Home | History | Annotate | Download | only in IR
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Constants.h"
     15 #include "ConstantFold.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/StringMap.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/GetElementPtrTypeIterator.h"
     22 #include "llvm/IR/GlobalValue.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/IR/Operator.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/ManagedStatic.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <algorithm>
     32 
     33 using namespace llvm;
     34 
     35 //===----------------------------------------------------------------------===//
     36 //                              Constant Class
     37 //===----------------------------------------------------------------------===//
     38 
     39 bool Constant::isNegativeZeroValue() const {
     40   // Floating point values have an explicit -0.0 value.
     41   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     42     return CFP->isZero() && CFP->isNegative();
     43 
     44   // Equivalent for a vector of -0.0's.
     45   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     46     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
     47       if (CV->getElementAsAPFloat(0).isNegZero())
     48         return true;
     49 
     50   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     51     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     52       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     53         return true;
     54 
     55   // We've already handled true FP case; any other FP vectors can't represent -0.0.
     56   if (getType()->isFPOrFPVectorTy())
     57     return false;
     58 
     59   // Otherwise, just use +0.0.
     60   return isNullValue();
     61 }
     62 
     63 // Return true iff this constant is positive zero (floating point), negative
     64 // zero (floating point), or a null value.
     65 bool Constant::isZeroValue() const {
     66   // Floating point values have an explicit -0.0 value.
     67   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     68     return CFP->isZero();
     69 
     70   // Equivalent for a vector of -0.0's.
     71   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     72     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
     73       if (CV->getElementAsAPFloat(0).isZero())
     74         return true;
     75 
     76   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     77     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     78       if (SplatCFP && SplatCFP->isZero())
     79         return true;
     80 
     81   // Otherwise, just use +0.0.
     82   return isNullValue();
     83 }
     84 
     85 bool Constant::isNullValue() const {
     86   // 0 is null.
     87   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     88     return CI->isZero();
     89 
     90   // +0.0 is null.
     91   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     92     return CFP->isZero() && !CFP->isNegative();
     93 
     94   // constant zero is zero for aggregates, cpnull is null for pointers, none for
     95   // tokens.
     96   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
     97          isa<ConstantTokenNone>(this);
     98 }
     99 
    100 bool Constant::isAllOnesValue() const {
    101   // Check for -1 integers
    102   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    103     return CI->isMinusOne();
    104 
    105   // Check for FP which are bitcasted from -1 integers
    106   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    107     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
    108 
    109   // Check for constant vectors which are splats of -1 values.
    110   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    111     if (Constant *Splat = CV->getSplatValue())
    112       return Splat->isAllOnesValue();
    113 
    114   // Check for constant vectors which are splats of -1 values.
    115   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
    116     if (CV->isSplat()) {
    117       if (CV->getElementType()->isFloatingPointTy())
    118         return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
    119       return CV->getElementAsAPInt(0).isAllOnesValue();
    120     }
    121   }
    122 
    123   return false;
    124 }
    125 
    126 bool Constant::isOneValue() const {
    127   // Check for 1 integers
    128   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    129     return CI->isOne();
    130 
    131   // Check for FP which are bitcasted from 1 integers
    132   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    133     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
    134 
    135   // Check for constant vectors which are splats of 1 values.
    136   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    137     if (Constant *Splat = CV->getSplatValue())
    138       return Splat->isOneValue();
    139 
    140   // Check for constant vectors which are splats of 1 values.
    141   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
    142     if (CV->isSplat()) {
    143       if (CV->getElementType()->isFloatingPointTy())
    144         return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
    145       return CV->getElementAsAPInt(0).isOneValue();
    146     }
    147   }
    148 
    149   return false;
    150 }
    151 
    152 bool Constant::isMinSignedValue() const {
    153   // Check for INT_MIN integers
    154   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    155     return CI->isMinValue(/*isSigned=*/true);
    156 
    157   // Check for FP which are bitcasted from INT_MIN integers
    158   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    159     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    160 
    161   // Check for constant vectors which are splats of INT_MIN values.
    162   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    163     if (Constant *Splat = CV->getSplatValue())
    164       return Splat->isMinSignedValue();
    165 
    166   // Check for constant vectors which are splats of INT_MIN values.
    167   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
    168     if (CV->isSplat()) {
    169       if (CV->getElementType()->isFloatingPointTy())
    170         return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
    171       return CV->getElementAsAPInt(0).isMinSignedValue();
    172     }
    173   }
    174 
    175   return false;
    176 }
    177 
    178 bool Constant::isNotMinSignedValue() const {
    179   // Check for INT_MIN integers
    180   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    181     return !CI->isMinValue(/*isSigned=*/true);
    182 
    183   // Check for FP which are bitcasted from INT_MIN integers
    184   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    185     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    186 
    187   // Check for constant vectors which are splats of INT_MIN values.
    188   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    189     if (Constant *Splat = CV->getSplatValue())
    190       return Splat->isNotMinSignedValue();
    191 
    192   // Check for constant vectors which are splats of INT_MIN values.
    193   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
    194     if (CV->isSplat()) {
    195       if (CV->getElementType()->isFloatingPointTy())
    196         return !CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
    197       return !CV->getElementAsAPInt(0).isMinSignedValue();
    198     }
    199   }
    200 
    201   // It *may* contain INT_MIN, we can't tell.
    202   return false;
    203 }
    204 
    205 bool Constant::isFiniteNonZeroFP() const {
    206   if (auto *CFP = dyn_cast<ConstantFP>(this))
    207     return CFP->getValueAPF().isFiniteNonZero();
    208   if (!getType()->isVectorTy())
    209     return false;
    210   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
    211     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
    212     if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
    213       return false;
    214   }
    215   return true;
    216 }
    217 
    218 bool Constant::isNormalFP() const {
    219   if (auto *CFP = dyn_cast<ConstantFP>(this))
    220     return CFP->getValueAPF().isNormal();
    221   if (!getType()->isVectorTy())
    222     return false;
    223   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
    224     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
    225     if (!CFP || !CFP->getValueAPF().isNormal())
    226       return false;
    227   }
    228   return true;
    229 }
    230 
    231 bool Constant::hasExactInverseFP() const {
    232   if (auto *CFP = dyn_cast<ConstantFP>(this))
    233     return CFP->getValueAPF().getExactInverse(nullptr);
    234   if (!getType()->isVectorTy())
    235     return false;
    236   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
    237     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
    238     if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
    239       return false;
    240   }
    241   return true;
    242 }
    243 
    244 bool Constant::isNaN() const {
    245   if (auto *CFP = dyn_cast<ConstantFP>(this))
    246     return CFP->isNaN();
    247   if (!getType()->isVectorTy())
    248     return false;
    249   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
    250     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
    251     if (!CFP || !CFP->isNaN())
    252       return false;
    253   }
    254   return true;
    255 }
    256 
    257 bool Constant::containsUndefElement() const {
    258   if (!getType()->isVectorTy())
    259     return false;
    260   for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
    261     if (isa<UndefValue>(getAggregateElement(i)))
    262       return true;
    263 
    264   return false;
    265 }
    266 
    267 /// Constructor to create a '0' constant of arbitrary type.
    268 Constant *Constant::getNullValue(Type *Ty) {
    269   switch (Ty->getTypeID()) {
    270   case Type::IntegerTyID:
    271     return ConstantInt::get(Ty, 0);
    272   case Type::HalfTyID:
    273     return ConstantFP::get(Ty->getContext(),
    274                            APFloat::getZero(APFloat::IEEEhalf()));
    275   case Type::FloatTyID:
    276     return ConstantFP::get(Ty->getContext(),
    277                            APFloat::getZero(APFloat::IEEEsingle()));
    278   case Type::DoubleTyID:
    279     return ConstantFP::get(Ty->getContext(),
    280                            APFloat::getZero(APFloat::IEEEdouble()));
    281   case Type::X86_FP80TyID:
    282     return ConstantFP::get(Ty->getContext(),
    283                            APFloat::getZero(APFloat::x87DoubleExtended()));
    284   case Type::FP128TyID:
    285     return ConstantFP::get(Ty->getContext(),
    286                            APFloat::getZero(APFloat::IEEEquad()));
    287   case Type::PPC_FP128TyID:
    288     return ConstantFP::get(Ty->getContext(),
    289                            APFloat(APFloat::PPCDoubleDouble(),
    290                                    APInt::getNullValue(128)));
    291   case Type::PointerTyID:
    292     return ConstantPointerNull::get(cast<PointerType>(Ty));
    293   case Type::StructTyID:
    294   case Type::ArrayTyID:
    295   case Type::VectorTyID:
    296     return ConstantAggregateZero::get(Ty);
    297   case Type::TokenTyID:
    298     return ConstantTokenNone::get(Ty->getContext());
    299   default:
    300     // Function, Label, or Opaque type?
    301     llvm_unreachable("Cannot create a null constant of that type!");
    302   }
    303 }
    304 
    305 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    306   Type *ScalarTy = Ty->getScalarType();
    307 
    308   // Create the base integer constant.
    309   Constant *C = ConstantInt::get(Ty->getContext(), V);
    310 
    311   // Convert an integer to a pointer, if necessary.
    312   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    313     C = ConstantExpr::getIntToPtr(C, PTy);
    314 
    315   // Broadcast a scalar to a vector, if necessary.
    316   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    317     C = ConstantVector::getSplat(VTy->getNumElements(), C);
    318 
    319   return C;
    320 }
    321 
    322 Constant *Constant::getAllOnesValue(Type *Ty) {
    323   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    324     return ConstantInt::get(Ty->getContext(),
    325                             APInt::getAllOnesValue(ITy->getBitWidth()));
    326 
    327   if (Ty->isFloatingPointTy()) {
    328     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    329                                           !Ty->isPPC_FP128Ty());
    330     return ConstantFP::get(Ty->getContext(), FL);
    331   }
    332 
    333   VectorType *VTy = cast<VectorType>(Ty);
    334   return ConstantVector::getSplat(VTy->getNumElements(),
    335                                   getAllOnesValue(VTy->getElementType()));
    336 }
    337 
    338 Constant *Constant::getAggregateElement(unsigned Elt) const {
    339   if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
    340     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
    341 
    342   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
    343     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
    344 
    345   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    346     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
    347 
    348   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    349     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
    350                                        : nullptr;
    351   return nullptr;
    352 }
    353 
    354 Constant *Constant::getAggregateElement(Constant *Elt) const {
    355   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
    356   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    357     return getAggregateElement(CI->getZExtValue());
    358   return nullptr;
    359 }
    360 
    361 void Constant::destroyConstant() {
    362   /// First call destroyConstantImpl on the subclass.  This gives the subclass
    363   /// a chance to remove the constant from any maps/pools it's contained in.
    364   switch (getValueID()) {
    365   default:
    366     llvm_unreachable("Not a constant!");
    367 #define HANDLE_CONSTANT(Name)                                                  \
    368   case Value::Name##Val:                                                       \
    369     cast<Name>(this)->destroyConstantImpl();                                   \
    370     break;
    371 #include "llvm/IR/Value.def"
    372   }
    373 
    374   // When a Constant is destroyed, there may be lingering
    375   // references to the constant by other constants in the constant pool.  These
    376   // constants are implicitly dependent on the module that is being deleted,
    377   // but they don't know that.  Because we only find out when the CPV is
    378   // deleted, we must now notify all of our users (that should only be
    379   // Constants) that they are, in fact, invalid now and should be deleted.
    380   //
    381   while (!use_empty()) {
    382     Value *V = user_back();
    383 #ifndef NDEBUG // Only in -g mode...
