1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ASTContext interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "CXXABI.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Comment.h" 20 #include "clang/AST/CommentCommandTraits.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclContextInternals.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExternalASTSource.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/MangleNumberingContext.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/AST/TypeLoc.h" 33 #include "clang/AST/VTableBuilder.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/StringExtras.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Support/Capacity.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <map> 44 45 using namespace clang; 46 47 unsigned ASTContext::NumImplicitDefaultConstructors; 48 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; 49 unsigned ASTContext::NumImplicitCopyConstructors; 50 unsigned ASTContext::NumImplicitCopyConstructorsDeclared; 51 unsigned ASTContext::NumImplicitMoveConstructors; 52 unsigned ASTContext::NumImplicitMoveConstructorsDeclared; 53 unsigned ASTContext::NumImplicitCopyAssignmentOperators; 54 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 55 unsigned ASTContext::NumImplicitMoveAssignmentOperators; 56 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; 57 unsigned ASTContext::NumImplicitDestructors; 58 unsigned ASTContext::NumImplicitDestructorsDeclared; 59 60 enum FloatingRank { 61 HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank 62 }; 63 64 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 65 if (!CommentsLoaded && ExternalSource) { 66 ExternalSource->ReadComments(); 67 68 #ifndef NDEBUG 69 ArrayRef<RawComment *> RawComments = Comments.getComments(); 70 assert(std::is_sorted(RawComments.begin(), RawComments.end(), 71 BeforeThanCompare<RawComment>(SourceMgr))); 72 #endif 73 74 CommentsLoaded = true; 75 } 76 77 assert(D); 78 79 // User can not attach documentation to implicit declarations. 80 if (D->isImplicit()) 81 return nullptr; 82 83 // User can not attach documentation to implicit instantiations. 84 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 85 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 86 return nullptr; 87 } 88 89 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 90 if (VD->isStaticDataMember() && 91 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 92 return nullptr; 93 } 94 95 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 96 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 97 return nullptr; 98 } 99 100 if (const ClassTemplateSpecializationDecl *CTSD = 101 dyn_cast<ClassTemplateSpecializationDecl>(D)) { 102 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 103 if (TSK == TSK_ImplicitInstantiation || 104 TSK == TSK_Undeclared) 105 return nullptr; 106 } 107 108 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 109 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 110 return nullptr; 111 } 112 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 113 // When tag declaration (but not definition!) is part of the 114 // decl-specifier-seq of some other declaration, it doesn't get comment 115 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 116 return nullptr; 117 } 118 // TODO: handle comments for function parameters properly. 119 if (isa<ParmVarDecl>(D)) 120 return nullptr; 121 122 // TODO: we could look up template parameter documentation in the template 123 // documentation. 124 if (isa<TemplateTypeParmDecl>(D) || 125 isa<NonTypeTemplateParmDecl>(D) || 126 isa<TemplateTemplateParmDecl>(D)) 127 return nullptr; 128 129 ArrayRef<RawComment *> RawComments = Comments.getComments(); 130 131 // If there are no comments anywhere, we won't find anything. 132 if (RawComments.empty()) 133 return nullptr; 134 135 // Find declaration location. 136 // For Objective-C declarations we generally don't expect to have multiple 137 // declarators, thus use declaration starting location as the "declaration 138 // location". 139 // For all other declarations multiple declarators are used quite frequently, 140 // so we use the location of the identifier as the "declaration location". 141 SourceLocation DeclLoc; 142 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 143 isa<ObjCPropertyDecl>(D) || 144 isa<RedeclarableTemplateDecl>(D) || 145 isa<ClassTemplateSpecializationDecl>(D)) 146 DeclLoc = D->getLocStart(); 147 else { 148 DeclLoc = D->getLocation(); 149 if (DeclLoc.isMacroID()) { 150 if (isa<TypedefDecl>(D)) { 151 // If location of the typedef name is in a macro, it is because being 152 // declared via a macro. Try using declaration's starting location as 153 // the "declaration location". 154 DeclLoc = D->getLocStart(); 155 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 156 // If location of the tag decl is inside a macro, but the spelling of 157 // the tag name comes from a macro argument, it looks like a special 158 // macro like NS_ENUM is being used to define the tag decl. In that 159 // case, adjust the source location to the expansion loc so that we can 160 // attach the comment to the tag decl. 161 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 162 TD->isCompleteDefinition()) 163 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); 164 } 165 } 166 } 167 168 // If the declaration doesn't map directly to a location in a file, we 169 // can't find the comment. 170 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 171 return nullptr; 172 173 // Find the comment that occurs just after this declaration. 174 ArrayRef<RawComment *>::iterator Comment; 175 { 176 // When searching for comments during parsing, the comment we are looking 177 // for is usually among the last two comments we parsed -- check them 178 // first. 179 RawComment CommentAtDeclLoc( 180 SourceMgr, SourceRange(DeclLoc), false, 181 LangOpts.CommentOpts.ParseAllComments); 182 BeforeThanCompare<RawComment> Compare(SourceMgr); 183 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; 184 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 185 if (!Found && RawComments.size() >= 2) { 186 MaybeBeforeDecl--; 187 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 188 } 189 190 if (Found) { 191 Comment = MaybeBeforeDecl + 1; 192 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), 193 &CommentAtDeclLoc, Compare)); 194 } else { 195 // Slow path. 196 Comment = std::lower_bound(RawComments.begin(), RawComments.end(), 197 &CommentAtDeclLoc, Compare); 198 } 199 } 200 201 // Decompose the location for the declaration and find the beginning of the 202 // file buffer. 203 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); 204 205 // First check whether we have a trailing comment. 206 if (Comment != RawComments.end() && 207 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && 208 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 209 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 210 std::pair<FileID, unsigned> CommentBeginDecomp 211 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); 212 // Check that Doxygen trailing comment comes after the declaration, starts 213 // on the same line and in the same file as the declaration. 214 if (DeclLocDecomp.first == CommentBeginDecomp.first && 215 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) 216 == SourceMgr.getLineNumber(CommentBeginDecomp.first, 217 CommentBeginDecomp.second)) { 218 return *Comment; 219 } 220 } 221 222 // The comment just after the declaration was not a trailing comment. 223 // Let's look at the previous comment. 224 if (Comment == RawComments.begin()) 225 return nullptr; 226 --Comment; 227 228 // Check that we actually have a non-member Doxygen comment. 229 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) 230 return nullptr; 231 232 // Decompose the end of the comment. 233 std::pair<FileID, unsigned> CommentEndDecomp 234 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); 235 236 // If the comment and the declaration aren't in the same file, then they 237 // aren't related. 238 if (DeclLocDecomp.first != CommentEndDecomp.first) 239 return nullptr; 240 241 // Get the corresponding buffer. 242 bool Invalid = false; 243 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 244 &Invalid).data(); 245 if (Invalid) 246 return nullptr; 247 248 // Extract text between the comment and declaration. 249 StringRef Text(Buffer + CommentEndDecomp.second, 250 DeclLocDecomp.second - CommentEndDecomp.second); 251 252 // There should be no other declarations or preprocessor directives between 253 // comment and declaration. 254 if (Text.find_first_of(";{}#@") != StringRef::npos) 255 return nullptr; 256 257 return *Comment; 258 } 259 260 namespace { 261 /// If we have a 'templated' declaration for a template, adjust 'D' to 262 /// refer to the actual template. 263 /// If we have an implicit instantiation, adjust 'D' to refer to template. 264 const Decl *adjustDeclToTemplate(const Decl *D) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 266 // Is this function declaration part of a function template? 267 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 268 return FTD; 269 270 // Nothing to do if function is not an implicit instantiation. 271 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 272 return D; 273 274 // Function is an implicit instantiation of a function template? 275 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 276 return FTD; 277 278 // Function is instantiated from a member definition of a class template? 279 if (const FunctionDecl *MemberDecl = 280 FD->getInstantiatedFromMemberFunction()) 281 return MemberDecl; 282 283 return D; 284 } 285 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 286 // Static data member is instantiated from a member definition of a class 287 // template? 288 if (VD->isStaticDataMember()) 289 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 290 return MemberDecl; 291 292 return D; 293 } 294 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 295 // Is this class declaration part of a class template? 296 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 297 return CTD; 298 299 // Class is an implicit instantiation of a class template or partial 300 // specialization? 301 if (const ClassTemplateSpecializationDecl *CTSD = 302 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 303 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 304 return D; 305 llvm::PointerUnion<ClassTemplateDecl *, 306 ClassTemplatePartialSpecializationDecl *> 307 PU = CTSD->getSpecializedTemplateOrPartial(); 308 return PU.is<ClassTemplateDecl*>() ? 309 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : 310 static_cast<const Decl*>( 311 PU.get<ClassTemplatePartialSpecializationDecl *>()); 312 } 313 314 // Class is instantiated from a member definition of a class template? 315 if (const MemberSpecializationInfo *Info = 316 CRD->getMemberSpecializationInfo()) 317 return Info->getInstantiatedFrom(); 318 319 return D; 320 } 321 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 322 // Enum is instantiated from a member definition of a class template? 323 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 324 return MemberDecl; 325 326 return D; 327 } 328 // FIXME: Adjust alias templates? 329 return D; 330 } 331 } // anonymous namespace 332 333 const RawComment *ASTContext::getRawCommentForAnyRedecl( 334 const Decl *D, 335 const Decl **OriginalDecl) const { 336 D = adjustDeclToTemplate(D); 337 338 // Check whether we have cached a comment for this declaration already. 339 { 340 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 341 RedeclComments.find(D); 342 if (Pos != RedeclComments.end()) { 343 const RawCommentAndCacheFlags &Raw = Pos->second; 344 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 345 if (OriginalDecl) 346 *OriginalDecl = Raw.getOriginalDecl(); 347 return Raw.getRaw(); 348 } 349 } 350 } 351 352 // Search for comments attached to declarations in the redeclaration chain. 353 const RawComment *RC = nullptr; 354 const Decl *OriginalDeclForRC = nullptr; 355 for (auto I : D->redecls()) { 356 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 357 RedeclComments.find(I); 358 if (Pos != RedeclComments.end()) { 359 const RawCommentAndCacheFlags &Raw = Pos->second; 360 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 361 RC = Raw.getRaw(); 362 OriginalDeclForRC = Raw.getOriginalDecl(); 363 break; 364 } 365 } else { 366 RC = getRawCommentForDeclNoCache(I); 367 OriginalDeclForRC = I; 368 RawCommentAndCacheFlags Raw; 369 if (RC) { 370 // Call order swapped to work around ICE in VS2015 RTM (Release Win32) 371 // https://connect.microsoft.com/VisualStudio/feedback/details/1741530 372 Raw.setKind(RawCommentAndCacheFlags::FromDecl); 373 Raw.setRaw(RC); 374 } else 375 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); 376 Raw.setOriginalDecl(I); 377 RedeclComments[I] = Raw; 378 if (RC) 379 break; 380 } 381 } 382 383 // If we found a comment, it should be a documentation comment. 384 assert(!RC || RC->isDocumentation()); 385 386 if (OriginalDecl) 387 *OriginalDecl = OriginalDeclForRC; 388 389 // Update cache for every declaration in the redeclaration chain. 390 RawCommentAndCacheFlags Raw; 391 Raw.setRaw(RC); 392 Raw.setKind(RawCommentAndCacheFlags::FromRedecl); 393 Raw.setOriginalDecl(OriginalDeclForRC); 394 395 for (auto I : D->redecls()) { 396 RawCommentAndCacheFlags &R = RedeclComments[I]; 397 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) 398 R = Raw; 399 } 400 401 return RC; 402 } 403 404 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 405 SmallVectorImpl<const NamedDecl *> &Redeclared) { 406 const DeclContext *DC = ObjCMethod->getDeclContext(); 407 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { 408 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 409 if (!ID) 410 return; 411 // Add redeclared method here. 412 for (const auto *Ext : ID->known_extensions()) { 413 if (ObjCMethodDecl *RedeclaredMethod = 414 Ext->getMethod(ObjCMethod->getSelector(), 415 ObjCMethod->isInstanceMethod())) 416 Redeclared.push_back(RedeclaredMethod); 417 } 418 } 419 } 420 421 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 422 const Decl *D) const { 423 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; 424 ThisDeclInfo->CommentDecl = D; 425 ThisDeclInfo->IsFilled = false; 426 ThisDeclInfo->fill(); 427 ThisDeclInfo->CommentDecl = FC->getDecl(); 428 if (!ThisDeclInfo->TemplateParameters) 429 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 430 comments::FullComment *CFC = 431 new (*this) comments::FullComment(FC->getBlocks(), 432 ThisDeclInfo); 433 return CFC; 434 } 435 436 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 437 const RawComment *RC = getRawCommentForDeclNoCache(D); 438 return RC ? RC->parse(*this, nullptr, D) : nullptr; 439 } 440 441 comments::FullComment *ASTContext::getCommentForDecl( 442 const Decl *D, 443 const Preprocessor *PP) const { 444 if (D->isInvalidDecl()) 445 return nullptr; 446 D = adjustDeclToTemplate(D); 447 448 const Decl *Canonical = D->getCanonicalDecl(); 449 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 450 ParsedComments.find(Canonical); 451 452 if (Pos != ParsedComments.end()) { 453 if (Canonical != D) { 454 comments::FullComment *FC = Pos->second; 455 comments::FullComment *CFC = cloneFullComment(FC, D); 456 return CFC; 457 } 458 return Pos->second; 459 } 460 461 const Decl *OriginalDecl; 462 463 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 464 if (!RC) { 465 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 466 SmallVector<const NamedDecl*, 8> Overridden; 467 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); 468 if (OMD && OMD->isPropertyAccessor()) 469 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 470 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 471 return cloneFullComment(FC, D); 472 if (OMD) 473 addRedeclaredMethods(OMD, Overridden); 474 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 475 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 476 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 477 return cloneFullComment(FC, D); 478 } 479 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 480 // Attach any tag type's documentation to its typedef if latter 481 // does not have one of its own. 482 QualType QT = TD->getUnderlyingType(); 483 if (const TagType *TT = QT->getAs<TagType>()) 484 if (const Decl *TD = TT->getDecl()) 485 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 486 return cloneFullComment(FC, D); 487 } 488 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 489 while (IC->getSuperClass()) { 490 IC = IC->getSuperClass(); 491 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 492 return cloneFullComment(FC, D); 493 } 494 } 495 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { 496 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 497 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 498 return cloneFullComment(FC, D); 499 } 500 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 501 if (!(RD = RD->getDefinition())) 502 return nullptr; 503 // Check non-virtual bases. 504 for (const auto &I : RD->bases()) { 505 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 506 continue; 507 QualType Ty = I.getType(); 508 if (Ty.isNull()) 509 continue; 510 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 511 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 512 continue; 513 514 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 515 return cloneFullComment(FC, D); 516 } 517 } 518 // Check virtual bases. 519 for (const auto &I : RD->vbases()) { 520 if (I.getAccessSpecifier() != AS_public) 521 continue; 522 QualType Ty = I.getType(); 523 if (Ty.isNull()) 524 continue; 525 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 526 if (!(VirtualBase= VirtualBase->getDefinition())) 527 continue; 528 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 529 return cloneFullComment(FC, D); 530 } 531 } 532 } 533 return nullptr; 534 } 535 536 // If the RawComment was attached to other redeclaration of this Decl, we 537 // should parse the comment in context of that other Decl. This is important 538 // because comments can contain references to parameter names which can be 539 // different across redeclarations. 540 if (D != OriginalDecl) 541 return getCommentForDecl(OriginalDecl, PP); 542 543 comments::FullComment *FC = RC->parse(*this, PP, D); 544 ParsedComments[Canonical] = FC; 545 return FC; 546 } 547 548 void 549 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 550 TemplateTemplateParmDecl *Parm) { 551 ID.AddInteger(Parm->getDepth()); 552 ID.AddInteger(Parm->getPosition()); 553 ID.AddBoolean(Parm->isParameterPack()); 554 555 TemplateParameterList *Params = Parm->getTemplateParameters(); 556 ID.AddInteger(Params->size()); 557 for (TemplateParameterList::const_iterator P = Params->begin(), 558 PEnd = Params->end(); 559 P != PEnd; ++P) { 560 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 561 ID.AddInteger(0); 562 ID.AddBoolean(TTP->isParameterPack()); 563 continue; 564 } 565 566 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 567 ID.AddInteger(1); 568 ID.AddBoolean(NTTP->isParameterPack()); 569 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 570 if (NTTP->isExpandedParameterPack()) { 571 ID.AddBoolean(true); 572 ID.AddInteger(NTTP->getNumExpansionTypes()); 573 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 574 QualType T = NTTP->getExpansionType(I); 575 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 576 } 577 } else 578 ID.AddBoolean(false); 579 continue; 580 } 581 582 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); 583 ID.AddInteger(2); 584 Profile(ID, TTP); 585 } 586 } 587 588 TemplateTemplateParmDecl * 589 ASTContext::getCanonicalTemplateTemplateParmDecl( 590 TemplateTemplateParmDecl *TTP) const { 591 // Check if we already have a canonical template template parameter. 592 llvm::FoldingSetNodeID ID; 593 CanonicalTemplateTemplateParm::Profile(ID, TTP); 594 void *InsertPos = nullptr; 595 CanonicalTemplateTemplateParm *Canonical 596 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 597 if (Canonical) 598 return Canonical->getParam(); 599 600 // Build a canonical template parameter list. 601 TemplateParameterList *Params = TTP->getTemplateParameters(); 602 SmallVector<NamedDecl *, 4> CanonParams; 603 CanonParams.reserve(Params->size()); 604 for (TemplateParameterList::const_iterator P = Params->begin(), 605 PEnd = Params->end(); 606 P != PEnd; ++P) { 607 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) 608 CanonParams.push_back( 609 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), 610 SourceLocation(), 611 SourceLocation(), 612 TTP->getDepth(), 613 TTP->getIndex(), nullptr, false, 614 TTP->isParameterPack())); 615 else if (NonTypeTemplateParmDecl *NTTP 616 = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 617 QualType T = getCanonicalType(NTTP->getType()); 618 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 619 NonTypeTemplateParmDecl *Param; 620 if (NTTP->isExpandedParameterPack()) { 621 SmallVector<QualType, 2> ExpandedTypes; 622 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 623 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 624 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 625 ExpandedTInfos.push_back( 626 getTrivialTypeSourceInfo(ExpandedTypes.back())); 627 } 628 629 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 630 SourceLocation(), 631 SourceLocation(), 632 NTTP->getDepth(), 633 NTTP->getPosition(), nullptr, 634 T, 635 TInfo, 636 ExpandedTypes, 637 ExpandedTInfos); 638 } else { 639 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 640 SourceLocation(), 641 SourceLocation(), 642 NTTP->getDepth(), 643 NTTP->getPosition(), nullptr, 644 T, 645 NTTP->isParameterPack(), 646 TInfo); 647 } 648 CanonParams.push_back(Param); 649 650 } else 651 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 652 cast<TemplateTemplateParmDecl>(*P))); 653 } 654 655 TemplateTemplateParmDecl *CanonTTP 656 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 657 SourceLocation(), TTP->getDepth(), 658 TTP->getPosition(), 659 TTP->isParameterPack(), 660 nullptr, 661 TemplateParameterList::Create(*this, SourceLocation(), 662 SourceLocation(), 663 CanonParams, 664 SourceLocation())); 665 666 // Get the new insert position for the node we care about. 667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 668 assert(!Canonical && "Shouldn't be in the map!"); 669 (void)Canonical; 670 671 // Create the canonical template template parameter entry. 672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 674 return CanonTTP; 675 } 676 677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 678 if (!LangOpts.CPlusPlus) return nullptr; 679 680 switch (T.getCXXABI().getKind()) { 681 case TargetCXXABI::GenericARM: // Same as Itanium at this level 682 case TargetCXXABI::iOS: 683 case TargetCXXABI::iOS64: 684 case TargetCXXABI::WatchOS: 685 case TargetCXXABI::GenericAArch64: 686 case TargetCXXABI::GenericMIPS: 687 case TargetCXXABI::GenericItanium: 688 case TargetCXXABI::WebAssembly: 689 return CreateItaniumCXXABI(*this); 690 case TargetCXXABI::Microsoft: 691 return CreateMicrosoftCXXABI(*this); 692 } 693 llvm_unreachable("Invalid CXXABI type!"); 694 } 695 696 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, 697 const LangOptions &LOpts) { 698 if (LOpts.FakeAddressSpaceMap) { 699 // The fake address space map must have a distinct entry for each 700 // language-specific address space. 701 static const unsigned FakeAddrSpaceMap[] = { 702 1, // opencl_global 703 2, // opencl_local 704 3, // opencl_constant 705 4, // opencl_generic 706 5, // cuda_device 707 6, // cuda_constant 708 7 // cuda_shared 709 }; 710 return &FakeAddrSpaceMap; 711 } else { 712 return &T.getAddressSpaceMap(); 713 } 714 } 715 716 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 717 const LangOptions &LangOpts) { 718 switch (LangOpts.getAddressSpaceMapMangling()) { 719 case LangOptions::ASMM_Target: 720 return TI.useAddressSpaceMapMangling(); 721 case LangOptions::ASMM_On: 722 return true; 723 case LangOptions::ASMM_Off: 724 return false; 725 } 726 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 727 } 728 729 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 730 IdentifierTable &idents, SelectorTable &sels, 731 Builtin::Context &builtins) 732 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()), 733 DependentTemplateSpecializationTypes(this_()), 734 SubstTemplateTemplateParmPacks(this_()), 735 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr), 736 UInt128Decl(nullptr), BuiltinVaListDecl(nullptr), 737 BuiltinMSVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), 738 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), 739 CFConstantStringTagDecl(nullptr), CFConstantStringTypeDecl(nullptr), 740 ObjCInstanceTypeDecl(nullptr), FILEDecl(nullptr), jmp_bufDecl(nullptr), 741 sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr), 742 BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr), 743 cudaConfigureCallDecl(nullptr), FirstLocalImport(), LastLocalImport(), 744 ExternCContext(nullptr), MakeIntegerSeqDecl(nullptr), 745 TypePackElementDecl(nullptr), SourceMgr(SM), LangOpts(LOpts), 746 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)), 747 AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr), 748 PrintingPolicy(LOpts), Idents(idents), Selectors(sels), 749 BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr), 750 Listener(nullptr), Comments(SM), CommentsLoaded(false), 751 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) { 752 TUDecl = TranslationUnitDecl::Create(*this); 753 } 754 755 ASTContext::~ASTContext() { 756 ReleaseParentMapEntries(); 757 758 // Release the DenseMaps associated with DeclContext objects. 759 // FIXME: Is this the ideal solution? 760 ReleaseDeclContextMaps(); 761 762 // Call all of the deallocation functions on all of their targets. 763 for (auto &Pair : Deallocations) 764 (Pair.first)(Pair.second); 765 766 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 767 // because they can contain DenseMaps. 768 for (llvm::DenseMap<const ObjCContainerDecl*, 769 const ASTRecordLayout*>::iterator 770 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 771 // Increment in loop to prevent using deallocated memory. 772 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 773 R->Destroy(*this); 774 775 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 776 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 777 // Increment in loop to prevent using deallocated memory. 778 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 779 R->Destroy(*this); 780 } 781 782 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 783 AEnd = DeclAttrs.end(); 784 A != AEnd; ++A) 785 A->second->~AttrVec(); 786 787 for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair : 788 MaterializedTemporaryValues) 789 MTVPair.second->~APValue(); 790 791 llvm::DeleteContainerSeconds(MangleNumberingContexts); 792 } 793 794 void ASTContext::ReleaseParentMapEntries() { 795 if (!PointerParents) return; 796 for (const auto &Entry : *PointerParents) { 797 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 798 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 799 } else if (Entry.second.is<ParentVector *>()) { 800 delete Entry.second.get<ParentVector *>(); 801 } 802 } 803 for (const auto &Entry : *OtherParents) { 804 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 805 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 806 } else if (Entry.second.is<ParentVector *>()) { 807 delete Entry.second.get<ParentVector *>(); 808 } 809 } 810 } 811 812 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { 813 Deallocations.push_back({Callback, Data}); 814 } 815 816 void 817 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 818 ExternalSource = std::move(Source); 819 } 820 821 void ASTContext::PrintStats() const { 822 llvm::errs() << "\n*** AST Context Stats:\n"; 823 llvm::errs() << " " << Types.size() << " types total.\n"; 824 825 unsigned counts[] = { 826 #define TYPE(Name, Parent) 0, 827 #define ABSTRACT_TYPE(Name, Parent) 828 #include "clang/AST/TypeNodes.def" 829 0 // Extra 830 }; 831 832 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 833 Type *T = Types[i]; 834 counts[(unsigned)T->getTypeClass()]++; 835 } 836 837 unsigned Idx = 0; 838 unsigned TotalBytes = 0; 839 #define TYPE(Name, Parent) \ 840 if (counts[Idx]) \ 841 llvm::errs() << " " << counts[Idx] << " " << #Name \ 842 << " types\n"; \ 843 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 844 ++Idx; 845 #define ABSTRACT_TYPE(Name, Parent) 846 #include "clang/AST/TypeNodes.def" 847 848 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 849 850 // Implicit special member functions. 851 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 852 << NumImplicitDefaultConstructors 853 << " implicit default constructors created\n"; 854 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 855 << NumImplicitCopyConstructors 856 << " implicit copy constructors created\n"; 857 if (getLangOpts().CPlusPlus) 858 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 859 << NumImplicitMoveConstructors 860 << " implicit move constructors created\n"; 861 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 862 << NumImplicitCopyAssignmentOperators 863 << " implicit copy assignment operators created\n"; 864 if (getLangOpts().CPlusPlus) 865 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 866 << NumImplicitMoveAssignmentOperators 867 << " implicit move assignment operators created\n"; 868 llvm::errs() << NumImplicitDestructorsDeclared << "/" 869 << NumImplicitDestructors 870 << " implicit destructors created\n"; 871 872 if (ExternalSource) { 873 llvm::errs() << "\n"; 874 ExternalSource->PrintStats(); 875 } 876 877 BumpAlloc.PrintStats(); 878 } 879 880 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, 881 bool NotifyListeners) { 882 if (NotifyListeners) 883 if (auto *Listener = getASTMutationListener()) 884 Listener->RedefinedHiddenDefinition(ND, M); 885 886 if (getLangOpts().ModulesLocalVisibility) 887 MergedDefModules[ND].push_back(M); 888 else 889 ND->setHidden(false); 890 } 891 892 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { 893 auto It = MergedDefModules.find(ND); 894 if (It == MergedDefModules.end()) 895 return; 896 897 auto &Merged = It->second; 898 llvm::DenseSet<Module*> Found; 899 for (Module *&M : Merged) 900 if (!Found.insert(M).second) 901 M = nullptr; 902 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); 903 } 904 905 ExternCContextDecl *ASTContext::getExternCContextDecl() const { 906 if (!ExternCContext) 907 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); 908 909 return ExternCContext; 910 } 911 912 BuiltinTemplateDecl * 913 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, 914 const IdentifierInfo *II) const { 915 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK); 916 BuiltinTemplate->setImplicit(); 917 TUDecl->addDecl(BuiltinTemplate); 918 919 return BuiltinTemplate; 920 } 921 922 BuiltinTemplateDecl * 923 ASTContext::getMakeIntegerSeqDecl() const { 924 if (!MakeIntegerSeqDecl) 925 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, 926 getMakeIntegerSeqName()); 927 return MakeIntegerSeqDecl; 928 } 929 930 BuiltinTemplateDecl * 931 ASTContext::getTypePackElementDecl() const { 932 if (!TypePackElementDecl) 933 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, 934 getTypePackElementName()); 935 return TypePackElementDecl; 936 } 937 938 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 939 RecordDecl::TagKind TK) const { 940 SourceLocation Loc; 941 RecordDecl *NewDecl; 942 if (getLangOpts().CPlusPlus) 943 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 944 Loc, &Idents.get(Name)); 945 else 946 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 947 &Idents.get(Name)); 948 NewDecl->setImplicit(); 949 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( 950 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); 951 return NewDecl; 952 } 953 954 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 955 StringRef Name) const { 956 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 957 TypedefDecl *NewDecl = TypedefDecl::Create( 958 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 959 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 960 NewDecl->setImplicit(); 961 return NewDecl; 962 } 963 964 TypedefDecl *ASTContext::getInt128Decl() const { 965 if (!Int128Decl) 966 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 967 return Int128Decl; 968 } 969 970 TypedefDecl *ASTContext::getUInt128Decl() const { 971 if (!UInt128Decl) 972 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 973 return UInt128Decl; 974 } 975 976 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 977 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); 978 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 979 Types.push_back(Ty); 980 } 981 982 void ASTContext::InitBuiltinTypes(const TargetInfo &Target, 983 const TargetInfo *AuxTarget) { 984 assert((!this->Target || this->Target == &Target) && 985 "Incorrect target reinitialization"); 986 assert(VoidTy.isNull() && "Context reinitialized?"); 987 988 this->Target = &Target; 989 this->AuxTarget = AuxTarget; 990 991 ABI.reset(createCXXABI(Target)); 992 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 993 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 994 995 // C99 6.2.5p19. 996 InitBuiltinType(VoidTy, BuiltinType::Void); 997 998 // C99 6.2.5p2. 999 InitBuiltinType(BoolTy, BuiltinType::Bool); 1000 // C99 6.2.5p3. 1001 if (LangOpts.CharIsSigned) 1002 InitBuiltinType(CharTy, BuiltinType::Char_S); 1003 else 1004 InitBuiltinType(CharTy, BuiltinType::Char_U); 1005 // C99 6.2.5p4. 1006 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 1007 InitBuiltinType(ShortTy, BuiltinType::Short); 1008 InitBuiltinType(IntTy, BuiltinType::Int); 1009 InitBuiltinType(LongTy, BuiltinType::Long); 1010 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 1011 1012 // C99 6.2.5p6. 1013 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 1014 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 1015 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 1016 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 1017 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 1018 1019 // C99 6.2.5p10. 1020 InitBuiltinType(FloatTy, BuiltinType::Float); 1021 InitBuiltinType(DoubleTy, BuiltinType::Double); 1022 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 1023 1024 // GNU extension, __float128 for IEEE quadruple precision 1025 InitBuiltinType(Float128Ty, BuiltinType::Float128); 1026 1027 // GNU extension, 128-bit integers. 1028 InitBuiltinType(Int128Ty, BuiltinType::Int128); 1029 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 1030 1031 // C++ 3.9.1p5 1032 if (TargetInfo::isTypeSigned(Target.getWCharType())) 1033 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 1034 else // -fshort-wchar makes wchar_t be unsigned. 1035 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 1036 if (LangOpts.CPlusPlus && LangOpts.WChar) 1037 WideCharTy = WCharTy; 1038 else { 1039 // C99 (or C++ using -fno-wchar). 1040 WideCharTy = getFromTargetType(Target.getWCharType()); 1041 } 1042 1043 WIntTy = getFromTargetType(Target.getWIntType()); 1044 1045 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1046 InitBuiltinType(Char16Ty, BuiltinType::Char16); 1047 else // C99 1048 Char16Ty = getFromTargetType(Target.getChar16Type()); 1049 1050 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1051 InitBuiltinType(Char32Ty, BuiltinType::Char32); 1052 else // C99 1053 Char32Ty = getFromTargetType(Target.getChar32Type()); 1054 1055 // Placeholder type for type-dependent expressions whose type is 1056 // completely unknown. No code should ever check a type against 1057 // DependentTy and users should never see it; however, it is here to 1058 // help diagnose failures to properly check for type-dependent 1059 // expressions. 1060 InitBuiltinType(DependentTy, BuiltinType::Dependent); 1061 1062 // Placeholder type for functions. 1063 InitBuiltinType(OverloadTy, BuiltinType::Overload); 1064 1065 // Placeholder type for bound members. 1066 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 1067 1068 // Placeholder type for pseudo-objects. 1069 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 1070 1071 // "any" type; useful for debugger-like clients. 1072 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 1073 1074 // Placeholder type for unbridged ARC casts. 1075 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 1076 1077 // Placeholder type for builtin functions. 1078 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 1079 1080 // Placeholder type for OMP array sections. 1081 if (LangOpts.OpenMP) 1082 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); 1083 1084 // C99 6.2.5p11. 1085 FloatComplexTy = getComplexType(FloatTy); 1086 DoubleComplexTy = getComplexType(DoubleTy); 1087 LongDoubleComplexTy = getComplexType(LongDoubleTy); 1088 Float128ComplexTy = getComplexType(Float128Ty); 1089 1090 // Builtin types for 'id', 'Class', and 'SEL'. 