Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class MachineFunction;
     25 class MachineBasicBlock;
     26 class BitVector;
     27 class AllocaInst;
     28 
     29 /// The CalleeSavedInfo class tracks the information need to locate where a
     30 /// callee saved register is in the current frame.
     31 class CalleeSavedInfo {
     32   unsigned Reg;
     33   int FrameIdx;
     34   /// Flag indicating whether the register is actually restored in the epilog.
     35   /// In most cases, if a register is saved, it is also restored. There are
     36   /// some situations, though, when this is not the case. For example, the
     37   /// LR register on ARM is usually saved, but on exit from the function its
     38   /// saved value may be loaded directly into PC. Since liveness tracking of
     39   /// physical registers treats callee-saved registers are live outside of
     40   /// the function, LR would be treated as live-on-exit, even though in these
     41   /// scenarios it is not. This flag is added to indicate that the saved
     42   /// register described by this object is not restored in the epilog.
     43   /// The long-term solution is to model the liveness of callee-saved registers
     44   /// by implicit uses on the return instructions, however, the required
     45   /// changes in the ARM backend would be quite extensive.
     46   bool Restored;
     47 
     48 public:
     49   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     50   : Reg(R), FrameIdx(FI), Restored(true) {}
     51 
     52   // Accessors.
     53   unsigned getReg()                        const { return Reg; }
     54   int getFrameIdx()                        const { return FrameIdx; }
     55   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     56   bool isRestored()                        const { return Restored; }
     57   void setRestored(bool R)                       { Restored = R; }
     58 };
     59 
     60 /// The MachineFrameInfo class represents an abstract stack frame until
     61 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     62 /// representation optimizations, such as frame pointer elimination.  It also
     63 /// allows more mundane (but still important) optimizations, such as reordering
     64 /// of abstract objects on the stack frame.
     65 ///
     66 /// To support this, the class assigns unique integer identifiers to stack
     67 /// objects requested clients.  These identifiers are negative integers for
     68 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     69 /// for objects that may be reordered.  Instructions which refer to stack
     70 /// objects use a special MO_FrameIndex operand to represent these frame
     71 /// indexes.
     72 ///
     73 /// Because this class keeps track of all references to the stack frame, it
     74 /// knows when a variable sized object is allocated on the stack.  This is the
     75 /// sole condition which prevents frame pointer elimination, which is an
     76 /// important optimization on register-poor architectures.  Because original
     77 /// variable sized alloca's in the source program are the only source of
     78 /// variable sized stack objects, it is safe to decide whether there will be
     79 /// any variable sized objects before all stack objects are known (for
     80 /// example, register allocator spill code never needs variable sized
     81 /// objects).
     82 ///
     83 /// When prolog/epilog code emission is performed, the final stack frame is
     84 /// built and the machine instructions are modified to refer to the actual
     85 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     86 /// the program.
     87 ///
     88 /// Abstract Stack Frame Information
     89 class MachineFrameInfo {
     90 public:
     91   /// Stack Smashing Protection (SSP) rules require that vulnerable stack
     92   /// allocations are located close the stack protector.
     93   enum SSPLayoutKind {
     94     SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
     95                       ///< layout.
     96     SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
     97                       ///< to the stack protector.
     98     SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
     99                       ///< to the stack protector.
    100     SSPLK_AddrOf      ///< The address of this allocation is exposed and
    101                       ///< triggered protection.  3rd closest to the protector.
    102   };
    103 
    104 private:
    105   // Represent a single object allocated on the stack.
    106   struct StackObject {
    107     // The offset of this object from the stack pointer on entry to
    108     // the function.  This field has no meaning for a variable sized element.
    109     int64_t SPOffset;
    110 
    111     // The size of this object on the stack. 0 means a variable sized object,
    112     // ~0ULL means a dead object.
    113     uint64_t Size;
    114 
    115     // The required alignment of this stack slot.
    116     unsigned Alignment;
    117 
    118     // If true, the value of the stack object is set before
    119     // entering the function and is not modified inside the function. By
    120     // default, fixed objects are immutable unless marked otherwise.
    121     bool isImmutable;
    122 
    123     // If true the stack object is used as spill slot. It
    124     // cannot alias any other memory objects.
    125     bool isSpillSlot;
    126 
    127     /// If true, this stack slot is used to spill a value (could be deopt
    128     /// and/or GC related) over a statepoint. We know that the address of the
    129     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
    130     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
    131     /// register allocator.