    384     if (!isa<Constant>(V)) {
    385       dbgs() << "While deleting: " << *this
    386              << "\n\nUse still stuck around after Def is destroyed: " << *V
    387              << "\n\n";
    388     }
    389 #endif
    390     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    391     cast<Constant>(V)->destroyConstant();
    392 
    393     // The constant should remove itself from our use list...
    394     assert((use_empty() || user_back() != V) && "Constant not removed!");
    395   }
    396 
    397   // Value has no outstanding references it is safe to delete it now...
    398   delete this;
    399 }
    400 
    401 static bool canTrapImpl(const Constant *C,
    402                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
    403   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    404   // The only thing that could possibly trap are constant exprs.
    405   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    406   if (!CE)
    407     return false;
    408 
    409   // ConstantExpr traps if any operands can trap.
    410   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
    411     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
    412       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
    413         return true;
    414     }
    415   }
    416 
    417   // Otherwise, only specific operations can trap.
    418   switch (CE->getOpcode()) {
    419   default:
    420     return false;
    421   case Instruction::UDiv:
    422   case Instruction::SDiv:
    423   case Instruction::URem:
    424   case Instruction::SRem:
    425     // Div and rem can trap if the RHS is not known to be non-zero.
    426     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    427       return true;
    428     return false;
    429   }
    430 }
    431 
    432 bool Constant::canTrap() const {
    433   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
    434   return canTrapImpl(this, NonTrappingOps);
    435 }
    436 
    437 /// Check if C contains a GlobalValue for which Predicate is true.
    438 static bool
    439 ConstHasGlobalValuePredicate(const Constant *C,
    440                              bool (*Predicate)(const GlobalValue *)) {
    441   SmallPtrSet<const Constant *, 8> Visited;
    442   SmallVector<const Constant *, 8> WorkList;
    443   WorkList.push_back(C);
    444   Visited.insert(C);
    445 
    446   while (!WorkList.empty()) {
    447     const Constant *WorkItem = WorkList.pop_back_val();
    448     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
    449       if (Predicate(GV))
    450         return true;
    451     for (const Value *Op : WorkItem->operands()) {
    452       const Constant *ConstOp = dyn_cast<Constant>(Op);
    453       if (!ConstOp)
    454         continue;
    455       if (Visited.insert(ConstOp).second)
    456         WorkList.push_back(ConstOp);
    457     }
    458   }
    459   return false;
    460 }
    461 
    462 bool Constant::isThreadDependent() const {
    463   auto DLLImportPredicate = [](const GlobalValue *GV) {
    464     return GV->isThreadLocal();
    465   };
    466   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    467 }
    468 
    469 bool Constant::isDLLImportDependent() const {
    470   auto DLLImportPredicate = [](const GlobalValue *GV) {
    471     return GV->hasDLLImportStorageClass();
    472   };
    473   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    474 }
    475 
    476 bool Constant::isConstantUsed() const {
    477   for (const User *U : users()) {
    478     const Constant *UC = dyn_cast<Constant>(U);
    479     if (!UC || isa<GlobalValue>(UC))
    480       return true;
    481 
    482     if (UC->isConstantUsed())
    483       return true;
    484   }
    485   return false;
    486 }
    487 
    488 bool Constant::needsRelocation() const {
    489   if (isa<GlobalValue>(this))
    490     return true; // Global reference.
    491 
    492   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    493     return BA->getFunction()->needsRelocation();
    494 
    495   // While raw uses of blockaddress need to be relocated, differences between
    496   // two of them don't when they are for labels in the same function.  This is a
    497   // common idiom when creating a table for the indirect goto extension, so we
    498   // handle it efficiently here.
    499   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    500     if (CE->getOpcode() == Instruction::Sub) {
    501       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    502       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    503       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
    504           RHS->getOpcode() == Instruction::PtrToInt &&
    505           isa<BlockAddress>(LHS->getOperand(0)) &&
    506           isa<BlockAddress>(RHS->getOperand(0)) &&
    507           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    508               cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    509         return false;
    510     }
    511 
    512   bool Result = false;
    513   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    514     Result |= cast<Constant>(getOperand(i))->needsRelocation();
    515 
    516   return Result;
    517 }
    518 
    519 /// If the specified constantexpr is dead, remove it. This involves recursively
    520 /// eliminating any dead users of the constantexpr.
    521 static bool removeDeadUsersOfConstant(const Constant *C) {
    522   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    523 
    524   while (!C->use_empty()) {
    525     const Constant *User = dyn_cast<Constant>(C->user_back());
    526     if (!User) return false; // Non-constant usage;
    527     if (!removeDeadUsersOfConstant(User))
    528       return false; // Constant wasn't dead
    529   }
    530 
    531   const_cast<Constant*>(C)->destroyConstant();
    532   return true;
    533 }
    534 
    535 
    536 void Constant::removeDeadConstantUsers() const {
    537   Value::const_user_iterator I = user_begin(), E = user_end();
    538   Value::const_user_iterator LastNonDeadUser = E;
    539   while (I != E) {
    540     const Constant *User = dyn_cast<Constant>(*I);
    541     if (!User) {
    542       LastNonDeadUser = I;
    543       ++I;
    544       continue;
    545     }
    546 
    547     if (!removeDeadUsersOfConstant(User)) {
    548       // If the constant wasn't dead, remember that this was the last live use
    549       // and move on to the next constant.
    550       LastNonDeadUser = I;
    551       ++I;
    552       continue;
    553     }
    554 
    555     // If the constant was dead, then the iterator is invalidated.
    556     if (LastNonDeadUser == E) {
    557       I = user_begin();
    558       if (I == E) break;
    559     } else {
    560       I = LastNonDeadUser;
    561       ++I;
    562     }
    563   }
    564 }
    565 
    566 
    567 
    568 //===----------------------------------------------------------------------===//
    569 //                                ConstantInt
    570 //===----------------------------------------------------------------------===//
    571 
    572 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
    573     : ConstantData(Ty, ConstantIntVal), Val(V) {
    574   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    575 }
    576 
    577 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    578   LLVMContextImpl *pImpl = Context.pImpl;
    579   if (!pImpl->TheTrueVal)
    580     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    581   return pImpl->TheTrueVal;
    582 }
    583 
    584 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    585   LLVMContextImpl *pImpl = Context.pImpl;
    586   if (!pImpl->TheFalseVal)
    587     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    588   return pImpl->TheFalseVal;
    589 }
    590 
    591 Constant *ConstantInt::getTrue(Type *Ty) {
    592   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
    593   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
    594   if (auto *VTy = dyn_cast<VectorType>(Ty))
    595     return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
    596   return TrueC;
    597 }
    598 
    599 Constant *ConstantInt::getFalse(Type *Ty) {
    600   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
    601   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
    602   if (auto *VTy = dyn_cast<VectorType>(Ty))
    603     return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
    604   return FalseC;
    605 }
    606 
    607 // Get a ConstantInt from an APInt.
    608 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    609   // get an existing value or the insertion position
    610   LLVMContextImpl *pImpl = Context.pImpl;
    611   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
    612   if (!Slot) {
    613     // Get the corresponding integer type for the bit width of the value.
    614     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    615     Slot.reset(new ConstantInt(ITy, V));
    616   }
    617   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
    618   return Slot.get();
    619 }
    620 
    621 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    622   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    623 
    624   // For vectors, broadcast the value.
    625   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    626     return ConstantVector::getSplat(VTy->getNumElements(), C);
    627 
    628   return C;
    629 }
    630 
    631 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
    632   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    633 }
    634 
    635 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
    636   return get(Ty, V, true);
    637 }
    638 
    639 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    640   return get(Ty, V, true);
    641 }
    642 
    643 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
    644   ConstantInt *C = get(Ty->getContext(), V);
    645   assert(C->getType() == Ty->getScalarType() &&
    646          "ConstantInt type doesn't match the type implied by its value!");
    647 
    648   // For vectors, broadcast the value.
    649   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    650     return ConstantVector::getSplat(VTy->getNumElements(), C);
    651 
    652   return C;
    653 }
    654 
    655 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
    656   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    657 }
    658 
    659 /// Remove the constant from the constant table.
    660 void ConstantInt::destroyConstantImpl() {
    661   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
    662 }
    663 
    664 //===----------------------------------------------------------------------===//
    665 //                                ConstantFP
    666 //===----------------------------------------------------------------------===//
    667 
    668 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    669   if (Ty->isHalfTy())
    670     return &APFloat::IEEEhalf();
    671   if (Ty->isFloatTy())
    672     return &APFloat::IEEEsingle();
    673   if (Ty->isDoubleTy())
    674     return &APFloat::IEEEdouble();
    675   if (Ty->isX86_FP80Ty())
    676     return &APFloat::x87DoubleExtended();
    677   else if (Ty->isFP128Ty())
    678     return &APFloat::IEEEquad();
    679 
    680   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    681   return &APFloat::PPCDoubleDouble();
    682 }
    683 
    684 Constant *ConstantFP::get(Type *Ty, double V) {
    685   LLVMContext &Context = Ty->getContext();
    686 
    687   APFloat FV(V);
    688   bool ignored;
    689   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    690              APFloat::rmNearestTiesToEven, &ignored);
    691   Constant *C = get(Context, FV);
    692 
    693   // For vectors, broadcast the value.
    694   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    695     return ConstantVector::getSplat(VTy->getNumElements(), C);
    696 
    697   return C;
    698 }
    699 
    700 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
    701   ConstantFP *C = get(Ty->getContext(), V);
    702   assert(C->getType() == Ty->getScalarType() &&
    703          "ConstantFP type doesn't match the type implied by its value!");
    704 
    705   // For vectors, broadcast the value.
    706   if (auto *VTy = dyn_cast<VectorType>(Ty))
    707     return ConstantVector::getSplat(VTy->getNumElements(), C);
    708 
    709   return C;
    710 }
    711 
    712 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
    713   LLVMContext &Context = Ty->getContext();
    714 
    715   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    716   Constant *C = get(Context, FV);
    717 
    718   // For vectors, broadcast the value.
    719   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    720     return ConstantVector::getSplat(VTy->getNumElements(), C);
    721 
    722   return C;
    723 }
    724 
    725 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
    726   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    727   APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
    728   Constant *C = get(Ty->getContext(), NaN);
    729 
    730   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    731     return ConstantVector::getSplat(VTy->getNumElements(), C);
    732 
    733   return C;
    734 }
    735 
    736 Constant *ConstantFP::getNegativeZero(Type *Ty) {
    737   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    738   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
    739   Constant *C = get(Ty->getContext(), NegZero);
    740 
    741   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    742     return ConstantVector::getSplat(VTy->getNumElements(), C);
    743 
    744   return C;
    745 }
    746 
    747 
    748 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
    749   if (Ty->isFPOrFPVectorTy())
    750     return getNegativeZero(Ty);
    751 
    752   return Constant::getNullValue(Ty);
    753 }
    754 
    755 
    756 // ConstantFP accessors.
    757 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    758   LLVMContextImpl* pImpl = Context.pImpl;
    759 
    760   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
    761 
    762   if (!Slot) {
    763     Type *Ty;
    764     if (&V.getSemantics() == &APFloat::IEEEhalf())
    765       Ty = Type::getHalfTy(Context);
    766     else if (&V.getSemantics() == &APFloat::IEEEsingle())
    767       Ty = Type::getFloatTy(Context);
    768     else if (&V.getSemantics() == &APFloat::IEEEdouble())
    769       Ty = Type::getDoubleTy(Context);
    770     else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
    771       Ty = Type::getX86_FP80Ty(Context);
    772     else if (&V.getSemantics() == &APFloat::IEEEquad())
    773       Ty = Type::getFP128Ty(Context);
    774     else {
    775       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
    776              "Unknown FP format");
    777       Ty = Type::getPPC_FP128Ty(Context);
    778     }
    779     Slot.reset(new ConstantFP(Ty, V));
    780   }
    781 
    782   return Slot.get();
    783 }
    784 
    785 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    786   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    787   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
    788 
    789   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    790     return ConstantVector::getSplat(VTy->getNumElements(), C);
    791 
    792   return C;
    793 }
    794 
    795 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
    796     : ConstantData(Ty, ConstantFPVal), Val(V) {
    797   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    798          "FP type Mismatch");
    799 }
    800 
    801 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    802   return Val.bitwiseIsEqual(V);
    803 }
    804 
    805 /// Remove the constant from the constant table.