1091 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 1092 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 1093 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 1094 1095 if (LangOpts.OpenCL) { 1096 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 1097 InitBuiltinType(SingletonId, BuiltinType::Id); 1098 #include "clang/Basic/OpenCLImageTypes.def" 1099 1100 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 1101 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 1102 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); 1103 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); 1104 InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange); 1105 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); 1106 } 1107 1108 // Builtin type for __objc_yes and __objc_no 1109 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 1110 SignedCharTy : BoolTy); 1111 1112 ObjCConstantStringType = QualType(); 1113 1114 ObjCSuperType = QualType(); 1115 1116 // void * type 1117 VoidPtrTy = getPointerType(VoidTy); 1118 1119 // nullptr type (C++0x 2.14.7) 1120 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 1121 1122 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 1123 InitBuiltinType(HalfTy, BuiltinType::Half); 1124 1125 // Builtin type used to help define __builtin_va_list. 1126 VaListTagDecl = nullptr; 1127 } 1128 1129 DiagnosticsEngine &ASTContext::getDiagnostics() const { 1130 return SourceMgr.getDiagnostics(); 1131 } 1132 1133 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 1134 AttrVec *&Result = DeclAttrs[D]; 1135 if (!Result) { 1136 void *Mem = Allocate(sizeof(AttrVec)); 1137 Result = new (Mem) AttrVec; 1138 } 1139 1140 return *Result; 1141 } 1142 1143 /// \brief Erase the attributes corresponding to the given declaration. 1144 void ASTContext::eraseDeclAttrs(const Decl *D) { 1145 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 1146 if (Pos != DeclAttrs.end()) { 1147 Pos->second->~AttrVec(); 1148 DeclAttrs.erase(Pos); 1149 } 1150 } 1151 1152 // FIXME: Remove ? 1153 MemberSpecializationInfo * 1154 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 1155 assert(Var->isStaticDataMember() && "Not a static data member"); 1156 return getTemplateOrSpecializationInfo(Var) 1157 .dyn_cast<MemberSpecializationInfo *>(); 1158 } 1159 1160 ASTContext::TemplateOrSpecializationInfo 1161 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 1162 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 1163 TemplateOrInstantiation.find(Var); 1164 if (Pos == TemplateOrInstantiation.end()) 1165 return TemplateOrSpecializationInfo(); 1166 1167 return Pos->second; 1168 } 1169 1170 void 1171 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 1172 TemplateSpecializationKind TSK, 1173 SourceLocation PointOfInstantiation) { 1174 assert(Inst->isStaticDataMember() && "Not a static data member"); 1175 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 1176 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 1177 Tmpl, TSK, PointOfInstantiation)); 1178 } 1179 1180 void 1181 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 1182 TemplateOrSpecializationInfo TSI) { 1183 assert(!TemplateOrInstantiation[Inst] && 1184 "Already noted what the variable was instantiated from"); 1185 TemplateOrInstantiation[Inst] = TSI; 1186 } 1187 1188 FunctionDecl *ASTContext::getClassScopeSpecializationPattern( 1189 const FunctionDecl *FD){ 1190 assert(FD && "Specialization is 0"); 1191 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos 1192 = ClassScopeSpecializationPattern.find(FD); 1193 if (Pos == ClassScopeSpecializationPattern.end()) 1194 return nullptr; 1195 1196 return Pos->second; 1197 } 1198 1199 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, 1200 FunctionDecl *Pattern) { 1201 assert(FD && "Specialization is 0"); 1202 assert(Pattern && "Class scope specialization pattern is 0"); 1203 ClassScopeSpecializationPattern[FD] = Pattern; 1204 } 1205 1206 NamedDecl * 1207 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { 1208 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos 1209 = InstantiatedFromUsingDecl.find(UUD); 1210 if (Pos == InstantiatedFromUsingDecl.end()) 1211 return nullptr; 1212 1213 return Pos->second; 1214 } 1215 1216 void 1217 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { 1218 assert((isa<UsingDecl>(Pattern) || 1219 isa<UnresolvedUsingValueDecl>(Pattern) || 1220 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 1221 "pattern decl is not a using decl"); 1222 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 1223 InstantiatedFromUsingDecl[Inst] = Pattern; 1224 } 1225 1226 UsingShadowDecl * 1227 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 1228 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 1229 = InstantiatedFromUsingShadowDecl.find(Inst); 1230 if (Pos == InstantiatedFromUsingShadowDecl.end()) 1231 return nullptr; 1232 1233 return Pos->second; 1234 } 1235 1236 void 1237 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 1238 UsingShadowDecl *Pattern) { 1239 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 1240 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 1241 } 1242 1243 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 1244 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 1245 = InstantiatedFromUnnamedFieldDecl.find(Field); 1246 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 1247 return nullptr; 1248 1249 return Pos->second; 1250 } 1251 1252 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 1253 FieldDecl *Tmpl) { 1254 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 1255 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 1256 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 1257 "Already noted what unnamed field was instantiated from"); 1258 1259 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 1260 } 1261 1262 ASTContext::overridden_cxx_method_iterator 1263 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 1264 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = 1265 OverriddenMethods.find(Method->getCanonicalDecl()); 1266 if (Pos == OverriddenMethods.end()) 1267 return nullptr; 1268 return Pos->second.begin(); 1269 } 1270 1271 ASTContext::overridden_cxx_method_iterator 1272 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 1273 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = 1274 OverriddenMethods.find(Method->getCanonicalDecl()); 1275 if (Pos == OverriddenMethods.end()) 1276 return nullptr; 1277 return Pos->second.end(); 1278 } 1279 1280 unsigned 1281 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 1282 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = 1283 OverriddenMethods.find(Method->getCanonicalDecl()); 1284 if (Pos == OverriddenMethods.end()) 1285 return 0; 1286 return Pos->second.size(); 1287 } 1288 1289 ASTContext::overridden_method_range 1290 ASTContext::overridden_methods(const CXXMethodDecl *Method) const { 1291 return overridden_method_range(overridden_methods_begin(Method), 1292 overridden_methods_end(Method)); 1293 } 1294 1295 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 1296 const CXXMethodDecl *Overridden) { 1297 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 1298 OverriddenMethods[Method].push_back(Overridden); 1299 } 1300 1301 void ASTContext::getOverriddenMethods( 1302 const NamedDecl *D, 1303 SmallVectorImpl<const NamedDecl *> &Overridden) const { 1304 assert(D); 1305 1306 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 1307 Overridden.append(overridden_methods_begin(CXXMethod), 1308 overridden_methods_end(CXXMethod)); 1309 return; 1310 } 1311 1312 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); 1313 if (!Method) 1314 return; 1315 1316 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 1317 Method->getOverriddenMethods(OverDecls); 1318 Overridden.append(OverDecls.begin(), OverDecls.end()); 1319 } 1320 1321 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 1322 assert(!Import->NextLocalImport && "Import declaration already in the chain"); 1323 assert(!Import->isFromASTFile() && "Non-local import declaration"); 1324 if (!FirstLocalImport) { 1325 FirstLocalImport = Import; 1326 LastLocalImport = Import; 1327 return; 1328 } 1329 1330 LastLocalImport->NextLocalImport = Import; 1331 LastLocalImport = Import; 1332 } 1333 1334 //===----------------------------------------------------------------------===// 1335 // Type Sizing and Analysis 1336 //===----------------------------------------------------------------------===// 1337 1338 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 1339 /// scalar floating point type. 1340 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 1341 const BuiltinType *BT = T->getAs<BuiltinType>(); 1342 assert(BT && "Not a floating point type!"); 1343 switch (BT->getKind()) { 1344 default: llvm_unreachable("Not a floating point type!"); 1345 case BuiltinType::Half: return Target->getHalfFormat(); 1346 case BuiltinType::Float: return Target->getFloatFormat(); 1347 case BuiltinType::Double: return Target->getDoubleFormat(); 1348 case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); 1349 case BuiltinType::Float128: return Target->getFloat128Format(); 1350 } 1351 } 1352 1353 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 1354 unsigned Align = Target->getCharWidth(); 1355 1356 bool UseAlignAttrOnly = false; 1357 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 1358 Align = AlignFromAttr; 1359 1360 // __attribute__((aligned)) can increase or decrease alignment 1361 // *except* on a struct or struct member, where it only increases 1362 // alignment unless 'packed' is also specified. 1363 // 1364 // It is an error for alignas to decrease alignment, so we can 1365 // ignore that possibility; Sema should diagnose it. 1366 if (isa<FieldDecl>(D)) { 1367 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 1368 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1369 } else { 1370 UseAlignAttrOnly = true; 1371 } 1372 } 1373 else if (isa<FieldDecl>(D)) 1374 UseAlignAttrOnly = 1375 D->hasAttr<PackedAttr>() || 1376 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1377 1378 // If we're using the align attribute only, just ignore everything 1379 // else about the declaration and its type. 1380 if (UseAlignAttrOnly) { 1381 // do nothing 1382 1383 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { 1384 QualType T = VD->getType(); 1385 if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 1386 if (ForAlignof) 1387 T = RT->getPointeeType(); 1388 else 1389 T = getPointerType(RT->getPointeeType()); 1390 } 1391 QualType BaseT = getBaseElementType(T); 1392 if (!BaseT->isIncompleteType() && !T->isFunctionType()) { 1393 // Adjust alignments of declarations with array type by the 1394 // large-array alignment on the target. 1395 if (const ArrayType *arrayType = getAsArrayType(T)) { 1396 unsigned MinWidth = Target->getLargeArrayMinWidth(); 1397 if (!ForAlignof && MinWidth) { 1398 if (isa<VariableArrayType>(arrayType)) 1399 Align = std::max(Align, Target->getLargeArrayAlign()); 1400 else if (isa<ConstantArrayType>(arrayType) && 1401 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 1402 Align = std::max(Align, Target->getLargeArrayAlign()); 1403 } 1404 } 1405 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 1406 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1407 if (VD->hasGlobalStorage() && !ForAlignof) 1408 Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); 1409 } 1410 } 1411 1412 // Fields can be subject to extra alignment constraints, like if 1413 // the field is packed, the struct is packed, or the struct has a 1414 // a max-field-alignment constraint (#pragma pack). So calculate 1415 // the actual alignment of the field within the struct, and then 1416 // (as we're expected to) constrain that by the alignment of the type. 1417 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { 1418 const RecordDecl *Parent = Field->getParent(); 1419 // We can only produce a sensible answer if the record is valid. 1420 if (!Parent->isInvalidDecl()) { 1421 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 1422 1423 // Start with the record's overall alignment. 1424 unsigned FieldAlign = toBits(Layout.getAlignment()); 1425 1426 // Use the GCD of that and the offset within the record. 1427 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 1428 if (Offset > 0) { 1429 // Alignment is always a power of 2, so the GCD will be a power of 2, 1430 // which means we get to do this crazy thing instead of Euclid's. 1431 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 1432 if (LowBitOfOffset < FieldAlign) 1433 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 1434 } 1435 1436 Align = std::min(Align, FieldAlign); 1437 } 1438 } 1439 } 1440 1441 return toCharUnitsFromBits(Align); 1442 } 1443 1444 // getTypeInfoDataSizeInChars - Return the size of a type, in 1445 // chars. If the type is a record, its data size is returned. This is 1446 // the size of the memcpy that's performed when assigning this type 1447 // using a trivial copy/move assignment operator. 1448 std::pair<CharUnits, CharUnits> 1449 ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 1450 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); 1451 1452 // In C++, objects can sometimes be allocated into the tail padding 1453 // of a base-class subobject. We decide whether that's possible 1454 // during class layout, so here we can just trust the layout results. 1455 if (getLangOpts().CPlusPlus) { 1456 if (const RecordType *RT = T->getAs<RecordType>()) { 1457 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 1458 sizeAndAlign.first = layout.getDataSize(); 1459 } 1460 } 1461 1462 return sizeAndAlign; 1463 } 1464 1465 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 1466 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 1467 std::pair<CharUnits, CharUnits> 1468 static getConstantArrayInfoInChars(const ASTContext &Context, 1469 const ConstantArrayType *CAT) { 1470 std::pair<CharUnits, CharUnits> EltInfo = 1471 Context.getTypeInfoInChars(CAT->getElementType()); 1472 uint64_t Size = CAT->getSize().getZExtValue(); 1473 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= 1474 (uint64_t)(-1)/Size) && 1475 "Overflow in array type char size evaluation"); 1476 uint64_t Width = EltInfo.first.getQuantity() * Size; 1477 unsigned Align = EltInfo.second.getQuantity(); 1478 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 1479 Context.getTargetInfo().getPointerWidth(0) == 64) 1480 Width = llvm::alignTo(Width, Align); 1481 return std::make_pair(CharUnits::fromQuantity(Width), 1482 CharUnits::fromQuantity(Align)); 1483 } 1484 1485 std::pair<CharUnits, CharUnits> 1486 ASTContext::getTypeInfoInChars(const Type *T) const { 1487 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) 1488 return getConstantArrayInfoInChars(*this, CAT); 1489 TypeInfo Info = getTypeInfo(T); 1490 return std::make_pair(toCharUnitsFromBits(Info.Width), 1491 toCharUnitsFromBits(Info.Align)); 1492 } 1493 1494 std::pair<CharUnits, CharUnits> 1495 ASTContext::getTypeInfoInChars(QualType T) const { 1496 return getTypeInfoInChars(T.getTypePtr()); 1497 } 1498 1499 bool ASTContext::isAlignmentRequired(const Type *T) const { 1500 return getTypeInfo(T).AlignIsRequired; 1501 } 1502 1503 bool ASTContext::isAlignmentRequired(QualType T) const { 1504 return isAlignmentRequired(T.getTypePtr()); 1505 } 1506 1507 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 1508 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 1509 if (I != MemoizedTypeInfo.end()) 1510 return I->second; 1511 1512 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 1513 TypeInfo TI = getTypeInfoImpl(T); 1514 MemoizedTypeInfo[T] = TI; 1515 return TI; 1516 } 1517 1518 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 1519 /// method does not work on incomplete types. 1520 /// 1521 /// FIXME: Pointers into different addr spaces could have different sizes and 1522 /// alignment requirements: getPointerInfo should take an AddrSpace, this 1523 /// should take a QualType, &c. 1524 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 1525 uint64_t Width = 0; 1526 unsigned Align = 8; 1527 bool AlignIsRequired = false; 1528 switch (T->getTypeClass()) { 1529 #define TYPE(Class, Base) 1530 #define ABSTRACT_TYPE(Class, Base) 1531 #define NON_CANONICAL_TYPE(Class, Base) 1532 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1533 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 1534 case Type::Class: \ 1535 assert(!T->isDependentType() && "should not see dependent types here"); \ 1536 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 1537 #include "clang/AST/TypeNodes.def" 1538 llvm_unreachable("Should not see dependent types"); 1539 1540 case Type::FunctionNoProto: 1541 case Type::FunctionProto: 1542 // GCC extension: alignof(function) = 32 bits 1543 Width = 0; 1544 Align = 32; 1545 break; 1546 1547 case Type::IncompleteArray: 1548 case Type::VariableArray: 1549 Width = 0; 1550 Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); 1551 break; 1552 1553 case Type::ConstantArray: { 1554 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 1555 1556 TypeInfo EltInfo = getTypeInfo(CAT->getElementType()); 1557 uint64_t Size = CAT->getSize().getZExtValue(); 1558 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 1559 "Overflow in array type bit size evaluation"); 1560 Width = EltInfo.Width * Size; 1561 Align = EltInfo.Align; 1562 if (!getTargetInfo().getCXXABI().isMicrosoft() || 1563 getTargetInfo().getPointerWidth(0) == 64) 1564 Width = llvm::alignTo(Width, Align); 1565 break; 1566 } 1567 case Type::ExtVector: 1568 case Type::Vector: { 1569 const VectorType *VT = cast<VectorType>(T); 1570 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 1571 Width = EltInfo.Width * VT->getNumElements(); 1572 Align = Width; 1573 // If the alignment is not a power of 2, round up to the next power of 2. 1574 // This happens for non-power-of-2 length vectors. 1575 if (Align & (Align-1)) { 1576 Align = llvm::NextPowerOf2(Align); 1577 Width = llvm::alignTo(Width, Align); 1578 } 1579 // Adjust the alignment based on the target max. 1580 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 1581 if (TargetVectorAlign && TargetVectorAlign < Align) 1582 Align = TargetVectorAlign; 1583 break; 1584 } 1585 1586 case Type::Builtin: 1587 switch (cast<BuiltinType>(T)->getKind()) { 1588 default: llvm_unreachable("Unknown builtin type!"); 1589 case BuiltinType::Void: 1590 // GCC extension: alignof(void) = 8 bits. 1591 Width = 0; 1592 Align = 8; 1593 break; 1594 1595 case BuiltinType::Bool: 1596 Width = Target->getBoolWidth(); 1597 Align = Target->getBoolAlign(); 1598 break; 1599 case BuiltinType::Char_S: 1600 case BuiltinType::Char_U: 1601 case BuiltinType::UChar: 1602 case BuiltinType::SChar: 1603 Width = Target->getCharWidth(); 1604 Align = Target->getCharAlign(); 1605 break; 1606 case BuiltinType::WChar_S: 1607 case BuiltinType::WChar_U: 1608 Width = Target->getWCharWidth(); 1609 Align = Target->getWCharAlign(); 1610 break; 1611 case BuiltinType::Char16: 1612 Width = Target->getChar16Width(); 1613 Align = Target->getChar16Align(); 1614 break; 1615 case BuiltinType::Char32: 1616 Width = Target->getChar32Width(); 1617 Align = Target->getChar32Align(); 1618 break; 1619 case BuiltinType::UShort: 1620 case BuiltinType::Short: 1621 Width = Target->getShortWidth(); 1622 Align = Target->getShortAlign(); 1623 break; 1624 case BuiltinType::UInt: 1625 case BuiltinType::Int: 1626 Width = Target->getIntWidth(); 1627 Align = Target->getIntAlign(); 1628 break; 1629 case BuiltinType::ULong: 1630 case BuiltinType::Long: 1631 Width = Target->getLongWidth(); 1632 Align = Target->getLongAlign(); 1633 break; 1634 case BuiltinType::ULongLong: 1635 case BuiltinType::LongLong: 1636 Width = Target->getLongLongWidth(); 1637 Align = Target->getLongLongAlign(); 1638 break; 1639 case BuiltinType::Int128: 1640 case BuiltinType::UInt128: 1641 Width = 128; 1642 Align = 128; // int128_t is 128-bit aligned on all targets. 1643 break; 1644 case BuiltinType::Half: 1645 Width = Target->getHalfWidth(); 1646 Align = Target->getHalfAlign(); 1647 break; 1648 case BuiltinType::Float: 1649 Width = Target->getFloatWidth(); 1650 Align = Target->getFloatAlign(); 1651 break; 1652 case BuiltinType::Double: 1653 Width = Target->getDoubleWidth(); 1654 Align = Target->getDoubleAlign(); 1655 break; 1656 case BuiltinType::LongDouble: 1657 Width = Target->getLongDoubleWidth(); 1658 Align = Target->getLongDoubleAlign(); 1659 break; 1660 case BuiltinType::Float128: 1661 Width = Target->getFloat128Width(); 1662 Align = Target->getFloat128Align(); 1663 break; 1664 case BuiltinType::NullPtr: 1665 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 1666 Align = Target->getPointerAlign(0); // == sizeof(void*) 1667 break; 1668 case BuiltinType::ObjCId: 1669 case BuiltinType::ObjCClass: 1670 case BuiltinType::ObjCSel: 1671 Width = Target->getPointerWidth(0); 1672 Align = Target->getPointerAlign(0); 1673 break; 1674 case BuiltinType::OCLSampler: 1675 // Samplers are modeled as integers. 1676 Width = Target->getIntWidth(); 1677 Align = Target->getIntAlign(); 1678 break; 1679 case BuiltinType::OCLEvent: 1680 case BuiltinType::OCLClkEvent: 1681 case BuiltinType::OCLQueue: 1682 case BuiltinType::OCLNDRange: 1683 case BuiltinType::OCLReserveID: 1684 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 1685 case BuiltinType::Id: 1686 #include "clang/Basic/OpenCLImageTypes.def" 1687 1688 // Currently these types are pointers to opaque types. 1689 Width = Target->getPointerWidth(0); 1690 Align = Target->getPointerAlign(0); 1691 break; 1692 } 1693 break; 1694 case Type::ObjCObjectPointer: 1695 Width = Target->getPointerWidth(0); 1696 Align = Target->getPointerAlign(0); 1697 break; 1698 case Type::BlockPointer: { 1699 unsigned AS = getTargetAddressSpace( 1700 cast<BlockPointerType>(T)->getPointeeType()); 1701 Width = Target->getPointerWidth(AS); 1702 Align = Target->getPointerAlign(AS); 1703 break; 1704 } 1705 case Type::LValueReference: 1706 case Type::RValueReference: { 1707 // alignof and sizeof should never enter this code path here, so we go 1708 // the pointer route. 1709 unsigned AS = getTargetAddressSpace( 1710 cast<ReferenceType>(T)->getPointeeType()); 1711 Width = Target->getPointerWidth(AS); 1712 Align = Target->getPointerAlign(AS); 1713 break; 1714 } 1715 case Type::Pointer: { 1716 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 1717 Width = Target->getPointerWidth(AS); 1718 Align = Target->getPointerAlign(AS); 1719 break; 1720 } 1721 case Type::MemberPointer: { 1722 const MemberPointerType *MPT = cast<MemberPointerType>(T); 1723 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); 1724 break; 1725 } 1726 case Type::Complex: { 1727 // Complex types have the same alignment as their elements, but twice the 1728 // size. 1729 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 1730 Width = EltInfo.Width * 2; 1731 Align = EltInfo.Align; 1732 break; 1733 } 1734 case Type::ObjCObject: 1735 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 1736 case Type::Adjusted: 1737 case Type::Decayed: 1738 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 1739 case Type::ObjCInterface: { 1740 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); 1741 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 1742 Width = toBits(Layout.getSize()); 1743 Align = toBits(Layout.getAlignment()); 1744 break; 1745 } 1746 case Type::Record: 1747 case Type::Enum: { 1748 const TagType *TT = cast<TagType>(T); 1749 1750 if (TT->getDecl()->isInvalidDecl()) { 1751 Width = 8; 1752 Align = 8; 1753 break; 1754 } 1755 1756 if (const EnumType *ET = dyn_cast<EnumType>(TT)) { 1757 const EnumDecl *ED = ET->getDecl(); 1758 TypeInfo Info = 1759 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); 1760 if (unsigned AttrAlign = ED->getMaxAlignment()) { 1761 Info.Align = AttrAlign; 1762 Info.AlignIsRequired = true; 1763 } 1764 return Info; 1765 } 1766 1767 const RecordType *RT = cast<RecordType>(TT); 1768 const RecordDecl *RD = RT->getDecl(); 1769 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 1770 Width = toBits(Layout.getSize()); 1771 Align = toBits(Layout.getAlignment()); 1772 AlignIsRequired = RD->hasAttr<AlignedAttr>(); 1773 break; 1774 } 1775 1776 case Type::SubstTemplateTypeParm: 1777 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 1778 getReplacementType().getTypePtr()); 1779 1780 case Type::Auto: { 1781 const AutoType *A = cast<AutoType>(T); 1782 assert(!A->getDeducedType().isNull() && 1783 "cannot request the size of an undeduced or dependent auto type"); 1784 return getTypeInfo(A->getDeducedType().getTypePtr()); 1785 } 1786 1787 case Type::Paren: 1788 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 1789 1790 case Type::Typedef: { 1791 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 1792 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 1793 // If the typedef has an aligned attribute on it, it overrides any computed 1794 // alignment we have. This violates the GCC documentation (which says that 1795 // attribute(aligned) can only round up) but matches its implementation. 1796 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 1797 Align = AttrAlign; 1798 AlignIsRequired = true; 1799 } else { 1800 Align = Info.Align; 1801 AlignIsRequired = Info.AlignIsRequired; 1802 } 1803 Width = Info.Width; 1804 break; 1805 } 1806 1807 case Type::Elaborated: 1808 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 1809 1810 case Type::Attributed: 1811 return getTypeInfo( 1812 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 1813 1814 case Type::Atomic: { 1815 // Start with the base type information. 1816 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 1817 Width = Info.Width; 1818 Align = Info.Align; 1819 1820 // If the size of the type doesn't exceed the platform's max 1821 // atomic promotion width, make the size and alignment more 1822 // favorable to atomic operations: 1823 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { 1824 // Round the size up to a power of 2. 1825 if (!llvm::isPowerOf2_64(Width)) 1826 Width = llvm::NextPowerOf2(Width); 1827 1828 // Set the alignment equal to the size. 1829 Align = static_cast<unsigned>(Width); 1830 } 1831 } 1832 break; 1833 1834 case Type::Pipe: { 1835 TypeInfo Info = getTypeInfo(cast<PipeType>(T)->getElementType()); 1836 Width = Info.Width; 1837 Align = Info.Align; 1838 } 1839 1840 } 1841 1842 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 1843 return TypeInfo(Width, Align, AlignIsRequired); 1844 } 1845 1846 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { 1847 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); 1848 // Target ppc64 with QPX: simd default alignment for pointer to double is 32. 1849 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 || 1850 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) && 1851 getTargetInfo().getABI() == "elfv1-qpx" && 1852 T->isSpecificBuiltinType(BuiltinType::Double)) 1853 SimdAlign = 256; 1854 return SimdAlign; 1855 } 1856 1857 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 1858 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 1859 return CharUnits::fromQuantity(BitSize / getCharWidth()); 1860 } 1861 1862 /// toBits - Convert a size in characters to a size in characters. 1863 int64_t ASTContext::toBits(CharUnits CharSize) const { 1864 return CharSize.getQuantity() * getCharWidth(); 1865 } 1866 1867 /// getTypeSizeInChars - Return the size of the specified type, in characters. 1868 /// This method does not work on incomplete types. 1869 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 1870 return getTypeInfoInChars(T).first; 1871 } 1872 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 1873 return getTypeInfoInChars(T).first; 1874 } 1875 1876 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 1877 /// characters. This method does not work on incomplete types. 1878 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 1879 return toCharUnitsFromBits(getTypeAlign(T)); 1880 } 1881 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 1882 return toCharUnitsFromBits(getTypeAlign(T)); 1883 } 1884 1885 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 1886 /// type for the current target in bits. This can be different than the ABI 1887 /// alignment in cases where it is beneficial for performance to overalign 1888 /// a data type. 1889 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 1890 TypeInfo TI = getTypeInfo(T); 1891 unsigned ABIAlign = TI.Align; 1892 1893 T = T->getBaseElementTypeUnsafe(); 1894 1895 // The preferred alignment of member pointers is that of a pointer. 1896 if (T->isMemberPointerType()) 1897 return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); 1898 1899 if (!Target->allowsLargerPreferedTypeAlignment()) 1900 return ABIAlign; 1901 1902 // Double and long long should be naturally aligned if possible. 1903 if (const ComplexType *CT = T->getAs<ComplexType>()) 1904 T = CT->getElementType().getTypePtr(); 1905 if (const EnumType *ET = T->getAs<EnumType>()) 1906 T = ET->getDecl()->getIntegerType().getTypePtr(); 1907 if (T->isSpecificBuiltinType(BuiltinType::Double) || 1908 T->isSpecificBuiltinType(BuiltinType::LongLong) || 1909 T->isSpecificBuiltinType(BuiltinType::ULongLong)) 1910 // Don't increase the alignment if an alignment attribute was specified on a 1911 // typedef declaration. 1912 if (!TI.AlignIsRequired) 1913 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 1914 1915 return ABIAlign; 1916 } 1917 1918 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment 1919 /// for __attribute__((aligned)) on this target, to be used if no alignment 1920 /// value is specified. 1921 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { 1922 return getTargetInfo().getDefaultAlignForAttributeAligned(); 1923 } 1924 1925 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 1926 /// to a global variable of the specified type. 1927 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 1928 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); 1929 } 1930 1931 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 1932 /// should be given to a global variable of the specified type. 1933 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 1934 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 1935 } 1936 1937 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { 1938 CharUnits Offset = CharUnits::Zero(); 1939 const ASTRecordLayout *Layout = &getASTRecordLayout(RD); 1940 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { 1941 Offset += Layout->getBaseClassOffset(Base); 1942 Layout = &getASTRecordLayout(Base); 1943 } 1944 return Offset; 1945 } 1946 1947 /// DeepCollectObjCIvars - 1948 /// This routine first collects all declared, but not synthesized, ivars in 1949 /// super class and then collects all ivars, including those synthesized for 1950 /// current class. This routine is used for implementation of current class 1951 /// when all ivars, declared and synthesized are known. 1952 /// 1953 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 1954 bool leafClass, 1955 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 1956 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 1957 DeepCollectObjCIvars(SuperClass, false, Ivars); 1958 if (!leafClass) { 1959 for (const auto *I : OI->ivars()) 1960 Ivars.push_back(I); 1961 } else { 1962 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 1963 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 1964 Iv= Iv->getNextIvar()) 1965 Ivars.push_back(Iv); 1966 } 1967 } 1968 1969 /// CollectInheritedProtocols - Collect all protocols in current class and 1970 /// those inherited by it. 1971 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 1972 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 1973 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 1974 // We can use protocol_iterator here instead of 1975 // all_referenced_protocol_iterator since we are walking all categories. 1976 for (auto *Proto : OI->all_referenced_protocols()) { 1977 CollectInheritedProtocols(Proto, Protocols); 1978 } 1979 1980 // Categories of this Interface. 1981 for (const auto *Cat : OI->visible_categories()) 1982 CollectInheritedProtocols(Cat, Protocols); 1983 1984 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 1985 while (SD) { 1986 CollectInheritedProtocols(SD, Protocols); 1987 SD = SD->getSuperClass(); 1988 } 1989 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1990 for (auto *Proto : OC->protocols()) { 1991 CollectInheritedProtocols(Proto, Protocols); 1992 } 1993 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 1994 // Insert the protocol. 1995 if (!Protocols.insert( 1996 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) 1997 return; 1998 1999 for (auto *Proto : OP->protocols()) 2000 CollectInheritedProtocols(Proto, Protocols); 2001 } 2002 } 2003 2004 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 2005 unsigned count = 0; 2006 // Count ivars declared in class extension. 2007 for (const auto *Ext : OI->known_extensions()) 2008 count += Ext->ivar_size(); 2009 2010 // Count ivar defined in this class's implementation. This 2011 // includes synthesized ivars. 2012 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 2013 count += ImplDecl->ivar_size(); 2014 2015 return count; 2016 } 2017 2018 bool ASTContext::isSentinelNullExpr(const Expr *E) { 2019 if (!E) 2020 return false; 2021 2022 // nullptr_t is always treated as null. 2023 if (E->getType()->isNullPtrType()) return true; 2024 2025 if (E->getType()->isAnyPointerType() && 2026 E->IgnoreParenCasts()->isNullPointerConstant(*this, 2027 Expr::NPC_ValueDependentIsNull)) 2028 return true; 2029 2030 // Unfortunately, __null has type 'int'. 2031 if (isa<GNUNullExpr>(E)) return true; 2032 2033 return false; 2034 } 2035 2036 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. 2037 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 2038 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2039 I = ObjCImpls.find(D); 2040 if (I != ObjCImpls.end()) 2041 return cast<ObjCImplementationDecl>(I->second); 2042 return nullptr; 2043 } 2044 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. 2045 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 2046 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2047 I = ObjCImpls.find(D); 2048 if (I != ObjCImpls.end()) 2049 return cast<ObjCCategoryImplDecl>(I->second); 2050 return nullptr; 2051 } 2052 2053 /// \brief Set the implementation of ObjCInterfaceDecl. 2054 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 2055 ObjCImplementationDecl *ImplD) { 2056 assert(IFaceD && ImplD && "Passed null params"); 2057 ObjCImpls[IFaceD] = ImplD; 2058 } 2059 /// \brief Set the implementation of ObjCCategoryDecl. 2060 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 2061 ObjCCategoryImplDecl *ImplD) { 2062 assert(CatD && ImplD && "Passed null params"); 2063 ObjCImpls[CatD] = ImplD; 2064 } 2065 2066 const ObjCMethodDecl * 2067 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { 2068 return ObjCMethodRedecls.lookup(MD); 2069 } 2070 2071 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, 2072 const ObjCMethodDecl *Redecl) { 2073 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); 2074 ObjCMethodRedecls[MD] = Redecl; 2075 } 2076 2077 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 2078 const NamedDecl *ND) const { 2079 if (const ObjCInterfaceDecl *ID = 2080 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 2081 return ID; 2082 if (const ObjCCategoryDecl *CD = 2083 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 2084 return CD->getClassInterface(); 2085 if (const ObjCImplDecl *IMD = 2086 dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 2087 return IMD->getClassInterface(); 2088 2089 return nullptr; 2090 } 2091 2092 /// \brief Get the copy initialization expression of VarDecl,or NULL if 2093 /// none exists. 2094 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { 2095 assert(VD && "Passed null params"); 2096 assert(VD->hasAttr<BlocksAttr>() && 2097 "getBlockVarCopyInits - not __block var"); 2098 llvm::DenseMap<const VarDecl*, Expr*>::iterator 2099 I = BlockVarCopyInits.find(VD); 2100 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; 2101 } 2102 2103 /// \brief Set the copy inialization expression of a block var decl. 2104 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { 2105 assert(VD && Init && "Passed null params"); 2106 assert(VD->hasAttr<BlocksAttr>() && 2107 "setBlockVarCopyInits - not __block var"); 2108 BlockVarCopyInits[VD] = Init; 2109 } 2110 2111 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 2112 unsigned DataSize) const { 2113 if (!DataSize) 2114 DataSize = TypeLoc::getFullDataSizeForType(T); 2115 else 2116 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 2117 "incorrect data size provided to CreateTypeSourceInfo!"); 2118 2119 TypeSourceInfo *TInfo = 2120 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 2121 new (TInfo) TypeSourceInfo(T); 2122 return TInfo; 2123 } 2124 2125 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 2126 SourceLocation L) const { 2127 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 2128 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 2129 return DI; 2130 } 2131 2132 const ASTRecordLayout & 2133 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 2134 return getObjCLayout(D, nullptr); 2135 } 2136 2137 const ASTRecordLayout & 2138 ASTContext::getASTObjCImplementationLayout( 2139 const ObjCImplementationDecl *D) const { 2140 return getObjCLayout(D->getClassInterface(), D); 2141 } 2142 2143 //===----------------------------------------------------------------------===// 2144 // Type creation/memoization methods 2145 //===----------------------------------------------------------------------===// 2146 2147 QualType 2148 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 2149 unsigned fastQuals = quals.getFastQualifiers(); 2150 quals.removeFastQualifiers(); 2151 2152 // Check if we've already instantiated this type. 2153 llvm::FoldingSetNodeID ID; 2154 ExtQuals::Profile(ID, baseType, quals); 2155 void *insertPos = nullptr; 2156 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 2157 assert(eq->getQualifiers() == quals); 2158 return QualType(eq, fastQuals); 2159 } 2160 2161 // If the base type is not canonical, make the appropriate canonical type. 2162 QualType canon; 2163 if (!baseType->isCanonicalUnqualified()) { 2164 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 2165 canonSplit.Quals.addConsistentQualifiers(quals); 2166 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 2167 2168 // Re-find the insert position. 