    132     bool isStatepointSpillSlot = false;
    133 
    134     /// Identifier for stack memory type analagous to address space. If this is
    135     /// non-0, the meaning is target defined. Offsets cannot be directly
    136     /// compared between objects with different stack IDs. The object may not
    137     /// necessarily reside in the same contiguous memory block as other stack
    138     /// objects. Objects with differing stack IDs should not be merged or
    139     /// replaced substituted for each other.
    140     //
    141     /// It is assumed a target uses consecutive, increasing stack IDs starting
    142     /// from 1.
    143     uint8_t StackID;
    144 
    145     /// If this stack object is originated from an Alloca instruction
    146     /// this value saves the original IR allocation. Can be NULL.
    147     const AllocaInst *Alloca;
    148 
    149     // If true, the object was mapped into the local frame
    150     // block and doesn't need additional handling for allocation beyond that.
    151     bool PreAllocated = false;
    152 
    153     // If true, an LLVM IR value might point to this object.
    154     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    155     // objects, but there are exceptions (on PowerPC, for example, some byval
    156     // arguments have ABI-prescribed offsets).
    157     bool isAliased;
    158 
    159     /// If true, the object has been zero-extended.
    160     bool isZExt = false;
    161 
    162     /// If true, the object has been zero-extended.
    163     bool isSExt = false;
    164 
    165     uint8_t SSPLayout;
    166 
    167     StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
    168                 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
    169                 bool IsAliased, uint8_t StackID = 0)
    170       : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
    171         isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
    172         StackID(StackID), Alloca(Alloca), isAliased(IsAliased),
    173         SSPLayout(SSPLK_None) {}
    174   };
    175 
    176   /// The alignment of the stack.
    177   unsigned StackAlignment;
    178 
    179   /// Can the stack be realigned. This can be false if the target does not
    180   /// support stack realignment, or if the user asks us not to realign the
    181   /// stack. In this situation, overaligned allocas are all treated as dynamic
    182   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
    183   /// lowering. All non-alloca stack objects have their alignment clamped to the
    184   /// base ABI stack alignment.
    185   /// FIXME: There is room for improvement in this case, in terms of
    186   /// grouping overaligned allocas into a "secondary stack frame" and
    187   /// then only use a single alloca to allocate this frame and only a
    188   /// single virtual register to access it. Currently, without such an
    189   /// optimization, each such alloca gets its own dynamic realignment.
    190   bool StackRealignable;
    191 
    192   /// Whether the function has the \c alignstack attribute.
    193   bool ForcedRealign;
    194 
    195   /// The list of stack objects allocated.
    196   std::vector<StackObject> Objects;
    197 
    198   /// This contains the number of fixed objects contained on
    199   /// the stack.  Because fixed objects are stored at a negative index in the
    200   /// Objects list, this is also the index to the 0th object in the list.
    201   unsigned NumFixedObjects = 0;
    202 
    203   /// This boolean keeps track of whether any variable
    204   /// sized objects have been allocated yet.
    205   bool HasVarSizedObjects = false;
    206 
    207   /// This boolean keeps track of whether there is a call
    208   /// to builtin \@llvm.frameaddress.
    209   bool FrameAddressTaken = false;
    210 
    211   /// This boolean keeps track of whether there is a call
    212   /// to builtin \@llvm.returnaddress.
    213   bool ReturnAddressTaken = false;
    214 
    215   /// This boolean keeps track of whether there is a call
    216   /// to builtin \@llvm.experimental.stackmap.
    217   bool HasStackMap = false;
    218 
    219   /// This boolean keeps track of whether there is a call
    220   /// to builtin \@llvm.experimental.patchpoint.
    221   bool HasPatchPoint = false;
    222 
    223   /// The prolog/epilog code inserter calculates the final stack
    224   /// offsets for all of the fixed size objects, updating the Objects list
    225   /// above.  It then updates StackSize to contain the number of bytes that need
    226   /// to be allocated on entry to the function.
    227   uint64_t StackSize = 0;
    228 
    229   /// The amount that a frame offset needs to be adjusted to
    230   /// have the actual offset from the stack/frame pointer.  The exact usage of
    231   /// this is target-dependent, but it is typically used to adjust between
    232   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    233   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    234   /// to the distance between the initial SP and the value in FP.  For many
    235   /// targets, this value is only used when generating debug info (via
    236   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
    237   /// corresponding adjustments are performed directly.