    806 void ConstantFP::destroyConstantImpl() {
    807   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
    808 }
    809 
    810 //===----------------------------------------------------------------------===//
    811 //                   ConstantAggregateZero Implementation
    812 //===----------------------------------------------------------------------===//
    813 
    814 Constant *ConstantAggregateZero::getSequentialElement() const {
    815   return Constant::getNullValue(getType()->getSequentialElementType());
    816 }
    817 
    818 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
    819   return Constant::getNullValue(getType()->getStructElementType(Elt));
    820 }
    821 
    822 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
    823   if (isa<SequentialType>(getType()))
    824     return getSequentialElement();
    825   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    826 }
    827 
    828 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
    829   if (isa<SequentialType>(getType()))
    830     return getSequentialElement();
    831   return getStructElement(Idx);
    832 }
    833 
    834 unsigned ConstantAggregateZero::getNumElements() const {
    835   Type *Ty = getType();
    836   if (auto *AT = dyn_cast<ArrayType>(Ty))
    837     return AT->getNumElements();
    838   if (auto *VT = dyn_cast<VectorType>(Ty))
    839     return VT->getNumElements();
    840   return Ty->getStructNumElements();
    841 }
    842 
    843 //===----------------------------------------------------------------------===//
    844 //                         UndefValue Implementation
    845 //===----------------------------------------------------------------------===//
    846 
    847 UndefValue *UndefValue::getSequentialElement() const {
    848   return UndefValue::get(getType()->getSequentialElementType());
    849 }
    850 
    851 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
    852   return UndefValue::get(getType()->getStructElementType(Elt));
    853 }
    854 
    855 UndefValue *UndefValue::getElementValue(Constant *C) const {
    856   if (isa<SequentialType>(getType()))
    857     return getSequentialElement();
    858   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    859 }
    860 
    861 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
    862   if (isa<SequentialType>(getType()))
    863     return getSequentialElement();
    864   return getStructElement(Idx);
    865 }
    866 
    867 unsigned UndefValue::getNumElements() const {
    868   Type *Ty = getType();
    869   if (auto *ST = dyn_cast<SequentialType>(Ty))
    870     return ST->getNumElements();
    871   return Ty->getStructNumElements();
    872 }
    873 
    874 //===----------------------------------------------------------------------===//
    875 //                            ConstantXXX Classes
    876 //===----------------------------------------------------------------------===//
    877 
    878 template <typename ItTy, typename EltTy>
    879 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
    880   for (; Start != End; ++Start)
    881     if (*Start != Elt)
    882       return false;
    883   return true;
    884 }
    885 
    886 template <typename SequentialTy, typename ElementTy>
    887 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
    888   assert(!V.empty() && "Cannot get empty int sequence.");
    889 
    890   SmallVector<ElementTy, 16> Elts;
    891   for (Constant *C : V)
    892     if (auto *CI = dyn_cast<ConstantInt>(C))
    893       Elts.push_back(CI->getZExtValue());
    894     else
    895       return nullptr;
    896   return SequentialTy::get(V[0]->getContext(), Elts);
    897 }
    898 
    899 template <typename SequentialTy, typename ElementTy>
    900 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
    901   assert(!V.empty() && "Cannot get empty FP sequence.");
    902 
    903   SmallVector<ElementTy, 16> Elts;
    904   for (Constant *C : V)
    905     if (auto *CFP = dyn_cast<ConstantFP>(C))
    906       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
    907     else
    908       return nullptr;
    909   return SequentialTy::getFP(V[0]->getContext(), Elts);
    910 }
    911 
    912 template <typename SequenceTy>
    913 static Constant *getSequenceIfElementsMatch(Constant *C,
    914                                             ArrayRef<Constant *> V) {
    915   // We speculatively build the elements here even if it turns out that there is
    916   // a constantexpr or something else weird, since it is so uncommon for that to
    917   // happen.
    918   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    919     if (CI->getType()->isIntegerTy(8))
    920       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
    921     else if (CI->getType()->isIntegerTy(16))
    922       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
    923     else if (CI->getType()->isIntegerTy(32))
    924       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
    925     else if (CI->getType()->isIntegerTy(64))
    926       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
    927   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    928     if (CFP->getType()->isHalfTy())
    929       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
    930     else if (CFP->getType()->isFloatTy())
    931       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
    932     else if (CFP->getType()->isDoubleTy())
    933       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
    934   }
    935 
    936   return nullptr;
    937 }
    938 
    939 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
    940                                      ArrayRef<Constant *> V)
    941     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
    942                V.size()) {
    943   std::copy(V.begin(), V.end(), op_begin());
    944 
    945   // Check that types match, unless this is an opaque struct.
    946   if (auto *ST = dyn_cast<StructType>(T))
    947     if (ST->isOpaque())
    948       return;
    949   for (unsigned I = 0, E = V.size(); I != E; ++I)
    950     assert(V[I]->getType() == T->getTypeAtIndex(I) &&
    951            "Initializer for composite element doesn't match!");
    952 }
    953 
    954 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    955     : ConstantAggregate(T, ConstantArrayVal, V) {
    956   assert(V.size() == T->getNumElements() &&
    957          "Invalid initializer for constant array");
    958 }
    959 
    960 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    961   if (Constant *C = getImpl(Ty, V))
    962     return C;
    963   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
    964 }
    965 
    966 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
    967   // Empty arrays are canonicalized to ConstantAggregateZero.
    968   if (V.empty())
    969     return ConstantAggregateZero::get(Ty);
    970 
    971   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    972     assert(V[i]->getType() == Ty->getElementType() &&
    973            "Wrong type in array element initializer");
    974   }
    975 
    976   // If this is an all-zero array, return a ConstantAggregateZero object.  If
    977   // all undef, return an UndefValue, if "all simple", then return a
    978   // ConstantDataArray.
    979   Constant *C = V[0];
    980   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    981     return UndefValue::get(Ty);
    982 
    983   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    984     return ConstantAggregateZero::get(Ty);
    985 
    986   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    987   // the element type is compatible with ConstantDataVector.  If so, use it.
    988   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
    989     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
    990 
    991   // Otherwise, we really do want to create a ConstantArray.
    992   return nullptr;
    993 }
    994 
    995 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    996                                                ArrayRef<Constant*> V,
    997                                                bool Packed) {
    998   unsigned VecSize = V.size();
    999   SmallVector<Type*, 16> EltTypes(VecSize);
   1000   for (unsigned i = 0; i != VecSize; ++i)
   1001     EltTypes[i] = V[i]->getType();
   1002 
   1003   return StructType::get(Context, EltTypes, Packed);
   1004 }
   1005 
   1006 
   1007 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
   1008                                                bool Packed) {
   1009   assert(!V.empty() &&
   1010          "ConstantStruct::getTypeForElements cannot be called on empty list");
   1011   return getTypeForElements(V[0]->getContext(), V, Packed);
   1012 }
   1013 
   1014 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
   1015     : ConstantAggregate(T, ConstantStructVal, V) {
   1016   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
   1017          "Invalid initializer for constant struct");
   1018 }
   1019 
   1020 // ConstantStruct accessors.
   1021 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
   1022   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
   1023          "Incorrect # elements specified to ConstantStruct::get");
   1024 
   1025   // Create a ConstantAggregateZero value if all elements are zeros.
   1026   bool isZero = true;
   1027   bool isUndef = false;
   1028 
   1029   if (!V.empty()) {
   1030     isUndef = isa<UndefValue>(V[0]);
   1031     isZero = V[0]->isNullValue();
   1032     if (isUndef || isZero) {
   1033       for (unsigned i = 0, e = V.size(); i != e; ++i) {
   1034         if (!V[i]->isNullValue())
   1035           isZero = false;
   1036         if (!isa<UndefValue>(V[i]))
   1037           isUndef = false;
   1038       }
   1039     }
   1040   }
   1041   if (isZero)
   1042     return ConstantAggregateZero::get(ST);
   1043   if (isUndef)
   1044     return UndefValue::get(ST);
   1045 
   1046   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
   1047 }
   1048 
   1049 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
   1050     : ConstantAggregate(T, ConstantVectorVal, V) {
   1051   assert(V.size() == T->getNumElements() &&
   1052          "Invalid initializer for constant vector");
   1053 }
   1054 
   1055 // ConstantVector accessors.
   1056 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
   1057   if (Constant *C = getImpl(V))
   1058     return C;
   1059   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
   1060   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
   1061 }
   1062 
   1063 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
   1064   assert(!V.empty() && "Vectors can't be empty");
   1065   VectorType *T = VectorType::get(V.front()->getType(), V.size());
   1066 
   1067   // If this is an all-undef or all-zero vector, return a
   1068   // ConstantAggregateZero or UndefValue.
   1069   Constant *C = V[0];
   1070   bool isZero = C->isNullValue();
   1071   bool isUndef = isa<UndefValue>(C);
   1072 
   1073   if (isZero || isUndef) {
   1074     for (unsigned i = 1, e = V.size(); i != e; ++i)
   1075       if (V[i] != C) {
   1076         isZero = isUndef = false;
   1077         break;
   1078       }
   1079   }
   1080 
   1081   if (isZero)
   1082     return ConstantAggregateZero::get(T);
   1083   if (isUndef)
   1084     return UndefValue::get(T);
   1085 
   1086   // Check to see if all of the elements are ConstantFP or ConstantInt and if
   1087   // the element type is compatible with ConstantDataVector.  If so, use it.
   1088   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
   1089     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
   1090 
   1091   // Otherwise, the element type isn't compatible with ConstantDataVector, or
   1092   // the operand list contains a ConstantExpr or something else strange.
   1093   return nullptr;
   1094 }
   1095 
   1096 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
   1097   // If this splat is compatible with ConstantDataVector, use it instead of
   1098   // ConstantVector.
   1099   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
   1100       ConstantDataSequential::isElementTypeCompatible(V->getType()))
   1101     return ConstantDataVector::getSplat(NumElts, V);
   1102 
   1103   SmallVector<Constant*, 32> Elts(NumElts, V);
   1104   return get(Elts);
   1105 }
   1106 
   1107 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
   1108   LLVMContextImpl *pImpl = Context.pImpl;
   1109   if (!pImpl->TheNoneToken)
   1110     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
   1111   return pImpl->TheNoneToken.get();
   1112 }
   1113 
   1114 /// Remove the constant from the constant table.
   1115 void ConstantTokenNone::destroyConstantImpl() {
   1116   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
   1117 }
   1118 
   1119 // Utility function for determining if a ConstantExpr is a CastOp or not. This
   1120 // can't be inline because we don't want to #include Instruction.h into
   1121 // Constant.h
   1122 bool ConstantExpr::isCast() const {
   1123   return Instruction::isCast(getOpcode());
   1124 }
   1125 
   1126 bool ConstantExpr::isCompare() const {
   1127   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
   1128 }
   1129 
   1130 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
   1131   if (getOpcode() != Instruction::GetElementPtr) return false;
   1132 
   1133   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
   1134   User::const_op_iterator OI = std::next(this->op_begin());
   1135 
   1136   // The remaining indices may be compile-time known integers within the bounds
   1137   // of the corresponding notional static array types.