2169 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 2170 } 2171 2172 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 2173 ExtQualNodes.InsertNode(eq, insertPos); 2174 return QualType(eq, fastQuals); 2175 } 2176 2177 QualType 2178 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { 2179 QualType CanT = getCanonicalType(T); 2180 if (CanT.getAddressSpace() == AddressSpace) 2181 return T; 2182 2183 // If we are composing extended qualifiers together, merge together 2184 // into one ExtQuals node. 2185 QualifierCollector Quals; 2186 const Type *TypeNode = Quals.strip(T); 2187 2188 // If this type already has an address space specified, it cannot get 2189 // another one. 2190 assert(!Quals.hasAddressSpace() && 2191 "Type cannot be in multiple addr spaces!"); 2192 Quals.addAddressSpace(AddressSpace); 2193 2194 return getExtQualType(TypeNode, Quals); 2195 } 2196 2197 QualType ASTContext::getObjCGCQualType(QualType T, 2198 Qualifiers::GC GCAttr) const { 2199 QualType CanT = getCanonicalType(T); 2200 if (CanT.getObjCGCAttr() == GCAttr) 2201 return T; 2202 2203 if (const PointerType *ptr = T->getAs<PointerType>()) { 2204 QualType Pointee = ptr->getPointeeType(); 2205 if (Pointee->isAnyPointerType()) { 2206 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 2207 return getPointerType(ResultType); 2208 } 2209 } 2210 2211 // If we are composing extended qualifiers together, merge together 2212 // into one ExtQuals node. 2213 QualifierCollector Quals; 2214 const Type *TypeNode = Quals.strip(T); 2215 2216 // If this type already has an ObjCGC specified, it cannot get 2217 // another one. 2218 assert(!Quals.hasObjCGCAttr() && 2219 "Type cannot have multiple ObjCGCs!"); 2220 Quals.addObjCGCAttr(GCAttr); 2221 2222 return getExtQualType(TypeNode, Quals); 2223 } 2224 2225 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 2226 FunctionType::ExtInfo Info) { 2227 if (T->getExtInfo() == Info) 2228 return T; 2229 2230 QualType Result; 2231 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 2232 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 2233 } else { 2234 const FunctionProtoType *FPT = cast<FunctionProtoType>(T); 2235 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2236 EPI.ExtInfo = Info; 2237 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 2238 } 2239 2240 return cast<FunctionType>(Result.getTypePtr()); 2241 } 2242 2243 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 2244 QualType ResultType) { 2245 FD = FD->getMostRecentDecl(); 2246 while (true) { 2247 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 2248 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2249 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 2250 if (FunctionDecl *Next = FD->getPreviousDecl()) 2251 FD = Next; 2252 else 2253 break; 2254 } 2255 if (ASTMutationListener *L = getASTMutationListener()) 2256 L->DeducedReturnType(FD, ResultType); 2257 } 2258 2259 /// Get a function type and produce the equivalent function type with the 2260 /// specified exception specification. Type sugar that can be present on a 2261 /// declaration of a function with an exception specification is permitted 2262 /// and preserved. Other type sugar (for instance, typedefs) is not. 2263 static QualType getFunctionTypeWithExceptionSpec( 2264 ASTContext &Context, QualType Orig, 2265 const FunctionProtoType::ExceptionSpecInfo &ESI) { 2266 // Might have some parens. 2267 if (auto *PT = dyn_cast<ParenType>(Orig)) 2268 return Context.getParenType( 2269 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI)); 2270 2271 // Might have a calling-convention attribute. 2272 if (auto *AT = dyn_cast<AttributedType>(Orig)) 2273 return Context.getAttributedType( 2274 AT->getAttrKind(), 2275 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI), 2276 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(), 2277 ESI)); 2278 2279 // Anything else must be a function type. Rebuild it with the new exception 2280 // specification. 2281 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig); 2282 return Context.getFunctionType( 2283 Proto->getReturnType(), Proto->getParamTypes(), 2284 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 2285 } 2286 2287 void ASTContext::adjustExceptionSpec( 2288 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 2289 bool AsWritten) { 2290 // Update the type. 2291 QualType Updated = 2292 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI); 2293 FD->setType(Updated); 2294 2295 if (!AsWritten) 2296 return; 2297 2298 // Update the type in the type source information too. 2299 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 2300 // If the type and the type-as-written differ, we may need to update 2301 // the type-as-written too. 2302 if (TSInfo->getType() != FD->getType()) 2303 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI); 2304 2305 // FIXME: When we get proper type location information for exceptions, 2306 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 2307 // up the TypeSourceInfo; 2308 assert(TypeLoc::getFullDataSizeForType(Updated) == 2309 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 2310 "TypeLoc size mismatch from updating exception specification"); 2311 TSInfo->overrideType(Updated); 2312 } 2313 } 2314 2315 /// getComplexType - Return the uniqued reference to the type for a complex 2316 /// number with the specified element type. 2317 QualType ASTContext::getComplexType(QualType T) const { 2318 // Unique pointers, to guarantee there is only one pointer of a particular 2319 // structure. 2320 llvm::FoldingSetNodeID ID; 2321 ComplexType::Profile(ID, T); 2322 2323 void *InsertPos = nullptr; 2324 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 2325 return QualType(CT, 0); 2326 2327 // If the pointee type isn't canonical, this won't be a canonical type either, 2328 // so fill in the canonical type field. 2329 QualType Canonical; 2330 if (!T.isCanonical()) { 2331 Canonical = getComplexType(getCanonicalType(T)); 2332 2333 // Get the new insert position for the node we care about. 2334 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 2335 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2336 } 2337 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 2338 Types.push_back(New); 2339 ComplexTypes.InsertNode(New, InsertPos); 2340 return QualType(New, 0); 2341 } 2342 2343 /// getPointerType - Return the uniqued reference to the type for a pointer to 2344 /// the specified type. 2345 QualType ASTContext::getPointerType(QualType T) const { 2346 // Unique pointers, to guarantee there is only one pointer of a particular 2347 // structure. 2348 llvm::FoldingSetNodeID ID; 2349 PointerType::Profile(ID, T); 2350 2351 void *InsertPos = nullptr; 2352 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2353 return QualType(PT, 0); 2354 2355 // If the pointee type isn't canonical, this won't be a canonical type either, 2356 // so fill in the canonical type field. 2357 QualType Canonical; 2358 if (!T.isCanonical()) { 2359 Canonical = getPointerType(getCanonicalType(T)); 2360 2361 // Get the new insert position for the node we care about. 2362 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2363 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2364 } 2365 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); 2366 Types.push_back(New); 2367 PointerTypes.InsertNode(New, InsertPos); 2368 return QualType(New, 0); 2369 } 2370 2371 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 2372 llvm::FoldingSetNodeID ID; 2373 AdjustedType::Profile(ID, Orig, New); 2374 void *InsertPos = nullptr; 2375 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2376 if (AT) 2377 return QualType(AT, 0); 2378 2379 QualType Canonical = getCanonicalType(New); 2380 2381 // Get the new insert position for the node we care about. 2382 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2383 assert(!AT && "Shouldn't be in the map!"); 2384 2385 AT = new (*this, TypeAlignment) 2386 AdjustedType(Type::Adjusted, Orig, New, Canonical); 2387 Types.push_back(AT); 2388 AdjustedTypes.InsertNode(AT, InsertPos); 2389 return QualType(AT, 0); 2390 } 2391 2392 QualType ASTContext::getDecayedType(QualType T) const { 2393 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 2394 2395 QualType Decayed; 2396 2397 // C99 6.7.5.3p7: 2398 // A declaration of a parameter as "array of type" shall be 2399 // adjusted to "qualified pointer to type", where the type 2400 // qualifiers (if any) are those specified within the [ and ] of 2401 // the array type derivation. 2402 if (T->isArrayType()) 2403 Decayed = getArrayDecayedType(T); 2404 2405 // C99 6.7.5.3p8: 2406 // A declaration of a parameter as "function returning type" 2407 // shall be adjusted to "pointer to function returning type", as 2408 // in 6.3.2.1. 2409 if (T->isFunctionType()) 2410 Decayed = getPointerType(T); 2411 2412 llvm::FoldingSetNodeID ID; 2413 AdjustedType::Profile(ID, T, Decayed); 2414 void *InsertPos = nullptr; 2415 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2416 if (AT) 2417 return QualType(AT, 0); 2418 2419 QualType Canonical = getCanonicalType(Decayed); 2420 2421 // Get the new insert position for the node we care about. 2422 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2423 assert(!AT && "Shouldn't be in the map!"); 2424 2425 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 2426 Types.push_back(AT); 2427 AdjustedTypes.InsertNode(AT, InsertPos); 2428 return QualType(AT, 0); 2429 } 2430 2431 /// getBlockPointerType - Return the uniqued reference to the type for 2432 /// a pointer to the specified block. 2433 QualType ASTContext::getBlockPointerType(QualType T) const { 2434 assert(T->isFunctionType() && "block of function types only"); 2435 // Unique pointers, to guarantee there is only one block of a particular 2436 // structure. 2437 llvm::FoldingSetNodeID ID; 2438 BlockPointerType::Profile(ID, T); 2439 2440 void *InsertPos = nullptr; 2441 if (BlockPointerType *PT = 2442 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2443 return QualType(PT, 0); 2444 2445 // If the block pointee type isn't canonical, this won't be a canonical 2446 // type either so fill in the canonical type field. 2447 QualType Canonical; 2448 if (!T.isCanonical()) { 2449 Canonical = getBlockPointerType(getCanonicalType(T)); 2450 2451 // Get the new insert position for the node we care about. 2452 BlockPointerType *NewIP = 2453 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2454 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2455 } 2456 BlockPointerType *New 2457 = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 2458 Types.push_back(New); 2459 BlockPointerTypes.InsertNode(New, InsertPos); 2460 return QualType(New, 0); 2461 } 2462 2463 /// getLValueReferenceType - Return the uniqued reference to the type for an 2464 /// lvalue reference to the specified type. 2465 QualType 2466 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 2467 assert(getCanonicalType(T) != OverloadTy && 2468 "Unresolved overloaded function type"); 2469 2470 // Unique pointers, to guarantee there is only one pointer of a particular 2471 // structure. 2472 llvm::FoldingSetNodeID ID; 2473 ReferenceType::Profile(ID, T, SpelledAsLValue); 2474 2475 void *InsertPos = nullptr; 2476 if (LValueReferenceType *RT = 2477 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2478 return QualType(RT, 0); 2479 2480 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2481 2482 // If the referencee type isn't canonical, this won't be a canonical type 2483 // either, so fill in the canonical type field. 2484 QualType Canonical; 2485 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 2486 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2487 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 2488 2489 // Get the new insert position for the node we care about. 2490 LValueReferenceType *NewIP = 2491 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2492 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2493 } 2494 2495 LValueReferenceType *New 2496 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 2497 SpelledAsLValue); 2498 Types.push_back(New); 2499 LValueReferenceTypes.InsertNode(New, InsertPos); 2500 2501 return QualType(New, 0); 2502 } 2503 2504 /// getRValueReferenceType - Return the uniqued reference to the type for an 2505 /// rvalue reference to the specified type. 2506 QualType ASTContext::getRValueReferenceType(QualType T) const { 2507 // Unique pointers, to guarantee there is only one pointer of a particular 2508 // structure. 2509 llvm::FoldingSetNodeID ID; 2510 ReferenceType::Profile(ID, T, false); 2511 2512 void *InsertPos = nullptr; 2513 if (RValueReferenceType *RT = 2514 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2515 return QualType(RT, 0); 2516 2517 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2518 2519 // If the referencee type isn't canonical, this won't be a canonical type 2520 // either, so fill in the canonical type field. 2521 QualType Canonical; 2522 if (InnerRef || !T.isCanonical()) { 2523 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2524 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 2525 2526 // Get the new insert position for the node we care about. 2527 RValueReferenceType *NewIP = 2528 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2529 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2530 } 2531 2532 RValueReferenceType *New 2533 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 2534 Types.push_back(New); 2535 RValueReferenceTypes.InsertNode(New, InsertPos); 2536 return QualType(New, 0); 2537 } 2538 2539 /// getMemberPointerType - Return the uniqued reference to the type for a 2540 /// member pointer to the specified type, in the specified class. 2541 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 2542 // Unique pointers, to guarantee there is only one pointer of a particular 2543 // structure. 2544 llvm::FoldingSetNodeID ID; 2545 MemberPointerType::Profile(ID, T, Cls); 2546 2547 void *InsertPos = nullptr; 2548 if (MemberPointerType *PT = 2549 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2550 return QualType(PT, 0); 2551 2552 // If the pointee or class type isn't canonical, this won't be a canonical 2553 // type either, so fill in the canonical type field. 2554 QualType Canonical; 2555 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 2556 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 2557 2558 // Get the new insert position for the node we care about. 2559 MemberPointerType *NewIP = 2560 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2561 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2562 } 2563 MemberPointerType *New 2564 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 2565 Types.push_back(New); 2566 MemberPointerTypes.InsertNode(New, InsertPos); 2567 return QualType(New, 0); 2568 } 2569 2570 /// getConstantArrayType - Return the unique reference to the type for an 2571 /// array of the specified element type. 2572 QualType ASTContext::getConstantArrayType(QualType EltTy, 2573 const llvm::APInt &ArySizeIn, 2574 ArrayType::ArraySizeModifier ASM, 2575 unsigned IndexTypeQuals) const { 2576 assert((EltTy->isDependentType() || 2577 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 2578 "Constant array of VLAs is illegal!"); 2579 2580 // Convert the array size into a canonical width matching the pointer size for 2581 // the target. 2582 llvm::APInt ArySize(ArySizeIn); 2583 ArySize = 2584 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); 2585 2586 llvm::FoldingSetNodeID ID; 2587 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); 2588 2589 void *InsertPos = nullptr; 2590 if (ConstantArrayType *ATP = 2591 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 2592 return QualType(ATP, 0); 2593 2594 // If the element type isn't canonical or has qualifiers, this won't 2595 // be a canonical type either, so fill in the canonical type field. 2596 QualType Canon; 2597 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2598 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2599 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, 2600 ASM, IndexTypeQuals); 2601 Canon = getQualifiedType(Canon, canonSplit.Quals); 2602 2603 // Get the new insert position for the node we care about. 2604 ConstantArrayType *NewIP = 2605 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 2606 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2607 } 2608 2609 ConstantArrayType *New = new(*this,TypeAlignment) 2610 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); 2611 ConstantArrayTypes.InsertNode(New, InsertPos); 2612 Types.push_back(New); 2613 return QualType(New, 0); 2614 } 2615 2616 /// getVariableArrayDecayedType - Turns the given type, which may be 2617 /// variably-modified, into the corresponding type with all the known 2618 /// sizes replaced with [*]. 2619 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 2620 // Vastly most common case. 2621 if (!type->isVariablyModifiedType()) return type; 2622 2623 QualType result; 2624 2625 SplitQualType split = type.getSplitDesugaredType(); 2626 const Type *ty = split.Ty; 2627 switch (ty->getTypeClass()) { 2628 #define TYPE(Class, Base) 2629 #define ABSTRACT_TYPE(Class, Base) 2630 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 2631 #include "clang/AST/TypeNodes.def" 2632 llvm_unreachable("didn't desugar past all non-canonical types?"); 2633 2634 // These types should never be variably-modified. 2635 case Type::Builtin: 2636 case Type::Complex: 2637 case Type::Vector: 2638 case Type::ExtVector: 2639 case Type::DependentSizedExtVector: 2640 case Type::ObjCObject: 2641 case Type::ObjCInterface: 2642 case Type::ObjCObjectPointer: 2643 case Type::Record: 2644 case Type::Enum: 2645 case Type::UnresolvedUsing: 2646 case Type::TypeOfExpr: 2647 case Type::TypeOf: 2648 case Type::Decltype: 2649 case Type::UnaryTransform: 2650 case Type::DependentName: 2651 case Type::InjectedClassName: 2652 case Type::TemplateSpecialization: 2653 case Type::DependentTemplateSpecialization: 2654 case Type::TemplateTypeParm: 2655 case Type::SubstTemplateTypeParmPack: 2656 case Type::Auto: 2657 case Type::PackExpansion: 2658 llvm_unreachable("type should never be variably-modified"); 2659 2660 // These types can be variably-modified but should never need to 2661 // further decay. 2662 case Type::FunctionNoProto: 2663 case Type::FunctionProto: 2664 case Type::BlockPointer: 2665 case Type::MemberPointer: 2666 case Type::Pipe: 2667 return type; 2668 2669 // These types can be variably-modified. All these modifications 2670 // preserve structure except as noted by comments. 2671 // TODO: if we ever care about optimizing VLAs, there are no-op 2672 // optimizations available here. 2673 case Type::Pointer: 2674 result = getPointerType(getVariableArrayDecayedType( 2675 cast<PointerType>(ty)->getPointeeType())); 2676 break; 2677 2678 case Type::LValueReference: { 2679 const LValueReferenceType *lv = cast<LValueReferenceType>(ty); 2680 result = getLValueReferenceType( 2681 getVariableArrayDecayedType(lv->getPointeeType()), 2682 lv->isSpelledAsLValue()); 2683 break; 2684 } 2685 2686 case Type::RValueReference: { 2687 const RValueReferenceType *lv = cast<RValueReferenceType>(ty); 2688 result = getRValueReferenceType( 2689 getVariableArrayDecayedType(lv->getPointeeType())); 2690 break; 2691 } 2692 2693 case Type::Atomic: { 2694 const AtomicType *at = cast<AtomicType>(ty); 2695 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 2696 break; 2697 } 2698 2699 case Type::ConstantArray: { 2700 const ConstantArrayType *cat = cast<ConstantArrayType>(ty); 2701 result = getConstantArrayType( 2702 getVariableArrayDecayedType(cat->getElementType()), 2703 cat->getSize(), 2704 cat->getSizeModifier(), 2705 cat->getIndexTypeCVRQualifiers()); 2706 break; 2707 } 2708 2709 case Type::DependentSizedArray: { 2710 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); 2711 result = getDependentSizedArrayType( 2712 getVariableArrayDecayedType(dat->getElementType()), 2713 dat->getSizeExpr(), 2714 dat->getSizeModifier(), 2715 dat->getIndexTypeCVRQualifiers(), 2716 dat->getBracketsRange()); 2717 break; 2718 } 2719 2720 // Turn incomplete types into [*] types. 2721 case Type::IncompleteArray: { 2722 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); 2723 result = getVariableArrayType( 2724 getVariableArrayDecayedType(iat->getElementType()), 2725 /*size*/ nullptr, 2726 ArrayType::Normal, 2727 iat->getIndexTypeCVRQualifiers(), 2728 SourceRange()); 2729 break; 2730 } 2731 2732 // Turn VLA types into [*] types. 2733 case Type::VariableArray: { 2734 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2735 result = getVariableArrayType( 2736 getVariableArrayDecayedType(vat->getElementType()), 2737 /*size*/ nullptr, 2738 ArrayType::Star, 2739 vat->getIndexTypeCVRQualifiers(), 2740 vat->getBracketsRange()); 2741 break; 2742 } 2743 } 2744 2745 // Apply the top-level qualifiers from the original. 2746 return getQualifiedType(result, split.Quals); 2747 } 2748 2749 /// getVariableArrayType - Returns a non-unique reference to the type for a 2750 /// variable array of the specified element type. 2751 QualType ASTContext::getVariableArrayType(QualType EltTy, 2752 Expr *NumElts, 2753 ArrayType::ArraySizeModifier ASM, 2754 unsigned IndexTypeQuals, 2755 SourceRange Brackets) const { 2756 // Since we don't unique expressions, it isn't possible to unique VLA's 2757 // that have an expression provided for their size. 2758 QualType Canon; 2759 2760 // Be sure to pull qualifiers off the element type. 2761 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2762 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2763 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 2764 IndexTypeQuals, Brackets); 2765 Canon = getQualifiedType(Canon, canonSplit.Quals); 2766 } 2767 2768 VariableArrayType *New = new(*this, TypeAlignment) 2769 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 2770 2771 VariableArrayTypes.push_back(New); 2772 Types.push_back(New); 2773 return QualType(New, 0); 2774 } 2775 2776 /// getDependentSizedArrayType - Returns a non-unique reference to 2777 /// the type for a dependently-sized array of the specified element 2778 /// type. 2779 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 2780 Expr *numElements, 2781 ArrayType::ArraySizeModifier ASM, 2782 unsigned elementTypeQuals, 2783 SourceRange brackets) const { 2784 assert((!numElements || numElements->isTypeDependent() || 2785 numElements->isValueDependent()) && 2786 "Size must be type- or value-dependent!"); 2787 2788 // Dependently-sized array types that do not have a specified number 2789 // of elements will have their sizes deduced from a dependent 2790 // initializer. We do no canonicalization here at all, which is okay 2791 // because they can't be used in most locations. 2792 if (!numElements) { 2793 DependentSizedArrayType *newType 2794 = new (*this, TypeAlignment) 2795 DependentSizedArrayType(*this, elementType, QualType(), 2796 numElements, ASM, elementTypeQuals, 2797 brackets); 2798 Types.push_back(newType); 2799 return QualType(newType, 0); 2800 } 2801 2802 // Otherwise, we actually build a new type every time, but we 2803 // also build a canonical type. 2804 2805 SplitQualType canonElementType = getCanonicalType(elementType).split(); 2806 2807 void *insertPos = nullptr; 2808 llvm::FoldingSetNodeID ID; 2809 DependentSizedArrayType::Profile(ID, *this, 2810 QualType(canonElementType.Ty, 0), 2811 ASM, elementTypeQuals, numElements); 2812 2813 // Look for an existing type with these properties. 2814 DependentSizedArrayType *canonTy = 2815 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2816 2817 // If we don't have one, build one. 2818 if (!canonTy) { 2819 canonTy = new (*this, TypeAlignment) 2820 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 2821 QualType(), numElements, ASM, elementTypeQuals, 2822 brackets); 2823 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 2824 Types.push_back(canonTy); 2825 } 2826 2827 // Apply qualifiers from the element type to the array. 2828 QualType canon = getQualifiedType(QualType(canonTy,0), 2829 canonElementType.Quals); 2830 2831 // If we didn't need extra canonicalization for the element type or the size 2832 // expression, then just use that as our result. 2833 if (QualType(canonElementType.Ty, 0) == elementType && 2834 canonTy->getSizeExpr() == numElements) 2835 return canon; 2836 2837 // Otherwise, we need to build a type which follows the spelling 2838 // of the element type. 2839 DependentSizedArrayType *sugaredType 2840 = new (*this, TypeAlignment) 2841 DependentSizedArrayType(*this, elementType, canon, numElements, 2842 ASM, elementTypeQuals, brackets); 2843 Types.push_back(sugaredType); 2844 return QualType(sugaredType, 0); 2845 } 2846 2847 QualType ASTContext::getIncompleteArrayType(QualType elementType, 2848 ArrayType::ArraySizeModifier ASM, 2849 unsigned elementTypeQuals) const { 2850 llvm::FoldingSetNodeID ID; 2851 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 2852 2853 void *insertPos = nullptr; 2854 if (IncompleteArrayType *iat = 2855 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 2856 return QualType(iat, 0); 2857 2858 // If the element type isn't canonical, this won't be a canonical type 2859 // either, so fill in the canonical type field. We also have to pull 2860 // qualifiers off the element type. 2861 QualType canon; 2862 2863 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 2864 SplitQualType canonSplit = getCanonicalType(elementType).split(); 2865 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 2866 ASM, elementTypeQuals); 2867 canon = getQualifiedType(canon, canonSplit.Quals); 2868 2869 // Get the new insert position for the node we care about. 2870 IncompleteArrayType *existing = 2871 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2872 assert(!existing && "Shouldn't be in the map!"); (void) existing; 2873 } 2874 2875 IncompleteArrayType *newType = new (*this, TypeAlignment) 2876 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 2877 2878 IncompleteArrayTypes.InsertNode(newType, insertPos); 2879 Types.push_back(newType); 2880 return QualType(newType, 0); 2881 } 2882 2883 /// getVectorType - Return the unique reference to a vector type of 2884 /// the specified element type and size. VectorType must be a built-in type. 2885 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 2886 VectorType::VectorKind VecKind) const { 2887 assert(vecType->isBuiltinType()); 2888 2889 // Check if we've already instantiated a vector of this type. 2890 llvm::FoldingSetNodeID ID; 2891 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 2892 2893 void *InsertPos = nullptr; 2894 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2895 return QualType(VTP, 0); 2896 2897 // If the element type isn't canonical, this won't be a canonical type either, 2898 // so fill in the canonical type field. 2899 QualType Canonical; 2900 if (!vecType.isCanonical()) { 2901 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 2902 2903 // Get the new insert position for the node we care about. 2904 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2905 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2906 } 2907 VectorType *New = new (*this, TypeAlignment) 2908 VectorType(vecType, NumElts, Canonical, VecKind); 2909 VectorTypes.InsertNode(New, InsertPos); 2910 Types.push_back(New); 2911 return QualType(New, 0); 2912 } 2913 2914 /// getExtVectorType - Return the unique reference to an extended vector type of 2915 /// the specified element type and size. VectorType must be a built-in type. 2916 QualType 2917 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 2918 assert(vecType->isBuiltinType() || vecType->isDependentType()); 2919 2920 // Check if we've already instantiated a vector of this type. 2921 llvm::FoldingSetNodeID ID; 2922 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 2923 VectorType::GenericVector); 2924 void *InsertPos = nullptr; 2925 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2926 return QualType(VTP, 0); 2927 2928 // If the element type isn't canonical, this won't be a canonical type either, 2929 // so fill in the canonical type field. 2930 QualType Canonical; 2931 if (!vecType.isCanonical()) { 2932 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 2933 2934 // Get the new insert position for the node we care about. 2935 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2936 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2937 } 2938 ExtVectorType *New = new (*this, TypeAlignment) 2939 ExtVectorType(vecType, NumElts, Canonical); 2940 VectorTypes.InsertNode(New, InsertPos); 2941 Types.push_back(New); 2942 return QualType(New, 0); 2943 } 2944 2945 QualType 2946 ASTContext::getDependentSizedExtVectorType(QualType vecType, 2947 Expr *SizeExpr, 2948 SourceLocation AttrLoc) const { 2949 llvm::FoldingSetNodeID ID; 2950 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 2951 SizeExpr); 2952 2953 void *InsertPos = nullptr; 2954 DependentSizedExtVectorType *Canon 2955 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2956 DependentSizedExtVectorType *New; 2957 if (Canon) { 2958 // We already have a canonical version of this array type; use it as 2959 // the canonical type for a newly-built type. 2960 New = new (*this, TypeAlignment) 2961 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 2962 SizeExpr, AttrLoc); 2963 } else { 2964 QualType CanonVecTy = getCanonicalType(vecType); 2965 if (CanonVecTy == vecType) { 2966 New = new (*this, TypeAlignment) 2967 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 2968 AttrLoc); 2969 2970 DependentSizedExtVectorType *CanonCheck 2971 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2972 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 2973 (void)CanonCheck; 2974 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 2975 } else { 2976 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 2977 SourceLocation()); 2978 New = new (*this, TypeAlignment) 2979 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); 2980 } 2981 } 2982 2983 Types.push_back(New); 2984 return QualType(New, 0); 2985 } 2986 2987 /// \brief Determine whether \p T is canonical as the result type of a function. 2988 static bool isCanonicalResultType(QualType T) { 2989 return T.isCanonical() && 2990 (T.getObjCLifetime() == Qualifiers::OCL_None || 2991 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 2992 } 2993 2994 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 2995 /// 2996 QualType 2997 ASTContext::getFunctionNoProtoType(QualType ResultTy, 2998 const FunctionType::ExtInfo &Info) const { 2999 // Unique functions, to guarantee there is only one function of a particular 3000 // structure. 3001 llvm::FoldingSetNodeID ID; 3002 FunctionNoProtoType::Profile(ID, ResultTy, Info); 3003 3004 void *InsertPos = nullptr; 3005 if (FunctionNoProtoType *FT = 3006 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 3007 return QualType(FT, 0); 3008 3009 QualType Canonical; 3010 if (!isCanonicalResultType(ResultTy)) { 3011 Canonical = 3012 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); 3013 3014 // Get the new insert position for the node we care about. 3015 FunctionNoProtoType *NewIP = 3016 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 3017 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3018 } 3019 3020 FunctionNoProtoType *New = new (*this, TypeAlignment) 3021 FunctionNoProtoType(ResultTy, Canonical, Info); 3022 Types.push_back(New); 3023 FunctionNoProtoTypes.InsertNode(New, InsertPos); 3024 return QualType(New, 0); 3025 } 3026 3027 CanQualType 3028 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { 3029 CanQualType CanResultType = getCanonicalType(ResultType); 3030 3031 // Canonical result types do not have ARC lifetime qualifiers. 3032 if (CanResultType.getQualifiers().hasObjCLifetime()) { 3033 Qualifiers Qs = CanResultType.getQualifiers(); 3034 Qs.removeObjCLifetime(); 3035 return CanQualType::CreateUnsafe( 3036 getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); 3037 } 3038 3039 return CanResultType; 3040 } 3041 3042 QualType 3043 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, 3044 const FunctionProtoType::ExtProtoInfo &EPI) const { 3045 size_t NumArgs = ArgArray.size(); 3046 3047 // Unique functions, to guarantee there is only one function of a particular 3048 // structure. 3049 llvm::FoldingSetNodeID ID; 3050 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 3051 *this); 3052 3053 void *InsertPos = nullptr; 3054 if (FunctionProtoType *FTP = 3055 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 3056 return QualType(FTP, 0); 3057 3058 // Determine whether the type being created is already canonical or not. 3059 bool isCanonical = 3060 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) && 3061 !EPI.HasTrailingReturn; 3062 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 3063 if (!ArgArray[i].isCanonicalAsParam()) 3064 isCanonical = false; 3065 3066 // If this type isn't canonical, get the canonical version of it. 3067 // The exception spec is not part of the canonical type. 3068 QualType Canonical; 3069 if (!isCanonical) { 3070 SmallVector<QualType, 16> CanonicalArgs; 3071 CanonicalArgs.reserve(NumArgs); 3072 for (unsigned i = 0; i != NumArgs; ++i) 3073 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 3074 3075 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 3076 CanonicalEPI.HasTrailingReturn = false; 3077 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 3078 3079 // Adjust the canonical function result type. 3080 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); 3081 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); 3082 3083 // Get the new insert position for the node we care about. 3084 FunctionProtoType *NewIP = 3085 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 3086 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3087 } 3088 3089 // FunctionProtoType objects are allocated with extra bytes after 3090 // them for three variable size arrays at the end: 3091 // - parameter types 3092 // - exception types 3093 // - extended parameter information 3094 // Instead of the exception types, there could be a noexcept 3095 // expression, or information used to resolve the exception 3096 // specification. 3097 size_t Size = sizeof(FunctionProtoType) + 3098 NumArgs * sizeof(QualType); 3099 3100 if (EPI.ExceptionSpec.Type == EST_Dynamic) { 3101 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType); 3102 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) { 3103 Size += sizeof(Expr*); 3104 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) { 3105 Size += 2 * sizeof(FunctionDecl*); 3106 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) { 3107 Size += sizeof(FunctionDecl*); 3108 } 3109 3110 // Put the ExtParameterInfos last. If all were equal, it would make 3111 // more sense to put these before the exception specification, because 3112 // it's much easier to skip past them compared to the elaborate switch 3113 // required to skip the exception specification. However, all is not 3114 // equal; ExtParameterInfos are used to model very uncommon features, 3115 // and it's better not to burden the more common paths. 3116 if (EPI.ExtParameterInfos) { 3117 Size += NumArgs * sizeof(FunctionProtoType::ExtParameterInfo); 3118 } 3119 3120 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); 3121 FunctionProtoType::ExtProtoInfo newEPI = EPI; 3122 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 3123 Types.push_back(FTP); 3124 FunctionProtoTypes.InsertNode(FTP, InsertPos); 3125 return QualType(FTP, 0); 3126 } 3127 3128 /// Return pipe type for the specified type. 3129 QualType ASTContext::getPipeType(QualType T) const { 3130 llvm::FoldingSetNodeID ID; 3131 PipeType::Profile(ID, T); 3132 3133 void *InsertPos = 0; 3134 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) 3135 return QualType(PT, 0); 3136 3137 // If the pipe element type isn't canonical, this won't be a canonical type 3138 // either, so fill in the canonical type field. 3139 QualType Canonical; 3140 if (!T.isCanonical()) { 3141 Canonical = getPipeType(getCanonicalType(T)); 3142 3143 // Get the new insert position for the node we care about. 3144 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); 3145 assert(!NewIP && "Shouldn't be in the map!"); 3146 (void)NewIP; 3147 } 3148 PipeType *New = new (*this, TypeAlignment) PipeType(T, Canonical); 3149 Types.push_back(New); 3150 PipeTypes.InsertNode(New, InsertPos); 3151 return QualType(New, 0); 3152 } 3153 3154 #ifndef NDEBUG 3155 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 3156 if (!isa<CXXRecordDecl>(D)) return false; 3157 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); 3158 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 3159 return true; 3160 if (RD->getDescribedClassTemplate() && 3161 !isa<ClassTemplateSpecializationDecl>(RD)) 3162 return true; 3163 return false; 3164 } 3165 #endif 3166 3167 /// getInjectedClassNameType - Return the unique reference to the 3168 /// injected class name type for the specified templated declaration. 3169 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 3170 QualType TST) const { 3171 assert(NeedsInjectedClassNameType(Decl)); 3172 if (Decl->TypeForDecl) { 3173 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3174 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 3175 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 3176 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3177 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3178 } else { 3179 Type *newType = 3180 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 3181 Decl->TypeForDecl = newType; 3182 Types.push_back(newType); 3183 } 3184 return QualType(Decl->TypeForDecl, 0); 3185 } 3186 3187 /// getTypeDeclType - Return the unique reference to the type for the 3188 /// specified type declaration. 