    238   int OffsetAdjustment = 0;
    239 
    240   /// The prolog/epilog code inserter may process objects that require greater
    241   /// alignment than the default alignment the target provides.
    242   /// To handle this, MaxAlignment is set to the maximum alignment
    243   /// needed by the objects on the current frame.  If this is greater than the
    244   /// native alignment maintained by the compiler, dynamic alignment code will
    245   /// be needed.
    246   ///
    247   unsigned MaxAlignment = 0;
    248 
    249   /// Set to true if this function adjusts the stack -- e.g.,
    250   /// when calling another function. This is only valid during and after
    251   /// prolog/epilog code insertion.
    252   bool AdjustsStack = false;
    253 
    254   /// Set to true if this function has any function calls.
    255   bool HasCalls = false;
    256 
    257   /// The frame index for the stack protector.
    258   int StackProtectorIdx = -1;
    259 
    260   /// The frame index for the function context. Used for SjLj exceptions.
    261   int FunctionContextIdx = -1;
    262 
    263   /// This contains the size of the largest call frame if the target uses frame
    264   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
    265   /// class).  This information is important for frame pointer elimination.
    266   /// It is only valid during and after prolog/epilog code insertion.
    267   unsigned MaxCallFrameSize = ~0u;
    268 
    269   /// The prolog/epilog code inserter fills in this vector with each
    270   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    271   /// epilog code inserter, this data used for debug info and exception
    272   /// handling.
    273   std::vector<CalleeSavedInfo> CSInfo;
    274 
    275   /// Has CSInfo been set yet?
    276   bool CSIValid = false;
    277 
    278   /// References to frame indices which are mapped
    279   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    280   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    281 
    282   /// Size of the pre-allocated local frame block.
    283   int64_t LocalFrameSize = 0;
    284 
    285   /// Required alignment of the local object blob, which is the strictest
    286   /// alignment of any object in it.
    287   unsigned LocalFrameMaxAlign = 0;
    288 
    289   /// Whether the local object blob needs to be allocated together. If not,
    290   /// PEI should ignore the isPreAllocated flags on the stack objects and
    291   /// just allocate them normally.
    292   bool UseLocalStackAllocationBlock = false;
    293 
    294   /// True if the function dynamically adjusts the stack pointer through some
    295   /// opaque mechanism like inline assembly or Win32 EH.
    296   bool HasOpaqueSPAdjustment = false;
    297 
    298   /// True if the function contains operations which will lower down to
    299   /// instructions which manipulate the stack pointer.
    300   bool HasCopyImplyingStackAdjustment = false;
    301 
    302   /// True if the function contains a call to the llvm.vastart intrinsic.
    303   bool HasVAStart = false;
    304 
    305   /// True if this is a varargs function that contains a musttail call.
    306   bool HasMustTailInVarArgFunc = false;
    307 
    308   /// True if this function contains a tail call. If so immutable objects like
    309   /// function arguments are no longer so. A tail call *can* override fixed
    310   /// stack objects like arguments so we can't treat them as immutable.
    311   bool HasTailCall = false;
    312 
    313   /// Not null, if shrink-wrapping found a better place for the prologue.
    314   MachineBasicBlock *Save = nullptr;
    315   /// Not null, if shrink-wrapping found a better place for the epilogue.
    316   MachineBasicBlock *Restore = nullptr;
    317 
    318 public:
    319   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
    320                             bool ForcedRealign)
    321       : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
    322         ForcedRealign(ForcedRealign) {}
    323 
    324   /// Return true if there are any stack objects in this function.
    325   bool hasStackObjects() const { return !Objects.empty(); }
    326 
    327   /// This method may be called any time after instruction
    328   /// selection is complete to determine if the stack frame for this function
    329   /// contains any variable sized objects.
    330   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    331 
    332   /// Return the index for the stack protector object.
    333   int getStackProtectorIndex() const { return StackProtectorIdx; }
    334   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    335   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
    336 
    337   /// Return the index for the function context object.
    338   /// This object is used for SjLj exceptions.
    339   int getFunctionContextIndex() const { return FunctionContextIdx; }
    340   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    341 
    342   /// This method may be called any time after instruction
    343   /// selection is complete to determine if there is a call to
    344   /// \@llvm.frameaddress in this function.
    345   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    346   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    347 
    348   /// This method may be called any time after
    349   /// instruction selection is complete to determine if there is a call to
    350   /// \@llvm.returnaddress in this function.