   1138   for (; GEPI != E; ++GEPI, ++OI) {
   1139     if (isa<UndefValue>(*OI))
   1140       continue;
   1141     auto *CI = dyn_cast<ConstantInt>(*OI);
   1142     if (!CI || (GEPI.isBoundedSequential() &&
   1143                 (CI->getValue().getActiveBits() > 64 ||
   1144                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
   1145       return false;
   1146   }
   1147 
   1148   // All the indices checked out.
   1149   return true;
   1150 }
   1151 
   1152 bool ConstantExpr::hasIndices() const {
   1153   return getOpcode() == Instruction::ExtractValue ||
   1154          getOpcode() == Instruction::InsertValue;
   1155 }
   1156 
   1157 ArrayRef<unsigned> ConstantExpr::getIndices() const {
   1158   if (const ExtractValueConstantExpr *EVCE =
   1159         dyn_cast<ExtractValueConstantExpr>(this))
   1160     return EVCE->Indices;
   1161 
   1162   return cast<InsertValueConstantExpr>(this)->Indices;
   1163 }
   1164 
   1165 unsigned ConstantExpr::getPredicate() const {
   1166   return cast<CompareConstantExpr>(this)->predicate;
   1167 }
   1168 
   1169 Constant *
   1170 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   1171   assert(Op->getType() == getOperand(OpNo)->getType() &&
   1172          "Replacing operand with value of different type!");
   1173   if (getOperand(OpNo) == Op)
   1174     return const_cast<ConstantExpr*>(this);
   1175 
   1176   SmallVector<Constant*, 8> NewOps;
   1177   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1178     NewOps.push_back(i == OpNo ? Op : getOperand(i));
   1179 
   1180   return getWithOperands(NewOps);
   1181 }
   1182 
   1183 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
   1184                                         bool OnlyIfReduced, Type *SrcTy) const {
   1185   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
   1186 
   1187   // If no operands changed return self.
   1188   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
   1189     return const_cast<ConstantExpr*>(this);
   1190 
   1191   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
   1192   switch (getOpcode()) {
   1193   case Instruction::Trunc:
   1194   case Instruction::ZExt:
   1195   case Instruction::SExt:
   1196   case Instruction::FPTrunc:
   1197   case Instruction::FPExt:
   1198   case Instruction::UIToFP:
   1199   case Instruction::SIToFP:
   1200   case Instruction::FPToUI:
   1201   case Instruction::FPToSI:
   1202   case Instruction::PtrToInt:
   1203   case Instruction::IntToPtr:
   1204   case Instruction::BitCast:
   1205   case Instruction::AddrSpaceCast:
   1206     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
   1207   case Instruction::Select:
   1208     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
   1209   case Instruction::InsertElement:
   1210     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
   1211                                           OnlyIfReducedTy);
   1212   case Instruction::ExtractElement:
   1213     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
   1214   case Instruction::InsertValue:
   1215     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
   1216                                         OnlyIfReducedTy);
   1217   case Instruction::ExtractValue:
   1218     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
   1219   case Instruction::ShuffleVector:
   1220     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
   1221                                           OnlyIfReducedTy);
   1222   case Instruction::GetElementPtr: {
   1223     auto *GEPO = cast<GEPOperator>(this);
   1224     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
   1225     return ConstantExpr::getGetElementPtr(
   1226         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
   1227         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
   1228   }
   1229   case Instruction::ICmp:
   1230   case Instruction::FCmp:
   1231     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
   1232                                     OnlyIfReducedTy);
   1233   default:
   1234     assert(getNumOperands() == 2 && "Must be binary operator?");
   1235     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
   1236                              OnlyIfReducedTy);
   1237   }
   1238 }
   1239 
   1240 
   1241 //===----------------------------------------------------------------------===//
   1242 //                      isValueValidForType implementations
   1243 
   1244 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
   1245   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
   1246   if (Ty->isIntegerTy(1))
   1247     return Val == 0 || Val == 1;
   1248   return isUIntN(NumBits, Val);
   1249 }
   1250 
   1251 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
   1252   unsigned NumBits = Ty->getIntegerBitWidth();
   1253   if (Ty->isIntegerTy(1))
   1254     return Val == 0 || Val == 1 || Val == -1;
   1255   return isIntN(NumBits, Val);
   1256 }
   1257 
   1258 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
   1259   // convert modifies in place, so make a copy.
   1260   APFloat Val2 = APFloat(Val);
   1261   bool losesInfo;
   1262   switch (Ty->getTypeID()) {
   1263   default:
   1264     return false;         // These can't be represented as floating point!
   1265 
   1266   // FIXME rounding mode needs to be more flexible
   1267   case Type::HalfTyID: {
   1268     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
   1269       return true;
   1270     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
   1271     return !losesInfo;
   1272   }
   1273   case Type::FloatTyID: {
   1274     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
   1275       return true;
   1276     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
   1277     return !losesInfo;
   1278   }
   1279   case Type::DoubleTyID: {
   1280     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
   1281         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
   1282         &Val2.getSemantics() == &APFloat::IEEEdouble())
   1283       return true;
   1284     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
   1285     return !losesInfo;
   1286   }
   1287   case Type::X86_FP80TyID:
   1288     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
   1289            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
   1290            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
   1291            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
   1292   case Type::FP128TyID:
   1293     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
   1294            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
   1295            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
   1296            &Val2.getSemantics() == &APFloat::IEEEquad();
   1297   case Type::PPC_FP128TyID:
   1298     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
   1299            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
   1300            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
   1301            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
   1302   }
   1303 }
   1304 
   1305 
   1306 //===----------------------------------------------------------------------===//
   1307 //                      Factory Function Implementation
   1308 
   1309 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
   1310   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
   1311          "Cannot create an aggregate zero of non-aggregate type!");
   1312 
   1313   std::unique_ptr<ConstantAggregateZero> &Entry =
   1314       Ty->getContext().pImpl->CAZConstants[Ty];
   1315   if (!Entry)
   1316     Entry.reset(new ConstantAggregateZero(Ty));
   1317 
   1318   return Entry.get();
   1319 }
   1320 
   1321 /// Remove the constant from the constant table.
   1322 void ConstantAggregateZero::destroyConstantImpl() {
   1323   getContext().pImpl->CAZConstants.erase(getType());
   1324 }
   1325 
   1326 /// Remove the constant from the constant table.
   1327 void ConstantArray::destroyConstantImpl() {
   1328   getType()->getContext().pImpl->ArrayConstants.remove(this);
   1329 }
   1330 
   1331 
   1332 //---- ConstantStruct::get() implementation...
   1333 //
   1334 
   1335 /// Remove the constant from the constant table.
   1336 void ConstantStruct::destroyConstantImpl() {
   1337   getType()->getContext().pImpl->StructConstants.remove(this);
   1338 }
   1339 
   1340 /// Remove the constant from the constant table.
   1341 void ConstantVector::destroyConstantImpl() {
   1342   getType()->getContext().pImpl->VectorConstants.remove(this);
   1343 }
   1344 
   1345 Constant *Constant::getSplatValue() const {
   1346   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
   1347   if (isa<ConstantAggregateZero>(this))
   1348     return getNullValue(this->getType()->getVectorElementType());
   1349   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
   1350     return CV->getSplatValue();
   1351   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
   1352     return CV->getSplatValue();
   1353   return nullptr;
   1354 }
   1355 
   1356 Constant *ConstantVector::getSplatValue() const {
   1357   // Check out first element.
   1358   Constant *Elt = getOperand(0);
   1359   // Then make sure all remaining elements point to the same value.
   1360   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1361     if (getOperand(I) != Elt)
   1362       return nullptr;
   1363   return Elt;
   1364 }
   1365 
   1366 const APInt &Constant::getUniqueInteger() const {
   1367   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
   1368     return CI->getValue();
   1369   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
   1370   const Constant *C = this->getAggregateElement(0U);
   1371   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
   1372   return cast<ConstantInt>(C)->getValue();
   1373 }
   1374 
   1375 //---- ConstantPointerNull::get() implementation.
   1376 //
   1377 
   1378 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1379   std::unique_ptr<ConstantPointerNull> &Entry =
   1380       Ty->getContext().pImpl->CPNConstants[Ty];
   1381   if (!Entry)
   1382     Entry.reset(new ConstantPointerNull(Ty));
   1383 
   1384   return Entry.get();
   1385 }
   1386 
   1387 /// Remove the constant from the constant table.
   1388 void ConstantPointerNull::destroyConstantImpl() {
   1389   getContext().pImpl->CPNConstants.erase(getType());
   1390 }
   1391 
   1392 UndefValue *UndefValue::get(Type *Ty) {
   1393   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
   1394   if (!Entry)
   1395     Entry.reset(new UndefValue(Ty));
   1396 
   1397   return Entry.get();
   1398 }
   1399 
   1400 /// Remove the constant from the constant table.
   1401 void UndefValue::destroyConstantImpl() {
   1402   // Free the constant and any dangling references to it.
   1403   getContext().pImpl->UVConstants.erase(getType());
   1404 }
   1405 
   1406 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1407   assert(BB->getParent() && "Block must have a parent");
   1408   return get(BB->getParent(), BB);
   1409 }
   1410 
   1411 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1412   BlockAddress *&BA =
   1413     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1414   if (!BA)
   1415     BA = new BlockAddress(F, BB);
   1416 
   1417   assert(BA->getFunction() == F && "Basic block moved between functions");
   1418   return BA;
   1419 }
   1420 
   1421 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1422 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1423            &Op<0>(), 2) {
   1424   setOperand(0, F);
   1425   setOperand(1, BB);
   1426   BB->AdjustBlockAddressRefCount(1);
   1427 }
   1428 
   1429 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
   1430   if (!BB->hasAddressTaken())
   1431     return nullptr;
   1432 
   1433   const Function *F = BB->getParent();
   1434   assert(F && "Block must have a parent");
   1435   BlockAddress *BA =
   1436       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
   1437   assert(BA && "Refcount and block address map disagree!");
   1438   return BA;
   1439 }
   1440 
   1441 /// Remove the constant from the constant table.
   1442 void BlockAddress::destroyConstantImpl() {
   1443   getFunction()->getType()->getContext().pImpl
   1444     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1445   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1446 }
   1447 
   1448 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
   1449   // This could be replacing either the Basic Block or the Function.  In either
   1450   // case, we have to remove the map entry.
   1451   Function *NewF = getFunction();
   1452   BasicBlock *NewBB = getBasicBlock();
   1453 
   1454   if (From == NewF)
   1455     NewF = cast<Function>(To->stripPointerCasts());
   1456   else {
   1457     assert(From == NewBB && "From does not match any operand");
   1458     NewBB = cast<BasicBlock>(To);
   1459   }
   1460 
   1461   // See if the 'new' entry already exists, if not, just update this in place
   1462   // and return early.
   1463   BlockAddress *&NewBA =
   1464     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1465   if (NewBA)
   1466     return NewBA;
   1467 
   1468   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1469 
   1470   // Remove the old entry, this can't cause the map to rehash (just a
   1471   // tombstone will get added).
   1472   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1473                                                           getBasicBlock()));
   1474   NewBA = this;
   1475   setOperand(0, NewF);
   1476   setOperand(1, NewBB);
   1477   getBasicBlock()->AdjustBlockAddressRefCount(1);
   1478 
   1479   // If we just want to keep the existing value, then return null.
   1480   // Callers know that this means we shouldn't delete this value.
   1481   return nullptr;
   1482 }
   1483 
   1484 //---- ConstantExpr::get() implementations.
   1485 //
   1486 
   1487 /// This is a utility function to handle folding of casts and lookup of the
   1488 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1489 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
   1490                                bool OnlyIfReduced = false) {
   1491   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1492   // Fold a few common cases
   1493   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1494     return FC;
   1495 
   1496   if (OnlyIfReduced)
   1497     return nullptr;
   1498 
   1499   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1500 
   1501   // Look up the constant in the table first to ensure uniqueness.