3189 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 3190 assert(Decl && "Passed null for Decl param"); 3191 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 3192 3193 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 3194 return getTypedefType(Typedef); 3195 3196 assert(!isa<TemplateTypeParmDecl>(Decl) && 3197 "Template type parameter types are always available."); 3198 3199 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { 3200 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 3201 assert(!NeedsInjectedClassNameType(Record)); 3202 return getRecordType(Record); 3203 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { 3204 assert(Enum->isFirstDecl() && "enum has previous declaration"); 3205 return getEnumType(Enum); 3206 } else if (const UnresolvedUsingTypenameDecl *Using = 3207 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 3208 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 3209 Decl->TypeForDecl = newType; 3210 Types.push_back(newType); 3211 } else 3212 llvm_unreachable("TypeDecl without a type?"); 3213 3214 return QualType(Decl->TypeForDecl, 0); 3215 } 3216 3217 /// getTypedefType - Return the unique reference to the type for the 3218 /// specified typedef name decl. 3219 QualType 3220 ASTContext::getTypedefType(const TypedefNameDecl *Decl, 3221 QualType Canonical) const { 3222 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3223 3224 if (Canonical.isNull()) 3225 Canonical = getCanonicalType(Decl->getUnderlyingType()); 3226 TypedefType *newType = new(*this, TypeAlignment) 3227 TypedefType(Type::Typedef, Decl, Canonical); 3228 Decl->TypeForDecl = newType; 3229 Types.push_back(newType); 3230 return QualType(newType, 0); 3231 } 3232 3233 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 3234 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3235 3236 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 3237 if (PrevDecl->TypeForDecl) 3238 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3239 3240 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); 3241 Decl->TypeForDecl = newType; 3242 Types.push_back(newType); 3243 return QualType(newType, 0); 3244 } 3245 3246 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 3247 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3248 3249 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 3250 if (PrevDecl->TypeForDecl) 3251 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3252 3253 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); 3254 Decl->TypeForDecl = newType; 3255 Types.push_back(newType); 3256 return QualType(newType, 0); 3257 } 3258 3259 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, 3260 QualType modifiedType, 3261 QualType equivalentType) { 3262 llvm::FoldingSetNodeID id; 3263 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 3264 3265 void *insertPos = nullptr; 3266 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 3267 if (type) return QualType(type, 0); 3268 3269 QualType canon = getCanonicalType(equivalentType); 3270 type = new (*this, TypeAlignment) 3271 AttributedType(canon, attrKind, modifiedType, equivalentType); 3272 3273 Types.push_back(type); 3274 AttributedTypes.InsertNode(type, insertPos); 3275 3276 return QualType(type, 0); 3277 } 3278 3279 /// \brief Retrieve a substitution-result type. 3280 QualType 3281 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 3282 QualType Replacement) const { 3283 assert(Replacement.isCanonical() 3284 && "replacement types must always be canonical"); 3285 3286 llvm::FoldingSetNodeID ID; 3287 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 3288 void *InsertPos = nullptr; 3289 SubstTemplateTypeParmType *SubstParm 3290 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3291 3292 if (!SubstParm) { 3293 SubstParm = new (*this, TypeAlignment) 3294 SubstTemplateTypeParmType(Parm, Replacement); 3295 Types.push_back(SubstParm); 3296 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3297 } 3298 3299 return QualType(SubstParm, 0); 3300 } 3301 3302 /// \brief Retrieve a 3303 QualType ASTContext::getSubstTemplateTypeParmPackType( 3304 const TemplateTypeParmType *Parm, 3305 const TemplateArgument &ArgPack) { 3306 #ifndef NDEBUG 3307 for (const auto &P : ArgPack.pack_elements()) { 3308 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 3309 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 3310 } 3311 #endif 3312 3313 llvm::FoldingSetNodeID ID; 3314 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 3315 void *InsertPos = nullptr; 3316 if (SubstTemplateTypeParmPackType *SubstParm 3317 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 3318 return QualType(SubstParm, 0); 3319 3320 QualType Canon; 3321 if (!Parm->isCanonicalUnqualified()) { 3322 Canon = getCanonicalType(QualType(Parm, 0)); 3323 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 3324 ArgPack); 3325 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 3326 } 3327 3328 SubstTemplateTypeParmPackType *SubstParm 3329 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 3330 ArgPack); 3331 Types.push_back(SubstParm); 3332 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3333 return QualType(SubstParm, 0); 3334 } 3335 3336 /// \brief Retrieve the template type parameter type for a template 3337 /// parameter or parameter pack with the given depth, index, and (optionally) 3338 /// name. 3339 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 3340 bool ParameterPack, 3341 TemplateTypeParmDecl *TTPDecl) const { 3342 llvm::FoldingSetNodeID ID; 3343 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 3344 void *InsertPos = nullptr; 3345 TemplateTypeParmType *TypeParm 3346 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3347 3348 if (TypeParm) 3349 return QualType(TypeParm, 0); 3350 3351 if (TTPDecl) { 3352 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 3353 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 3354 3355 TemplateTypeParmType *TypeCheck 3356 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3357 assert(!TypeCheck && "Template type parameter canonical type broken"); 3358 (void)TypeCheck; 3359 } else 3360 TypeParm = new (*this, TypeAlignment) 3361 TemplateTypeParmType(Depth, Index, ParameterPack); 3362 3363 Types.push_back(TypeParm); 3364 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 3365 3366 return QualType(TypeParm, 0); 3367 } 3368 3369 TypeSourceInfo * 3370 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 3371 SourceLocation NameLoc, 3372 const TemplateArgumentListInfo &Args, 3373 QualType Underlying) const { 3374 assert(!Name.getAsDependentTemplateName() && 3375 "No dependent template names here!"); 3376 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 3377 3378 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 3379 TemplateSpecializationTypeLoc TL = 3380 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 3381 TL.setTemplateKeywordLoc(SourceLocation()); 3382 TL.setTemplateNameLoc(NameLoc); 3383 TL.setLAngleLoc(Args.getLAngleLoc()); 3384 TL.setRAngleLoc(Args.getRAngleLoc()); 3385 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 3386 TL.setArgLocInfo(i, Args[i].getLocInfo()); 3387 return DI; 3388 } 3389 3390 QualType 3391 ASTContext::getTemplateSpecializationType(TemplateName Template, 3392 const TemplateArgumentListInfo &Args, 3393 QualType Underlying) const { 3394 assert(!Template.getAsDependentTemplateName() && 3395 "No dependent template names here!"); 3396 3397 SmallVector<TemplateArgument, 4> ArgVec; 3398 ArgVec.reserve(Args.size()); 3399 for (const TemplateArgumentLoc &Arg : Args.arguments()) 3400 ArgVec.push_back(Arg.getArgument()); 3401 3402 return getTemplateSpecializationType(Template, ArgVec, Underlying); 3403 } 3404 3405 #ifndef NDEBUG 3406 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { 3407 for (const TemplateArgument &Arg : Args) 3408 if (Arg.isPackExpansion()) 3409 return true; 3410 3411 return true; 3412 } 3413 #endif 3414 3415 QualType 3416 ASTContext::getTemplateSpecializationType(TemplateName Template, 3417 ArrayRef<TemplateArgument> Args, 3418 QualType Underlying) const { 3419 assert(!Template.getAsDependentTemplateName() && 3420 "No dependent template names here!"); 3421 // Look through qualified template names. 3422 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3423 Template = TemplateName(QTN->getTemplateDecl()); 3424 3425 bool IsTypeAlias = 3426 Template.getAsTemplateDecl() && 3427 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 3428 QualType CanonType; 3429 if (!Underlying.isNull()) 3430 CanonType = getCanonicalType(Underlying); 3431 else { 3432 // We can get here with an alias template when the specialization contains 3433 // a pack expansion that does not match up with a parameter pack. 3434 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && 3435 "Caller must compute aliased type"); 3436 IsTypeAlias = false; 3437 CanonType = getCanonicalTemplateSpecializationType(Template, Args); 3438 } 3439 3440 // Allocate the (non-canonical) template specialization type, but don't 3441 // try to unique it: these types typically have location information that 3442 // we don't unique and don't want to lose. 3443 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 3444 sizeof(TemplateArgument) * Args.size() + 3445 (IsTypeAlias? sizeof(QualType) : 0), 3446 TypeAlignment); 3447 TemplateSpecializationType *Spec 3448 = new (Mem) TemplateSpecializationType(Template, Args, CanonType, 3449 IsTypeAlias ? Underlying : QualType()); 3450 3451 Types.push_back(Spec); 3452 return QualType(Spec, 0); 3453 } 3454 3455 QualType ASTContext::getCanonicalTemplateSpecializationType( 3456 TemplateName Template, ArrayRef<TemplateArgument> Args) const { 3457 assert(!Template.getAsDependentTemplateName() && 3458 "No dependent template names here!"); 3459 3460 // Look through qualified template names. 3461 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3462 Template = TemplateName(QTN->getTemplateDecl()); 3463 3464 // Build the canonical template specialization type. 3465 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 3466 SmallVector<TemplateArgument, 4> CanonArgs; 3467 unsigned NumArgs = Args.size(); 3468 CanonArgs.reserve(NumArgs); 3469 for (const TemplateArgument &Arg : Args) 3470 CanonArgs.push_back(getCanonicalTemplateArgument(Arg)); 3471 3472 // Determine whether this canonical template specialization type already 3473 // exists. 3474 llvm::FoldingSetNodeID ID; 3475 TemplateSpecializationType::Profile(ID, CanonTemplate, 3476 CanonArgs, *this); 3477 3478 void *InsertPos = nullptr; 3479 TemplateSpecializationType *Spec 3480 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3481 3482 if (!Spec) { 3483 // Allocate a new canonical template specialization type. 3484 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 3485 sizeof(TemplateArgument) * NumArgs), 3486 TypeAlignment); 3487 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 3488 CanonArgs, 3489 QualType(), QualType()); 3490 Types.push_back(Spec); 3491 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 3492 } 3493 3494 assert(Spec->isDependentType() && 3495 "Non-dependent template-id type must have a canonical type"); 3496 return QualType(Spec, 0); 3497 } 3498 3499 QualType 3500 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 3501 NestedNameSpecifier *NNS, 3502 QualType NamedType) const { 3503 llvm::FoldingSetNodeID ID; 3504 ElaboratedType::Profile(ID, Keyword, NNS, NamedType); 3505 3506 void *InsertPos = nullptr; 3507 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3508 if (T) 3509 return QualType(T, 0); 3510 3511 QualType Canon = NamedType; 3512 if (!Canon.isCanonical()) { 3513 Canon = getCanonicalType(NamedType); 3514 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3515 assert(!CheckT && "Elaborated canonical type broken"); 3516 (void)CheckT; 3517 } 3518 3519 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon); 3520 Types.push_back(T); 3521 ElaboratedTypes.InsertNode(T, InsertPos); 3522 return QualType(T, 0); 3523 } 3524 3525 QualType 3526 ASTContext::getParenType(QualType InnerType) const { 3527 llvm::FoldingSetNodeID ID; 3528 ParenType::Profile(ID, InnerType); 3529 3530 void *InsertPos = nullptr; 3531 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3532 if (T) 3533 return QualType(T, 0); 3534 3535 QualType Canon = InnerType; 3536 if (!Canon.isCanonical()) { 3537 Canon = getCanonicalType(InnerType); 3538 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3539 assert(!CheckT && "Paren canonical type broken"); 3540 (void)CheckT; 3541 } 3542 3543 T = new (*this, TypeAlignment) ParenType(InnerType, Canon); 3544 Types.push_back(T); 3545 ParenTypes.InsertNode(T, InsertPos); 3546 return QualType(T, 0); 3547 } 3548 3549 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 3550 NestedNameSpecifier *NNS, 3551 const IdentifierInfo *Name, 3552 QualType Canon) const { 3553 if (Canon.isNull()) { 3554 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3555 ElaboratedTypeKeyword CanonKeyword = Keyword; 3556 if (Keyword == ETK_None) 3557 CanonKeyword = ETK_Typename; 3558 3559 if (CanonNNS != NNS || CanonKeyword != Keyword) 3560 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); 3561 } 3562 3563 llvm::FoldingSetNodeID ID; 3564 DependentNameType::Profile(ID, Keyword, NNS, Name); 3565 3566 void *InsertPos = nullptr; 3567 DependentNameType *T 3568 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 3569 if (T) 3570 return QualType(T, 0); 3571 3572 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); 3573 Types.push_back(T); 3574 DependentNameTypes.InsertNode(T, InsertPos); 3575 return QualType(T, 0); 3576 } 3577 3578 QualType 3579 ASTContext::getDependentTemplateSpecializationType( 3580 ElaboratedTypeKeyword Keyword, 3581 NestedNameSpecifier *NNS, 3582 const IdentifierInfo *Name, 3583 const TemplateArgumentListInfo &Args) const { 3584 // TODO: avoid this copy 3585 SmallVector<TemplateArgument, 16> ArgCopy; 3586 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3587 ArgCopy.push_back(Args[I].getArgument()); 3588 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); 3589 } 3590 3591 QualType 3592 ASTContext::getDependentTemplateSpecializationType( 3593 ElaboratedTypeKeyword Keyword, 3594 NestedNameSpecifier *NNS, 3595 const IdentifierInfo *Name, 3596 ArrayRef<TemplateArgument> Args) const { 3597 assert((!NNS || NNS->isDependent()) && 3598 "nested-name-specifier must be dependent"); 3599 3600 llvm::FoldingSetNodeID ID; 3601 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 3602 Name, Args); 3603 3604 void *InsertPos = nullptr; 3605 DependentTemplateSpecializationType *T 3606 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3607 if (T) 3608 return QualType(T, 0); 3609 3610 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3611 3612 ElaboratedTypeKeyword CanonKeyword = Keyword; 3613 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 3614 3615 bool AnyNonCanonArgs = false; 3616 unsigned NumArgs = Args.size(); 3617 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 3618 for (unsigned I = 0; I != NumArgs; ++I) { 3619 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 3620 if (!CanonArgs[I].structurallyEquals(Args[I])) 3621 AnyNonCanonArgs = true; 3622 } 3623 3624 QualType Canon; 3625 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 3626 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 3627 Name, 3628 CanonArgs); 3629 3630 // Find the insert position again. 3631 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3632 } 3633 3634 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 3635 sizeof(TemplateArgument) * NumArgs), 3636 TypeAlignment); 3637 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 3638 Name, Args, Canon); 3639 Types.push_back(T); 3640 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 3641 return QualType(T, 0); 3642 } 3643 3644 QualType ASTContext::getPackExpansionType(QualType Pattern, 3645 Optional<unsigned> NumExpansions) { 3646 llvm::FoldingSetNodeID ID; 3647 PackExpansionType::Profile(ID, Pattern, NumExpansions); 3648 3649 assert(Pattern->containsUnexpandedParameterPack() && 3650 "Pack expansions must expand one or more parameter packs"); 3651 void *InsertPos = nullptr; 3652 PackExpansionType *T 3653 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3654 if (T) 3655 return QualType(T, 0); 3656 3657 QualType Canon; 3658 if (!Pattern.isCanonical()) { 3659 Canon = getCanonicalType(Pattern); 3660 // The canonical type might not contain an unexpanded parameter pack, if it 3661 // contains an alias template specialization which ignores one of its 3662 // parameters. 3663 if (Canon->containsUnexpandedParameterPack()) { 3664 Canon = getPackExpansionType(Canon, NumExpansions); 3665 3666 // Find the insert position again, in case we inserted an element into 3667 // PackExpansionTypes and invalidated our insert position. 3668 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3669 } 3670 } 3671 3672 T = new (*this, TypeAlignment) 3673 PackExpansionType(Pattern, Canon, NumExpansions); 3674 Types.push_back(T); 3675 PackExpansionTypes.InsertNode(T, InsertPos); 3676 return QualType(T, 0); 3677 } 3678 3679 /// CmpProtocolNames - Comparison predicate for sorting protocols 3680 /// alphabetically. 3681 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, 3682 ObjCProtocolDecl *const *RHS) { 3683 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); 3684 } 3685 3686 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { 3687 if (Protocols.empty()) return true; 3688 3689 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 3690 return false; 3691 3692 for (unsigned i = 1; i != Protocols.size(); ++i) 3693 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || 3694 Protocols[i]->getCanonicalDecl() != Protocols[i]) 3695 return false; 3696 return true; 3697 } 3698 3699 static void 3700 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { 3701 // Sort protocols, keyed by name. 3702 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); 3703 3704 // Canonicalize. 3705 for (ObjCProtocolDecl *&P : Protocols) 3706 P = P->getCanonicalDecl(); 3707 3708 // Remove duplicates. 3709 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); 3710 Protocols.erase(ProtocolsEnd, Protocols.end()); 3711 } 3712 3713 QualType ASTContext::getObjCObjectType(QualType BaseType, 3714 ObjCProtocolDecl * const *Protocols, 3715 unsigned NumProtocols) const { 3716 return getObjCObjectType(BaseType, { }, 3717 llvm::makeArrayRef(Protocols, NumProtocols), 3718 /*isKindOf=*/false); 3719 } 3720 3721 QualType ASTContext::getObjCObjectType( 3722 QualType baseType, 3723 ArrayRef<QualType> typeArgs, 3724 ArrayRef<ObjCProtocolDecl *> protocols, 3725 bool isKindOf) const { 3726 // If the base type is an interface and there aren't any protocols or 3727 // type arguments to add, then the interface type will do just fine. 3728 if (typeArgs.empty() && protocols.empty() && !isKindOf && 3729 isa<ObjCInterfaceType>(baseType)) 3730 return baseType; 3731 3732 // Look in the folding set for an existing type. 3733 llvm::FoldingSetNodeID ID; 3734 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); 3735 void *InsertPos = nullptr; 3736 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 3737 return QualType(QT, 0); 3738 3739 // Determine the type arguments to be used for canonicalization, 3740 // which may be explicitly specified here or written on the base 3741 // type. 3742 ArrayRef<QualType> effectiveTypeArgs = typeArgs; 3743 if (effectiveTypeArgs.empty()) { 3744 if (auto baseObject = baseType->getAs<ObjCObjectType>()) 3745 effectiveTypeArgs = baseObject->getTypeArgs(); 3746 } 3747 3748 // Build the canonical type, which has the canonical base type and a 3749 // sorted-and-uniqued list of protocols and the type arguments 3750 // canonicalized. 3751 QualType canonical; 3752 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), 3753 effectiveTypeArgs.end(), 3754 [&](QualType type) { 3755 return type.isCanonical(); 3756 }); 3757 bool protocolsSorted = areSortedAndUniqued(protocols); 3758 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { 3759 // Determine the canonical type arguments. 3760 ArrayRef<QualType> canonTypeArgs; 3761 SmallVector<QualType, 4> canonTypeArgsVec; 3762 if (!typeArgsAreCanonical) { 3763 canonTypeArgsVec.reserve(effectiveTypeArgs.size()); 3764 for (auto typeArg : effectiveTypeArgs) 3765 canonTypeArgsVec.push_back(getCanonicalType(typeArg)); 3766 canonTypeArgs = canonTypeArgsVec; 3767 } else { 3768 canonTypeArgs = effectiveTypeArgs; 3769 } 3770 3771 ArrayRef<ObjCProtocolDecl *> canonProtocols; 3772 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; 3773 if (!protocolsSorted) { 3774 canonProtocolsVec.append(protocols.begin(), protocols.end()); 3775 SortAndUniqueProtocols(canonProtocolsVec); 3776 canonProtocols = canonProtocolsVec; 3777 } else { 3778 canonProtocols = protocols; 3779 } 3780 3781 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, 3782 canonProtocols, isKindOf); 3783 3784 // Regenerate InsertPos. 3785 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 3786 } 3787 3788 unsigned size = sizeof(ObjCObjectTypeImpl); 3789 size += typeArgs.size() * sizeof(QualType); 3790 size += protocols.size() * sizeof(ObjCProtocolDecl *); 3791 void *mem = Allocate(size, TypeAlignment); 3792 ObjCObjectTypeImpl *T = 3793 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, 3794 isKindOf); 3795 3796 Types.push_back(T); 3797 ObjCObjectTypes.InsertNode(T, InsertPos); 3798 return QualType(T, 0); 3799 } 3800 3801 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 3802 /// protocol list adopt all protocols in QT's qualified-id protocol 3803 /// list. 3804 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 3805 ObjCInterfaceDecl *IC) { 3806 if (!QT->isObjCQualifiedIdType()) 3807 return false; 3808 3809 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { 3810 // If both the right and left sides have qualifiers. 3811 for (auto *Proto : OPT->quals()) { 3812 if (!IC->ClassImplementsProtocol(Proto, false)) 3813 return false; 3814 } 3815 return true; 3816 } 3817 return false; 3818 } 3819 3820 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 3821 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 3822 /// of protocols. 3823 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 3824 ObjCInterfaceDecl *IDecl) { 3825 if (!QT->isObjCQualifiedIdType()) 3826 return false; 3827 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); 3828 if (!OPT) 3829 return false; 3830 if (!IDecl->hasDefinition()) 3831 return false; 3832 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 3833 CollectInheritedProtocols(IDecl, InheritedProtocols); 3834 if (InheritedProtocols.empty()) 3835 return false; 3836 // Check that if every protocol in list of id<plist> conforms to a protcol 3837 // of IDecl's, then bridge casting is ok. 3838 bool Conforms = false; 3839 for (auto *Proto : OPT->quals()) { 3840 Conforms = false; 3841 for (auto *PI : InheritedProtocols) { 3842 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 3843 Conforms = true; 3844 break; 3845 } 3846 } 3847 if (!Conforms) 3848 break; 3849 } 3850 if (Conforms) 3851 return true; 3852 3853 for (auto *PI : InheritedProtocols) { 3854 // If both the right and left sides have qualifiers. 3855 bool Adopts = false; 3856 for (auto *Proto : OPT->quals()) { 3857 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 3858 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 3859 break; 3860 } 3861 if (!Adopts) 3862 return false; 3863 } 3864 return true; 3865 } 3866 3867 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 3868 /// the given object type. 3869 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 3870 llvm::FoldingSetNodeID ID; 3871 ObjCObjectPointerType::Profile(ID, ObjectT); 3872 3873 void *InsertPos = nullptr; 3874 if (ObjCObjectPointerType *QT = 3875 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3876 return QualType(QT, 0); 3877 3878 // Find the canonical object type. 3879 QualType Canonical; 3880 if (!ObjectT.isCanonical()) { 3881 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 3882 3883 // Regenerate InsertPos. 3884 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3885 } 3886 3887 // No match. 3888 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 3889 ObjCObjectPointerType *QType = 3890 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 3891 3892 Types.push_back(QType); 3893 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 3894 return QualType(QType, 0); 3895 } 3896 3897 /// getObjCInterfaceType - Return the unique reference to the type for the 3898 /// specified ObjC interface decl. The list of protocols is optional. 3899 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 3900 ObjCInterfaceDecl *PrevDecl) const { 3901 if (Decl->TypeForDecl) 3902 return QualType(Decl->TypeForDecl, 0); 3903 3904 if (PrevDecl) { 3905 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 3906 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3907 return QualType(PrevDecl->TypeForDecl, 0); 3908 } 3909 3910 // Prefer the definition, if there is one. 3911 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 3912 Decl = Def; 3913 3914 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 3915 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); 3916 Decl->TypeForDecl = T; 3917 Types.push_back(T); 3918 return QualType(T, 0); 3919 } 3920 3921 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 3922 /// TypeOfExprType AST's (since expression's are never shared). For example, 3923 /// multiple declarations that refer to "typeof(x)" all contain different 3924 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 3925 /// on canonical type's (which are always unique). 3926 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 3927 TypeOfExprType *toe; 3928 if (tofExpr->isTypeDependent()) { 3929 llvm::FoldingSetNodeID ID; 3930 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 3931 3932 void *InsertPos = nullptr; 3933 DependentTypeOfExprType *Canon 3934 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 3935 if (Canon) { 3936 // We already have a "canonical" version of an identical, dependent 3937 // typeof(expr) type. Use that as our canonical type. 3938 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 3939 QualType((TypeOfExprType*)Canon, 0)); 3940 } else { 3941 // Build a new, canonical typeof(expr) type. 3942 Canon 3943 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 3944 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 3945 toe = Canon; 3946 } 3947 } else { 3948 QualType Canonical = getCanonicalType(tofExpr->getType()); 3949 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 3950 } 3951 Types.push_back(toe); 3952 return QualType(toe, 0); 3953 } 3954 3955 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 3956 /// TypeOfType nodes. The only motivation to unique these nodes would be 3957 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 3958 /// an issue. This doesn't affect the type checker, since it operates 3959 /// on canonical types (which are always unique). 3960 QualType ASTContext::getTypeOfType(QualType tofType) const { 3961 QualType Canonical = getCanonicalType(tofType); 3962 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 3963 Types.push_back(tot); 3964 return QualType(tot, 0); 3965 } 3966 3967 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType 3968 /// nodes. This would never be helpful, since each such type has its own 3969 /// expression, and would not give a significant memory saving, since there 3970 /// is an Expr tree under each such type. 3971 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 3972 DecltypeType *dt; 3973 3974 // C++11 [temp.type]p2: 3975 // If an expression e involves a template parameter, decltype(e) denotes a 3976 // unique dependent type. Two such decltype-specifiers refer to the same 3977 // type only if their expressions are equivalent (14.5.6.1). 3978 if (e->isInstantiationDependent()) { 3979 llvm::FoldingSetNodeID ID; 3980 DependentDecltypeType::Profile(ID, *this, e); 3981 3982 void *InsertPos = nullptr; 3983 DependentDecltypeType *Canon 3984 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 3985 if (!Canon) { 3986 // Build a new, canonical typeof(expr) type. 3987 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 3988 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 3989 } 3990 dt = new (*this, TypeAlignment) 3991 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 3992 } else { 3993 dt = new (*this, TypeAlignment) 3994 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 3995 } 3996 Types.push_back(dt); 3997 return QualType(dt, 0); 3998 } 3999 4000 /// getUnaryTransformationType - We don't unique these, since the memory 4001 /// savings are minimal and these are rare. 4002 QualType ASTContext::getUnaryTransformType(QualType BaseType, 4003 QualType UnderlyingType, 4004 UnaryTransformType::UTTKind Kind) 4005 const { 4006 UnaryTransformType *ut = nullptr; 4007 4008 if (BaseType->isDependentType()) { 4009 // Look in the folding set for an existing type. 4010 llvm::FoldingSetNodeID ID; 4011 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); 4012 4013 void *InsertPos = nullptr; 4014 DependentUnaryTransformType *Canon 4015 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); 4016 4017 if (!Canon) { 4018 // Build a new, canonical __underlying_type(type) type. 4019 Canon = new (*this, TypeAlignment) 4020 DependentUnaryTransformType(*this, getCanonicalType(BaseType), 4021 Kind); 4022 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); 4023 } 4024 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 4025 QualType(), Kind, 4026 QualType(Canon, 0)); 4027 } else { 4028 QualType CanonType = getCanonicalType(UnderlyingType); 4029 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 4030 UnderlyingType, Kind, 4031 CanonType); 4032 } 4033 Types.push_back(ut); 4034 return QualType(ut, 0); 4035 } 4036 4037 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 4038 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 4039 /// canonical deduced-but-dependent 'auto' type. 4040 QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, 4041 bool IsDependent) const { 4042 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent) 4043 return getAutoDeductType(); 4044 4045 // Look in the folding set for an existing type. 4046 void *InsertPos = nullptr; 4047 llvm::FoldingSetNodeID ID; 4048 AutoType::Profile(ID, DeducedType, Keyword, IsDependent); 4049 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 4050 return QualType(AT, 0); 4051 4052 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, 4053 Keyword, 4054 IsDependent); 4055 Types.push_back(AT); 4056 if (InsertPos) 4057 AutoTypes.InsertNode(AT, InsertPos); 4058 return QualType(AT, 0); 4059 } 4060 4061 /// getAtomicType - Return the uniqued reference to the atomic type for 4062 /// the given value type. 4063 QualType ASTContext::getAtomicType(QualType T) const { 4064 // Unique pointers, to guarantee there is only one pointer of a particular 4065 // structure. 4066 llvm::FoldingSetNodeID ID; 4067 AtomicType::Profile(ID, T); 4068 4069 void *InsertPos = nullptr; 4070 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 4071 return QualType(AT, 0); 4072 4073 // If the atomic value type isn't canonical, this won't be a canonical type 4074 // either, so fill in the canonical type field. 4075 QualType Canonical; 4076 if (!T.isCanonical()) { 4077 Canonical = getAtomicType(getCanonicalType(T)); 4078 4079 // Get the new insert position for the node we care about. 4080 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 4081 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4082 } 4083 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 4084 Types.push_back(New); 4085 AtomicTypes.InsertNode(New, InsertPos); 4086 return QualType(New, 0); 4087 } 4088 4089 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 4090 QualType ASTContext::getAutoDeductType() const { 4091 if (AutoDeductTy.isNull()) 4092 AutoDeductTy = QualType( 4093 new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto, 4094 /*dependent*/false), 4095 0); 4096 return AutoDeductTy; 4097 } 4098 4099 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 4100 QualType ASTContext::getAutoRRefDeductType() const { 4101 if (AutoRRefDeductTy.isNull()) 4102 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 4103 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 4104 return AutoRRefDeductTy; 4105 } 4106 4107 /// getTagDeclType - Return the unique reference to the type for the 4108 /// specified TagDecl (struct/union/class/enum) decl. 4109 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 4110 assert (Decl); 4111 // FIXME: What is the design on getTagDeclType when it requires casting 4112 // away const? mutable? 4113 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 4114 } 4115 4116 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 4117 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 4118 /// needs to agree with the definition in <stddef.h>. 4119 CanQualType ASTContext::getSizeType() const { 4120 return getFromTargetType(Target->getSizeType()); 4121 } 4122 4123 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 4124 CanQualType ASTContext::getIntMaxType() const { 4125 return getFromTargetType(Target->getIntMaxType()); 4126 } 4127 4128 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 4129 CanQualType ASTContext::getUIntMaxType() const { 4130 return getFromTargetType(Target->getUIntMaxType()); 4131 } 4132 4133 /// getSignedWCharType - Return the type of "signed wchar_t". 4134 /// Used when in C++, as a GCC extension. 4135 QualType ASTContext::getSignedWCharType() const { 4136 // FIXME: derive from "Target" ? 4137 return WCharTy; 4138 } 4139 4140 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 4141 /// Used when in C++, as a GCC extension. 4142 QualType ASTContext::getUnsignedWCharType() const { 4143 // FIXME: derive from "Target" ? 4144 return UnsignedIntTy; 4145 } 4146 4147 QualType ASTContext::getIntPtrType() const { 4148 return getFromTargetType(Target->getIntPtrType()); 4149 } 4150 4151 QualType ASTContext::getUIntPtrType() const { 4152 return getCorrespondingUnsignedType(getIntPtrType()); 4153 } 4154 4155 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 4156 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 4157 QualType ASTContext::getPointerDiffType() const { 4158 return getFromTargetType(Target->getPtrDiffType(0)); 4159 } 4160 4161 /// \brief Return the unique type for "pid_t" defined in 4162 /// <sys/types.h>. We need this to compute the correct type for vfork(). 4163 QualType ASTContext::getProcessIDType() const { 4164 return getFromTargetType(Target->getProcessIDType()); 4165 } 4166 4167 //===----------------------------------------------------------------------===// 4168 // Type Operators 4169 //===----------------------------------------------------------------------===// 4170 4171 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 4172 // Push qualifiers into arrays, and then discard any remaining 4173 // qualifiers. 4174 T = getCanonicalType(T); 4175 T = getVariableArrayDecayedType(T); 4176 const Type *Ty = T.getTypePtr(); 4177 QualType Result; 4178 if (isa<ArrayType>(Ty)) { 4179 Result = getArrayDecayedType(QualType(Ty,0)); 4180 } else if (isa<FunctionType>(Ty)) { 4181 Result = getPointerType(QualType(Ty, 0)); 4182 } else { 4183 Result = QualType(Ty, 0); 4184 } 4185 4186 return CanQualType::CreateUnsafe(Result); 4187 } 4188 4189 QualType ASTContext::getUnqualifiedArrayType(QualType type, 4190 Qualifiers &quals) { 4191 SplitQualType splitType = type.getSplitUnqualifiedType(); 4192 4193 // FIXME: getSplitUnqualifiedType() actually walks all the way to 4194 // the unqualified desugared type and then drops it on the floor. 4195 // We then have to strip that sugar back off with 4196 // getUnqualifiedDesugaredType(), which is silly. 4197 const ArrayType *AT = 4198 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 4199 4200 // If we don't have an array, just use the results in splitType. 4201 if (!AT) { 4202 quals = splitType.Quals; 4203 return QualType(splitType.Ty, 0); 4204 } 4205 4206 // Otherwise, recurse on the array's element type. 4207 QualType elementType = AT->getElementType(); 4208 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 4209 4210 // If that didn't change the element type, AT has no qualifiers, so we 4211 // can just use the results in splitType. 4212 if (elementType == unqualElementType) { 4213 assert(quals.empty()); // from the recursive call 4214 quals = splitType.Quals; 4215 return QualType(splitType.Ty, 0); 4216 } 4217 4218 // Otherwise, add in the qualifiers from the outermost type, then 4219 // build the type back up. 4220 quals.addConsistentQualifiers(splitType.Quals); 4221 4222 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 4223 return getConstantArrayType(unqualElementType, CAT->getSize(), 4224 CAT->getSizeModifier(), 0); 4225 } 4226 4227 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 4228 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 4229 } 4230 4231 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { 4232 return getVariableArrayType(unqualElementType, 4233 VAT->getSizeExpr(), 4234 VAT->getSizeModifier(), 4235 VAT->getIndexTypeCVRQualifiers(), 4236 VAT->getBracketsRange()); 4237 } 4238 4239 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); 4240 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 4241 DSAT->getSizeModifier(), 0, 4242 SourceRange()); 4243 } 4244 4245 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that 4246 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that 4247 /// they point to and return true. If T1 and T2 aren't pointer types 4248 /// or pointer-to-member types, or if they are not similar at this 4249 /// level, returns false and leaves T1 and T2 unchanged. Top-level 4250 /// qualifiers on T1 and T2 are ignored. This function will typically 4251 /// be called in a loop that successively "unwraps" pointer and 4252 /// pointer-to-member types to compare them at each level. 