    351   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    352   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    353 
    354   /// This method may be called any time after instruction
    355   /// selection is complete to determine if there is a call to builtin
    356   /// \@llvm.experimental.stackmap.
    357   bool hasStackMap() const { return HasStackMap; }
    358   void setHasStackMap(bool s = true) { HasStackMap = s; }
    359 
    360   /// This method may be called any time after instruction
    361   /// selection is complete to determine if there is a call to builtin
    362   /// \@llvm.experimental.patchpoint.
    363   bool hasPatchPoint() const { return HasPatchPoint; }
    364   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    365 
    366   /// Return the minimum frame object index.
    367   int getObjectIndexBegin() const { return -NumFixedObjects; }
    368 
    369   /// Return one past the maximum frame object index.
    370   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    371 
    372   /// Return the number of fixed objects.
    373   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    374 
    375   /// Return the number of objects.
    376   unsigned getNumObjects() const { return Objects.size(); }
    377 
    378   /// Map a frame index into the local object block
    379   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    380     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    381     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    382   }
    383 
    384   /// Get the local offset mapping for a for an object.
    385   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
    386     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    387             "Invalid local object reference!");
    388     return LocalFrameObjects[i];
    389   }
    390 
    391   /// Return the number of objects allocated into the local object block.
    392   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
    393 
    394   /// Set the size of the local object blob.
    395   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    396 
    397   /// Get the size of the local object blob.
    398   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    399 
    400   /// Required alignment of the local object blob,
    401   /// which is the strictest alignment of any object in it.
    402   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    403 
    404   /// Return the required alignment of the local object blob.
    405   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    406 
    407   /// Get whether the local allocation blob should be allocated together or
    408   /// let PEI allocate the locals in it directly.
    409   bool getUseLocalStackAllocationBlock() const {
    410     return UseLocalStackAllocationBlock;
    411   }
    412 
    413   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    414   /// should be allocated together or let PEI allocate the locals in it
    415   /// directly.
    416   void setUseLocalStackAllocationBlock(bool v) {
    417     UseLocalStackAllocationBlock = v;
    418   }
    419 
    420   /// Return true if the object was pre-allocated into the local block.
    421   bool isObjectPreAllocated(int ObjectIdx) const {
    422     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    423            "Invalid Object Idx!");
    424     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    425   }
    426 
    427   /// Return the size of the specified object.
    428   int64_t getObjectSize(int ObjectIdx) const {
    429     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    430            "Invalid Object Idx!");
    431     return Objects[ObjectIdx+NumFixedObjects].Size;
    432   }
    433 
    434   /// Change the size of the specified stack object.
    435   void setObjectSize(int ObjectIdx, int64_t Size) {
    436     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    437            "Invalid Object Idx!");
    438     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    439   }
    440 
    441   /// Return the alignment of the specified stack object.
    442   unsigned getObjectAlignment(int ObjectIdx) const {
    443     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    444            "Invalid Object Idx!");
    445     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    446   }
    447 
    448   /// setObjectAlignment - Change the alignment of the specified stack object.
    449   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    450     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    451            "Invalid Object Idx!");
    452     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    453     ensureMaxAlignment(Align);
    454   }
    455 
    456   /// Return the underlying Alloca of the specified
    457   /// stack object if it exists. Returns 0 if none exists.
    458   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    459     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    460            "Invalid Object Idx!");
    461     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    462   }
    463 
    464   /// Return the assigned stack offset of the specified object
    465   /// from the incoming stack pointer.
    466   int64_t getObjectOffset(int ObjectIdx) const {
    467     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    468            "Invalid Object Idx!");
    469     assert(!isDeadObjectIndex(ObjectIdx) &&
    470            "Getting frame offset for a dead object?");
    471     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    472   }
    473 
    474   bool isObjectZExt(int ObjectIdx) const {
    475     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    476            "Invalid Object Idx!");
    477     return Objects[ObjectIdx+NumFixedObjects].isZExt;
    478   }
    479 
    480   void setObjectZExt(int ObjectIdx, bool IsZExt) {
    481     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    482            "Invalid Object Idx!");
    483     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
    484   }
    485 
    486   bool isObjectSExt(int ObjectIdx) const {
    487     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    488            "Invalid Object Idx!");
    489     return Objects[ObjectIdx+NumFixedObjects].isSExt;
    490   }
    491 
    492   void setObjectSExt(int ObjectIdx, bool IsSExt) {
    493     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    494            "Invalid Object Idx!");
    495     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
    496   }
    497 
    498   /// Set the stack frame offset of the specified object. The
    499   /// offset is relative to the stack pointer on entry to the function.