   1502   ConstantExprKeyType Key(opc, C);
   1503 
   1504   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1505 }
   1506 
   1507 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
   1508                                 bool OnlyIfReduced) {
   1509   Instruction::CastOps opc = Instruction::CastOps(oc);
   1510   assert(Instruction::isCast(opc) && "opcode out of range");
   1511   assert(C && Ty && "Null arguments to getCast");
   1512   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1513 
   1514   switch (opc) {
   1515   default:
   1516     llvm_unreachable("Invalid cast opcode");
   1517   case Instruction::Trunc:
   1518     return getTrunc(C, Ty, OnlyIfReduced);
   1519   case Instruction::ZExt:
   1520     return getZExt(C, Ty, OnlyIfReduced);
   1521   case Instruction::SExt:
   1522     return getSExt(C, Ty, OnlyIfReduced);
   1523   case Instruction::FPTrunc:
   1524     return getFPTrunc(C, Ty, OnlyIfReduced);
   1525   case Instruction::FPExt:
   1526     return getFPExtend(C, Ty, OnlyIfReduced);
   1527   case Instruction::UIToFP:
   1528     return getUIToFP(C, Ty, OnlyIfReduced);
   1529   case Instruction::SIToFP:
   1530     return getSIToFP(C, Ty, OnlyIfReduced);
   1531   case Instruction::FPToUI:
   1532     return getFPToUI(C, Ty, OnlyIfReduced);
   1533   case Instruction::FPToSI:
   1534     return getFPToSI(C, Ty, OnlyIfReduced);
   1535   case Instruction::PtrToInt:
   1536     return getPtrToInt(C, Ty, OnlyIfReduced);
   1537   case Instruction::IntToPtr:
   1538     return getIntToPtr(C, Ty, OnlyIfReduced);
   1539   case Instruction::BitCast:
   1540     return getBitCast(C, Ty, OnlyIfReduced);
   1541   case Instruction::AddrSpaceCast:
   1542     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
   1543   }
   1544 }
   1545 
   1546 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1547   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1548     return getBitCast(C, Ty);
   1549   return getZExt(C, Ty);
   1550 }
   1551 
   1552 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1553   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1554     return getBitCast(C, Ty);
   1555   return getSExt(C, Ty);
   1556 }
   1557 
   1558 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1559   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1560     return getBitCast(C, Ty);
   1561   return getTrunc(C, Ty);
   1562 }
   1563 
   1564 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1565   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1566   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   1567           "Invalid cast");
   1568 
   1569   if (Ty->isIntOrIntVectorTy())
   1570     return getPtrToInt(S, Ty);
   1571 
   1572   unsigned SrcAS = S->getType()->getPointerAddressSpace();
   1573   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
   1574     return getAddrSpaceCast(S, Ty);
   1575 
   1576   return getBitCast(S, Ty);
   1577 }
   1578 
   1579 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
   1580                                                          Type *Ty) {
   1581   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1582   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
   1583 
   1584   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
   1585     return getAddrSpaceCast(S, Ty);
   1586 
   1587   return getBitCast(S, Ty);
   1588 }
   1589 
   1590 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
   1591   assert(C->getType()->isIntOrIntVectorTy() &&
   1592          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1593   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1594   unsigned DstBits = Ty->getScalarSizeInBits();
   1595   Instruction::CastOps opcode =
   1596     (SrcBits == DstBits ? Instruction::BitCast :
   1597      (SrcBits > DstBits ? Instruction::Trunc :
   1598       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1599   return getCast(opcode, C, Ty);
   1600 }
   1601 
   1602 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1603   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1604          "Invalid cast");
   1605   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1606   unsigned DstBits = Ty->getScalarSizeInBits();
   1607   if (SrcBits == DstBits)
   1608     return C; // Avoid a useless cast
   1609   Instruction::CastOps opcode =
   1610     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1611   return getCast(opcode, C, Ty);
   1612 }
   1613 
   1614 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1615 #ifndef NDEBUG
   1616   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1617   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1618 #endif
   1619   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1620   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1621   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1622   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1623          "SrcTy must be larger than DestTy for Trunc!");
   1624 
   1625   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
   1626 }
   1627 
   1628 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1629 #ifndef NDEBUG
   1630   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1631   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1632 #endif
   1633   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1634   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1635   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1636   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1637          "SrcTy must be smaller than DestTy for SExt!");
   1638 
   1639   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
   1640 }
   1641 
   1642 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1643 #ifndef NDEBUG
   1644   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1645   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1646 #endif
   1647   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1648   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1649   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1650   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1651          "SrcTy must be smaller than DestTy for ZExt!");
   1652 
   1653   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
   1654 }
   1655 
   1656 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1657 #ifndef NDEBUG
   1658   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1659   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1660 #endif
   1661   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1662   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1663          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1664          "This is an illegal floating point truncation!");
   1665   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
   1666 }
   1667 
   1668 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1669 #ifndef NDEBUG
   1670   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1671   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1672 #endif
   1673   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1674   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1675          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1676          "This is an illegal floating point extension!");
   1677   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
   1678 }
   1679 
   1680 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1681 #ifndef NDEBUG
   1682   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1683   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1684 #endif
   1685   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1686   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1687          "This is an illegal uint to floating point cast!");
   1688   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
   1689 }
   1690 
   1691 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1692 #ifndef NDEBUG
   1693   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1694   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1695 #endif
   1696   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1697   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1698          "This is an illegal sint to floating point cast!");
   1699   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
   1700 }
   1701 
   1702 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1703 #ifndef NDEBUG
   1704   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1705   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1706 #endif
   1707   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1708   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1709          "This is an illegal floating point to uint cast!");
   1710   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
   1711 }
   1712 
   1713 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1714 #ifndef NDEBUG
   1715   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1716   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1717 #endif
   1718   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1719   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1720          "This is an illegal floating point to sint cast!");
   1721   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
   1722 }
   1723 
   1724 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
   1725                                     bool OnlyIfReduced) {
   1726   assert(C->getType()->isPtrOrPtrVectorTy() &&
   1727          "PtrToInt source must be pointer or pointer vector");
   1728   assert(DstTy->isIntOrIntVectorTy() &&
   1729          "PtrToInt destination must be integer or integer vector");
   1730   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1731   if (isa<VectorType>(C->getType()))
   1732     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1733            "Invalid cast between a different number of vector elements");
   1734   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
   1735 }
   1736 
   1737 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
   1738                                     bool OnlyIfReduced) {
   1739   assert(C->getType()->isIntOrIntVectorTy() &&
   1740          "IntToPtr source must be integer or integer vector");
   1741   assert(DstTy->isPtrOrPtrVectorTy() &&
   1742          "IntToPtr destination must be a pointer or pointer vector");
   1743   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1744   if (isa<VectorType>(C->getType()))
   1745     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1746            "Invalid cast between a different number of vector elements");
   1747   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
   1748 }
   1749 
   1750 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
   1751                                    bool OnlyIfReduced) {
   1752   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1753          "Invalid constantexpr bitcast!");
   1754 
   1755   // It is common to ask for a bitcast of a value to its own type, handle this
   1756   // speedily.
   1757   if (C->getType() == DstTy) return C;
   1758 
   1759   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
   1760 }
   1761 
   1762 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
   1763                                          bool OnlyIfReduced) {
   1764   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
   1765          "Invalid constantexpr addrspacecast!");
   1766 
   1767   // Canonicalize addrspacecasts between different pointer types by first
   1768   // bitcasting the pointer type and then converting the address space.
   1769   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
   1770   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
   1771   Type *DstElemTy = DstScalarTy->getElementType();
   1772   if (SrcScalarTy->getElementType() != DstElemTy) {
   1773     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
   1774     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
   1775       // Handle vectors of pointers.
   1776       MidTy = VectorType::get(MidTy, VT->getNumElements());
   1777     }
   1778     C = getBitCast(C, MidTy);
   1779   }
   1780   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
   1781 }
   1782 
   1783 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1784                             unsigned Flags, Type *OnlyIfReducedTy) {
   1785   // Check the operands for consistency first.
   1786   assert(Instruction::isBinaryOp(Opcode) &&
   1787          "Invalid opcode in binary constant expression");
   1788   assert(C1->getType() == C2->getType() &&
   1789          "Operand types in binary constant expression should match");
   1790 
   1791 #ifndef NDEBUG
   1792   switch (Opcode) {
   1793   case Instruction::Add:
   1794   case Instruction::Sub:
   1795   case Instruction::Mul:
   1796     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1797     assert(C1->getType()->isIntOrIntVectorTy() &&
   1798            "Tried to create an integer operation on a non-integer type!");
   1799     break;
   1800   case Instruction::FAdd:
   1801   case Instruction::FSub:
   1802   case Instruction::FMul:
   1803     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1804     assert(C1->getType()->isFPOrFPVectorTy() &&
   1805            "Tried to create a floating-point operation on a "
   1806            "non-floating-point type!");
   1807     break;
   1808   case Instruction::UDiv:
   1809   case Instruction::SDiv:
   1810     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1811     assert(C1->getType()->isIntOrIntVectorTy() &&
   1812            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1813     break;
   1814   case Instruction::FDiv:
   1815     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1816     assert(C1->getType()->isFPOrFPVectorTy() &&
   1817            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1818     break;
   1819   case Instruction::URem:
   1820   case Instruction::SRem:
   1821     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1822     assert(C1->getType()->isIntOrIntVectorTy() &&
   1823            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1824     break;
   1825   case Instruction::FRem:
   1826     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1827     assert(C1->getType()->isFPOrFPVectorTy() &&
   1828            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1829     break;
   1830   case Instruction::And:
   1831   case Instruction::Or:
   1832   case Instruction::Xor:
   1833     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1834     assert(C1->getType()->isIntOrIntVectorTy() &&
   1835            "Tried to create a logical operation on a non-integral type!");
   1836     break;
   1837   case Instruction::Shl:
   1838   case Instruction::LShr:
   1839   case Instruction::AShr:
   1840     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1841     assert(C1->getType()->isIntOrIntVectorTy() &&
   1842            "Tried to create a shift operation on a non-integer type!");
   1843     break;
   1844   default:
   1845     break;
   1846   }
   1847 #endif
   1848 
   1849   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1850     return FC;          // Fold a few common cases.
   1851 
   1852   if (OnlyIfReducedTy == C1->getType())
   1853     return nullptr;
   1854 
   1855   Constant *ArgVec[] = { C1, C2 };
   1856   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
   1857 
   1858   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1859   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1860 }
   1861 
   1862 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1863   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1864   // Note that a non-inbounds gep is used, as null isn't within any object.
   1865   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1866   Constant *GEP = getGetElementPtr(
   1867       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1868   return getPtrToInt(GEP,
   1869                      Type::getInt64Ty(Ty->getContext()));
   1870 }
   1871 
   1872 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1873   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1874   // Note that a non-inbounds gep is used, as null isn't within any object.
   1875   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
   1876   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
   1877   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1878   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1879   Constant *Indices[2] = { Zero, One };
   1880   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
   1881   return getPtrToInt(GEP,
   1882                      Type::getInt64Ty(Ty->getContext()));
   1883 }
   1884 
   1885 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1886   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1887                                            FieldNo));
   1888 }
   1889 
   1890 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1891   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1892   // Note that a non-inbounds gep is used, as null isn't within any object.