4253 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { 4254 const PointerType *T1PtrType = T1->getAs<PointerType>(), 4255 *T2PtrType = T2->getAs<PointerType>(); 4256 if (T1PtrType && T2PtrType) { 4257 T1 = T1PtrType->getPointeeType(); 4258 T2 = T2PtrType->getPointeeType(); 4259 return true; 4260 } 4261 4262 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), 4263 *T2MPType = T2->getAs<MemberPointerType>(); 4264 if (T1MPType && T2MPType && 4265 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 4266 QualType(T2MPType->getClass(), 0))) { 4267 T1 = T1MPType->getPointeeType(); 4268 T2 = T2MPType->getPointeeType(); 4269 return true; 4270 } 4271 4272 if (getLangOpts().ObjC1) { 4273 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), 4274 *T2OPType = T2->getAs<ObjCObjectPointerType>(); 4275 if (T1OPType && T2OPType) { 4276 T1 = T1OPType->getPointeeType(); 4277 T2 = T2OPType->getPointeeType(); 4278 return true; 4279 } 4280 } 4281 4282 // FIXME: Block pointers, too? 4283 4284 return false; 4285 } 4286 4287 DeclarationNameInfo 4288 ASTContext::getNameForTemplate(TemplateName Name, 4289 SourceLocation NameLoc) const { 4290 switch (Name.getKind()) { 4291 case TemplateName::QualifiedTemplate: 4292 case TemplateName::Template: 4293 // DNInfo work in progress: CHECKME: what about DNLoc? 4294 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 4295 NameLoc); 4296 4297 case TemplateName::OverloadedTemplate: { 4298 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 4299 // DNInfo work in progress: CHECKME: what about DNLoc? 4300 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 4301 } 4302 4303 case TemplateName::DependentTemplate: { 4304 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4305 DeclarationName DName; 4306 if (DTN->isIdentifier()) { 4307 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 4308 return DeclarationNameInfo(DName, NameLoc); 4309 } else { 4310 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 4311 // DNInfo work in progress: FIXME: source locations? 4312 DeclarationNameLoc DNLoc; 4313 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); 4314 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); 4315 return DeclarationNameInfo(DName, NameLoc, DNLoc); 4316 } 4317 } 4318 4319 case TemplateName::SubstTemplateTemplateParm: { 4320 SubstTemplateTemplateParmStorage *subst 4321 = Name.getAsSubstTemplateTemplateParm(); 4322 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 4323 NameLoc); 4324 } 4325 4326 case TemplateName::SubstTemplateTemplateParmPack: { 4327 SubstTemplateTemplateParmPackStorage *subst 4328 = Name.getAsSubstTemplateTemplateParmPack(); 4329 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 4330 NameLoc); 4331 } 4332 } 4333 4334 llvm_unreachable("bad template name kind!"); 4335 } 4336 4337 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 4338 switch (Name.getKind()) { 4339 case TemplateName::QualifiedTemplate: 4340 case TemplateName::Template: { 4341 TemplateDecl *Template = Name.getAsTemplateDecl(); 4342 if (TemplateTemplateParmDecl *TTP 4343 = dyn_cast<TemplateTemplateParmDecl>(Template)) 4344 Template = getCanonicalTemplateTemplateParmDecl(TTP); 4345 4346 // The canonical template name is the canonical template declaration. 4347 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 4348 } 4349 4350 case TemplateName::OverloadedTemplate: 4351 llvm_unreachable("cannot canonicalize overloaded template"); 4352 4353 case TemplateName::DependentTemplate: { 4354 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4355 assert(DTN && "Non-dependent template names must refer to template decls."); 4356 return DTN->CanonicalTemplateName; 4357 } 4358 4359 case TemplateName::SubstTemplateTemplateParm: { 4360 SubstTemplateTemplateParmStorage *subst 4361 = Name.getAsSubstTemplateTemplateParm(); 4362 return getCanonicalTemplateName(subst->getReplacement()); 4363 } 4364 4365 case TemplateName::SubstTemplateTemplateParmPack: { 4366 SubstTemplateTemplateParmPackStorage *subst 4367 = Name.getAsSubstTemplateTemplateParmPack(); 4368 TemplateTemplateParmDecl *canonParameter 4369 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 4370 TemplateArgument canonArgPack 4371 = getCanonicalTemplateArgument(subst->getArgumentPack()); 4372 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 4373 } 4374 } 4375 4376 llvm_unreachable("bad template name!"); 4377 } 4378 4379 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 4380 X = getCanonicalTemplateName(X); 4381 Y = getCanonicalTemplateName(Y); 4382 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 4383 } 4384 4385 TemplateArgument 4386 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 4387 switch (Arg.getKind()) { 4388 case TemplateArgument::Null: 4389 return Arg; 4390 4391 case TemplateArgument::Expression: 4392 return Arg; 4393 4394 case TemplateArgument::Declaration: { 4395 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 4396 return TemplateArgument(D, Arg.getParamTypeForDecl()); 4397 } 4398 4399 case TemplateArgument::NullPtr: 4400 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 4401 /*isNullPtr*/true); 4402 4403 case TemplateArgument::Template: 4404 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 4405 4406 case TemplateArgument::TemplateExpansion: 4407 return TemplateArgument(getCanonicalTemplateName( 4408 Arg.getAsTemplateOrTemplatePattern()), 4409 Arg.getNumTemplateExpansions()); 4410 4411 case TemplateArgument::Integral: 4412 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 4413 4414 case TemplateArgument::Type: 4415 return TemplateArgument(getCanonicalType(Arg.getAsType())); 4416 4417 case TemplateArgument::Pack: { 4418 if (Arg.pack_size() == 0) 4419 return Arg; 4420 4421 TemplateArgument *CanonArgs 4422 = new (*this) TemplateArgument[Arg.pack_size()]; 4423 unsigned Idx = 0; 4424 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 4425 AEnd = Arg.pack_end(); 4426 A != AEnd; (void)++A, ++Idx) 4427 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 4428 4429 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); 4430 } 4431 } 4432 4433 // Silence GCC warning 4434 llvm_unreachable("Unhandled template argument kind"); 4435 } 4436 4437 NestedNameSpecifier * 4438 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 4439 if (!NNS) 4440 return nullptr; 4441 4442 switch (NNS->getKind()) { 4443 case NestedNameSpecifier::Identifier: 4444 // Canonicalize the prefix but keep the identifier the same. 4445 return NestedNameSpecifier::Create(*this, 4446 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 4447 NNS->getAsIdentifier()); 4448 4449 case NestedNameSpecifier::Namespace: 4450 // A namespace is canonical; build a nested-name-specifier with 4451 // this namespace and no prefix. 4452 return NestedNameSpecifier::Create(*this, nullptr, 4453 NNS->getAsNamespace()->getOriginalNamespace()); 4454 4455 case NestedNameSpecifier::NamespaceAlias: 4456 // A namespace is canonical; build a nested-name-specifier with 4457 // this namespace and no prefix. 4458 return NestedNameSpecifier::Create(*this, nullptr, 4459 NNS->getAsNamespaceAlias()->getNamespace() 4460 ->getOriginalNamespace()); 4461 4462 case NestedNameSpecifier::TypeSpec: 4463 case NestedNameSpecifier::TypeSpecWithTemplate: { 4464 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 4465 4466 // If we have some kind of dependent-named type (e.g., "typename T::type"), 4467 // break it apart into its prefix and identifier, then reconsititute those 4468 // as the canonical nested-name-specifier. This is required to canonicalize 4469 // a dependent nested-name-specifier involving typedefs of dependent-name 4470 // types, e.g., 4471 // typedef typename T::type T1; 4472 // typedef typename T1::type T2; 4473 if (const DependentNameType *DNT = T->getAs<DependentNameType>()) 4474 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 4475 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 4476 4477 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 4478 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 4479 // first place? 4480 return NestedNameSpecifier::Create(*this, nullptr, false, 4481 const_cast<Type *>(T.getTypePtr())); 4482 } 4483 4484 case NestedNameSpecifier::Global: 4485 case NestedNameSpecifier::Super: 4486 // The global specifier and __super specifer are canonical and unique. 4487 return NNS; 4488 } 4489 4490 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 4491 } 4492 4493 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 4494 // Handle the non-qualified case efficiently. 4495 if (!T.hasLocalQualifiers()) { 4496 // Handle the common positive case fast. 4497 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 4498 return AT; 4499 } 4500 4501 // Handle the common negative case fast. 4502 if (!isa<ArrayType>(T.getCanonicalType())) 4503 return nullptr; 4504 4505 // Apply any qualifiers from the array type to the element type. This 4506 // implements C99 6.7.3p8: "If the specification of an array type includes 4507 // any type qualifiers, the element type is so qualified, not the array type." 4508 4509 // If we get here, we either have type qualifiers on the type, or we have 4510 // sugar such as a typedef in the way. If we have type qualifiers on the type 4511 // we must propagate them down into the element type. 4512 4513 SplitQualType split = T.getSplitDesugaredType(); 4514 Qualifiers qs = split.Quals; 4515 4516 // If we have a simple case, just return now. 4517 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); 4518 if (!ATy || qs.empty()) 4519 return ATy; 4520 4521 // Otherwise, we have an array and we have qualifiers on it. Push the 4522 // qualifiers into the array element type and return a new array type. 4523 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 4524 4525 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) 4526 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 4527 CAT->getSizeModifier(), 4528 CAT->getIndexTypeCVRQualifiers())); 4529 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) 4530 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 4531 IAT->getSizeModifier(), 4532 IAT->getIndexTypeCVRQualifiers())); 4533 4534 if (const DependentSizedArrayType *DSAT 4535 = dyn_cast<DependentSizedArrayType>(ATy)) 4536 return cast<ArrayType>( 4537 getDependentSizedArrayType(NewEltTy, 4538 DSAT->getSizeExpr(), 4539 DSAT->getSizeModifier(), 4540 DSAT->getIndexTypeCVRQualifiers(), 4541 DSAT->getBracketsRange())); 4542 4543 const VariableArrayType *VAT = cast<VariableArrayType>(ATy); 4544 return cast<ArrayType>(getVariableArrayType(NewEltTy, 4545 VAT->getSizeExpr(), 4546 VAT->getSizeModifier(), 4547 VAT->getIndexTypeCVRQualifiers(), 4548 VAT->getBracketsRange())); 4549 } 4550 4551 QualType ASTContext::getAdjustedParameterType(QualType T) const { 4552 if (T->isArrayType() || T->isFunctionType()) 4553 return getDecayedType(T); 4554 return T; 4555 } 4556 4557 QualType ASTContext::getSignatureParameterType(QualType T) const { 4558 T = getVariableArrayDecayedType(T); 4559 T = getAdjustedParameterType(T); 4560 return T.getUnqualifiedType(); 4561 } 4562 4563 QualType ASTContext::getExceptionObjectType(QualType T) const { 4564 // C++ [except.throw]p3: 4565 // A throw-expression initializes a temporary object, called the exception 4566 // object, the type of which is determined by removing any top-level 4567 // cv-qualifiers from the static type of the operand of throw and adjusting 4568 // the type from "array of T" or "function returning T" to "pointer to T" 4569 // or "pointer to function returning T", [...] 4570 T = getVariableArrayDecayedType(T); 4571 if (T->isArrayType() || T->isFunctionType()) 4572 T = getDecayedType(T); 4573 return T.getUnqualifiedType(); 4574 } 4575 4576 /// getArrayDecayedType - Return the properly qualified result of decaying the 4577 /// specified array type to a pointer. This operation is non-trivial when 4578 /// handling typedefs etc. The canonical type of "T" must be an array type, 4579 /// this returns a pointer to a properly qualified element of the array. 4580 /// 4581 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 4582 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 4583 // Get the element type with 'getAsArrayType' so that we don't lose any 4584 // typedefs in the element type of the array. This also handles propagation 4585 // of type qualifiers from the array type into the element type if present 4586 // (C99 6.7.3p8). 4587 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 4588 assert(PrettyArrayType && "Not an array type!"); 4589 4590 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 4591 4592 // int x[restrict 4] -> int *restrict 4593 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); 4594 } 4595 4596 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 4597 return getBaseElementType(array->getElementType()); 4598 } 4599 4600 QualType ASTContext::getBaseElementType(QualType type) const { 4601 Qualifiers qs; 4602 while (true) { 4603 SplitQualType split = type.getSplitDesugaredType(); 4604 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 4605 if (!array) break; 4606 4607 type = array->getElementType(); 4608 qs.addConsistentQualifiers(split.Quals); 4609 } 4610 4611 return getQualifiedType(type, qs); 4612 } 4613 4614 /// getConstantArrayElementCount - Returns number of constant array elements. 4615 uint64_t 4616 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 4617 uint64_t ElementCount = 1; 4618 do { 4619 ElementCount *= CA->getSize().getZExtValue(); 4620 CA = dyn_cast_or_null<ConstantArrayType>( 4621 CA->getElementType()->getAsArrayTypeUnsafe()); 4622 } while (CA); 4623 return ElementCount; 4624 } 4625 4626 /// getFloatingRank - Return a relative rank for floating point types. 4627 /// This routine will assert if passed a built-in type that isn't a float. 4628 static FloatingRank getFloatingRank(QualType T) { 4629 if (const ComplexType *CT = T->getAs<ComplexType>()) 4630 return getFloatingRank(CT->getElementType()); 4631 4632 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); 4633 switch (T->getAs<BuiltinType>()->getKind()) { 4634 default: llvm_unreachable("getFloatingRank(): not a floating type"); 4635 case BuiltinType::Half: return HalfRank; 4636 case BuiltinType::Float: return FloatRank; 4637 case BuiltinType::Double: return DoubleRank; 4638 case BuiltinType::LongDouble: return LongDoubleRank; 4639 case BuiltinType::Float128: return Float128Rank; 4640 } 4641 } 4642 4643 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 4644 /// point or a complex type (based on typeDomain/typeSize). 4645 /// 'typeDomain' is a real floating point or complex type. 4646 /// 'typeSize' is a real floating point or complex type. 4647 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 4648 QualType Domain) const { 4649 FloatingRank EltRank = getFloatingRank(Size); 4650 if (Domain->isComplexType()) { 4651 switch (EltRank) { 4652 case HalfRank: llvm_unreachable("Complex half is not supported"); 4653 case FloatRank: return FloatComplexTy; 4654 case DoubleRank: return DoubleComplexTy; 4655 case LongDoubleRank: return LongDoubleComplexTy; 4656 case Float128Rank: return Float128ComplexTy; 4657 } 4658 } 4659 4660 assert(Domain->isRealFloatingType() && "Unknown domain!"); 4661 switch (EltRank) { 4662 case HalfRank: return HalfTy; 4663 case FloatRank: return FloatTy; 4664 case DoubleRank: return DoubleTy; 4665 case LongDoubleRank: return LongDoubleTy; 4666 case Float128Rank: return Float128Ty; 4667 } 4668 llvm_unreachable("getFloatingRank(): illegal value for rank"); 4669 } 4670 4671 /// getFloatingTypeOrder - Compare the rank of the two specified floating 4672 /// point types, ignoring the domain of the type (i.e. 'double' == 4673 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 4674 /// LHS < RHS, return -1. 4675 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 4676 FloatingRank LHSR = getFloatingRank(LHS); 4677 FloatingRank RHSR = getFloatingRank(RHS); 4678 4679 if (LHSR == RHSR) 4680 return 0; 4681 if (LHSR > RHSR) 4682 return 1; 4683 return -1; 4684 } 4685 4686 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 4687 /// routine will assert if passed a built-in type that isn't an integer or enum, 4688 /// or if it is not canonicalized. 4689 unsigned ASTContext::getIntegerRank(const Type *T) const { 4690 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 4691 4692 switch (cast<BuiltinType>(T)->getKind()) { 4693 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 4694 case BuiltinType::Bool: 4695 return 1 + (getIntWidth(BoolTy) << 3); 4696 case BuiltinType::Char_S: 4697 case BuiltinType::Char_U: 4698 case BuiltinType::SChar: 4699 case BuiltinType::UChar: 4700 return 2 + (getIntWidth(CharTy) << 3); 4701 case BuiltinType::Short: 4702 case BuiltinType::UShort: 4703 return 3 + (getIntWidth(ShortTy) << 3); 4704 case BuiltinType::Int: 4705 case BuiltinType::UInt: 4706 return 4 + (getIntWidth(IntTy) << 3); 4707 case BuiltinType::Long: 4708 case BuiltinType::ULong: 4709 return 5 + (getIntWidth(LongTy) << 3); 4710 case BuiltinType::LongLong: 4711 case BuiltinType::ULongLong: 4712 return 6 + (getIntWidth(LongLongTy) << 3); 4713 case BuiltinType::Int128: 4714 case BuiltinType::UInt128: 4715 return 7 + (getIntWidth(Int128Ty) << 3); 4716 } 4717 } 4718 4719 /// \brief Whether this is a promotable bitfield reference according 4720 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 4721 /// 4722 /// \returns the type this bit-field will promote to, or NULL if no 4723 /// promotion occurs. 4724 QualType ASTContext::isPromotableBitField(Expr *E) const { 4725 if (E->isTypeDependent() || E->isValueDependent()) 4726 return QualType(); 4727 4728 // FIXME: We should not do this unless E->refersToBitField() is true. This 4729 // matters in C where getSourceBitField() will find bit-fields for various 4730 // cases where the source expression is not a bit-field designator. 4731 4732 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 4733 if (!Field) 4734 return QualType(); 4735 4736 QualType FT = Field->getType(); 4737 4738 uint64_t BitWidth = Field->getBitWidthValue(*this); 4739 uint64_t IntSize = getTypeSize(IntTy); 4740 // C++ [conv.prom]p5: 4741 // A prvalue for an integral bit-field can be converted to a prvalue of type 4742 // int if int can represent all the values of the bit-field; otherwise, it 4743 // can be converted to unsigned int if unsigned int can represent all the 4744 // values of the bit-field. If the bit-field is larger yet, no integral 4745 // promotion applies to it. 4746 // C11 6.3.1.1/2: 4747 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 4748 // If an int can represent all values of the original type (as restricted by 4749 // the width, for a bit-field), the value is converted to an int; otherwise, 4750 // it is converted to an unsigned int. 4751 // 4752 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 4753 // We perform that promotion here to match GCC and C++. 4754 if (BitWidth < IntSize) 4755 return IntTy; 4756 4757 if (BitWidth == IntSize) 4758 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 4759 4760 // Types bigger than int are not subject to promotions, and therefore act 4761 // like the base type. GCC has some weird bugs in this area that we 4762 // deliberately do not follow (GCC follows a pre-standard resolution to 4763 // C's DR315 which treats bit-width as being part of the type, and this leaks 4764 // into their semantics in some cases). 4765 return QualType(); 4766 } 4767 4768 /// getPromotedIntegerType - Returns the type that Promotable will 4769 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 4770 /// integer type. 4771 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 4772 assert(!Promotable.isNull()); 4773 assert(Promotable->isPromotableIntegerType()); 4774 if (const EnumType *ET = Promotable->getAs<EnumType>()) 4775 return ET->getDecl()->getPromotionType(); 4776 4777 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { 4778 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 4779 // (3.9.1) can be converted to a prvalue of the first of the following 4780 // types that can represent all the values of its underlying type: 4781 // int, unsigned int, long int, unsigned long int, long long int, or 4782 // unsigned long long int [...] 4783 // FIXME: Is there some better way to compute this? 4784 if (BT->getKind() == BuiltinType::WChar_S || 4785 BT->getKind() == BuiltinType::WChar_U || 4786 BT->getKind() == BuiltinType::Char16 || 4787 BT->getKind() == BuiltinType::Char32) { 4788 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 4789 uint64_t FromSize = getTypeSize(BT); 4790 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 4791 LongLongTy, UnsignedLongLongTy }; 4792 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 4793 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 4794 if (FromSize < ToSize || 4795 (FromSize == ToSize && 4796 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 4797 return PromoteTypes[Idx]; 4798 } 4799 llvm_unreachable("char type should fit into long long"); 4800 } 4801 } 4802 4803 // At this point, we should have a signed or unsigned integer type. 4804 if (Promotable->isSignedIntegerType()) 4805 return IntTy; 4806 uint64_t PromotableSize = getIntWidth(Promotable); 4807 uint64_t IntSize = getIntWidth(IntTy); 4808 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 4809 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 4810 } 4811 4812 /// \brief Recurses in pointer/array types until it finds an objc retainable 4813 /// type and returns its ownership. 4814 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 4815 while (!T.isNull()) { 4816 if (T.getObjCLifetime() != Qualifiers::OCL_None) 4817 return T.getObjCLifetime(); 4818 if (T->isArrayType()) 4819 T = getBaseElementType(T); 4820 else if (const PointerType *PT = T->getAs<PointerType>()) 4821 T = PT->getPointeeType(); 4822 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 4823 T = RT->getPointeeType(); 4824 else 4825 break; 4826 } 4827 4828 return Qualifiers::OCL_None; 4829 } 4830 4831 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 4832 // Incomplete enum types are not treated as integer types. 4833 // FIXME: In C++, enum types are never integer types. 4834 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 4835 return ET->getDecl()->getIntegerType().getTypePtr(); 4836 return nullptr; 4837 } 4838 4839 /// getIntegerTypeOrder - Returns the highest ranked integer type: 4840 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 4841 /// LHS < RHS, return -1. 4842 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 4843 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 4844 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 4845 4846 // Unwrap enums to their underlying type. 4847 if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) 4848 LHSC = getIntegerTypeForEnum(ET); 4849 if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) 4850 RHSC = getIntegerTypeForEnum(ET); 4851 4852 if (LHSC == RHSC) return 0; 4853 4854 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 4855 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 4856 4857 unsigned LHSRank = getIntegerRank(LHSC); 4858 unsigned RHSRank = getIntegerRank(RHSC); 4859 4860 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 4861 if (LHSRank == RHSRank) return 0; 4862 return LHSRank > RHSRank ? 1 : -1; 4863 } 4864 4865 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 4866 if (LHSUnsigned) { 4867 // If the unsigned [LHS] type is larger, return it. 4868 if (LHSRank >= RHSRank) 4869 return 1; 4870 4871 // If the signed type can represent all values of the unsigned type, it 4872 // wins. Because we are dealing with 2's complement and types that are 4873 // powers of two larger than each other, this is always safe. 4874 return -1; 4875 } 4876 4877 // If the unsigned [RHS] type is larger, return it. 4878 if (RHSRank >= LHSRank) 4879 return -1; 4880 4881 // If the signed type can represent all values of the unsigned type, it 4882 // wins. Because we are dealing with 2's complement and types that are 4883 // powers of two larger than each other, this is always safe. 4884 return 1; 4885 } 4886 4887 TypedefDecl *ASTContext::getCFConstantStringDecl() const { 4888 if (!CFConstantStringTypeDecl) { 4889 assert(!CFConstantStringTagDecl && 4890 "tag and typedef should be initialized together"); 4891 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); 4892 CFConstantStringTagDecl->startDefinition(); 4893 4894 QualType FieldTypes[4]; 4895 const char *FieldNames[4]; 4896 4897 // const int *isa; 4898 FieldTypes[0] = getPointerType(IntTy.withConst()); 4899 FieldNames[0] = "isa"; 4900 // int flags; 4901 FieldTypes[1] = IntTy; 4902 FieldNames[1] = "flags"; 4903 // const char *str; 4904 FieldTypes[2] = getPointerType(CharTy.withConst()); 4905 FieldNames[2] = "str"; 4906 // long length; 4907 FieldTypes[3] = LongTy; 4908 FieldNames[3] = "length"; 4909 4910 // Create fields 4911 for (unsigned i = 0; i < 4; ++i) { 4912 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTagDecl, 4913 SourceLocation(), 4914 SourceLocation(), 4915 &Idents.get(FieldNames[i]), 4916 FieldTypes[i], /*TInfo=*/nullptr, 4917 /*BitWidth=*/nullptr, 4918 /*Mutable=*/false, 4919 ICIS_NoInit); 4920 Field->setAccess(AS_public); 4921 CFConstantStringTagDecl->addDecl(Field); 4922 } 4923 4924 CFConstantStringTagDecl->completeDefinition(); 4925 // This type is designed to be compatible with NSConstantString, but cannot 4926 // use the same name, since NSConstantString is an interface. 4927 auto tagType = getTagDeclType(CFConstantStringTagDecl); 4928 CFConstantStringTypeDecl = 4929 buildImplicitTypedef(tagType, "__NSConstantString"); 4930 } 4931 4932 return CFConstantStringTypeDecl; 4933 } 4934 4935 RecordDecl *ASTContext::getCFConstantStringTagDecl() const { 4936 if (!CFConstantStringTagDecl) 4937 getCFConstantStringDecl(); // Build the tag and the typedef. 4938 return CFConstantStringTagDecl; 4939 } 4940 4941 // getCFConstantStringType - Return the type used for constant CFStrings. 4942 QualType ASTContext::getCFConstantStringType() const { 4943 return getTypedefType(getCFConstantStringDecl()); 4944 } 4945 4946 QualType ASTContext::getObjCSuperType() const { 4947 if (ObjCSuperType.isNull()) { 4948 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 4949 TUDecl->addDecl(ObjCSuperTypeDecl); 4950 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 4951 } 4952 return ObjCSuperType; 4953 } 4954 4955 void ASTContext::setCFConstantStringType(QualType T) { 4956 const TypedefType *TD = T->getAs<TypedefType>(); 4957 assert(TD && "Invalid CFConstantStringType"); 4958 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); 4959 auto TagType = 4960 CFConstantStringTypeDecl->getUnderlyingType()->getAs<RecordType>(); 4961 assert(TagType && "Invalid CFConstantStringType"); 4962 CFConstantStringTagDecl = TagType->getDecl(); 4963 } 4964 4965 QualType ASTContext::getBlockDescriptorType() const { 4966 if (BlockDescriptorType) 4967 return getTagDeclType(BlockDescriptorType); 4968 4969 RecordDecl *RD; 4970 // FIXME: Needs the FlagAppleBlock bit. 4971 RD = buildImplicitRecord("__block_descriptor"); 4972 RD->startDefinition(); 4973 4974 QualType FieldTypes[] = { 4975 UnsignedLongTy, 4976 UnsignedLongTy, 4977 }; 4978 4979 static const char *const FieldNames[] = { 4980 "reserved", 4981 "Size" 4982 }; 4983 4984 for (size_t i = 0; i < 2; ++i) { 4985 FieldDecl *Field = FieldDecl::Create( 4986 *this, RD, SourceLocation(), SourceLocation(), 4987 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 4988 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 4989 Field->setAccess(AS_public); 4990 RD->addDecl(Field); 4991 } 4992 4993 RD->completeDefinition(); 4994 4995 BlockDescriptorType = RD; 4996 4997 return getTagDeclType(BlockDescriptorType); 4998 } 4999 5000 QualType ASTContext::getBlockDescriptorExtendedType() const { 5001 if (BlockDescriptorExtendedType) 5002 return getTagDeclType(BlockDescriptorExtendedType); 5003 5004 RecordDecl *RD; 5005 // FIXME: Needs the FlagAppleBlock bit. 5006 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 5007 RD->startDefinition(); 5008 5009 QualType FieldTypes[] = { 5010 UnsignedLongTy, 5011 UnsignedLongTy, 5012 getPointerType(VoidPtrTy), 5013 getPointerType(VoidPtrTy) 5014 }; 5015 5016 static const char *const FieldNames[] = { 5017 "reserved", 5018 "Size", 5019 "CopyFuncPtr", 5020 "DestroyFuncPtr" 5021 }; 5022 5023 for (size_t i = 0; i < 4; ++i) { 5024 FieldDecl *Field = FieldDecl::Create( 5025 *this, RD, SourceLocation(), SourceLocation(), 5026 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 5027 /*BitWidth=*/nullptr, 5028 /*Mutable=*/false, ICIS_NoInit); 5029 Field->setAccess(AS_public); 5030 RD->addDecl(Field); 5031 } 5032 5033 RD->completeDefinition(); 5034 5035 BlockDescriptorExtendedType = RD; 5036 return getTagDeclType(BlockDescriptorExtendedType); 5037 } 5038 5039 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 5040 /// requires copy/dispose. Note that this must match the logic 5041 /// in buildByrefHelpers. 5042 bool ASTContext::BlockRequiresCopying(QualType Ty, 5043 const VarDecl *D) { 5044 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 5045 const Expr *copyExpr = getBlockVarCopyInits(D); 5046 if (!copyExpr && record->hasTrivialDestructor()) return false; 5047 5048 return true; 5049 } 5050 5051 if (!Ty->isObjCRetainableType()) return false; 5052 5053 Qualifiers qs = Ty.getQualifiers(); 5054 5055 // If we have lifetime, that dominates. 5056 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 5057 switch (lifetime) { 5058 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 5059 5060 // These are just bits as far as the runtime is concerned. 5061 case Qualifiers::OCL_ExplicitNone: 5062 case Qualifiers::OCL_Autoreleasing: 5063 return false; 5064 5065 // Tell the runtime that this is ARC __weak, called by the 5066 // byref routines. 5067 case Qualifiers::OCL_Weak: 5068 // ARC __strong __block variables need to be retained. 5069 case Qualifiers::OCL_Strong: 5070 return true; 5071 } 5072 llvm_unreachable("fell out of lifetime switch!"); 5073 } 5074 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 5075 Ty->isObjCObjectPointerType()); 5076 } 5077 5078 bool ASTContext::getByrefLifetime(QualType Ty, 5079 Qualifiers::ObjCLifetime &LifeTime, 5080 bool &HasByrefExtendedLayout) const { 5081 5082 if (!getLangOpts().ObjC1 || 5083 getLangOpts().getGC() != LangOptions::NonGC) 5084 return false; 5085 5086 HasByrefExtendedLayout = false; 5087 if (Ty->isRecordType()) { 5088 HasByrefExtendedLayout = true; 5089 LifeTime = Qualifiers::OCL_None; 5090 } else if ((LifeTime = Ty.getObjCLifetime())) { 5091 // Honor the ARC qualifiers. 5092 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { 5093 // The MRR rule. 5094 LifeTime = Qualifiers::OCL_ExplicitNone; 5095 } else { 5096 LifeTime = Qualifiers::OCL_None; 5097 } 5098 return true; 5099 } 5100 5101 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 5102 if (!ObjCInstanceTypeDecl) 5103 ObjCInstanceTypeDecl = 5104 buildImplicitTypedef(getObjCIdType(), "instancetype"); 5105 return ObjCInstanceTypeDecl; 5106 } 5107 5108 // This returns true if a type has been typedefed to BOOL: 5109 // typedef <type> BOOL; 5110 static bool isTypeTypedefedAsBOOL(QualType T) { 5111 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 5112 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 5113 return II->isStr("BOOL"); 5114 5115 return false; 5116 } 5117 5118 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 5119 /// purpose. 5120 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 5121 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 5122 return CharUnits::Zero(); 5123 5124 CharUnits sz = getTypeSizeInChars(type); 5125 5126 // Make all integer and enum types at least as large as an int 5127 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 5128 sz = std::max(sz, getTypeSizeInChars(IntTy)); 5129 // Treat arrays as pointers, since that's how they're passed in. 5130 else if (type->isArrayType()) 5131 sz = getTypeSizeInChars(VoidPtrTy); 5132 return sz; 5133 } 5134 5135 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 5136 return getTargetInfo().getCXXABI().isMicrosoft() && 5137 VD->isStaticDataMember() && 5138 VD->getType()->isIntegralOrEnumerationType() && 5139 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 5140 } 5141 5142 ASTContext::InlineVariableDefinitionKind 5143 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { 5144 if (!VD->isInline()) 5145 return InlineVariableDefinitionKind::None; 5146 5147 // In almost all cases, it's a weak definition. 5148 auto *First = VD->getFirstDecl(); 5149 if (!First->isConstexpr() || First->isInlineSpecified() || 5150 !VD->isStaticDataMember()) 5151 return InlineVariableDefinitionKind::Weak; 5152 5153 // If there's a file-context declaration in this translation unit, it's a 5154 // non-discardable definition. 5155 for (auto *D : VD->redecls()) 5156 if (D->getLexicalDeclContext()->isFileContext()) 5157 return InlineVariableDefinitionKind::Strong; 5158 5159 // If we've not seen one yet, we don't know. 5160 return InlineVariableDefinitionKind::WeakUnknown; 5161 } 5162 5163 static inline 5164 std::string charUnitsToString(const CharUnits &CU) { 5165 return llvm::itostr(CU.getQuantity()); 5166 } 5167 5168 /// getObjCEncodingForBlock - Return the encoded type for this block 5169 /// declaration. 5170 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 5171 std::string S; 5172 5173 const BlockDecl *Decl = Expr->getBlockDecl(); 5174 QualType BlockTy = 5175 Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); 5176 // Encode result type. 5177 if (getLangOpts().EncodeExtendedBlockSig) 5178 getObjCEncodingForMethodParameter( 5179 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, 5180 true /*Extended*/); 5181 else 5182 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); 5183 // Compute size of all parameters. 5184 // Start with computing size of a pointer in number of bytes. 5185 // FIXME: There might(should) be a better way of doing this computation! 5186 SourceLocation Loc; 5187 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 5188 CharUnits ParmOffset = PtrSize; 5189 for (auto PI : Decl->parameters()) { 5190 QualType PType = PI->getType(); 5191 CharUnits sz = getObjCEncodingTypeSize(PType); 5192 if (sz.isZero()) 5193 continue; 5194 assert (sz.isPositive() && "BlockExpr - Incomplete param type"); 5195 ParmOffset += sz; 5196 } 5197 // Size of the argument frame 5198 S += charUnitsToString(ParmOffset); 5199 // Block pointer and offset. 5200 S += "@?0"; 5201 5202 // Argument types. 5203 ParmOffset = PtrSize; 5204 for (auto PVDecl : Decl->parameters()) { 5205 QualType PType = PVDecl->getOriginalType(); 5206 if (const ArrayType *AT = 5207 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5208 // Use array's original type only if it has known number of 5209 // elements. 5210 if (!isa<ConstantArrayType>(AT)) 5211 PType = PVDecl->getType(); 5212 } else if (PType->isFunctionType()) 5213 PType = PVDecl->getType(); 5214 if (getLangOpts().EncodeExtendedBlockSig) 5215 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 5216 S, true /*Extended*/); 5217 else 5218 getObjCEncodingForType(PType, S); 5219 S += charUnitsToString(ParmOffset); 5220 ParmOffset += getObjCEncodingTypeSize(PType); 5221 } 5222 5223 return S; 5224 } 5225 5226 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, 5227 std::string& S) { 5228 // Encode result type. 5229 getObjCEncodingForType(Decl->getReturnType(), S); 5230 CharUnits ParmOffset; 5231 // Compute size of all parameters. 5232 for (auto PI : Decl->parameters()) { 5233 QualType PType = PI->getType(); 5234 CharUnits sz = getObjCEncodingTypeSize(PType); 5235 if (sz.isZero()) 5236 continue; 5237 5238 assert (sz.isPositive() && 5239 "getObjCEncodingForFunctionDecl - Incomplete param type"); 5240 ParmOffset += sz; 5241 } 5242 S += charUnitsToString(ParmOffset); 5243 ParmOffset = CharUnits::Zero(); 5244 5245 // Argument types. 5246 for (auto PVDecl : Decl->parameters()) { 5247 QualType PType = PVDecl->getOriginalType(); 5248 if (const ArrayType *AT = 5249 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5250 // Use array's original type only if it has known number of 5251 // elements. 5252 if (!isa<ConstantArrayType>(AT)) 5253 PType = PVDecl->getType(); 5254 } else if (PType->isFunctionType()) 5255 PType = PVDecl->getType(); 5256 getObjCEncodingForType(PType, S); 5257 S += charUnitsToString(ParmOffset); 5258 ParmOffset += getObjCEncodingTypeSize(PType); 5259 } 5260 5261 return false; 5262 } 5263 5264 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 5265 /// method parameter or return type. If Extended, include class names and 5266 /// block object types. 5267 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 5268 QualType T, std::string& S, 5269 bool Extended) const { 5270 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 5271 getObjCEncodingForTypeQualifier(QT, S); 5272 // Encode parameter type. 5273 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5274 true /*OutermostType*/, 5275 false /*EncodingProperty*/, 5276 false /*StructField*/, 5277 Extended /*EncodeBlockParameters*/, 5278 Extended /*EncodeClassNames*/); 5279 } 5280 5281 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 5282 /// declaration. 5283 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 5284 std::string& S, 5285 bool Extended) const { 5286 // FIXME: This is not very efficient. 