    500   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    501     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    502            "Invalid Object Idx!");
    503     assert(!isDeadObjectIndex(ObjectIdx) &&
    504            "Setting frame offset for a dead object?");
    505     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    506   }
    507 
    508   SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
    509     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    510            "Invalid Object Idx!");
    511     return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
    512   }
    513 
    514   void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
    515     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    516            "Invalid Object Idx!");
    517     assert(!isDeadObjectIndex(ObjectIdx) &&
    518            "Setting SSP layout for a dead object?");
    519     Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
    520   }
    521 
    522   /// Return the number of bytes that must be allocated to hold
    523   /// all of the fixed size frame objects.  This is only valid after
    524   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    525   uint64_t getStackSize() const { return StackSize; }
    526 
    527   /// Set the size of the stack.
    528   void setStackSize(uint64_t Size) { StackSize = Size; }
    529 
    530   /// Estimate and return the size of the stack frame.
    531   unsigned estimateStackSize(const MachineFunction &MF) const;
    532 
    533   /// Return the correction for frame offsets.
    534   int getOffsetAdjustment() const { return OffsetAdjustment; }
    535 
    536   /// Set the correction for frame offsets.
    537   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    538 
    539   /// Return the alignment in bytes that this function must be aligned to,
    540   /// which is greater than the default stack alignment provided by the target.
    541   unsigned getMaxAlignment() const { return MaxAlignment; }
    542 
    543   /// Make sure the function is at least Align bytes aligned.
    544   void ensureMaxAlignment(unsigned Align);
    545 
    546   /// Return true if this function adjusts the stack -- e.g.,
    547   /// when calling another function. This is only valid during and after
    548   /// prolog/epilog code insertion.
    549   bool adjustsStack() const { return AdjustsStack; }
    550   void setAdjustsStack(bool V) { AdjustsStack = V; }
    551 
    552   /// Return true if the current function has any function calls.
    553   bool hasCalls() const { return HasCalls; }
    554   void setHasCalls(bool V) { HasCalls = V; }
    555 
    556   /// Returns true if the function contains opaque dynamic stack adjustments.
    557   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
    558   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
    559 
    560   /// Returns true if the function contains operations which will lower down to
    561   /// instructions which manipulate the stack pointer.
    562   bool hasCopyImplyingStackAdjustment() const {
    563     return HasCopyImplyingStackAdjustment;
    564   }
    565   void setHasCopyImplyingStackAdjustment(bool B) {
    566     HasCopyImplyingStackAdjustment = B;
    567   }
    568 
    569   /// Returns true if the function calls the llvm.va_start intrinsic.
    570   bool hasVAStart() const { return HasVAStart; }
    571   void setHasVAStart(bool B) { HasVAStart = B; }
    572 
    573   /// Returns true if the function is variadic and contains a musttail call.
    574   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    575   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    576 
    577   /// Returns true if the function contains a tail call.
    578   bool hasTailCall() const { return HasTailCall; }
    579   void setHasTailCall() { HasTailCall = true; }
    580 
    581   /// Computes the maximum size of a callframe and the AdjustsStack property.
    582   /// This only works for targets defining
    583   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
    584   /// and getFrameSize().
    585   /// This is usually computed by the prologue epilogue inserter but some
    586   /// targets may call this to compute it earlier.
    587   void computeMaxCallFrameSize(const MachineFunction &MF);
    588 
    589   /// Return the maximum size of a call frame that must be
    590   /// allocated for an outgoing function call.  This is only available if
    591   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    592   /// then only during or after prolog/epilog code insertion.
    593   ///
    594   unsigned getMaxCallFrameSize() const {
    595     // TODO: Enable this assert when targets are fixed.
    596     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
    597     if (!isMaxCallFrameSizeComputed())
    598       return 0;
    599     return MaxCallFrameSize;
    600   }
    601   bool isMaxCallFrameSizeComputed() const {
    602     return MaxCallFrameSize != ~0u;
    603   }
    604   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    605 
    606   /// Create a new object at a fixed location on the stack.
    607   /// All fixed objects should be created before other objects are created for
    608   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    609   /// values. This returns an index with a negative value.