   1893   Constant *GEPIdx[] = {
   1894     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1895     FieldNo
   1896   };
   1897   Constant *GEP = getGetElementPtr(
   1898       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1899   return getPtrToInt(GEP,
   1900                      Type::getInt64Ty(Ty->getContext()));
   1901 }
   1902 
   1903 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
   1904                                    Constant *C2, bool OnlyIfReduced) {
   1905   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1906 
   1907   switch (Predicate) {
   1908   default: llvm_unreachable("Invalid CmpInst predicate");
   1909   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1910   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1911   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1912   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1913   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1914   case CmpInst::FCMP_TRUE:
   1915     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
   1916 
   1917   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1918   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1919   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1920   case CmpInst::ICMP_SLE:
   1921     return getICmp(Predicate, C1, C2, OnlyIfReduced);
   1922   }
   1923 }
   1924 
   1925 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
   1926                                   Type *OnlyIfReducedTy) {
   1927   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1928 
   1929   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1930     return SC;        // Fold common cases
   1931 
   1932   if (OnlyIfReducedTy == V1->getType())
   1933     return nullptr;
   1934 
   1935   Constant *ArgVec[] = { C, V1, V2 };
   1936   ConstantExprKeyType Key(Instruction::Select, ArgVec);
   1937 
   1938   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1939   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1940 }
   1941 
   1942 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
   1943                                          ArrayRef<Value *> Idxs, bool InBounds,
   1944                                          Optional<unsigned> InRangeIndex,
   1945                                          Type *OnlyIfReducedTy) {
   1946   if (!Ty)
   1947     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
   1948   else
   1949     assert(
   1950         Ty ==
   1951         cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
   1952 
   1953   if (Constant *FC =
   1954           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
   1955     return FC;          // Fold a few common cases.
   1956 
   1957   // Get the result type of the getelementptr!
   1958   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
   1959   assert(DestTy && "GEP indices invalid!");
   1960   unsigned AS = C->getType()->getPointerAddressSpace();
   1961   Type *ReqTy = DestTy->getPointerTo(AS);
   1962 
   1963   unsigned NumVecElts = 0;
   1964   if (C->getType()->isVectorTy())
   1965     NumVecElts = C->getType()->getVectorNumElements();
   1966   else for (auto Idx : Idxs)
   1967     if (Idx->getType()->isVectorTy())
   1968       NumVecElts = Idx->getType()->getVectorNumElements();
   1969 
   1970   if (NumVecElts)
   1971     ReqTy = VectorType::get(ReqTy, NumVecElts);
   1972 
   1973   if (OnlyIfReducedTy == ReqTy)
   1974     return nullptr;
   1975 
   1976   // Look up the constant in the table first to ensure uniqueness
   1977   std::vector<Constant*> ArgVec;
   1978   ArgVec.reserve(1 + Idxs.size());
   1979   ArgVec.push_back(C);
   1980   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1981     assert((!Idxs[i]->getType()->isVectorTy() ||
   1982             Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
   1983            "getelementptr index type missmatch");
   1984 
   1985     Constant *Idx = cast<Constant>(Idxs[i]);
   1986     if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
   1987       Idx = ConstantVector::getSplat(NumVecElts, Idx);
   1988     ArgVec.push_back(Idx);
   1989   }
   1990 
   1991   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
   1992   if (InRangeIndex && *InRangeIndex < 63)
   1993     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
   1994   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1995                                 SubClassOptionalData, None, Ty);
   1996 
   1997   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1998   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1999 }
   2000 
   2001 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
   2002                                 Constant *RHS, bool OnlyIfReduced) {
   2003   assert(LHS->getType() == RHS->getType());
   2004   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
   2005          "Invalid ICmp Predicate");
   2006 
   2007   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   2008     return FC;          // Fold a few common cases...
   2009 
   2010   if (OnlyIfReduced)
   2011     return nullptr;
   2012 
   2013   // Look up the constant in the table first to ensure uniqueness
   2014   Constant *ArgVec[] = { LHS, RHS };
   2015   // Get the key type with both the opcode and predicate
   2016   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
   2017 
   2018   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   2019   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   2020     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   2021 
   2022   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   2023   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   2024 }
   2025 
   2026 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
   2027                                 Constant *RHS, bool OnlyIfReduced) {
   2028   assert(LHS->getType() == RHS->getType());
   2029   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
   2030          "Invalid FCmp Predicate");
   2031 
   2032   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   2033     return FC;          // Fold a few common cases...
   2034 
   2035   if (OnlyIfReduced)
   2036     return nullptr;
   2037 
   2038   // Look up the constant in the table first to ensure uniqueness
   2039   Constant *ArgVec[] = { LHS, RHS };
   2040   // Get the key type with both the opcode and predicate
   2041   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
   2042 
   2043   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   2044   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   2045     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   2046 
   2047   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   2048   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   2049 }
   2050 
   2051 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
   2052                                           Type *OnlyIfReducedTy) {
   2053   assert(Val->getType()->isVectorTy() &&
   2054          "Tried to create extractelement operation on non-vector type!");
   2055   assert(Idx->getType()->isIntegerTy() &&
   2056          "Extractelement index must be an integer type!");
   2057 
   2058   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   2059     return FC;          // Fold a few common cases.
   2060 
   2061   Type *ReqTy = Val->getType()->getVectorElementType();
   2062   if (OnlyIfReducedTy == ReqTy)
   2063     return nullptr;
   2064 
   2065   // Look up the constant in the table first to ensure uniqueness
   2066   Constant *ArgVec[] = { Val, Idx };
   2067   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
   2068 
   2069   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2070   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2071 }
   2072 
   2073 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   2074                                          Constant *Idx, Type *OnlyIfReducedTy) {
   2075   assert(Val->getType()->isVectorTy() &&
   2076          "Tried to create insertelement operation on non-vector type!");
   2077   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
   2078          "Insertelement types must match!");
   2079   assert(Idx->getType()->isIntegerTy() &&
   2080          "Insertelement index must be i32 type!");
   2081 
   2082   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   2083     return FC;          // Fold a few common cases.
   2084 
   2085   if (OnlyIfReducedTy == Val->getType())
   2086     return nullptr;
   2087 
   2088   // Look up the constant in the table first to ensure uniqueness
   2089   Constant *ArgVec[] = { Val, Elt, Idx };
   2090   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
   2091 
   2092   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2093   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   2094 }
   2095 
   2096 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   2097                                          Constant *Mask, Type *OnlyIfReducedTy) {
   2098   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   2099          "Invalid shuffle vector constant expr operands!");
   2100 
   2101   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   2102     return FC;          // Fold a few common cases.
   2103 
   2104   unsigned NElts = Mask->getType()->getVectorNumElements();
   2105   Type *EltTy = V1->getType()->getVectorElementType();
   2106   Type *ShufTy = VectorType::get(EltTy, NElts);
   2107 
   2108   if (OnlyIfReducedTy == ShufTy)
   2109     return nullptr;
   2110 
   2111   // Look up the constant in the table first to ensure uniqueness
   2112   Constant *ArgVec[] = { V1, V2, Mask };
   2113   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
   2114 
   2115   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   2116   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   2117 }
   2118 
   2119 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   2120                                        ArrayRef<unsigned> Idxs,
   2121                                        Type *OnlyIfReducedTy) {
   2122   assert(Agg->getType()->isFirstClassType() &&
   2123          "Non-first-class type for constant insertvalue expression");
   2124 
   2125   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   2126                                           Idxs) == Val->getType() &&
   2127          "insertvalue indices invalid!");
   2128   Type *ReqTy = Val->getType();
   2129 
   2130   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
   2131     return FC;
   2132 
   2133   if (OnlyIfReducedTy == ReqTy)
   2134     return nullptr;
   2135 
   2136   Constant *ArgVec[] = { Agg, Val };
   2137   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
   2138 
   2139   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2140   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2141 }
   2142 
   2143 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
   2144                                         Type *OnlyIfReducedTy) {
   2145   assert(Agg->getType()->isFirstClassType() &&
   2146          "Tried to create extractelement operation on non-first-class type!");
   2147 
   2148   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   2149   (void)ReqTy;
   2150   assert(ReqTy && "extractvalue indices invalid!");
   2151 
   2152   assert(Agg->getType()->isFirstClassType() &&
   2153          "Non-first-class type for constant extractvalue expression");
   2154   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
   2155     return FC;
   2156 
   2157   if (OnlyIfReducedTy == ReqTy)
   2158     return nullptr;
   2159 
   2160   Constant *ArgVec[] = { Agg };
   2161   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
   2162 
   2163   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2164   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2165 }
   2166 
   2167 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   2168   assert(C->getType()->isIntOrIntVectorTy() &&
   2169          "Cannot NEG a nonintegral value!");
   2170   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   2171                 C, HasNUW, HasNSW);
   2172 }
   2173 
   2174 Constant *ConstantExpr::getFNeg(Constant *C) {
   2175   assert(C->getType()->isFPOrFPVectorTy() &&
   2176          "Cannot FNEG a non-floating-point value!");
   2177   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   2178 }
   2179 
   2180 Constant *ConstantExpr::getNot(Constant *C) {
   2181   assert(C->getType()->isIntOrIntVectorTy() &&
   2182          "Cannot NOT a nonintegral value!");
   2183   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   2184 }
   2185 
   2186 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   2187                                bool HasNUW, bool HasNSW) {
   2188   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2189                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2190   return get(Instruction::Add, C1, C2, Flags);
   2191 }
   2192 
   2193 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   2194   return get(Instruction::FAdd, C1, C2);
   2195 }
   2196 
   2197 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   2198                                bool HasNUW, bool HasNSW) {
   2199   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2200                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2201   return get(Instruction::Sub, C1, C2, Flags);
   2202 }
   2203 
   2204 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   2205   return get(Instruction::FSub, C1, C2);
   2206 }
   2207 
   2208 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   2209                                bool HasNUW, bool HasNSW) {
   2210   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2211                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2212   return get(Instruction::Mul, C1, C2, Flags);
   2213 }
   2214 
   2215 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   2216   return get(Instruction::FMul, C1, C2);
   2217 }
   2218 
   2219 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   2220   return get(Instruction::UDiv, C1, C2,
   2221              isExact ? PossiblyExactOperator::IsExact : 0);
   2222 }
   2223 
   2224 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   2225   return get(Instruction::SDiv, C1, C2,
   2226              isExact ? PossiblyExactOperator::IsExact : 0);
   2227 }
   2228 
   2229 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   2230   return get(Instruction::FDiv, C1, C2);
   2231 }
   2232 
   2233 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   2234   return get(Instruction::URem, C1, C2);
   2235 }
   2236 
   2237 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   2238   return get(Instruction::SRem, C1, C2);
   2239 }
   2240 
   2241 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   2242   return get(Instruction::FRem, C1, C2);
   2243 }
   2244 
   2245 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   2246   return get(Instruction::And, C1, C2);
   2247 }
   2248 
   2249 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   2250   return get(Instruction::Or, C1, C2);
   2251 }
   2252 
   2253 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   2254   return get(Instruction::Xor, C1, C2);
   2255 }
   2256 
   2257 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   2258                                bool HasNUW, bool HasNSW) {
   2259   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2260                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2261   return get(Instruction::Shl, C1, C2, Flags);
   2262 }
   2263 
   2264 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   2265   return get(Instruction::LShr, C1, C2,
   2266              isExact ? PossiblyExactOperator::IsExact : 0);
   2267 }
   2268 
   2269 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   2270   return get(Instruction::AShr, C1, C2,
   2271              isExact ? PossiblyExactOperator::IsExact : 0);
   2272 }
   2273 
   2274 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
   2275                                          bool AllowRHSConstant) {
   2276   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
   2277 
   2278   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
   2279   if (Instruction::isCommutative(Opcode)) {
   2280     switch (Opcode) {
   2281       case Instruction::Add: // X + 0 = X
   2282       case Instruction::Or:  // X | 0 = X
   2283       case Instruction::Xor: // X ^ 0 = X
   2284         return Constant::getNullValue(Ty);
   2285       case Instruction::Mul: // X * 1 = X
   2286         return ConstantInt::get(Ty, 1);
   2287       case Instruction::And: // X & -1 = X
   2288         return Constant::getAllOnesValue(Ty);
   2289       case Instruction::FAdd: // X + -0.0 = X
   2290         // TODO: If the fadd has 'nsz', should we return +0.0?
