder<> Builder(InsertPt);
    353   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
    354   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
    355 }
    356 
    357 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
    358                                        Type *LoadTy, const DataLayout &DL) {
    359   ConstantFolder F;
    360   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
    361   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
    362 }
    363 
    364 /// This function is called when we have a memdep query of a load that ends up
    365 /// being a clobbering load.  This means that the load *may* provide bits used
    366 /// by the load but we can't be sure because the pointers don't must-alias.
    367 /// Check this case to see if there is anything more we can do before we give
    368 /// up.
    369 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
    370                            Instruction *InsertPt, const DataLayout &DL) {
    371   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
    372   // widen SrcVal out to a larger load.
    373   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
    374   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
    375   if (Offset + LoadSize > SrcValStoreSize) {
    376     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
    377     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
    378     // If we have a load/load clobber an DepLI can be widened to cover this
    379     // load, then we should widen it to the next power of 2 size big enough!
    380     unsigned NewLoadSize = Offset + LoadSize;
    381     if (!isPowerOf2_32(NewLoadSize))
    382       NewLoadSize = NextPowerOf2(NewLoadSize);
    383 
    384     Value *PtrVal = SrcVal->getPointerOperand();
    385     // Insert the new load after the old load.  This ensures that subsequent
    386     // memdep queries will find the new load.  We can't easily remove the old
    387     // load completely because it is already in the value numbering table.
    388     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
    389     Type *DestPTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
    390     DestPTy =
    391         PointerType::get(DestPTy, PtrVal->getType()->getPointerAddressSpace());
    392     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
    393     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
    394     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
    395     NewLoad->takeName(SrcVal);
    396     NewLoad->setAlignment(SrcVal->getAlignment());
    397 
    398     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
    399     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
    400 
    401     // Replace uses of the original load with the wider load.  On a big endian
    402     // system, we need to shift down to get the relevant bits.
    403     Value *RV = NewLoad;
    404     if (DL.isBigEndian())
    405       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
    406     RV = Builder.CreateTrunc(RV, SrcVal->getType());
    407     SrcVal->replaceAllUsesWith(RV);
    408 
    409     SrcVal = NewLoad;
    410   }
    411 
    412   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
    413 }
    414 
    415 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
    416                                       Type *LoadTy, const DataLayout &DL) {
    417   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
    418   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
    419   if (Offset + LoadSize > SrcValStoreSize)
    420     return nullptr;
    421   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
    422 }
    423 
    424 template <class T, class HelperClass>
    425 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
    426                                 Type *LoadTy, HelperClass &Helper,
    427                                 const DataLayout &DL) {
    428   LLVMContext &Ctx = LoadTy->getContext();
    429   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
    430 
    431   // We know that this method is only called when the mem transfer fully
    432   // provides the bits for the load.
    433   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
    434     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
    435     // independently of what the offset is.
    436     T *Val = cast<T>(MSI->getValue());
    437     if (LoadSize != 1)
    438       Val =
    439           Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
    440     T *OneElt = Val;
    441 
    442     // Splat the value out to the right number of bits.
    443     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
    444       // If we can double the number of bytes set, do it.
    445       if (NumBytesSet * 2 <= LoadSize) {
    446         T *ShVal = Helper.CreateShl(
    447             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
    448         Val = Helper.CreateOr(Val, ShVal);
    449         NumBytesSet <<= 1;
    450         continue;
    451       }
    452 
    453       // Otherwise insert one byte at a time.
    454       T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
    455       Val = Helper.CreateOr(OneElt, ShVal);
    456       ++NumBytesSet;
    457     }
    458 
    459     return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
    460   }
    461 
    462   // Otherwise, this is a memcpy/memmove from a constant global.
    463   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
    464   Constant *Src = cast<Constant>(MTI->getSource());
    465   unsigned AS = Src->getType()->getPointerAddressSpace();
    466 
    467   // Otherwise, see if we can constant fold a load from the constant with the
    468   // offset applied as appropriate.
    469   Src =
    470       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
    471   Constant *OffsetCst =
    472       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    473   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
    474                                        OffsetCst);
    475   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
    476   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
    477 }
    478 
    479 /// This function is called when we have a
    480 /// memdep query of a load that ends up being a clobbering mem intrinsic.
    481 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
    482                               Type *LoadTy, Instruction *InsertPt,
    483                               const DataLayout &DL) {
    484   IRBuilder<> Builder(InsertPt);
    485   return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
    486                                                           LoadTy, Builder, DL);
    487 }
    488 
    489 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
    490                                          Type *LoadTy, const DataLayout &DL) {
    491   // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
    492   // constant is when it's a memset of a non-constant.
    493   if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
    494     if (!isa<Constant>(MSI->getValue()))
    495       return nullptr;
    496   ConstantFolder F;
    497   return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
    498                                                                 LoadTy, F, DL);
    499 }
    500 } // namespace VNCoercion
    501 } // namespace llvm
    502