    610   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
    611                         bool isAliased = false);
    612 
    613   /// Create a spill slot at a fixed location on the stack.
    614   /// Returns an index with a negative value.
    615   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
    616                                   bool IsImmutable = false);
    617 
    618   /// Returns true if the specified index corresponds to a fixed stack object.
    619   bool isFixedObjectIndex(int ObjectIdx) const {
    620     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    621   }
    622 
    623   /// Returns true if the specified index corresponds
    624   /// to an object that might be pointed to by an LLVM IR value.
    625   bool isAliasedObjectIndex(int ObjectIdx) const {
    626     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    627            "Invalid Object Idx!");
    628     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    629   }
    630 
    631   /// Returns true if the specified index corresponds to an immutable object.
    632   bool isImmutableObjectIndex(int ObjectIdx) const {
    633     // Tail calling functions can clobber their function arguments.
    634     if (HasTailCall)
    635       return false;
    636     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    637            "Invalid Object Idx!");
    638     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    639   }
    640 
    641   /// Marks the immutability of an object.
    642   void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
    643     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    644            "Invalid Object Idx!");
    645     Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
    646   }
    647 
    648   /// Returns true if the specified index corresponds to a spill slot.
    649   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    650     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    651            "Invalid Object Idx!");
    652     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    653   }
    654 
    655   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
    656     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    657            "Invalid Object Idx!");
    658     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
    659   }
    660 
    661   /// \see StackID
    662   uint8_t getStackID(int ObjectIdx) const {
    663     return Objects[ObjectIdx+NumFixedObjects].StackID;
    664   }
    665 
    666   /// \see StackID
    667   void setStackID(int ObjectIdx, uint8_t ID) {
    668     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    669            "Invalid Object Idx!");
    670     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
    671   }
    672 
    673   /// Returns true if the specified index corresponds to a dead object.
    674   bool isDeadObjectIndex(int ObjectIdx) const {
    675     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    676            "Invalid Object Idx!");
    677     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    678   }
    679 
    680   /// Returns true if the specified index corresponds to a variable sized
    681   /// object.
    682   bool isVariableSizedObjectIndex(int ObjectIdx) const {
    683     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
    684            "Invalid Object Idx!");
    685     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
    686   }
    687 
    688   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
    689     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    690            "Invalid Object Idx!");
    691     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
    692     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
    693   }
    694 
    695   /// Create a new statically sized stack object, returning
    696   /// a nonnegative identifier to represent it.
    697   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
    698                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
    699 
    700   /// Create a new statically sized stack object that represents a spill slot,
    701   /// returning a nonnegative identifier to represent it.
    702   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    703 
    704   /// Remove or mark dead a statically sized stack object.
    705   void RemoveStackObject(int ObjectIdx) {
    706     // Mark it dead.
    707     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    708   }
    709 
    710   /// Notify the MachineFrameInfo object that a variable sized object has been
    711   /// created.  This must be created whenever a variable sized object is
    712   /// created, whether or not the index returned is actually used.
    713   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    714 
    715   /// Returns a reference to call saved info vector for the current function.
    716   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    717     return CSInfo;
    718   }
    719   /// \copydoc getCalleeSavedInfo()
    720   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
    721 
    722   /// Used by prolog/epilog inserter to set the function's callee saved
    723   /// information.
    724   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    725     CSInfo = CSI;
    726   }
    727 
    728   /// Has the callee saved info been calculated yet?
    729   bool isCalleeSavedInfoValid() const { return CSIValid; }
    730 
    731   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    732 
    733   MachineBasicBlock *getSavePoint() const { return Save; }
    734   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
    735   MachineBasicBlock *getRestorePoint() const { return Restore; }
    736   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
    737 
    738   /// Return a set of physical registers that are pristine.
    739   ///
    740   /// Pristine registers hold a value that is useless to the current function,
    741   /// but that must be preserved - they are callee saved registers that are not
    742   /// saved.
    743   ///
    744   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    745   /// method always returns an empty set.
    746   BitVector getPristineRegs(const MachineFunction &MF) const;
    747 
    748   /// Used by the MachineFunction printer to print information about
    749   /// stack objects. Implemented in MachineFunction.cpp.
    750   void print(const MachineFunction &MF, raw_ostream &OS) const;
    751 
    752   /// dump - Print the function to stderr.
    753   void dump(const MachineFunction &MF) const;
    754 };
    755 
    756 } // End llvm namespace
    757 
    758 #endif
    759