   2291         return ConstantFP::getNegativeZero(Ty);
   2292       case Instruction::FMul: // X * 1.0 = X
   2293         return ConstantFP::get(Ty, 1.0);
   2294       default:
   2295         llvm_unreachable("Every commutative binop has an identity constant");
   2296     }
   2297   }
   2298 
   2299   // Non-commutative opcodes: AllowRHSConstant must be set.
   2300   if (!AllowRHSConstant)
   2301     return nullptr;
   2302 
   2303   switch (Opcode) {
   2304     case Instruction::Sub:  // X - 0 = X
   2305     case Instruction::Shl:  // X << 0 = X
   2306     case Instruction::LShr: // X >>u 0 = X
   2307     case Instruction::AShr: // X >> 0 = X
   2308     case Instruction::FSub: // X - 0.0 = X
   2309       return Constant::getNullValue(Ty);
   2310     case Instruction::SDiv: // X / 1 = X
   2311     case Instruction::UDiv: // X /u 1 = X
   2312       return ConstantInt::get(Ty, 1);
   2313     case Instruction::FDiv: // X / 1.0 = X
   2314       return ConstantFP::get(Ty, 1.0);
   2315     default:
   2316       return nullptr;
   2317   }
   2318 }
   2319 
   2320 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
   2321   switch (Opcode) {
   2322   default:
   2323     // Doesn't have an absorber.
   2324     return nullptr;
   2325 
   2326   case Instruction::Or:
   2327     return Constant::getAllOnesValue(Ty);
   2328 
   2329   case Instruction::And:
   2330   case Instruction::Mul:
   2331     return Constant::getNullValue(Ty);
   2332   }
   2333 }
   2334 
   2335 /// Remove the constant from the constant table.
   2336 void ConstantExpr::destroyConstantImpl() {
   2337   getType()->getContext().pImpl->ExprConstants.remove(this);
   2338 }
   2339 
   2340 const char *ConstantExpr::getOpcodeName() const {
   2341   return Instruction::getOpcodeName(getOpcode());
   2342 }
   2343 
   2344 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
   2345     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
   2346     : ConstantExpr(DestTy, Instruction::GetElementPtr,
   2347                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
   2348                        (IdxList.size() + 1),
   2349                    IdxList.size() + 1),
   2350       SrcElementTy(SrcElementTy),
   2351       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
   2352   Op<0>() = C;
   2353   Use *OperandList = getOperandList();
   2354   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   2355     OperandList[i+1] = IdxList[i];
   2356 }
   2357 
   2358 Type *GetElementPtrConstantExpr::getSourceElementType() const {
   2359   return SrcElementTy;
   2360 }
   2361 
   2362 Type *GetElementPtrConstantExpr::getResultElementType() const {
   2363   return ResElementTy;
   2364 }
   2365 
   2366 //===----------------------------------------------------------------------===//
   2367 //                       ConstantData* implementations
   2368 
   2369 Type *ConstantDataSequential::getElementType() const {
   2370   return getType()->getElementType();
   2371 }
   2372 
   2373 StringRef ConstantDataSequential::getRawDataValues() const {
   2374   return StringRef(DataElements, getNumElements()*getElementByteSize());
   2375 }
   2376 
   2377 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
   2378   if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
   2379   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
   2380     switch (IT->getBitWidth()) {
   2381     case 8:
   2382     case 16:
   2383     case 32:
   2384     case 64:
   2385       return true;
   2386     default: break;
   2387     }
   2388   }
   2389   return false;
   2390 }
   2391 
   2392 unsigned ConstantDataSequential::getNumElements() const {
   2393   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
   2394     return AT->getNumElements();
   2395   return getType()->getVectorNumElements();
   2396 }
   2397 
   2398 
   2399 uint64_t ConstantDataSequential::getElementByteSize() const {
   2400   return getElementType()->getPrimitiveSizeInBits()/8;
   2401 }
   2402 
   2403 /// Return the start of the specified element.
   2404 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
   2405   assert(Elt < getNumElements() && "Invalid Elt");
   2406   return DataElements+Elt*getElementByteSize();
   2407 }
   2408 
   2409 
   2410 /// Return true if the array is empty or all zeros.
   2411 static bool isAllZeros(StringRef Arr) {
   2412   for (char I : Arr)
   2413     if (I != 0)
   2414       return false;
   2415   return true;
   2416 }
   2417 
   2418 /// This is the underlying implementation of all of the
   2419 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
   2420 /// the correct element type.  We take the bytes in as a StringRef because
   2421 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
   2422 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
   2423   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
   2424   // If the elements are all zero or there are no elements, return a CAZ, which
   2425   // is more dense and canonical.
   2426   if (isAllZeros(Elements))
   2427     return ConstantAggregateZero::get(Ty);
   2428 
   2429   // Do a lookup to see if we have already formed one of these.
   2430   auto &Slot =
   2431       *Ty->getContext()
   2432            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
   2433            .first;
   2434 
   2435   // The bucket can point to a linked list of different CDS's that have the same
   2436   // body but different types.  For example, 0,0,0,1 could be a 4 element array
   2437   // of i8, or a 1-element array of i32.  They'll both end up in the same
   2438   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
   2439   ConstantDataSequential **Entry = &Slot.second;
   2440   for (ConstantDataSequential *Node = *Entry; Node;
   2441        Entry = &Node->Next, Node = *Entry)
   2442     if (Node->getType() == Ty)
   2443       return Node;
   2444 
   2445   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
   2446   // and return it.
   2447   if (isa<ArrayType>(Ty))
   2448     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
   2449 
   2450   assert(isa<VectorType>(Ty));
   2451   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
   2452 }
   2453 
   2454 void ConstantDataSequential::destroyConstantImpl() {
   2455   // Remove the constant from the StringMap.
   2456   StringMap<ConstantDataSequential*> &CDSConstants =
   2457     getType()->getContext().pImpl->CDSConstants;
   2458 
   2459   StringMap<ConstantDataSequential*>::iterator Slot =
   2460     CDSConstants.find(getRawDataValues());
   2461 
   2462   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
   2463 
   2464   ConstantDataSequential **Entry = &Slot->getValue();
   2465 
   2466   // Remove the entry from the hash table.
   2467   if (!(*Entry)->Next) {
   2468     // If there is only one value in the bucket (common case) it must be this
   2469     // entry, and removing the entry should remove the bucket completely.
   2470     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
   2471     getContext().pImpl->CDSConstants.erase(Slot);
   2472   } else {
   2473     // Otherwise, there are multiple entries linked off the bucket, unlink the
   2474     // node we care about but keep the bucket around.
   2475     for (ConstantDataSequential *Node = *Entry; ;
   2476          Entry = &Node->Next, Node = *Entry) {
   2477       assert(Node && "Didn't find entry in its uniquing hash table!");
   2478       // If we found our entry, unlink it from the list and we're done.
   2479       if (Node == this) {
   2480         *Entry = Node->Next;
   2481         break;
   2482       }
   2483     }
   2484   }
   2485 
   2486   // If we were part of a list, make sure that we don't delete the list that is
   2487   // still owned by the uniquing map.
   2488   Next = nullptr;
   2489 }
   2490 
   2491 /// getFP() constructors - Return a constant with array type with an element
   2492 /// count and element type of float with precision matching the number of
   2493 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
   2494 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2495 /// object.
   2496 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2497                                    ArrayRef<uint16_t> Elts) {
   2498   Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
   2499   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2500   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
   2501 }
   2502 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2503                                    ArrayRef<uint32_t> Elts) {
   2504   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2505   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2506   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
   2507 }
   2508 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2509                                    ArrayRef<uint64_t> Elts) {
   2510   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2511   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2512   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
   2513 }
   2514 
   2515 Constant *ConstantDataArray::getString(LLVMContext &Context,
   2516                                        StringRef Str, bool AddNull) {
   2517   if (!AddNull) {
   2518     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
   2519     return get(Context, makeArrayRef(Data, Str.size()));
   2520   }
   2521 
   2522   SmallVector<uint8_t, 64> ElementVals;
   2523   ElementVals.append(Str.begin(), Str.end());
   2524   ElementVals.push_back(0);
   2525   return get(Context, ElementVals);
   2526 }
   2527 
   2528 /// get() constructors - Return a constant with vector type with an element
   2529 /// count and element type matching the ArrayRef passed in.  Note that this
   2530 /// can return a ConstantAggregateZero object.
   2531 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
   2532   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
   2533   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2534   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
   2535 }
   2536 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2537   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
   2538   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2539   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
   2540 }
   2541 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2542   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
   2543   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2544   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
   2545 }
   2546 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2547   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
   2548   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2549   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
   2550 }
   2551 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2552   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2553   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2554   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
   2555 }
   2556 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2557   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2558   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2559   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
   2560 }
   2561 
   2562 /// getFP() constructors - Return a constant with vector type with an element
   2563 /// count and element type of float with the precision matching the number of
   2564 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
   2565 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2566 /// object.
   2567 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2568                                     ArrayRef<uint16_t> Elts) {
   2569   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
   2570   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2571   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
   2572 }
   2573 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2574                                     ArrayRef<uint32_t> Elts) {
   2575   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2576   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2577   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
   2578 }
   2579 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2580                                     ArrayRef<uint64_t> Elts) {
   2581   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2582   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2583   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
   2584 }
   2585 
   2586 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
   2587   assert(isElementTypeCompatible(V->getType()) &&
   2588          "Element type not compatible with ConstantData");
   2589   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2590     if (CI->getType()->isIntegerTy(8)) {
   2591       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
   2592       return get(V->getContext(), Elts);
   2593     }
   2594     if (CI->getType()->isIntegerTy(16)) {
   2595       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
   2596       return get(V->getContext(), Elts);
   2597     }
   2598     if (CI->getType()->isIntegerTy(32)) {
   2599       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
   2600       return get(V->getContext(), Elts);
   2601     }
   2602     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
   2603     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
   2604     return get(V->getContext(), Elts);
   2605   }
   2606 
   2607   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2608     if (CFP->getType()->isHalfTy()) {
   2609       SmallVector<uint16_t, 16> Elts(
   2610           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2611       return getFP(V->getContext(), Elts);
   2612     }
   2613     if (CFP->getType()->isFloatTy()) {
   2614       SmallVector<uint32_t, 16> Elts(
   2615           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2616       return getFP(V->getContext(), Elts);
   2617     }
   2618     if (CFP->getType()->isDoubleTy()) {
   2619       SmallVector<uint64_t, 16> Elts(
   2620           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2621       return getFP(V->getContext(), Elts);
   2622     }
   2623   }
   2624   return ConstantVector::getSplat(NumElts, V);
   2625 }
   2626 
   2627 
   2628 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
   2629   assert(isa<IntegerType>(getElementType()) &&
   2630          "Accessor can only be used when element is an integer");
   2631   const char *EltPtr = getElementPointer(Elt);
   2632 
   2633   // The data is stored in host byte order, make sure to cast back to the right
   2634   // type to load with the right endianness.