5287 // Encode return type. 5288 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 5289 Decl->getReturnType(), S, Extended); 5290 // Compute size of all parameters. 5291 // Start with computing size of a pointer in number of bytes. 5292 // FIXME: There might(should) be a better way of doing this computation! 5293 SourceLocation Loc; 5294 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 5295 // The first two arguments (self and _cmd) are pointers; account for 5296 // their size. 5297 CharUnits ParmOffset = 2 * PtrSize; 5298 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5299 E = Decl->sel_param_end(); PI != E; ++PI) { 5300 QualType PType = (*PI)->getType(); 5301 CharUnits sz = getObjCEncodingTypeSize(PType); 5302 if (sz.isZero()) 5303 continue; 5304 5305 assert (sz.isPositive() && 5306 "getObjCEncodingForMethodDecl - Incomplete param type"); 5307 ParmOffset += sz; 5308 } 5309 S += charUnitsToString(ParmOffset); 5310 S += "@0:"; 5311 S += charUnitsToString(PtrSize); 5312 5313 // Argument types. 5314 ParmOffset = 2 * PtrSize; 5315 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5316 E = Decl->sel_param_end(); PI != E; ++PI) { 5317 const ParmVarDecl *PVDecl = *PI; 5318 QualType PType = PVDecl->getOriginalType(); 5319 if (const ArrayType *AT = 5320 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5321 // Use array's original type only if it has known number of 5322 // elements. 5323 if (!isa<ConstantArrayType>(AT)) 5324 PType = PVDecl->getType(); 5325 } else if (PType->isFunctionType()) 5326 PType = PVDecl->getType(); 5327 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 5328 PType, S, Extended); 5329 S += charUnitsToString(ParmOffset); 5330 ParmOffset += getObjCEncodingTypeSize(PType); 5331 } 5332 5333 return false; 5334 } 5335 5336 ObjCPropertyImplDecl * 5337 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 5338 const ObjCPropertyDecl *PD, 5339 const Decl *Container) const { 5340 if (!Container) 5341 return nullptr; 5342 if (const ObjCCategoryImplDecl *CID = 5343 dyn_cast<ObjCCategoryImplDecl>(Container)) { 5344 for (auto *PID : CID->property_impls()) 5345 if (PID->getPropertyDecl() == PD) 5346 return PID; 5347 } else { 5348 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); 5349 for (auto *PID : OID->property_impls()) 5350 if (PID->getPropertyDecl() == PD) 5351 return PID; 5352 } 5353 return nullptr; 5354 } 5355 5356 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 5357 /// property declaration. If non-NULL, Container must be either an 5358 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 5359 /// NULL when getting encodings for protocol properties. 5360 /// Property attributes are stored as a comma-delimited C string. The simple 5361 /// attributes readonly and bycopy are encoded as single characters. The 5362 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 5363 /// encoded as single characters, followed by an identifier. Property types 5364 /// are also encoded as a parametrized attribute. The characters used to encode 5365 /// these attributes are defined by the following enumeration: 5366 /// @code 5367 /// enum PropertyAttributes { 5368 /// kPropertyReadOnly = 'R', // property is read-only. 5369 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 5370 /// kPropertyByref = '&', // property is a reference to the value last assigned 5371 /// kPropertyDynamic = 'D', // property is dynamic 5372 /// kPropertyGetter = 'G', // followed by getter selector name 5373 /// kPropertySetter = 'S', // followed by setter selector name 5374 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 5375 /// kPropertyType = 'T' // followed by old-style type encoding. 5376 /// kPropertyWeak = 'W' // 'weak' property 5377 /// kPropertyStrong = 'P' // property GC'able 5378 /// kPropertyNonAtomic = 'N' // property non-atomic 5379 /// }; 5380 /// @endcode 5381 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 5382 const Decl *Container, 5383 std::string& S) const { 5384 // Collect information from the property implementation decl(s). 5385 bool Dynamic = false; 5386 ObjCPropertyImplDecl *SynthesizePID = nullptr; 5387 5388 if (ObjCPropertyImplDecl *PropertyImpDecl = 5389 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 5390 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 5391 Dynamic = true; 5392 else 5393 SynthesizePID = PropertyImpDecl; 5394 } 5395 5396 // FIXME: This is not very efficient. 5397 S = "T"; 5398 5399 // Encode result type. 5400 // GCC has some special rules regarding encoding of properties which 5401 // closely resembles encoding of ivars. 5402 getObjCEncodingForPropertyType(PD->getType(), S); 5403 5404 if (PD->isReadOnly()) { 5405 S += ",R"; 5406 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) 5407 S += ",C"; 5408 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) 5409 S += ",&"; 5410 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) 5411 S += ",W"; 5412 } else { 5413 switch (PD->getSetterKind()) { 5414 case ObjCPropertyDecl::Assign: break; 5415 case ObjCPropertyDecl::Copy: S += ",C"; break; 5416 case ObjCPropertyDecl::Retain: S += ",&"; break; 5417 case ObjCPropertyDecl::Weak: S += ",W"; break; 5418 } 5419 } 5420 5421 // It really isn't clear at all what this means, since properties 5422 // are "dynamic by default". 5423 if (Dynamic) 5424 S += ",D"; 5425 5426 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) 5427 S += ",N"; 5428 5429 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { 5430 S += ",G"; 5431 S += PD->getGetterName().getAsString(); 5432 } 5433 5434 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { 5435 S += ",S"; 5436 S += PD->getSetterName().getAsString(); 5437 } 5438 5439 if (SynthesizePID) { 5440 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 5441 S += ",V"; 5442 S += OID->getNameAsString(); 5443 } 5444 5445 // FIXME: OBJCGC: weak & strong 5446 } 5447 5448 /// getLegacyIntegralTypeEncoding - 5449 /// Another legacy compatibility encoding: 32-bit longs are encoded as 5450 /// 'l' or 'L' , but not always. For typedefs, we need to use 5451 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 5452 /// 5453 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 5454 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 5455 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { 5456 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 5457 PointeeTy = UnsignedIntTy; 5458 else 5459 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 5460 PointeeTy = IntTy; 5461 } 5462 } 5463 } 5464 5465 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 5466 const FieldDecl *Field, 5467 QualType *NotEncodedT) const { 5468 // We follow the behavior of gcc, expanding structures which are 5469 // directly pointed to, and expanding embedded structures. Note that 5470 // these rules are sufficient to prevent recursive encoding of the 5471 // same type. 5472 getObjCEncodingForTypeImpl(T, S, true, true, Field, 5473 true /* outermost type */, false, false, 5474 false, false, false, NotEncodedT); 5475 } 5476 5477 void ASTContext::getObjCEncodingForPropertyType(QualType T, 5478 std::string& S) const { 5479 // Encode result type. 5480 // GCC has some special rules regarding encoding of properties which 5481 // closely resembles encoding of ivars. 5482 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5483 true /* outermost type */, 5484 true /* encoding property */); 5485 } 5486 5487 static char getObjCEncodingForPrimitiveKind(const ASTContext *C, 5488 BuiltinType::Kind kind) { 5489 switch (kind) { 5490 case BuiltinType::Void: return 'v'; 5491 case BuiltinType::Bool: return 'B'; 5492 case BuiltinType::Char_U: 5493 case BuiltinType::UChar: return 'C'; 5494 case BuiltinType::Char16: 5495 case BuiltinType::UShort: return 'S'; 5496 case BuiltinType::Char32: 5497 case BuiltinType::UInt: return 'I'; 5498 case BuiltinType::ULong: 5499 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 5500 case BuiltinType::UInt128: return 'T'; 5501 case BuiltinType::ULongLong: return 'Q'; 5502 case BuiltinType::Char_S: 5503 case BuiltinType::SChar: return 'c'; 5504 case BuiltinType::Short: return 's'; 5505 case BuiltinType::WChar_S: 5506 case BuiltinType::WChar_U: 5507 case BuiltinType::Int: return 'i'; 5508 case BuiltinType::Long: 5509 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 5510 case BuiltinType::LongLong: return 'q'; 5511 case BuiltinType::Int128: return 't'; 5512 case BuiltinType::Float: return 'f'; 5513 case BuiltinType::Double: return 'd'; 5514 case BuiltinType::LongDouble: return 'D'; 5515 case BuiltinType::NullPtr: return '*'; // like char* 5516 5517 case BuiltinType::Float128: 5518 case BuiltinType::Half: 5519 // FIXME: potentially need @encodes for these! 5520 return ' '; 5521 5522 case BuiltinType::ObjCId: 5523 case BuiltinType::ObjCClass: 5524 case BuiltinType::ObjCSel: 5525 llvm_unreachable("@encoding ObjC primitive type"); 5526 5527 // OpenCL and placeholder types don't need @encodings. 5528 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 5529 case BuiltinType::Id: 5530 #include "clang/Basic/OpenCLImageTypes.def" 5531 case BuiltinType::OCLEvent: 5532 case BuiltinType::OCLClkEvent: 5533 case BuiltinType::OCLQueue: 5534 case BuiltinType::OCLNDRange: 5535 case BuiltinType::OCLReserveID: 5536 case BuiltinType::OCLSampler: 5537 case BuiltinType::Dependent: 5538 #define BUILTIN_TYPE(KIND, ID) 5539 #define PLACEHOLDER_TYPE(KIND, ID) \ 5540 case BuiltinType::KIND: 5541 #include "clang/AST/BuiltinTypes.def" 5542 llvm_unreachable("invalid builtin type for @encode"); 5543 } 5544 llvm_unreachable("invalid BuiltinType::Kind value"); 5545 } 5546 5547 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 5548 EnumDecl *Enum = ET->getDecl(); 5549 5550 // The encoding of an non-fixed enum type is always 'i', regardless of size. 5551 if (!Enum->isFixed()) 5552 return 'i'; 5553 5554 // The encoding of a fixed enum type matches its fixed underlying type. 5555 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 5556 return getObjCEncodingForPrimitiveKind(C, BT->getKind()); 5557 } 5558 5559 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 5560 QualType T, const FieldDecl *FD) { 5561 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 5562 S += 'b'; 5563 // The NeXT runtime encodes bit fields as b followed by the number of bits. 5564 // The GNU runtime requires more information; bitfields are encoded as b, 5565 // then the offset (in bits) of the first element, then the type of the 5566 // bitfield, then the size in bits. For example, in this structure: 5567 // 5568 // struct 5569 // { 5570 // int integer; 5571 // int flags:2; 5572 // }; 5573 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 5574 // runtime, but b32i2 for the GNU runtime. The reason for this extra 5575 // information is not especially sensible, but we're stuck with it for 5576 // compatibility with GCC, although providing it breaks anything that 5577 // actually uses runtime introspection and wants to work on both runtimes... 5578 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 5579 const RecordDecl *RD = FD->getParent(); 5580 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 5581 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); 5582 if (const EnumType *ET = T->getAs<EnumType>()) 5583 S += ObjCEncodingForEnumType(Ctx, ET); 5584 else { 5585 const BuiltinType *BT = T->castAs<BuiltinType>(); 5586 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); 5587 } 5588 } 5589 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 5590 } 5591 5592 // FIXME: Use SmallString for accumulating string. 5593 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, 5594 bool ExpandPointedToStructures, 5595 bool ExpandStructures, 5596 const FieldDecl *FD, 5597 bool OutermostType, 5598 bool EncodingProperty, 5599 bool StructField, 5600 bool EncodeBlockParameters, 5601 bool EncodeClassNames, 5602 bool EncodePointerToObjCTypedef, 5603 QualType *NotEncodedT) const { 5604 CanQualType CT = getCanonicalType(T); 5605 switch (CT->getTypeClass()) { 5606 case Type::Builtin: 5607 case Type::Enum: 5608 if (FD && FD->isBitField()) 5609 return EncodeBitField(this, S, T, FD); 5610 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) 5611 S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); 5612 else 5613 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 5614 return; 5615 5616 case Type::Complex: { 5617 const ComplexType *CT = T->castAs<ComplexType>(); 5618 S += 'j'; 5619 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr); 5620 return; 5621 } 5622 5623 case Type::Atomic: { 5624 const AtomicType *AT = T->castAs<AtomicType>(); 5625 S += 'A'; 5626 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr); 5627 return; 5628 } 5629 5630 // encoding for pointer or reference types. 5631 case Type::Pointer: 5632 case Type::LValueReference: 5633 case Type::RValueReference: { 5634 QualType PointeeTy; 5635 if (isa<PointerType>(CT)) { 5636 const PointerType *PT = T->castAs<PointerType>(); 5637 if (PT->isObjCSelType()) { 5638 S += ':'; 5639 return; 5640 } 5641 PointeeTy = PT->getPointeeType(); 5642 } else { 5643 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 5644 } 5645 5646 bool isReadOnly = false; 5647 // For historical/compatibility reasons, the read-only qualifier of the 5648 // pointee gets emitted _before_ the '^'. The read-only qualifier of 5649 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 5650 // Also, do not emit the 'r' for anything but the outermost type! 5651 if (isa<TypedefType>(T.getTypePtr())) { 5652 if (OutermostType && T.isConstQualified()) { 5653 isReadOnly = true; 5654 S += 'r'; 5655 } 5656 } else if (OutermostType) { 5657 QualType P = PointeeTy; 5658 while (P->getAs<PointerType>()) 5659 P = P->getAs<PointerType>()->getPointeeType(); 5660 if (P.isConstQualified()) { 5661 isReadOnly = true; 5662 S += 'r'; 5663 } 5664 } 5665 if (isReadOnly) { 5666 // Another legacy compatibility encoding. Some ObjC qualifier and type 5667 // combinations need to be rearranged. 5668 // Rewrite "in const" from "nr" to "rn" 5669 if (StringRef(S).endswith("nr")) 5670 S.replace(S.end()-2, S.end(), "rn"); 5671 } 5672 5673 if (PointeeTy->isCharType()) { 5674 // char pointer types should be encoded as '*' unless it is a 5675 // type that has been typedef'd to 'BOOL'. 5676 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 5677 S += '*'; 5678 return; 5679 } 5680 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { 5681 // GCC binary compat: Need to convert "struct objc_class *" to "#". 5682 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 5683 S += '#'; 5684 return; 5685 } 5686 // GCC binary compat: Need to convert "struct objc_object *" to "@". 5687 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 5688 S += '@'; 5689 return; 5690 } 5691 // fall through... 5692 } 5693 S += '^'; 5694 getLegacyIntegralTypeEncoding(PointeeTy); 5695 5696 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, 5697 nullptr, false, false, false, false, false, false, 5698 NotEncodedT); 5699 return; 5700 } 5701 5702 case Type::ConstantArray: 5703 case Type::IncompleteArray: 5704 case Type::VariableArray: { 5705 const ArrayType *AT = cast<ArrayType>(CT); 5706 5707 if (isa<IncompleteArrayType>(AT) && !StructField) { 5708 // Incomplete arrays are encoded as a pointer to the array element. 5709 S += '^'; 5710 5711 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5712 false, ExpandStructures, FD); 5713 } else { 5714 S += '['; 5715 5716 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 5717 S += llvm::utostr(CAT->getSize().getZExtValue()); 5718 else { 5719 //Variable length arrays are encoded as a regular array with 0 elements. 5720 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 5721 "Unknown array type!"); 5722 S += '0'; 5723 } 5724 5725 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5726 false, ExpandStructures, FD, 5727 false, false, false, false, false, false, 5728 NotEncodedT); 5729 S += ']'; 5730 } 5731 return; 5732 } 5733 5734 case Type::FunctionNoProto: 5735 case Type::FunctionProto: 5736 S += '?'; 5737 return; 5738 5739 case Type::Record: { 5740 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 5741 S += RDecl->isUnion() ? '(' : '{'; 5742 // Anonymous structures print as '?' 5743 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 5744 S += II->getName(); 5745 if (ClassTemplateSpecializationDecl *Spec 5746 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 5747 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 5748 llvm::raw_string_ostream OS(S); 5749 TemplateSpecializationType::PrintTemplateArgumentList(OS, 5750 TemplateArgs.asArray(), 5751 (*this).getPrintingPolicy()); 5752 } 5753 } else { 5754 S += '?'; 5755 } 5756 if (ExpandStructures) { 5757 S += '='; 5758 if (!RDecl->isUnion()) { 5759 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 5760 } else { 5761 for (const auto *Field : RDecl->fields()) { 5762 if (FD) { 5763 S += '"'; 5764 S += Field->getNameAsString(); 5765 S += '"'; 5766 } 5767 5768 // Special case bit-fields. 5769 if (Field->isBitField()) { 5770 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 5771 Field); 5772 } else { 5773 QualType qt = Field->getType(); 5774 getLegacyIntegralTypeEncoding(qt); 5775 getObjCEncodingForTypeImpl(qt, S, false, true, 5776 FD, /*OutermostType*/false, 5777 /*EncodingProperty*/false, 5778 /*StructField*/true, 5779 false, false, false, NotEncodedT); 5780 } 5781 } 5782 } 5783 } 5784 S += RDecl->isUnion() ? ')' : '}'; 5785 return; 5786 } 5787 5788 case Type::BlockPointer: { 5789 const BlockPointerType *BT = T->castAs<BlockPointerType>(); 5790 S += "@?"; // Unlike a pointer-to-function, which is "^?". 5791 if (EncodeBlockParameters) { 5792 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); 5793 5794 S += '<'; 5795 // Block return type 5796 getObjCEncodingForTypeImpl( 5797 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, 5798 FD, false /* OutermostType */, EncodingProperty, 5799 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false, 5800 NotEncodedT); 5801 // Block self 5802 S += "@?"; 5803 // Block parameters 5804 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 5805 for (const auto &I : FPT->param_types()) 5806 getObjCEncodingForTypeImpl( 5807 I, S, ExpandPointedToStructures, ExpandStructures, FD, 5808 false /* OutermostType */, EncodingProperty, 5809 false /* StructField */, EncodeBlockParameters, EncodeClassNames, 5810 false, NotEncodedT); 5811 } 5812 S += '>'; 5813 } 5814 return; 5815 } 5816 5817 case Type::ObjCObject: { 5818 // hack to match legacy encoding of *id and *Class 5819 QualType Ty = getObjCObjectPointerType(CT); 5820 if (Ty->isObjCIdType()) { 5821 S += "{objc_object=}"; 5822 return; 5823 } 5824 else if (Ty->isObjCClassType()) { 5825 S += "{objc_class=}"; 5826 return; 5827 } 5828 } 5829 5830 case Type::ObjCInterface: { 5831 // Ignore protocol qualifiers when mangling at this level. 5832 // @encode(class_name) 5833 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); 5834 S += '{'; 5835 S += OI->getObjCRuntimeNameAsString(); 5836 S += '='; 5837 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5838 DeepCollectObjCIvars(OI, true, Ivars); 5839 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5840 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); 5841 if (Field->isBitField()) 5842 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); 5843 else 5844 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, 5845 false, false, false, false, false, 5846 EncodePointerToObjCTypedef, 5847 NotEncodedT); 5848 } 5849 S += '}'; 5850 return; 5851 } 5852 5853 case Type::ObjCObjectPointer: { 5854 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); 5855 if (OPT->isObjCIdType()) { 5856 S += '@'; 5857 return; 5858 } 5859 5860 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 5861 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 5862 // Since this is a binary compatibility issue, need to consult with runtime 5863 // folks. Fortunately, this is a *very* obsure construct. 5864 S += '#'; 5865 return; 5866 } 5867 5868 if (OPT->isObjCQualifiedIdType()) { 5869 getObjCEncodingForTypeImpl(getObjCIdType(), S, 5870 ExpandPointedToStructures, 5871 ExpandStructures, FD); 5872 if (FD || EncodingProperty || EncodeClassNames) { 5873 // Note that we do extended encoding of protocol qualifer list 5874 // Only when doing ivar or property encoding. 5875 S += '"'; 5876 for (const auto *I : OPT->quals()) { 5877 S += '<'; 5878 S += I->getObjCRuntimeNameAsString(); 5879 S += '>'; 5880 } 5881 S += '"'; 5882 } 5883 return; 5884 } 5885 5886 QualType PointeeTy = OPT->getPointeeType(); 5887 if (!EncodingProperty && 5888 isa<TypedefType>(PointeeTy.getTypePtr()) && 5889 !EncodePointerToObjCTypedef) { 5890 // Another historical/compatibility reason. 5891 // We encode the underlying type which comes out as 5892 // {...}; 5893 S += '^'; 5894 if (FD && OPT->getInterfaceDecl()) { 5895 // Prevent recursive encoding of fields in some rare cases. 5896 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); 5897 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5898 DeepCollectObjCIvars(OI, true, Ivars); 5899 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5900 if (cast<FieldDecl>(Ivars[i]) == FD) { 5901 S += '{'; 5902 S += OI->getObjCRuntimeNameAsString(); 5903 S += '}'; 5904 return; 5905 } 5906 } 5907 } 5908 getObjCEncodingForTypeImpl(PointeeTy, S, 5909 false, ExpandPointedToStructures, 5910 nullptr, 5911 false, false, false, false, false, 5912 /*EncodePointerToObjCTypedef*/true); 5913 return; 5914 } 5915 5916 S += '@'; 5917 if (OPT->getInterfaceDecl() && 5918 (FD || EncodingProperty || EncodeClassNames)) { 5919 S += '"'; 5920 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); 5921 for (const auto *I : OPT->quals()) { 5922 S += '<'; 5923 S += I->getObjCRuntimeNameAsString(); 5924 S += '>'; 5925 } 5926 S += '"'; 5927 } 5928 return; 5929 } 5930 5931 // gcc just blithely ignores member pointers. 5932 // FIXME: we shoul do better than that. 'M' is available. 5933 case Type::MemberPointer: 5934 // This matches gcc's encoding, even though technically it is insufficient. 5935 //FIXME. We should do a better job than gcc. 5936 case Type::Vector: 5937 case Type::ExtVector: 5938 // Until we have a coherent encoding of these three types, issue warning. 5939 { if (NotEncodedT) 5940 *NotEncodedT = T; 5941 return; 5942 } 5943 5944 // We could see an undeduced auto type here during error recovery. 5945 // Just ignore it. 5946 case Type::Auto: 5947 return; 5948 5949 case Type::Pipe: 5950 #define ABSTRACT_TYPE(KIND, BASE) 5951 #define TYPE(KIND, BASE) 5952 #define DEPENDENT_TYPE(KIND, BASE) \ 5953 case Type::KIND: 5954 #define NON_CANONICAL_TYPE(KIND, BASE) \ 5955 case Type::KIND: 5956 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 5957 case Type::KIND: 5958 #include "clang/AST/TypeNodes.def" 5959 llvm_unreachable("@encode for dependent type!"); 5960 } 5961 llvm_unreachable("bad type kind!"); 5962 } 5963 5964 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 5965 std::string &S, 5966 const FieldDecl *FD, 5967 bool includeVBases, 5968 QualType *NotEncodedT) const { 5969 assert(RDecl && "Expected non-null RecordDecl"); 5970 assert(!RDecl->isUnion() && "Should not be called for unions"); 5971 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) 5972 return; 5973 5974 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 5975 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 5976 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 5977 5978 if (CXXRec) { 5979 for (const auto &BI : CXXRec->bases()) { 5980 if (!BI.isVirtual()) { 5981 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 5982 if (base->isEmpty()) 5983 continue; 5984 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 5985 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5986 std::make_pair(offs, base)); 5987 } 5988 } 5989 } 5990 5991 unsigned i = 0; 5992 for (auto *Field : RDecl->fields()) { 5993 uint64_t offs = layout.getFieldOffset(i); 5994 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5995 std::make_pair(offs, Field)); 5996 ++i; 5997 } 5998 5999 if (CXXRec && includeVBases) { 6000 for (const auto &BI : CXXRec->vbases()) { 6001 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 6002 if (base->isEmpty()) 6003 continue; 6004 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 6005 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 6006 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 6007 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 6008 std::make_pair(offs, base)); 6009 } 6010 } 6011 6012 CharUnits size; 6013 if (CXXRec) { 6014 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 6015 } else { 6016 size = layout.getSize(); 6017 } 6018 6019 #ifndef NDEBUG 6020 uint64_t CurOffs = 0; 6021 #endif 6022 std::multimap<uint64_t, NamedDecl *>::iterator 6023 CurLayObj = FieldOrBaseOffsets.begin(); 6024 6025 if (CXXRec && CXXRec->isDynamicClass() && 6026 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 6027 if (FD) { 6028 S += "\"_vptr$"; 6029 std::string recname = CXXRec->getNameAsString(); 6030 if (recname.empty()) recname = "?"; 6031 S += recname; 6032 S += '"'; 6033 } 6034 S += "^^?"; 6035 #ifndef NDEBUG 6036 CurOffs += getTypeSize(VoidPtrTy); 6037 #endif 6038 } 6039 6040 if (!RDecl->hasFlexibleArrayMember()) { 6041 // Mark the end of the structure. 6042 uint64_t offs = toBits(size); 6043 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 6044 std::make_pair(offs, nullptr)); 6045 } 6046 6047 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 6048 #ifndef NDEBUG 6049 assert(CurOffs <= CurLayObj->first); 6050 if (CurOffs < CurLayObj->first) { 6051 uint64_t padding = CurLayObj->first - CurOffs; 6052 // FIXME: There doesn't seem to be a way to indicate in the encoding that 6053 // packing/alignment of members is different that normal, in which case 6054 // the encoding will be out-of-sync with the real layout. 6055 // If the runtime switches to just consider the size of types without 6056 // taking into account alignment, we could make padding explicit in the 6057 // encoding (e.g. using arrays of chars). The encoding strings would be 6058 // longer then though. 6059 CurOffs += padding; 6060 } 6061 #endif 6062 6063 NamedDecl *dcl = CurLayObj->second; 6064 if (!dcl) 6065 break; // reached end of structure. 6066 6067 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { 6068 // We expand the bases without their virtual bases since those are going 6069 // in the initial structure. Note that this differs from gcc which 6070 // expands virtual bases each time one is encountered in the hierarchy, 6071 // making the encoding type bigger than it really is. 6072 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 6073 NotEncodedT); 6074 assert(!base->isEmpty()); 6075 #ifndef NDEBUG 6076 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 6077 #endif 6078 } else { 6079 FieldDecl *field = cast<FieldDecl>(dcl); 6080 if (FD) { 6081 S += '"'; 6082 S += field->getNameAsString(); 6083 S += '"'; 6084 } 6085 6086 if (field->isBitField()) { 6087 EncodeBitField(this, S, field->getType(), field); 6088 #ifndef NDEBUG 6089 CurOffs += field->getBitWidthValue(*this); 6090 #endif 6091 } else { 6092 QualType qt = field->getType(); 6093 getLegacyIntegralTypeEncoding(qt); 6094 getObjCEncodingForTypeImpl(qt, S, false, true, FD, 6095 /*OutermostType*/false, 6096 /*EncodingProperty*/false, 6097 /*StructField*/true, 6098 false, false, false, NotEncodedT); 6099 #ifndef NDEBUG 6100 CurOffs += getTypeSize(field->getType()); 6101 #endif 6102 } 6103 } 6104 } 6105 } 6106 6107 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 6108 std::string& S) const { 6109 if (QT & Decl::OBJC_TQ_In) 6110 S += 'n'; 6111 if (QT & Decl::OBJC_TQ_Inout) 6112 S += 'N'; 6113 if (QT & Decl::OBJC_TQ_Out) 6114 S += 'o'; 6115 if (QT & Decl::OBJC_TQ_Bycopy) 6116 S += 'O'; 6117 if (QT & Decl::OBJC_TQ_Byref) 6118 S += 'R'; 6119 if (QT & Decl::OBJC_TQ_Oneway) 6120 S += 'V'; 6121 } 6122 6123 TypedefDecl *ASTContext::getObjCIdDecl() const { 6124 if (!ObjCIdDecl) { 6125 QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { }); 6126 T = getObjCObjectPointerType(T); 6127 ObjCIdDecl = buildImplicitTypedef(T, "id"); 6128 } 6129 return ObjCIdDecl; 6130 } 6131 6132 TypedefDecl *ASTContext::getObjCSelDecl() const { 6133 if (!ObjCSelDecl) { 6134 QualType T = getPointerType(ObjCBuiltinSelTy); 6135 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 6136 } 6137 return ObjCSelDecl; 6138 } 6139 6140 TypedefDecl *ASTContext::getObjCClassDecl() const { 6141 if (!ObjCClassDecl) { 6142 QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { }); 6143 T = getObjCObjectPointerType(T); 6144 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 6145 } 6146 return ObjCClassDecl; 6147 } 6148 6149 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 6150 if (!ObjCProtocolClassDecl) { 6151 ObjCProtocolClassDecl 6152 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 6153 SourceLocation(), 6154 &Idents.get("Protocol"), 6155 /*typeParamList=*/nullptr, 6156 /*PrevDecl=*/nullptr, 6157 SourceLocation(), true); 6158 } 6159 6160 return ObjCProtocolClassDecl; 6161 } 6162 6163 //===----------------------------------------------------------------------===// 6164 // __builtin_va_list Construction Functions 6165 //===----------------------------------------------------------------------===// 6166 6167 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, 6168 StringRef Name) { 6169 // typedef char* __builtin[_ms]_va_list; 6170 QualType T = Context->getPointerType(Context->CharTy); 6171 return Context->buildImplicitTypedef(T, Name); 6172 } 6173 6174 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { 6175 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); 6176 } 6177 6178 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 6179 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); 6180 } 6181 6182 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 6183 // typedef void* __builtin_va_list; 6184 QualType T = Context->getPointerType(Context->VoidTy); 6185 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 6186 } 6187 6188 static TypedefDecl * 6189 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 6190 // struct __va_list 6191 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 6192 if (Context->getLangOpts().CPlusPlus) { 6193 // namespace std { struct __va_list { 6194 NamespaceDecl *NS; 6195 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 6196 Context->getTranslationUnitDecl(), 6197 /*Inline*/ false, SourceLocation(), 6198 SourceLocation(), &Context->Idents.get("std"), 6199 /*PrevDecl*/ nullptr); 6200 NS->setImplicit(); 6201 VaListTagDecl->setDeclContext(NS); 6202 } 6203 6204 VaListTagDecl->startDefinition(); 6205 6206 const size_t NumFields = 5; 6207 QualType FieldTypes[NumFields]; 6208 const char *FieldNames[NumFields]; 6209 6210 // void *__stack; 6211 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 6212 FieldNames[0] = "__stack"; 6213 6214 // void *__gr_top; 6215 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 6216 FieldNames[1] = "__gr_top"; 6217 6218 // void *__vr_top; 6219 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6220 FieldNames[2] = "__vr_top"; 6221 6222 // int __gr_offs; 6223 FieldTypes[3] = Context->IntTy; 6224 FieldNames[3] = "__gr_offs"; 6225 6226 // int __vr_offs; 6227 FieldTypes[4] = Context->IntTy; 6228 FieldNames[4] = "__vr_offs"; 6229 6230 // Create fields 6231 for (unsigned i = 0; i < NumFields; ++i) { 6232 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6233 VaListTagDecl, 6234 SourceLocation(), 6235 SourceLocation(), 6236 &Context->Idents.get(FieldNames[i]), 6237 FieldTypes[i], /*TInfo=*/nullptr, 6238 /*BitWidth=*/nullptr, 6239 /*Mutable=*/false, 6240 ICIS_NoInit); 6241 Field->setAccess(AS_public); 6242 VaListTagDecl->addDecl(Field); 6243 } 6244 VaListTagDecl->completeDefinition(); 6245 Context->VaListTagDecl = VaListTagDecl; 6246 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6247 6248 // } __builtin_va_list; 6249 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 6250 } 6251 6252 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 6253 // typedef struct __va_list_tag { 6254 RecordDecl *VaListTagDecl; 6255 6256 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6257 VaListTagDecl->startDefinition(); 6258 6259 const size_t NumFields = 5; 6260 QualType FieldTypes[NumFields]; 6261 const char *FieldNames[NumFields]; 6262 6263 // unsigned char gpr; 6264 FieldTypes[0] = Context->UnsignedCharTy; 6265 FieldNames[0] = "gpr"; 6266 6267 // unsigned char fpr; 6268 FieldTypes[1] = Context->UnsignedCharTy; 6269 FieldNames[1] = "fpr"; 6270 6271 // unsigned short reserved; 6272 FieldTypes[2] = Context->UnsignedShortTy; 6273 FieldNames[2] = "reserved"; 6274 6275 // void* overflow_arg_area; 6276 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6277 FieldNames[3] = "overflow_arg_area"; 6278 6279 // void* reg_save_area; 6280 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 6281 FieldNames[4] = "reg_save_area"; 6282 6283 // Create fields 6284 for (unsigned i = 0; i < NumFields; ++i) { 6285 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 6286 SourceLocation(), 6287 SourceLocation(), 6288 &Context->Idents.get(FieldNames[i]), 6289 FieldTypes[i], /*TInfo=*/nullptr, 6290 /*BitWidth=*/nullptr, 6291 /*Mutable=*/false, 6292 ICIS_NoInit); 6293 Field->setAccess(AS_public); 6294 VaListTagDecl->addDecl(Field); 6295 } 6296 VaListTagDecl->completeDefinition(); 6297 Context->VaListTagDecl = VaListTagDecl; 6298 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6299 6300 // } __va_list_tag; 6301 TypedefDecl *VaListTagTypedefDecl = 6302 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 6303 6304 QualType VaListTagTypedefType = 6305 Context->getTypedefType(VaListTagTypedefDecl); 6306 6307 // typedef __va_list_tag __builtin_va_list[1]; 6308 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6309 QualType VaListTagArrayType 6310 = Context->getConstantArrayType(VaListTagTypedefType, 6311 Size, ArrayType::Normal, 0); 6312 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6313 } 6314 6315 static TypedefDecl * 6316 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 6317 // struct __va_list_tag { 6318 RecordDecl *VaListTagDecl; 6319 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6320 VaListTagDecl->startDefinition(); 6321 6322 const size_t NumFields = 4; 6323 QualType FieldTypes[NumFields]; 6324 const char *FieldNames[NumFields]; 6325 6326 // unsigned gp_offset; 6327 FieldTypes[0] = Context->UnsignedIntTy; 6328 FieldNames[0] = "gp_offset"; 6329 6330 // unsigned fp_offset; 6331 FieldTypes[1] = Context->UnsignedIntTy; 6332 FieldNames[1] = "fp_offset"; 6333 6334 // void* overflow_arg_area; 6335 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6336 FieldNames[2] = "overflow_arg_area"; 6337 6338 // void* reg_save_area; 6339 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6340 FieldNames[3] = "reg_save_area"; 6341 6342 // Create fields 6343 for (unsigned i = 0; i < NumFields; ++i) { 6344 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6345 VaListTagDecl, 6346 SourceLocation(), 6347 SourceLocation(), 6348 &Context->Idents.get(FieldNames[i]), 6349 FieldTypes[i], /*TInfo=*/nullptr, 6350 /*BitWidth=*/nullptr, 6351 /*Mutable=*/false, 6352 ICIS_NoInit); 6353 Field->setAccess(AS_public); 6354 VaListTagDecl->addDecl(Field); 6355 } 6356 VaListTagDecl->completeDefinition(); 6357 Context->VaListTagDecl = VaListTagDecl; 6358 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6359 6360 // }; 6361 6362 // typedef struct __va_list_tag __builtin_va_list[1]; 6363 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6364 QualType VaListTagArrayType = 6365 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); 6366 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6367 } 6368 6369 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 6370 // typedef int __builtin_va_list[4]; 6371 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 6372 QualType IntArrayType 6373 = Context->getConstantArrayType(Context->IntTy, 6374 Size, ArrayType::Normal, 0); 6375 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 6376 } 6377 6378 static TypedefDecl * 6379 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 6380 // struct __va_list 6381 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 6382 if (Context->getLangOpts().CPlusPlus) { 6383 // namespace std { struct __va_list { 6384 NamespaceDecl *NS; 6385 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 6386 Context->getTranslationUnitDecl(), 6387 /*Inline*/false, SourceLocation(), 6388 SourceLocation(), &Context->Idents.get("std"), 6389 /*PrevDecl*/ nullptr); 6390 NS->setImplicit(); 6391 VaListDecl->setDeclContext(NS); 6392 } 6393 6394 VaListDecl->startDefinition(); 6395 6396 // void * __ap; 6397 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6398 VaListDecl, 6399 SourceLocation(), 6400 SourceLocation(), 6401 &Context->Idents.get("__ap"), 6402 Context->getPointerType(Context->VoidTy), 6403 /*TInfo=*/nullptr, 6404 /*BitWidth=*/nullptr, 6405 /*Mutable=*/false, 6406 ICIS_NoInit); 6407 Field->setAccess(AS_public); 6408 VaListDecl->addDecl(Field); 6409 6410 // }; 6411 VaListDecl->completeDefinition(); 6412 Context->VaListTagDecl = VaListDecl; 6413 6414 // typedef struct __va_list __builtin_va_list; 6415 QualType T = Context->getRecordType(VaListDecl); 6416 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 6417 } 6418 6419 static TypedefDecl * 6420 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 6421 // struct __va_list_tag { 6422 RecordDecl *VaListTagDecl; 6423 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6424 VaListTagDecl->startDefinition(); 6425 6426 const size_t NumFields = 4; 6427 QualType FieldTypes[NumFields]; 6428 const char *FieldNames[NumFields]; 6429 6430 // long __gpr; 6431 FieldTypes[0] = Context->LongTy; 6432 FieldNames[0] = "__gpr"; 6433 6434 // long __fpr; 6435 FieldTypes[1] = Context->LongTy; 6436 FieldNames[1] = "__fpr"; 6437 6438 // void *__overflow_arg_area; 6439 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6440 FieldNames[2] = "__overflow_arg_area"; 6441 6442 // void *__reg_save_area; 6443 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6444 FieldNames[3] = "__reg_save_area"; 6445 6446 // Create fields 6447 for (unsigned i = 0; i < NumFields; ++i) { 6448 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6449 VaListTagDecl, 6450 SourceLocation(), 6451 SourceLocation(), 6452 &Context->Idents.get(FieldNames[i]), 6453 FieldTypes[i], /*TInfo=*/nullptr, 6454 /*BitWidth=*/nullptr, 6455 /*Mutable=*/false, 6456 ICIS_NoInit); 6457 Field->setAccess(AS_public); 6458 VaListTagDecl->addDecl(Field); 6459 } 6460 VaListTagDecl->completeDefinition(); 6461 Context->VaListTagDecl = VaListTagDecl; 6462 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6463 6464 // }; 6465 6466 // typedef __va_list_tag __builtin_va_list[1]; 6467 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6468 QualType VaListTagArrayType = 6469 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); 6470 6471 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6472 } 6473 6474 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 6475 TargetInfo::BuiltinVaListKind Kind) { 6476 switch (Kind) { 6477 case TargetInfo::CharPtrBuiltinVaList: 6478 return CreateCharPtrBuiltinVaListDecl(Context); 6479 case TargetInfo::VoidPtrBuiltinVaList: 6480 return CreateVoidPtrBuiltinVaListDecl(Context); 6481 case TargetInfo::AArch64ABIBuiltinVaList: 6482 return CreateAArch64ABIBuiltinVaListDecl(Context); 6483 case TargetInfo::PowerABIBuiltinVaList: 6484 return CreatePowerABIBuiltinVaListDecl(Context); 6485 case TargetInfo::X86_64ABIBuiltinVaList: 6486 return CreateX86_64ABIBuiltinVaListDecl(Context); 6487 case TargetInfo::PNaClABIBuiltinVaList: 6488 return CreatePNaClABIBuiltinVaListDecl(Context); 6489 case TargetInfo::AAPCSABIBuiltinVaList: 6490 return CreateAAPCSABIBuiltinVaListDecl(Context); 6491 case TargetInfo::SystemZBuiltinVaList: 6492 return CreateSystemZBuiltinVaListDecl(Context); 6493 } 6494 6495 llvm_unreachable("Unhandled __builtin_va_list type kind"); 6496 } 6497 6498 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 6499 if (!BuiltinVaListDecl) { 6500 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 6501 assert(BuiltinVaListDecl->isImplicit()); 6502 } 6503 6504 return BuiltinVaListDecl; 6505 } 6506 6507 Decl *ASTContext::getVaListTagDecl() const { 6508 // Force the creation of VaListTagDecl by building the __builtin_va_list 6509 // declaration. 