   2635   switch (getElementType()->getIntegerBitWidth()) {
   2636   default: llvm_unreachable("Invalid bitwidth for CDS");
   2637   case 8:
   2638     return *reinterpret_cast<const uint8_t *>(EltPtr);
   2639   case 16:
   2640     return *reinterpret_cast<const uint16_t *>(EltPtr);
   2641   case 32:
   2642     return *reinterpret_cast<const uint32_t *>(EltPtr);
   2643   case 64:
   2644     return *reinterpret_cast<const uint64_t *>(EltPtr);
   2645   }
   2646 }
   2647 
   2648 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
   2649   assert(isa<IntegerType>(getElementType()) &&
   2650          "Accessor can only be used when element is an integer");
   2651   const char *EltPtr = getElementPointer(Elt);
   2652 
   2653   // The data is stored in host byte order, make sure to cast back to the right
   2654   // type to load with the right endianness.
   2655   switch (getElementType()->getIntegerBitWidth()) {
   2656   default: llvm_unreachable("Invalid bitwidth for CDS");
   2657   case 8: {
   2658     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
   2659     return APInt(8, EltVal);
   2660   }
   2661   case 16: {
   2662     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
   2663     return APInt(16, EltVal);
   2664   }
   2665   case 32: {
   2666     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
   2667     return APInt(32, EltVal);
   2668   }
   2669   case 64: {
   2670     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
   2671     return APInt(64, EltVal);
   2672   }
   2673   }
   2674 }
   2675 
   2676 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
   2677   const char *EltPtr = getElementPointer(Elt);
   2678 
   2679   switch (getElementType()->getTypeID()) {
   2680   default:
   2681     llvm_unreachable("Accessor can only be used when element is float/double!");
   2682   case Type::HalfTyID: {
   2683     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
   2684     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
   2685   }
   2686   case Type::FloatTyID: {
   2687     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
   2688     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
   2689   }
   2690   case Type::DoubleTyID: {
   2691     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
   2692     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
   2693   }
   2694   }
   2695 }
   2696 
   2697 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
   2698   assert(getElementType()->isFloatTy() &&
   2699          "Accessor can only be used when element is a 'float'");
   2700   return *reinterpret_cast<const float *>(getElementPointer(Elt));
   2701 }
   2702 
   2703 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
   2704   assert(getElementType()->isDoubleTy() &&
   2705          "Accessor can only be used when element is a 'float'");
   2706   return *reinterpret_cast<const double *>(getElementPointer(Elt));
   2707 }
   2708 
   2709 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
   2710   if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
   2711       getElementType()->isDoubleTy())
   2712     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
   2713 
   2714   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
   2715 }
   2716 
   2717 bool ConstantDataSequential::isString(unsigned CharSize) const {
   2718   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
   2719 }
   2720 
   2721 bool ConstantDataSequential::isCString() const {
   2722   if (!isString())
   2723     return false;
   2724 
   2725   StringRef Str = getAsString();
   2726 
   2727   // The last value must be nul.
   2728   if (Str.back() != 0) return false;
   2729 
   2730   // Other elements must be non-nul.
   2731   return Str.drop_back().find(0) == StringRef::npos;
   2732 }
   2733 
   2734 bool ConstantDataVector::isSplat() const {
   2735   const char *Base = getRawDataValues().data();
   2736 
   2737   // Compare elements 1+ to the 0'th element.
   2738   unsigned EltSize = getElementByteSize();
   2739   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
   2740     if (memcmp(Base, Base+i*EltSize, EltSize))
   2741       return false;
   2742 
   2743   return true;
   2744 }
   2745 
   2746 Constant *ConstantDataVector::getSplatValue() const {
   2747   // If they're all the same, return the 0th one as a representative.
   2748   return isSplat() ? getElementAsConstant(0) : nullptr;
   2749 }
   2750 
   2751 //===----------------------------------------------------------------------===//
   2752 //                handleOperandChange implementations
   2753 
   2754 /// Update this constant array to change uses of
   2755 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   2756 /// etc.
   2757 ///
   2758 /// Note that we intentionally replace all uses of From with To here.  Consider
   2759 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   2760 /// ConstantArray::handleOperandChange is only invoked once, and that
   2761 /// single invocation handles all 1000 uses.  Handling them one at a time would
   2762 /// work, but would be really slow because it would have to unique each updated
   2763 /// array instance.
   2764 ///
   2765 void Constant::handleOperandChange(Value *From, Value *To) {
   2766   Value *Replacement = nullptr;
   2767   switch (getValueID()) {
   2768   default:
   2769     llvm_unreachable("Not a constant!");
   2770 #define HANDLE_CONSTANT(Name)                                                  \
   2771   case Value::Name##Val:                                                       \
   2772     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
   2773     break;
   2774 #include "llvm/IR/Value.def"
   2775   }
   2776 
   2777   // If handleOperandChangeImpl returned nullptr, then it handled
   2778   // replacing itself and we don't want to delete or replace anything else here.
   2779   if (!Replacement)
   2780     return;
   2781 
   2782   // I do need to replace this with an existing value.
   2783   assert(Replacement != this && "I didn't contain From!");
   2784 
   2785   // Everyone using this now uses the replacement.
   2786   replaceAllUsesWith(Replacement);
   2787 
   2788   // Delete the old constant!
   2789   destroyConstant();
   2790 }
   2791 
   2792 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
   2793   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2794   Constant *ToC = cast<Constant>(To);
   2795 
   2796   SmallVector<Constant*, 8> Values;
   2797   Values.reserve(getNumOperands());  // Build replacement array.
   2798 
   2799   // Fill values with the modified operands of the constant array.  Also,
   2800   // compute whether this turns into an all-zeros array.
   2801   unsigned NumUpdated = 0;
   2802 
   2803   // Keep track of whether all the values in the array are "ToC".
   2804   bool AllSame = true;
   2805   Use *OperandList = getOperandList();
   2806   unsigned OperandNo = 0;
   2807   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2808     Constant *Val = cast<Constant>(O->get());
   2809     if (Val == From) {
   2810       OperandNo = (O - OperandList);
   2811       Val = ToC;
   2812       ++NumUpdated;
   2813     }
   2814     Values.push_back(Val);
   2815     AllSame &= Val == ToC;
   2816   }
   2817 
   2818   if (AllSame && ToC->isNullValue())
   2819     return ConstantAggregateZero::get(getType());
   2820 
   2821   if (AllSame && isa<UndefValue>(ToC))
   2822     return UndefValue::get(getType());
   2823 
   2824   // Check for any other type of constant-folding.
   2825   if (Constant *C = getImpl(getType(), Values))
   2826     return C;
   2827 
   2828   // Update to the new value.
   2829   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
   2830       Values, this, From, ToC, NumUpdated, OperandNo);
   2831 }
   2832 
   2833 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
   2834   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2835   Constant *ToC = cast<Constant>(To);
   2836 
   2837   Use *OperandList = getOperandList();
   2838 
   2839   SmallVector<Constant*, 8> Values;
   2840   Values.reserve(getNumOperands());  // Build replacement struct.
   2841 
   2842   // Fill values with the modified operands of the constant struct.  Also,
   2843   // compute whether this turns into an all-zeros struct.
   2844   unsigned NumUpdated = 0;
   2845   bool AllSame = true;
   2846   unsigned OperandNo = 0;
   2847   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
   2848     Constant *Val = cast<Constant>(O->get());
   2849     if (Val == From) {
   2850       OperandNo = (O - OperandList);
   2851       Val = ToC;
   2852       ++NumUpdated;
   2853     }
   2854     Values.push_back(Val);
   2855     AllSame &= Val == ToC;
   2856   }
   2857 
   2858   if (AllSame && ToC->isNullValue())
   2859     return ConstantAggregateZero::get(getType());
   2860 
   2861   if (AllSame && isa<UndefValue>(ToC))
   2862     return UndefValue::get(getType());
   2863 
   2864   // Update to the new value.
   2865   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
   2866       Values, this, From, ToC, NumUpdated, OperandNo);
   2867 }
   2868 
   2869 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
   2870   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2871   Constant *ToC = cast<Constant>(To);
   2872 
   2873   SmallVector<Constant*, 8> Values;
   2874   Values.reserve(getNumOperands());  // Build replacement array...
   2875   unsigned NumUpdated = 0;
   2876   unsigned OperandNo = 0;
   2877   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2878     Constant *Val = getOperand(i);
   2879     if (Val == From) {
   2880       OperandNo = i;
   2881       ++NumUpdated;
   2882       Val = ToC;
   2883     }
   2884     Values.push_back(Val);
   2885   }
   2886 
   2887   if (Constant *C = getImpl(Values))
   2888     return C;
   2889 
   2890   // Update to the new value.
   2891   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
   2892       Values, this, From, ToC, NumUpdated, OperandNo);
   2893 }
   2894 
   2895 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
   2896   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2897   Constant *To = cast<Constant>(ToV);
   2898 
   2899   SmallVector<Constant*, 8> NewOps;
   2900   unsigned NumUpdated = 0;
   2901   unsigned OperandNo = 0;
   2902   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2903     Constant *Op = getOperand(i);
   2904     if (Op == From) {
   2905       OperandNo = i;
   2906       ++NumUpdated;
   2907       Op = To;
   2908     }
   2909     NewOps.push_back(Op);
   2910   }
   2911   assert(NumUpdated && "I didn't contain From!");
   2912 
   2913   if (Constant *C = getWithOperands(NewOps, getType(), true))
   2914     return C;
   2915 
   2916   // Update to the new value.
   2917   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
   2918       NewOps, this, From, To, NumUpdated, OperandNo);
   2919 }
   2920 
   2921 Instruction *ConstantExpr::getAsInstruction() {
   2922   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
   2923   ArrayRef<Value*> Ops(ValueOperands);
   2924 
   2925   switch (getOpcode()) {
   2926   case Instruction::Trunc:
   2927   case Instruction::ZExt:
   2928   case Instruction::SExt:
   2929   case Instruction::FPTrunc:
   2930   case Instruction::FPExt:
   2931   case Instruction::UIToFP:
   2932   case Instruction::SIToFP:
   2933   case Instruction::FPToUI:
   2934   case Instruction::FPToSI:
   2935   case Instruction::PtrToInt:
   2936   case Instruction::IntToPtr:
   2937   case Instruction::BitCast:
   2938   case Instruction::AddrSpaceCast:
   2939     return CastInst::Create((Instruction::CastOps)getOpcode(),
   2940                             Ops[0], getType());
   2941   case Instruction::Select:
   2942     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
   2943   case Instruction::InsertElement:
   2944     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
   2945   case Instruction::ExtractElement:
   2946     return ExtractElementInst::Create(Ops[0], Ops[1]);
   2947   case Instruction::InsertValue:
   2948     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
   2949   case Instruction::ExtractValue:
   2950     return ExtractValueInst::Create(Ops[0], getIndices());
   2951   case Instruction::ShuffleVector:
   2952     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
   2953 
   2954   case Instruction::GetElementPtr: {
   2955     const auto *GO = cast<GEPOperator>(this);
   2956     if (GO->isInBounds())
   2957       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
   2958                                                Ops[0], Ops.slice(1));
   2959     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
   2960                                      Ops.slice(1));
   2961   }
   2962   case Instruction::ICmp:
   2963   case Instruction::FCmp:
   2964     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
   2965                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
   2966 
   2967   default:
   2968     assert(getNumOperands() == 2 && "Must be binary operator?");
   2969     BinaryOperator *BO =
   2970       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
   2971                              Ops[0], Ops[1]);
   2972     if (isa<OverflowingBinaryOperator>(BO)) {
   2973       BO->setHasNoUnsignedWrap(SubclassOptionalData &
   2974                                OverflowingBinaryOperator::NoUnsignedWrap);
   2975       BO->setHasNoSignedWrap(SubclassOptionalData &
   2976                              OverflowingBinaryOperator::NoSignedWrap);
   2977     }
   2978     if (isa<PossiblyExactOperator>(BO))
   2979       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
   2980     return BO;
   2981   }
   2982 }
   2983