6510 if (!VaListTagDecl) 6511 (void)getBuiltinVaListDecl(); 6512 6513 return VaListTagDecl; 6514 } 6515 6516 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { 6517 if (!BuiltinMSVaListDecl) 6518 BuiltinMSVaListDecl = CreateMSVaListDecl(this); 6519 6520 return BuiltinMSVaListDecl; 6521 } 6522 6523 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 6524 assert(ObjCConstantStringType.isNull() && 6525 "'NSConstantString' type already set!"); 6526 6527 ObjCConstantStringType = getObjCInterfaceType(Decl); 6528 } 6529 6530 /// \brief Retrieve the template name that corresponds to a non-empty 6531 /// lookup. 6532 TemplateName 6533 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 6534 UnresolvedSetIterator End) const { 6535 unsigned size = End - Begin; 6536 assert(size > 1 && "set is not overloaded!"); 6537 6538 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 6539 size * sizeof(FunctionTemplateDecl*)); 6540 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); 6541 6542 NamedDecl **Storage = OT->getStorage(); 6543 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 6544 NamedDecl *D = *I; 6545 assert(isa<FunctionTemplateDecl>(D) || 6546 (isa<UsingShadowDecl>(D) && 6547 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 6548 *Storage++ = D; 6549 } 6550 6551 return TemplateName(OT); 6552 } 6553 6554 /// \brief Retrieve the template name that represents a qualified 6555 /// template name such as \c std::vector. 6556 TemplateName 6557 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 6558 bool TemplateKeyword, 6559 TemplateDecl *Template) const { 6560 assert(NNS && "Missing nested-name-specifier in qualified template name"); 6561 6562 // FIXME: Canonicalization? 6563 llvm::FoldingSetNodeID ID; 6564 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 6565 6566 void *InsertPos = nullptr; 6567 QualifiedTemplateName *QTN = 6568 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6569 if (!QTN) { 6570 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) 6571 QualifiedTemplateName(NNS, TemplateKeyword, Template); 6572 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 6573 } 6574 6575 return TemplateName(QTN); 6576 } 6577 6578 /// \brief Retrieve the template name that represents a dependent 6579 /// template name such as \c MetaFun::template apply. 6580 TemplateName 6581 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6582 const IdentifierInfo *Name) const { 6583 assert((!NNS || NNS->isDependent()) && 6584 "Nested name specifier must be dependent"); 6585 6586 llvm::FoldingSetNodeID ID; 6587 DependentTemplateName::Profile(ID, NNS, Name); 6588 6589 void *InsertPos = nullptr; 6590 DependentTemplateName *QTN = 6591 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6592 6593 if (QTN) 6594 return TemplateName(QTN); 6595 6596 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6597 if (CanonNNS == NNS) { 6598 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6599 DependentTemplateName(NNS, Name); 6600 } else { 6601 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 6602 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6603 DependentTemplateName(NNS, Name, Canon); 6604 DependentTemplateName *CheckQTN = 6605 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6606 assert(!CheckQTN && "Dependent type name canonicalization broken"); 6607 (void)CheckQTN; 6608 } 6609 6610 DependentTemplateNames.InsertNode(QTN, InsertPos); 6611 return TemplateName(QTN); 6612 } 6613 6614 /// \brief Retrieve the template name that represents a dependent 6615 /// template name such as \c MetaFun::template operator+. 6616 TemplateName 6617 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6618 OverloadedOperatorKind Operator) const { 6619 assert((!NNS || NNS->isDependent()) && 6620 "Nested name specifier must be dependent"); 6621 6622 llvm::FoldingSetNodeID ID; 6623 DependentTemplateName::Profile(ID, NNS, Operator); 6624 6625 void *InsertPos = nullptr; 6626 DependentTemplateName *QTN 6627 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6628 6629 if (QTN) 6630 return TemplateName(QTN); 6631 6632 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6633 if (CanonNNS == NNS) { 6634 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6635 DependentTemplateName(NNS, Operator); 6636 } else { 6637 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 6638 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6639 DependentTemplateName(NNS, Operator, Canon); 6640 6641 DependentTemplateName *CheckQTN 6642 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6643 assert(!CheckQTN && "Dependent template name canonicalization broken"); 6644 (void)CheckQTN; 6645 } 6646 6647 DependentTemplateNames.InsertNode(QTN, InsertPos); 6648 return TemplateName(QTN); 6649 } 6650 6651 TemplateName 6652 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 6653 TemplateName replacement) const { 6654 llvm::FoldingSetNodeID ID; 6655 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 6656 6657 void *insertPos = nullptr; 6658 SubstTemplateTemplateParmStorage *subst 6659 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 6660 6661 if (!subst) { 6662 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 6663 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 6664 } 6665 6666 return TemplateName(subst); 6667 } 6668 6669 TemplateName 6670 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 6671 const TemplateArgument &ArgPack) const { 6672 ASTContext &Self = const_cast<ASTContext &>(*this); 6673 llvm::FoldingSetNodeID ID; 6674 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 6675 6676 void *InsertPos = nullptr; 6677 SubstTemplateTemplateParmPackStorage *Subst 6678 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 6679 6680 if (!Subst) { 6681 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 6682 ArgPack.pack_size(), 6683 ArgPack.pack_begin()); 6684 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 6685 } 6686 6687 return TemplateName(Subst); 6688 } 6689 6690 /// getFromTargetType - Given one of the integer types provided by 6691 /// TargetInfo, produce the corresponding type. The unsigned @p Type 6692 /// is actually a value of type @c TargetInfo::IntType. 6693 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 6694 switch (Type) { 6695 case TargetInfo::NoInt: return CanQualType(); 6696 case TargetInfo::SignedChar: return SignedCharTy; 6697 case TargetInfo::UnsignedChar: return UnsignedCharTy; 6698 case TargetInfo::SignedShort: return ShortTy; 6699 case TargetInfo::UnsignedShort: return UnsignedShortTy; 6700 case TargetInfo::SignedInt: return IntTy; 6701 case TargetInfo::UnsignedInt: return UnsignedIntTy; 6702 case TargetInfo::SignedLong: return LongTy; 6703 case TargetInfo::UnsignedLong: return UnsignedLongTy; 6704 case TargetInfo::SignedLongLong: return LongLongTy; 6705 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 6706 } 6707 6708 llvm_unreachable("Unhandled TargetInfo::IntType value"); 6709 } 6710 6711 //===----------------------------------------------------------------------===// 6712 // Type Predicates. 6713 //===----------------------------------------------------------------------===// 6714 6715 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 6716 /// garbage collection attribute. 6717 /// 6718 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 6719 if (getLangOpts().getGC() == LangOptions::NonGC) 6720 return Qualifiers::GCNone; 6721 6722 assert(getLangOpts().ObjC1); 6723 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 6724 6725 // Default behaviour under objective-C's gc is for ObjC pointers 6726 // (or pointers to them) be treated as though they were declared 6727 // as __strong. 6728 if (GCAttrs == Qualifiers::GCNone) { 6729 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 6730 return Qualifiers::Strong; 6731 else if (Ty->isPointerType()) 6732 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); 6733 } else { 6734 // It's not valid to set GC attributes on anything that isn't a 6735 // pointer. 6736 #ifndef NDEBUG 6737 QualType CT = Ty->getCanonicalTypeInternal(); 6738 while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) 6739 CT = AT->getElementType(); 6740 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 6741 #endif 6742 } 6743 return GCAttrs; 6744 } 6745 6746 //===----------------------------------------------------------------------===// 6747 // Type Compatibility Testing 6748 //===----------------------------------------------------------------------===// 6749 6750 /// areCompatVectorTypes - Return true if the two specified vector types are 6751 /// compatible. 6752 static bool areCompatVectorTypes(const VectorType *LHS, 6753 const VectorType *RHS) { 6754 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 6755 return LHS->getElementType() == RHS->getElementType() && 6756 LHS->getNumElements() == RHS->getNumElements(); 6757 } 6758 6759 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 6760 QualType SecondVec) { 6761 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 6762 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 6763 6764 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 6765 return true; 6766 6767 // Treat Neon vector types and most AltiVec vector types as if they are the 6768 // equivalent GCC vector types. 6769 const VectorType *First = FirstVec->getAs<VectorType>(); 6770 const VectorType *Second = SecondVec->getAs<VectorType>(); 6771 if (First->getNumElements() == Second->getNumElements() && 6772 hasSameType(First->getElementType(), Second->getElementType()) && 6773 First->getVectorKind() != VectorType::AltiVecPixel && 6774 First->getVectorKind() != VectorType::AltiVecBool && 6775 Second->getVectorKind() != VectorType::AltiVecPixel && 6776 Second->getVectorKind() != VectorType::AltiVecBool) 6777 return true; 6778 6779 return false; 6780 } 6781 6782 //===----------------------------------------------------------------------===// 6783 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 6784 //===----------------------------------------------------------------------===// 6785 6786 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 6787 /// inheritance hierarchy of 'rProto'. 6788 bool 6789 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 6790 ObjCProtocolDecl *rProto) const { 6791 if (declaresSameEntity(lProto, rProto)) 6792 return true; 6793 for (auto *PI : rProto->protocols()) 6794 if (ProtocolCompatibleWithProtocol(lProto, PI)) 6795 return true; 6796 return false; 6797 } 6798 6799 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 6800 /// Class<pr1, ...>. 6801 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, 6802 QualType rhs) { 6803 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); 6804 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6805 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); 6806 6807 for (auto *lhsProto : lhsQID->quals()) { 6808 bool match = false; 6809 for (auto *rhsProto : rhsOPT->quals()) { 6810 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 6811 match = true; 6812 break; 6813 } 6814 } 6815 if (!match) 6816 return false; 6817 } 6818 return true; 6819 } 6820 6821 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 6822 /// ObjCQualifiedIDType. 6823 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, 6824 bool compare) { 6825 // Allow id<P..> and an 'id' or void* type in all cases. 6826 if (lhs->isVoidPointerType() || 6827 lhs->isObjCIdType() || lhs->isObjCClassType()) 6828 return true; 6829 else if (rhs->isVoidPointerType() || 6830 rhs->isObjCIdType() || rhs->isObjCClassType()) 6831 return true; 6832 6833 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { 6834 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6835 6836 if (!rhsOPT) return false; 6837 6838 if (rhsOPT->qual_empty()) { 6839 // If the RHS is a unqualified interface pointer "NSString*", 6840 // make sure we check the class hierarchy. 6841 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6842 for (auto *I : lhsQID->quals()) { 6843 // when comparing an id<P> on lhs with a static type on rhs, 6844 // see if static class implements all of id's protocols, directly or 6845 // through its super class and categories. 6846 if (!rhsID->ClassImplementsProtocol(I, true)) 6847 return false; 6848 } 6849 } 6850 // If there are no qualifiers and no interface, we have an 'id'. 6851 return true; 6852 } 6853 // Both the right and left sides have qualifiers. 6854 for (auto *lhsProto : lhsQID->quals()) { 6855 bool match = false; 6856 6857 // when comparing an id<P> on lhs with a static type on rhs, 6858 // see if static class implements all of id's protocols, directly or 6859 // through its super class and categories. 6860 for (auto *rhsProto : rhsOPT->quals()) { 6861 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6862 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6863 match = true; 6864 break; 6865 } 6866 } 6867 // If the RHS is a qualified interface pointer "NSString<P>*", 6868 // make sure we check the class hierarchy. 6869 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6870 for (auto *I : lhsQID->quals()) { 6871 // when comparing an id<P> on lhs with a static type on rhs, 6872 // see if static class implements all of id's protocols, directly or 6873 // through its super class and categories. 6874 if (rhsID->ClassImplementsProtocol(I, true)) { 6875 match = true; 6876 break; 6877 } 6878 } 6879 } 6880 if (!match) 6881 return false; 6882 } 6883 6884 return true; 6885 } 6886 6887 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); 6888 assert(rhsQID && "One of the LHS/RHS should be id<x>"); 6889 6890 if (const ObjCObjectPointerType *lhsOPT = 6891 lhs->getAsObjCInterfacePointerType()) { 6892 // If both the right and left sides have qualifiers. 6893 for (auto *lhsProto : lhsOPT->quals()) { 6894 bool match = false; 6895 6896 // when comparing an id<P> on rhs with a static type on lhs, 6897 // see if static class implements all of id's protocols, directly or 6898 // through its super class and categories. 6899 // First, lhs protocols in the qualifier list must be found, direct 6900 // or indirect in rhs's qualifier list or it is a mismatch. 6901 for (auto *rhsProto : rhsQID->quals()) { 6902 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6903 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6904 match = true; 6905 break; 6906 } 6907 } 6908 if (!match) 6909 return false; 6910 } 6911 6912 // Static class's protocols, or its super class or category protocols 6913 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 6914 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { 6915 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 6916 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 6917 // This is rather dubious but matches gcc's behavior. If lhs has 6918 // no type qualifier and its class has no static protocol(s) 6919 // assume that it is mismatch. 6920 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) 6921 return false; 6922 for (auto *lhsProto : LHSInheritedProtocols) { 6923 bool match = false; 6924 for (auto *rhsProto : rhsQID->quals()) { 6925 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6926 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6927 match = true; 6928 break; 6929 } 6930 } 6931 if (!match) 6932 return false; 6933 } 6934 } 6935 return true; 6936 } 6937 return false; 6938 } 6939 6940 /// canAssignObjCInterfaces - Return true if the two interface types are 6941 /// compatible for assignment from RHS to LHS. This handles validation of any 6942 /// protocol qualifiers on the LHS or RHS. 6943 /// 6944 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 6945 const ObjCObjectPointerType *RHSOPT) { 6946 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 6947 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 6948 6949 // If either type represents the built-in 'id' or 'Class' types, return true. 6950 if (LHS->isObjCUnqualifiedIdOrClass() || 6951 RHS->isObjCUnqualifiedIdOrClass()) 6952 return true; 6953 6954 // Function object that propagates a successful result or handles 6955 // __kindof types. 6956 auto finish = [&](bool succeeded) -> bool { 6957 if (succeeded) 6958 return true; 6959 6960 if (!RHS->isKindOfType()) 6961 return false; 6962 6963 // Strip off __kindof and protocol qualifiers, then check whether 6964 // we can assign the other way. 6965 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), 6966 LHSOPT->stripObjCKindOfTypeAndQuals(*this)); 6967 }; 6968 6969 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { 6970 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 6971 QualType(RHSOPT,0), 6972 false)); 6973 } 6974 6975 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { 6976 return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), 6977 QualType(RHSOPT,0))); 6978 } 6979 6980 // If we have 2 user-defined types, fall into that path. 6981 if (LHS->getInterface() && RHS->getInterface()) { 6982 return finish(canAssignObjCInterfaces(LHS, RHS)); 6983 } 6984 6985 return false; 6986 } 6987 6988 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 6989 /// for providing type-safety for objective-c pointers used to pass/return 6990 /// arguments in block literals. When passed as arguments, passing 'A*' where 6991 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 6992 /// not OK. For the return type, the opposite is not OK. 6993 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 6994 const ObjCObjectPointerType *LHSOPT, 6995 const ObjCObjectPointerType *RHSOPT, 6996 bool BlockReturnType) { 6997 6998 // Function object that propagates a successful result or handles 6999 // __kindof types. 7000 auto finish = [&](bool succeeded) -> bool { 7001 if (succeeded) 7002 return true; 7003 7004 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; 7005 if (!Expected->isKindOfType()) 7006 return false; 7007 7008 // Strip off __kindof and protocol qualifiers, then check whether 7009 // we can assign the other way. 7010 return canAssignObjCInterfacesInBlockPointer( 7011 RHSOPT->stripObjCKindOfTypeAndQuals(*this), 7012 LHSOPT->stripObjCKindOfTypeAndQuals(*this), 7013 BlockReturnType); 7014 }; 7015 7016 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 7017 return true; 7018 7019 if (LHSOPT->isObjCBuiltinType()) { 7020 return finish(RHSOPT->isObjCBuiltinType() || 7021 RHSOPT->isObjCQualifiedIdType()); 7022 } 7023 7024 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) 7025 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 7026 QualType(RHSOPT,0), 7027 false)); 7028 7029 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 7030 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 7031 if (LHS && RHS) { // We have 2 user-defined types. 7032 if (LHS != RHS) { 7033 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 7034 return finish(BlockReturnType); 7035 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 7036 return finish(!BlockReturnType); 7037 } 7038 else 7039 return true; 7040 } 7041 return false; 7042 } 7043 7044 /// Comparison routine for Objective-C protocols to be used with 7045 /// llvm::array_pod_sort. 7046 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, 7047 ObjCProtocolDecl * const *rhs) { 7048 return (*lhs)->getName().compare((*rhs)->getName()); 7049 7050 } 7051 7052 /// getIntersectionOfProtocols - This routine finds the intersection of set 7053 /// of protocols inherited from two distinct objective-c pointer objects with 7054 /// the given common base. 7055 /// It is used to build composite qualifier list of the composite type of 7056 /// the conditional expression involving two objective-c pointer objects. 7057 static 7058 void getIntersectionOfProtocols(ASTContext &Context, 7059 const ObjCInterfaceDecl *CommonBase, 7060 const ObjCObjectPointerType *LHSOPT, 7061 const ObjCObjectPointerType *RHSOPT, 7062 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { 7063 7064 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 7065 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 7066 assert(LHS->getInterface() && "LHS must have an interface base"); 7067 assert(RHS->getInterface() && "RHS must have an interface base"); 7068 7069 // Add all of the protocols for the LHS. 7070 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; 7071 7072 // Start with the protocol qualifiers. 7073 for (auto proto : LHS->quals()) { 7074 Context.CollectInheritedProtocols(proto, LHSProtocolSet); 7075 } 7076 7077 // Also add the protocols associated with the LHS interface. 7078 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); 7079 7080 // Add all of the protocls for the RHS. 7081 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; 7082 7083 // Start with the protocol qualifiers. 7084 for (auto proto : RHS->quals()) { 7085 Context.CollectInheritedProtocols(proto, RHSProtocolSet); 7086 } 7087 7088 // Also add the protocols associated with the RHS interface. 7089 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); 7090 7091 // Compute the intersection of the collected protocol sets. 7092 for (auto proto : LHSProtocolSet) { 7093 if (RHSProtocolSet.count(proto)) 7094 IntersectionSet.push_back(proto); 7095 } 7096 7097 // Compute the set of protocols that is implied by either the common type or 7098 // the protocols within the intersection. 7099 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; 7100 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); 7101 7102 // Remove any implied protocols from the list of inherited protocols. 7103 if (!ImpliedProtocols.empty()) { 7104 IntersectionSet.erase( 7105 std::remove_if(IntersectionSet.begin(), 7106 IntersectionSet.end(), 7107 [&](ObjCProtocolDecl *proto) -> bool { 7108 return ImpliedProtocols.count(proto) > 0; 7109 }), 7110 IntersectionSet.end()); 7111 } 7112 7113 // Sort the remaining protocols by name. 7114 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), 7115 compareObjCProtocolsByName); 7116 } 7117 7118 /// Determine whether the first type is a subtype of the second. 7119 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, 7120 QualType rhs) { 7121 // Common case: two object pointers. 7122 const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); 7123 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 7124 if (lhsOPT && rhsOPT) 7125 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); 7126 7127 // Two block pointers. 7128 const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>(); 7129 const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>(); 7130 if (lhsBlock && rhsBlock) 7131 return ctx.typesAreBlockPointerCompatible(lhs, rhs); 7132 7133 // If either is an unqualified 'id' and the other is a block, it's 7134 // acceptable. 7135 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || 7136 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) 7137 return true; 7138 7139 return false; 7140 } 7141 7142 // Check that the given Objective-C type argument lists are equivalent. 7143 static bool sameObjCTypeArgs(ASTContext &ctx, 7144 const ObjCInterfaceDecl *iface, 7145 ArrayRef<QualType> lhsArgs, 7146 ArrayRef<QualType> rhsArgs, 7147 bool stripKindOf) { 7148 if (lhsArgs.size() != rhsArgs.size()) 7149 return false; 7150 7151 ObjCTypeParamList *typeParams = iface->getTypeParamList(); 7152 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { 7153 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) 7154 continue; 7155 7156 switch (typeParams->begin()[i]->getVariance()) { 7157 case ObjCTypeParamVariance::Invariant: 7158 if (!stripKindOf || 7159 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), 7160 rhsArgs[i].stripObjCKindOfType(ctx))) { 7161 return false; 7162 } 7163 break; 7164 7165 case ObjCTypeParamVariance::Covariant: 7166 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) 7167 return false; 7168 break; 7169 7170 case ObjCTypeParamVariance::Contravariant: 7171 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) 7172 return false; 7173 break; 7174 } 7175 } 7176 7177 return true; 7178 } 7179 7180 QualType ASTContext::areCommonBaseCompatible( 7181 const ObjCObjectPointerType *Lptr, 7182 const ObjCObjectPointerType *Rptr) { 7183 const ObjCObjectType *LHS = Lptr->getObjectType(); 7184 const ObjCObjectType *RHS = Rptr->getObjectType(); 7185 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 7186 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 7187 7188 if (!LDecl || !RDecl) 7189 return QualType(); 7190 7191 // When either LHS or RHS is a kindof type, we should return a kindof type. 7192 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return 7193 // kindof(A). 7194 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); 7195 7196 // Follow the left-hand side up the class hierarchy until we either hit a 7197 // root or find the RHS. Record the ancestors in case we don't find it. 7198 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> 7199 LHSAncestors; 7200 while (true) { 7201 // Record this ancestor. We'll need this if the common type isn't in the 7202 // path from the LHS to the root. 7203 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; 7204 7205 if (declaresSameEntity(LHS->getInterface(), RDecl)) { 7206 // Get the type arguments. 7207 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); 7208 bool anyChanges = false; 7209 if (LHS->isSpecialized() && RHS->isSpecialized()) { 7210 // Both have type arguments, compare them. 7211 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 7212 LHS->getTypeArgs(), RHS->getTypeArgs(), 7213 /*stripKindOf=*/true)) 7214 return QualType(); 7215 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 7216 // If only one has type arguments, the result will not have type 7217 // arguments. 7218 LHSTypeArgs = { }; 7219 anyChanges = true; 7220 } 7221 7222 // Compute the intersection of protocols. 7223 SmallVector<ObjCProtocolDecl *, 8> Protocols; 7224 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, 7225 Protocols); 7226 if (!Protocols.empty()) 7227 anyChanges = true; 7228 7229 // If anything in the LHS will have changed, build a new result type. 7230 // If we need to return a kindof type but LHS is not a kindof type, we 7231 // build a new result type. 7232 if (anyChanges || LHS->isKindOfType() != anyKindOf) { 7233 QualType Result = getObjCInterfaceType(LHS->getInterface()); 7234 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, 7235 anyKindOf || LHS->isKindOfType()); 7236 return getObjCObjectPointerType(Result); 7237 } 7238 7239 return getObjCObjectPointerType(QualType(LHS, 0)); 7240 } 7241 7242 // Find the superclass. 7243 QualType LHSSuperType = LHS->getSuperClassType(); 7244 if (LHSSuperType.isNull()) 7245 break; 7246 7247 LHS = LHSSuperType->castAs<ObjCObjectType>(); 7248 } 7249 7250 // We didn't find anything by following the LHS to its root; now check 7251 // the RHS against the cached set of ancestors. 7252 while (true) { 7253 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); 7254 if (KnownLHS != LHSAncestors.end()) { 7255 LHS = KnownLHS->second; 7256 7257 // Get the type arguments. 7258 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); 7259 bool anyChanges = false; 7260 if (LHS->isSpecialized() && RHS->isSpecialized()) { 7261 // Both have type arguments, compare them. 7262 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 7263 LHS->getTypeArgs(), RHS->getTypeArgs(), 7264 /*stripKindOf=*/true)) 7265 return QualType(); 7266 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 7267 // If only one has type arguments, the result will not have type 7268 // arguments. 7269 RHSTypeArgs = { }; 7270 anyChanges = true; 7271 } 7272 7273 // Compute the intersection of protocols. 7274 SmallVector<ObjCProtocolDecl *, 8> Protocols; 7275 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, 7276 Protocols); 7277 if (!Protocols.empty()) 7278 anyChanges = true; 7279 7280 // If we need to return a kindof type but RHS is not a kindof type, we 7281 // build a new result type. 7282 if (anyChanges || RHS->isKindOfType() != anyKindOf) { 7283 QualType Result = getObjCInterfaceType(RHS->getInterface()); 7284 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, 7285 anyKindOf || RHS->isKindOfType()); 7286 return getObjCObjectPointerType(Result); 7287 } 7288 7289 return getObjCObjectPointerType(QualType(RHS, 0)); 7290 } 7291 7292 // Find the superclass of the RHS. 7293 QualType RHSSuperType = RHS->getSuperClassType(); 7294 if (RHSSuperType.isNull()) 7295 break; 7296 7297 RHS = RHSSuperType->castAs<ObjCObjectType>(); 7298 } 7299 7300 return QualType(); 7301 } 7302 7303 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 7304 const ObjCObjectType *RHS) { 7305 assert(LHS->getInterface() && "LHS is not an interface type"); 7306 assert(RHS->getInterface() && "RHS is not an interface type"); 7307 7308 // Verify that the base decls are compatible: the RHS must be a subclass of 7309 // the LHS. 7310 ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); 7311 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); 7312 if (!IsSuperClass) 7313 return false; 7314 7315 // If the LHS has protocol qualifiers, determine whether all of them are 7316 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the 7317 // LHS). 7318 if (LHS->getNumProtocols() > 0) { 7319 // OK if conversion of LHS to SuperClass results in narrowing of types 7320 // ; i.e., SuperClass may implement at least one of the protocols 7321 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 7322 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 7323 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 7324 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 7325 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 7326 // qualifiers. 7327 for (auto *RHSPI : RHS->quals()) 7328 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); 7329 // If there is no protocols associated with RHS, it is not a match. 7330 if (SuperClassInheritedProtocols.empty()) 7331 return false; 7332 7333 for (const auto *LHSProto : LHS->quals()) { 7334 bool SuperImplementsProtocol = false; 7335 for (auto *SuperClassProto : SuperClassInheritedProtocols) 7336 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 7337 SuperImplementsProtocol = true; 7338 break; 7339 } 7340 if (!SuperImplementsProtocol) 7341 return false; 7342 } 7343 } 7344 7345 // If the LHS is specialized, we may need to check type arguments. 7346 if (LHS->isSpecialized()) { 7347 // Follow the superclass chain until we've matched the LHS class in the 7348 // hierarchy. This substitutes type arguments through. 7349 const ObjCObjectType *RHSSuper = RHS; 7350 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) 7351 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); 7352 7353 // If the RHS is specializd, compare type arguments. 7354 if (RHSSuper->isSpecialized() && 7355 !sameObjCTypeArgs(*this, LHS->getInterface(), 7356 LHS->getTypeArgs(), RHSSuper->getTypeArgs(), 7357 /*stripKindOf=*/true)) { 7358 return false; 7359 } 7360 } 7361 7362 return true; 7363 } 7364 7365 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 7366 // get the "pointed to" types 7367 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 7368 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 7369 7370 if (!LHSOPT || !RHSOPT) 7371 return false; 7372 7373 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 7374 canAssignObjCInterfaces(RHSOPT, LHSOPT); 7375 } 7376 7377 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 7378 return canAssignObjCInterfaces( 7379 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), 7380 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); 7381 } 7382 7383 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 7384 /// both shall have the identically qualified version of a compatible type. 7385 /// C99 6.2.7p1: Two types have compatible types if their types are the 7386 /// same. See 6.7.[2,3,5] for additional rules. 7387 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 7388 bool CompareUnqualified) { 7389 if (getLangOpts().CPlusPlus) 7390 return hasSameType(LHS, RHS); 7391 7392 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 7393 } 7394 7395 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 7396 return typesAreCompatible(LHS, RHS); 7397 } 7398 7399 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 7400 return !mergeTypes(LHS, RHS, true).isNull(); 7401 } 7402 7403 /// mergeTransparentUnionType - if T is a transparent union type and a member 7404 /// of T is compatible with SubType, return the merged type, else return 7405 /// QualType() 7406 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 7407 bool OfBlockPointer, 7408 bool Unqualified) { 7409 if (const RecordType *UT = T->getAsUnionType()) { 7410 RecordDecl *UD = UT->getDecl(); 7411 if (UD->hasAttr<TransparentUnionAttr>()) { 7412 for (const auto *I : UD->fields()) { 7413 QualType ET = I->getType().getUnqualifiedType(); 7414 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 7415 if (!MT.isNull()) 7416 return MT; 7417 } 7418 } 7419 } 7420 7421 return QualType(); 7422 } 7423 7424 /// mergeFunctionParameterTypes - merge two types which appear as function 7425 /// parameter types 7426 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 7427 bool OfBlockPointer, 7428 bool Unqualified) { 7429 // GNU extension: two types are compatible if they appear as a function 7430 // argument, one of the types is a transparent union type and the other 7431 // type is compatible with a union member 7432 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 7433 Unqualified); 7434 if (!lmerge.isNull()) 7435 return lmerge; 7436 7437 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 7438 Unqualified); 7439 if (!rmerge.isNull()) 7440 return rmerge; 7441 7442 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 7443 } 7444 7445 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 7446 bool OfBlockPointer, 7447 bool Unqualified) { 7448 const FunctionType *lbase = lhs->getAs<FunctionType>(); 7449 const FunctionType *rbase = rhs->getAs<FunctionType>(); 7450 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); 7451 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); 7452 bool allLTypes = true; 7453 bool allRTypes = true; 7454 7455 // Check return type 7456 QualType retType; 7457 if (OfBlockPointer) { 7458 QualType RHS = rbase->getReturnType(); 7459 QualType LHS = lbase->getReturnType(); 7460 bool UnqualifiedResult = Unqualified; 7461 if (!UnqualifiedResult) 7462 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 7463 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 7464 } 7465 else 7466 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 7467 Unqualified); 7468 if (retType.isNull()) return QualType(); 7469 7470 if (Unqualified) 7471 retType = retType.getUnqualifiedType(); 7472 7473 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 7474 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 7475 if (Unqualified) { 7476 LRetType = LRetType.getUnqualifiedType(); 7477 RRetType = RRetType.getUnqualifiedType(); 7478 } 7479 7480 if (getCanonicalType(retType) != LRetType) 7481 allLTypes = false; 7482 if (getCanonicalType(retType) != RRetType) 7483 allRTypes = false; 7484 7485 // FIXME: double check this 7486 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 7487 // rbase->getRegParmAttr() != 0 && 7488 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 7489 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 7490 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 7491 7492 // Compatible functions must have compatible calling conventions 7493 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 7494 return QualType(); 7495 7496 // Regparm is part of the calling convention. 7497 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 7498 return QualType(); 7499 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 7500 return QualType(); 7501 7502 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 7503 return QualType(); 7504 7505 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 7506 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 7507 7508 if (lbaseInfo.getNoReturn() != NoReturn) 7509 allLTypes = false; 7510 if (rbaseInfo.getNoReturn() != NoReturn) 7511 allRTypes = false; 7512 7513 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 7514 7515 if (lproto && rproto) { // two C99 style function prototypes 7516 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && 7517 "C++ shouldn't be here"); 7518 // Compatible functions must have the same number of parameters 7519 if (lproto->getNumParams() != rproto->getNumParams()) 7520 return QualType(); 7521 7522 // Variadic and non-variadic functions aren't compatible 7523 if (lproto->isVariadic() != rproto->isVariadic()) 7524 return QualType(); 7525 7526 if (lproto->getTypeQuals() != rproto->getTypeQuals()) 7527 return QualType(); 7528 7529 if (!doFunctionTypesMatchOnExtParameterInfos(rproto, lproto)) 7530 return QualType(); 7531 7532 // Check parameter type compatibility 7533 SmallVector<QualType, 10> types; 7534 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 7535 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 7536 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 7537 QualType paramType = mergeFunctionParameterTypes( 7538 lParamType, rParamType, OfBlockPointer, Unqualified); 7539 if (paramType.isNull()) 7540 return QualType(); 7541 7542 if (Unqualified) 7543 paramType = paramType.getUnqualifiedType(); 7544 7545 types.push_back(paramType); 7546 if (Unqualified) { 7547 lParamType = lParamType.getUnqualifiedType(); 7548 rParamType = rParamType.getUnqualifiedType(); 7549 } 7550 7551 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 7552 allLTypes = false; 7553 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 7554 allRTypes = false; 7555 } 7556 7557 if (allLTypes) return lhs; 7558 if (allRTypes) return rhs; 7559 7560 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 7561 EPI.ExtInfo = einfo; 7562 return getFunctionType(retType, types, EPI); 7563 } 7564 7565 if (lproto) allRTypes = false; 7566 if (rproto) allLTypes = false; 7567 7568 const FunctionProtoType *proto = lproto ? lproto : rproto; 7569 if (proto) { 7570 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); 7571 if (proto->isVariadic()) return QualType(); 7572 // Check that the types are compatible with the types that 7573 // would result from default argument promotions (C99 6.7.5.3p15). 7574 // The only types actually affected are promotable integer 7575 // types and floats, which would be passed as a different 7576 // type depending on whether the prototype is visible. 7577 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 7578 QualType paramTy = proto->getParamType(i); 7579 7580 // Look at the converted type of enum types, since that is the type used 7581 // to pass enum values. 7582 if (const EnumType *Enum = paramTy->getAs<EnumType>()) { 7583 paramTy = Enum->getDecl()->getIntegerType(); 7584 if (paramTy.isNull()) 7585 return QualType(); 7586 } 7587 7588 if (paramTy->isPromotableIntegerType() || 7589 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 7590 return QualType(); 7591 } 7592 7593 if (allLTypes) return lhs; 7594 if (allRTypes) return rhs; 7595 7596 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 7597 EPI.ExtInfo = einfo; 7598 return getFunctionType(retType, proto->getParamTypes(), EPI); 7599 } 7600 7601 if (allLTypes) return lhs; 7602 if (allRTypes) return rhs; 7603 return getFunctionNoProtoType(retType, einfo); 7604 } 7605 7606 /// Given that we have an enum type and a non-enum type, try to merge them. 7607 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 7608 QualType other, bool isBlockReturnType) { 7609 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 7610 // a signed integer type, or an unsigned integer type. 7611 // Compatibility is based on the underlying type, not the promotion 7612 // type. 7613 QualType underlyingType = ET->getDecl()->getIntegerType(); 7614 if (underlyingType.isNull()) return QualType(); 7615 if (Context.hasSameType(underlyingType, other)) 7616 return other; 7617 7618 // In block return types, we're more permissive and accept any 7619 // integral type of the same size. 7620 if (isBlockReturnType && other->isIntegerType() && 7621 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 7622 return other; 7623 7624 return QualType(); 7625 } 7626 7627 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 7628 bool OfBlockPointer, 7629 bool Unqualified, bool BlockReturnType) { 7630 // C++ [expr]: If an expression initially has the type "reference to T", the 7631 // type is adjusted to "T" prior to any further analysis, the expression 7632 // designates the object or function denoted by the reference, and the 7633 // expression is an lvalue unless the reference is an rvalue reference and 7634 // the expression is a function call (possibly inside parentheses). 7635 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); 7636 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); 7637 7638 if (Unqualified) { 7639 LHS = LHS.getUnqualifiedType(); 7640 RHS = RHS.getUnqualifiedType(); 7641 } 7642 7643 QualType LHSCan = getCanonicalType(LHS), 7644 RHSCan = getCanonicalType(RHS); 7645 7646 // If two types are identical, they are compatible. 7647 if (LHSCan == RHSCan) 7648 return LHS; 7649 7650 // If the qualifiers are different, the types aren't compatible... mostly. 7651 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7652 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7653 if (LQuals != RQuals) { 7654 if (getLangOpts().OpenCL) { 7655 if (LHSCan.getUnqualifiedType() != RHSCan.getUnqualifiedType() || 7656 LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers()) 7657 return QualType(); 7658 if (LQuals.isAddressSpaceSupersetOf(RQuals)) 7659 return LHS; 7660 if (RQuals.isAddressSpaceSupersetOf(LQuals)) 7661 return RHS; 7662 } 7663 // If any of these qualifiers are different, we have a type 7664 // mismatch. 7665 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7666 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 7667 LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) 7668 return QualType(); 7669 7670 // Exactly one GC qualifier difference is allowed: __strong is 7671 // okay if the other type has no GC qualifier but is an Objective 7672 // C object pointer (i.e. implicitly strong by default). We fix 7673 // this by pretending that the unqualified type was actually 7674 // qualified __strong. 7675 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 7676 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 7677 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 7678 7679 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 7680 return QualType(); 7681 7682 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 7683 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 7684 } 7685 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 7686 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 7687 } 7688 return QualType(); 7689 } 7690 7691 // Okay, qualifiers are equal. 7692 7693 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 7694 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 7695 7696 // We want to consider the two function types to be the same for these 7697 // comparisons, just force one to the other. 7698 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 7699 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 7700 7701 // Same as above for arrays 7702 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 7703 LHSClass = Type::ConstantArray; 7704 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 7705 RHSClass = Type::ConstantArray; 7706 7707 // ObjCInterfaces are just specialized ObjCObjects. 7708 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 7709 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 7710 7711 // Canonicalize ExtVector -> Vector. 7712 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 7713 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 7714 7715 // If the canonical type classes don't match. 7716 if (LHSClass != RHSClass) { 7717 // Note that we only have special rules for turning block enum 7718 // returns into block int returns, not vice-versa. 7719 if (const EnumType* ETy = LHS->getAs<EnumType>()) { 7720 return mergeEnumWithInteger(*this, ETy, RHS, false); 7721 } 7722 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 7723 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 7724 } 7725 // allow block pointer type to match an 'id' type. 7726 if (OfBlockPointer && !BlockReturnType) { 7727 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 7728 return LHS; 7729 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 7730 return RHS; 7731 } 7732 7733 return QualType(); 7734 } 7735 7736 // The canonical type classes match. 7737 switch (LHSClass) { 7738 #define TYPE(Class, Base) 7739 #define ABSTRACT_TYPE(Class, Base) 7740 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 7741 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 7742 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 7743 #include "clang/AST/TypeNodes.def" 7744 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 7745 7746 case Type::Auto: 7747 case Type::LValueReference: 7748 case Type::RValueReference: 7749 case Type::MemberPointer: 7750 llvm_unreachable("C++ should never be in mergeTypes"); 7751 7752 case Type::ObjCInterface: 7753 case Type::IncompleteArray: 7754 case Type::VariableArray: 7755 case Type::FunctionProto: 7756 case Type::ExtVector: 7757 llvm_unreachable("Types are eliminated above"); 7758 7759 case Type::Pointer: 7760 { 7761 // Merge two pointer types, while trying to preserve typedef info 7762 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); 7763 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); 7764 if (Unqualified) { 7765 LHSPointee = LHSPointee.getUnqualifiedType(); 7766 RHSPointee = RHSPointee.getUnqualifiedType(); 7767 } 7768 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 7769 Unqualified); 7770 if (ResultType.isNull()) return QualType(); 7771 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7772 return LHS; 7773 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7774 return RHS; 7775 return getPointerType(ResultType); 7776 } 7777 case Type::BlockPointer: 7778 { 7779 // Merge two block pointer types, while trying to preserve typedef info 7780 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); 7781 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); 7782 if (Unqualified) { 7783 LHSPointee = LHSPointee.getUnqualifiedType(); 7784 RHSPointee = RHSPointee.getUnqualifiedType(); 7785 } 7786 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 7787 Unqualified); 7788 if (ResultType.isNull()) return QualType(); 7789 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7790 return LHS; 7791 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7792 return RHS; 7793 return getBlockPointerType(ResultType); 7794 } 7795 case Type::Atomic: 7796 { 7797 // Merge two pointer types, while trying to preserve typedef info 7798 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); 7799 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); 7800 if (Unqualified) { 7801 LHSValue = LHSValue.getUnqualifiedType(); 7802 RHSValue = RHSValue.getUnqualifiedType(); 7803 } 7804 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 7805 Unqualified); 7806 if (ResultType.isNull()) return QualType(); 7807 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 7808 return LHS; 7809 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 7810 return RHS; 7811 return getAtomicType(ResultType); 7812 } 7813 case Type::ConstantArray: 7814 { 7815 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 7816 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 7817 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 7818 return QualType(); 7819 7820 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 7821 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 7822 if (Unqualified) { 7823 LHSElem = LHSElem.getUnqualifiedType(); 7824 RHSElem = RHSElem.getUnqualifiedType(); 7825 } 7826 7827 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 7828 if (ResultType.isNull()) return QualType(); 7829 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7830 return LHS; 7831 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7832 return RHS; 7833 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), 7834 ArrayType::ArraySizeModifier(), 0); 7835 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), 7836 ArrayType::ArraySizeModifier(), 0); 7837 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 7838 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 7839 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7840 return LHS; 7841 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7842 return RHS; 7843 if (LVAT) { 7844 // FIXME: This isn't correct! But tricky to implement because 7845 // the array's size has to be the size of LHS, but the type 7846 // has to be different. 7847 return LHS; 7848 } 7849 if (RVAT) { 7850 // FIXME: This isn't correct! But tricky to implement because 7851 // the array's size has to be the size of RHS, but the type 7852 // has to be different. 7853 return RHS; 7854 } 7855 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 7856 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 7857 return getIncompleteArrayType(ResultType, 7858 ArrayType::ArraySizeModifier(), 0); 7859 } 7860 case Type::FunctionNoProto: 7861 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 7862 case Type::Record: 7863 case Type::Enum: 7864 return QualType(); 7865 case Type::Builtin: 7866 // Only exactly equal builtin types are compatible, which is tested above. 7867 return QualType(); 7868 case Type::Complex: 7869 // Distinct complex types are incompatible. 7870 return QualType(); 7871 case Type::Vector: 7872 // FIXME: The merged type should be an ExtVector! 7873 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), 7874 RHSCan->getAs<VectorType>())) 7875 return LHS; 7876 return QualType(); 7877 case Type::ObjCObject: { 7878 // Check if the types are assignment compatible. 7879 // FIXME: This should be type compatibility, e.g. whether 7880 // "LHS x; RHS x;" at global scope is legal. 7881 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); 7882 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); 7883 if (canAssignObjCInterfaces(LHSIface, RHSIface)) 7884 return LHS; 7885 7886 return QualType(); 7887 } 7888 case Type::ObjCObjectPointer: { 7889 if (OfBlockPointer) { 7890 if (canAssignObjCInterfacesInBlockPointer( 7891 LHS->getAs<ObjCObjectPointerType>(), 7892 RHS->getAs<ObjCObjectPointerType>(), 7893 BlockReturnType)) 7894 return LHS; 7895 return QualType(); 7896 } 7897 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), 7898 RHS->getAs<ObjCObjectPointerType>())) 7899 return LHS; 7900 7901 return QualType(); 7902 } 7903 case Type::Pipe: 7904 { 7905 // Merge two pointer types, while trying to preserve typedef info 7906 QualType LHSValue = LHS->getAs<PipeType>()->getElementType(); 7907 QualType RHSValue = RHS->getAs<PipeType>()->getElementType(); 7908 if (Unqualified) { 7909 LHSValue = LHSValue.getUnqualifiedType(); 7910 RHSValue = RHSValue.getUnqualifiedType(); 7911 } 7912 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 7913 Unqualified); 7914 if (ResultType.isNull()) return QualType(); 7915 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 7916 return LHS; 7917 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 7918 return RHS; 7919 return getPipeType(ResultType); 7920 } 7921 } 7922 7923 llvm_unreachable("Invalid Type::Class!"); 7924 } 7925 7926 bool ASTContext::doFunctionTypesMatchOnExtParameterInfos( 7927 const FunctionProtoType *firstFnType, 7928 const FunctionProtoType *secondFnType) { 7929 // Fast path: if the first type doesn't have ext parameter infos, 7930 // we match if and only if they second type also doesn't have them. 7931 if (!firstFnType->hasExtParameterInfos()) 7932 return !secondFnType->hasExtParameterInfos(); 7933 7934 // Otherwise, we can only match if the second type has them. 7935 if (!secondFnType->hasExtParameterInfos()) 7936 return false; 7937 7938 auto firstEPI = firstFnType->getExtParameterInfos(); 7939 auto secondEPI = secondFnType->getExtParameterInfos(); 7940 assert(firstEPI.size() == secondEPI.size()); 7941 7942 for (size_t i = 0, n = firstEPI.size(); i != n; ++i) { 7943 if (firstEPI[i] != secondEPI[i]) 7944 return false; 7945 } 7946 return true; 7947 } 7948 7949 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { 7950 ObjCLayouts[CD] = nullptr; 7951 } 7952 7953 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 7954 /// 'RHS' attributes and returns the merged version; including for function 7955 /// return types. 7956 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 7957 QualType LHSCan = getCanonicalType(LHS), 7958 RHSCan = getCanonicalType(RHS); 7959 // If two types are identical, they are compatible. 7960 if (LHSCan == RHSCan) 7961 return LHS; 7962 if (RHSCan->isFunctionType()) { 7963 if (!LHSCan->isFunctionType()) 7964 return QualType(); 7965 QualType OldReturnType = 7966 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 7967 QualType NewReturnType = 7968 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 7969 QualType ResReturnType = 7970 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 7971 if (ResReturnType.isNull()) 7972 return QualType(); 7973 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 7974 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 7975 // In either case, use OldReturnType to build the new function type. 7976 const FunctionType *F = LHS->getAs<FunctionType>(); 7977 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { 7978 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7979 EPI.ExtInfo = getFunctionExtInfo(LHS); 7980 QualType ResultType = 7981 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 7982 return ResultType; 7983 } 7984 } 7985 return QualType(); 7986 } 7987 7988 // If the qualifiers are different, the types can still be merged. 7989 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7990 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7991 if (LQuals != RQuals) { 7992 // If any of these qualifiers are different, we have a type mismatch. 7993 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7994 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 7995 return QualType(); 7996 7997 // Exactly one GC qualifier difference is allowed: __strong is 7998 // okay if the other type has no GC qualifier but is an Objective 7999 // C object pointer (i.e. implicitly strong by default). We fix 8000 // this by pretending that the unqualified type was actually 8001 // qualified __strong. 8002 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 8003 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 8004 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 8005 8006 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 8007 return QualType(); 8008 8009 if (GC_L == Qualifiers::Strong) 8010 return LHS; 8011 if (GC_R == Qualifiers::Strong) 8012 return RHS; 8013 return QualType(); 8014 } 8015 8016 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 8017 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 8018 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 8019 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 8020 if (ResQT == LHSBaseQT) 8021 return LHS; 8022 if (ResQT == RHSBaseQT) 8023 return RHS; 8024 } 8025 return QualType(); 8026 } 8027 8028 //===----------------------------------------------------------------------===// 8029 // Integer Predicates 8030 //===----------------------------------------------------------------------===// 8031 8032 unsigned ASTContext::getIntWidth(QualType T) const { 8033 if (const EnumType *ET = T->getAs<EnumType>()) 8034 T = ET->getDecl()->getIntegerType(); 8035 if (T->isBooleanType()) 8036 return 1; 8037 // For builtin types, just use the standard type sizing method 8038 return (unsigned)getTypeSize(T); 8039 } 8040 8041 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 8042 assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); 8043 8044 // Turn <4 x signed int> -> <4 x unsigned int> 8045 if (const VectorType *VTy = T->getAs<VectorType>()) 8046 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 8047 VTy->getNumElements(), VTy->getVectorKind()); 8048 8049 // For enums, we return the unsigned version of the base type. 8050 if (const EnumType *ETy = T->getAs<EnumType>()) 8051 T = ETy->getDecl()->getIntegerType(); 8052 8053 const BuiltinType *BTy = T->getAs<BuiltinType>(); 8054 assert(BTy && "Unexpected signed integer type"); 8055 switch (BTy->getKind()) { 8056 case BuiltinType::Char_S: 8057 case BuiltinType::SChar: 8058 return UnsignedCharTy; 8059 case BuiltinType::Short: 8060 return UnsignedShortTy; 8061 case BuiltinType::Int: 8062 return UnsignedIntTy; 8063 case BuiltinType::Long: 8064 return UnsignedLongTy; 8065 case BuiltinType::LongLong: 8066 return UnsignedLongLongTy; 8067 case BuiltinType::Int128: 8068 return UnsignedInt128Ty; 8069 default: 8070 llvm_unreachable("Unexpected signed integer type"); 8071 } 8072 } 8073 8074 ASTMutationListener::~ASTMutationListener() { } 8075 8076 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 8077 QualType ReturnType) {} 8078 8079 //===----------------------------------------------------------------------===// 8080 // Builtin Type Computation 8081 //===----------------------------------------------------------------------===// 8082 8083 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 8084 /// pointer over the consumed characters. This returns the resultant type. If 8085 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 8086 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 8087 /// a vector of "i*". 8088 /// 8089 /// RequiresICE is filled in on return to indicate whether the value is required 8090 /// to be an Integer Constant Expression. 8091 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 8092 ASTContext::GetBuiltinTypeError &Error, 8093 bool &RequiresICE, 8094 bool AllowTypeModifiers) { 8095 // Modifiers. 8096 int HowLong = 0; 8097 bool Signed = false, Unsigned = false; 8098 RequiresICE = false; 8099 8100 // Read the prefixed modifiers first. 8101 bool Done = false; 8102 while (!Done) { 8103 switch (*Str++) { 8104 default: Done = true; --Str; break; 8105 case 'I': 8106 RequiresICE = true; 8107 break; 8108 case 'S': 8109 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 8110 assert(!Signed && "Can't use 'S' modifier multiple times!"); 8111 Signed = true; 8112 break; 8113 case 'U': 8114 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 8115 assert(!Unsigned && "Can't use 'U' modifier multiple times!"); 8116 Unsigned = true; 8117 break; 8118 case 'L': 8119 assert(HowLong <= 2 && "Can't have LLLL modifier"); 8120 ++HowLong; 8121 break; 8122 case 'W': 8123 // This modifier represents int64 type. 8124 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 8125 switch (Context.getTargetInfo().getInt64Type()) { 8126 default: 8127 llvm_unreachable("Unexpected integer type"); 8128 case TargetInfo::SignedLong: 8129 HowLong = 1; 8130 break; 8131 case TargetInfo::SignedLongLong: 8132 HowLong = 2; 8133 break; 8134 } 8135 } 8136 } 8137 8138 QualType Type; 8139 8140 // Read the base type. 8141 switch (*Str++) { 8142 default: llvm_unreachable("Unknown builtin type letter!"); 8143 case 'v': 8144 assert(HowLong == 0 && !Signed && !Unsigned && 8145 "Bad modifiers used with 'v'!"); 8146 Type = Context.VoidTy; 8147 break; 8148 case 'h': 8149 assert(HowLong == 0 && !Signed && !Unsigned && 8150 "Bad modifiers used with 'h'!"); 8151 Type = Context.HalfTy; 8152 break; 8153 case 'f': 8154 assert(HowLong == 0 && !Signed && !Unsigned && 8155 "Bad modifiers used with 'f'!"); 8156 Type = Context.FloatTy; 8157 break; 8158 case 'd': 8159 assert(HowLong < 2 && !Signed && !Unsigned && 8160 "Bad modifiers used with 'd'!"); 8161 if (HowLong) 8162 Type = Context.LongDoubleTy; 8163 else 8164 Type = Context.DoubleTy; 8165 break; 8166 case 's': 8167 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 8168 if (Unsigned) 8169 Type = Context.UnsignedShortTy; 8170 else 8171 Type = Context.ShortTy; 8172 break; 8173 case 'i': 8174 if (HowLong == 3) 8175 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 8176 else if (HowLong == 2) 8177 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 8178 else if (HowLong == 1) 8179 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 8180 else 8181 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 8182 break; 8183 case 'c': 8184 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 8185 if (Signed) 8186 Type = Context.SignedCharTy; 8187 else if (Unsigned) 8188 Type = Context.UnsignedCharTy; 8189 else 8190 Type = Context.CharTy; 8191 break; 8192 case 'b': // boolean 8193 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 8194 Type = Context.BoolTy; 8195 break; 8196 case 'z': // size_t. 8197 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 8198 Type = Context.getSizeType(); 8199 break; 8200 case 'F': 8201 Type = Context.getCFConstantStringType(); 8202 break; 8203 case 'G': 8204 Type = Context.getObjCIdType(); 8205 break; 8206 case 'H': 8207 Type = Context.getObjCSelType(); 8208 break; 8209 case 'M': 8210 Type = Context.getObjCSuperType(); 8211 break; 8212 case 'a': 8213 Type = Context.getBuiltinVaListType(); 8214 assert(!Type.isNull() && "builtin va list type not initialized!"); 8215 break; 8216 case 'A': 8217 // This is a "reference" to a va_list; however, what exactly 8218 // this means depends on how va_list is defined. There are two 8219 // different kinds of va_list: ones passed by value, and ones 8220 // passed by reference. An example of a by-value va_list is 8221 // x86, where va_list is a char*. An example of by-ref va_list 8222 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 8223 // we want this argument to be a char*&; for x86-64, we want 8224 // it to be a __va_list_tag*. 8225 Type = Context.getBuiltinVaListType(); 8226 assert(!Type.isNull() && "builtin va list type not initialized!"); 8227 if (Type->isArrayType()) 8228 Type = Context.getArrayDecayedType(Type); 8229 else 8230 Type = Context.getLValueReferenceType(Type); 8231 break; 8232 case 'V': { 8233 char *End; 8234 unsigned NumElements = strtoul(Str, &End, 10); 8235 assert(End != Str && "Missing vector size"); 8236 Str = End; 8237 8238 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 8239 RequiresICE, false); 8240 assert(!RequiresICE && "Can't require vector ICE"); 8241 8242 // TODO: No way to make AltiVec vectors in builtins yet. 8243 Type = Context.getVectorType(ElementType, NumElements, 8244 VectorType::GenericVector); 8245 break; 8246 } 8247 case 'E': { 8248 char *End; 8249 8250 unsigned NumElements = strtoul(Str, &End, 10); 8251 assert(End != Str && "Missing vector size"); 8252 8253 Str = End; 8254 8255 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 8256 false); 8257 Type = Context.getExtVectorType(ElementType, NumElements); 8258 break; 8259 } 8260 case 'X': { 8261 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 8262 false); 8263 assert(!RequiresICE && "Can't require complex ICE"); 8264 Type = Context.getComplexType(ElementType); 8265 break; 8266 } 8267 case 'Y' : { 8268 Type = Context.getPointerDiffType(); 8269 break; 8270 } 8271 case 'P': 8272 Type = Context.getFILEType(); 8273 if (Type.isNull()) { 8274 Error = ASTContext::GE_Missing_stdio; 8275 return QualType(); 8276 } 8277 break; 8278 case 'J': 8279 if (Signed) 8280 Type = Context.getsigjmp_bufType(); 8281 else 8282 Type = Context.getjmp_bufType(); 8283 8284 if (Type.isNull()) { 8285 Error = ASTContext::GE_Missing_setjmp; 8286 return QualType(); 8287 } 8288 break; 8289 case 'K': 8290 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 8291 Type = Context.getucontext_tType(); 8292 8293 if (Type.isNull()) { 8294 Error = ASTContext::GE_Missing_ucontext; 8295 return QualType(); 8296 } 8297 break; 8298 case 'p': 8299 Type = Context.getProcessIDType(); 8300 break; 8301 } 8302 8303 // If there are modifiers and if we're allowed to parse them, go for it. 8304 Done = !AllowTypeModifiers; 8305 while (!Done) { 8306 switch (char c = *Str++) { 8307 default: Done = true; --Str; break; 8308 case '*': 8309 case '&': { 8310 // Both pointers and references can have their pointee types 8311 // qualified with an address space. 8312 char *End; 8313 unsigned AddrSpace = strtoul(Str, &End, 10); 8314 if (End != Str && AddrSpace != 0) { 8315 Type = Context.getAddrSpaceQualType(Type, AddrSpace); 8316 Str = End; 8317 } 8318 if (c == '*') 8319 Type = Context.getPointerType(Type); 8320 else 8321 Type = Context.getLValueReferenceType(Type); 8322 break; 8323 } 8324 // FIXME: There's no way to have a built-in with an rvalue ref arg. 8325 case 'C': 8326 Type = Type.withConst(); 8327 break; 8328 case 'D': 8329 Type = Context.getVolatileType(Type); 8330 break; 8331 case 'R': 8332 Type = Type.withRestrict(); 8333 break; 8334 } 8335 } 8336 8337 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 8338 "Integer constant 'I' type must be an integer"); 8339 8340 return Type; 8341 } 8342 8343 /// GetBuiltinType - Return the type for the specified builtin. 8344 QualType ASTContext::GetBuiltinType(unsigned Id, 8345 GetBuiltinTypeError &Error, 8346 unsigned *IntegerConstantArgs) const { 8347 const char *TypeStr = BuiltinInfo.getTypeString(Id); 8348 8349 SmallVector<QualType, 8> ArgTypes; 8350 8351 bool RequiresICE = false; 8352 Error = GE_None; 8353 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 8354 RequiresICE, true); 8355 if (Error != GE_None) 8356 return QualType(); 8357 8358 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 8359 8360 while (TypeStr[0] && TypeStr[0] != '.') { 8361 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 8362 if (Error != GE_None) 8363 return QualType(); 8364 8365 // If this argument is required to be an IntegerConstantExpression and the 8366 // caller cares, fill in the bitmask we return. 8367 if (RequiresICE && IntegerConstantArgs) 8368 *IntegerConstantArgs |= 1 << ArgTypes.size(); 8369 8370 // Do array -> pointer decay. The builtin should use the decayed type. 8371 if (Ty->isArrayType()) 8372 Ty = getArrayDecayedType(Ty); 8373 8374 ArgTypes.push_back(Ty); 8375 } 8376 8377 if (Id == Builtin::BI__GetExceptionInfo) 8378 return QualType(); 8379 8380 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 8381 "'.' should only occur at end of builtin type list!"); 8382 8383 FunctionType::ExtInfo EI(CC_C); 8384 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 8385 8386 bool Variadic = (TypeStr[0] == '.'); 8387 8388 // We really shouldn't be making a no-proto type here, especially in C++. 8389 if (ArgTypes.empty() && Variadic) 8390 return getFunctionNoProtoType(ResType, EI); 8391 8392 FunctionProtoType::ExtProtoInfo EPI; 8393 EPI.ExtInfo = EI; 8394 EPI.Variadic = Variadic; 8395 8396 return getFunctionType(ResType, ArgTypes, EPI); 8397 } 8398 8399 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 8400 const FunctionDecl *FD) { 8401 if (!FD->isExternallyVisible()) 8402 return GVA_Internal; 8403 8404 GVALinkage External = GVA_StrongExternal; 8405 switch (FD->getTemplateSpecializationKind()) { 8406 case TSK_Undeclared: 8407 case TSK_ExplicitSpecialization: 8408 External = GVA_StrongExternal; 8409 break; 8410 8411 case TSK_ExplicitInstantiationDefinition: 8412 return GVA_StrongODR; 8413 8414 // C++11 [temp.explicit]p10: 8415 // [ Note: The intent is that an inline function that is the subject of 8416 // an explicit instantiation declaration will still be implicitly 8417 // instantiated when used so that the body can be considered for 8418 // inlining, but that no out-of-line copy of the inline function would be 8419 // generated in the translation unit. -- end note ] 8420 case TSK_ExplicitInstantiationDeclaration: 8421 return GVA_AvailableExternally; 8422 8423 case TSK_ImplicitInstantiation: 8424 External = GVA_DiscardableODR; 8425 break; 8426 } 8427 8428 if (!FD->isInlined()) 8429 return External; 8430 8431 if ((!Context.getLangOpts().CPlusPlus && 8432 !Context.getTargetInfo().getCXXABI().isMicrosoft() && 8433 !FD->hasAttr<DLLExportAttr>()) || 8434 FD->hasAttr<GNUInlineAttr>()) { 8435 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 8436 8437 // GNU or C99 inline semantics. Determine whether this symbol should be 8438 // externally visible. 8439 if (FD->isInlineDefinitionExternallyVisible()) 8440 return External; 8441 8442 // C99 inline semantics, where the symbol is not externally visible. 8443 return GVA_AvailableExternally; 8444 } 8445 8446 // Functions specified with extern and inline in -fms-compatibility mode 8447 // forcibly get emitted. While the body of the function cannot be later 8448 // replaced, the function definition cannot be discarded. 8449 if (FD->isMSExternInline()) 8450 return GVA_StrongODR; 8451 8452 return GVA_DiscardableODR; 8453 } 8454 8455 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, 8456 GVALinkage L, const Decl *D) { 8457 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 8458 // dllexport/dllimport on inline functions. 8459 if (D->hasAttr<DLLImportAttr>()) { 8460 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 8461 return GVA_AvailableExternally; 8462 } else if (D->hasAttr<DLLExportAttr>()) { 8463 if (L == GVA_DiscardableODR) 8464 return GVA_StrongODR; 8465 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && 8466 D->hasAttr<CUDAGlobalAttr>()) { 8467 // Device-side functions with __global__ attribute must always be 8468 // visible externally so they can be launched from host. 8469 if (L == GVA_DiscardableODR || L == GVA_Internal) 8470 return GVA_StrongODR; 8471 } 8472 return L; 8473 } 8474 8475 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 8476 return adjustGVALinkageForAttributes( 8477 *this, basicGVALinkageForFunction(*this, FD), FD); 8478 } 8479 8480 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 8481 const VarDecl *VD) { 8482 if (!VD->isExternallyVisible()) 8483 return GVA_Internal; 8484 8485 if (VD->isStaticLocal()) { 8486 GVALinkage StaticLocalLinkage = GVA_DiscardableODR; 8487 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 8488 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 8489 LexicalContext = LexicalContext->getLexicalParent(); 8490 8491 // Let the static local variable inherit its linkage from the nearest 8492 // enclosing function. 8493 if (LexicalContext) 8494 StaticLocalLinkage = 8495 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 8496 8497 // GVA_StrongODR function linkage is stronger than what we need, 8498 // downgrade to GVA_DiscardableODR. 8499 // This allows us to discard the variable if we never end up needing it. 8500 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR 8501 : StaticLocalLinkage; 8502 } 8503 8504 // MSVC treats in-class initialized static data members as definitions. 8505 // By giving them non-strong linkage, out-of-line definitions won't 8506 // cause link errors. 8507 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 8508 return GVA_DiscardableODR; 8509 8510 // Most non-template variables have strong linkage; inline variables are 8511 // linkonce_odr or (occasionally, for compatibility) weak_odr. 8512 GVALinkage StrongLinkage; 8513 switch (Context.getInlineVariableDefinitionKind(VD)) { 8514 case ASTContext::InlineVariableDefinitionKind::None: 8515 StrongLinkage = GVA_StrongExternal; 8516 break; 8517 case ASTContext::InlineVariableDefinitionKind::Weak: 8518 case ASTContext::InlineVariableDefinitionKind::WeakUnknown: 8519 StrongLinkage = GVA_DiscardableODR; 8520 break; 8521 case ASTContext::InlineVariableDefinitionKind::Strong: 8522 StrongLinkage = GVA_StrongODR; 8523 break; 8524 } 8525 8526 switch (VD->getTemplateSpecializationKind()) { 8527 case TSK_Undeclared: 8528 return StrongLinkage; 8529 8530 case TSK_ExplicitSpecialization: 8531 return Context.getTargetInfo().getCXXABI().isMicrosoft() && 8532 VD->isStaticDataMember() 8533 ? GVA_StrongODR 8534 : StrongLinkage; 8535 8536 case TSK_ExplicitInstantiationDefinition: 8537 return GVA_StrongODR; 8538 8539 case TSK_ExplicitInstantiationDeclaration: 8540 return GVA_AvailableExternally; 8541 8542 case TSK_ImplicitInstantiation: 8543 return GVA_DiscardableODR; 8544 } 8545 8546 llvm_unreachable("Invalid Linkage!"); 8547 } 8548 8549 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 8550 return adjustGVALinkageForAttributes( 8551 *this, basicGVALinkageForVariable(*this, VD), VD); 8552 } 8553 8554 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 8555 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8556 if (!VD->isFileVarDecl()) 8557 return false; 8558 // Global named register variables (GNU extension) are never emitted. 8559 if (VD->getStorageClass() == SC_Register) 8560 return false; 8561 if (VD->getDescribedVarTemplate() || 8562 isa<VarTemplatePartialSpecializationDecl>(VD)) 8563 return false; 8564 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8565 // We never need to emit an uninstantiated function template. 8566 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 8567 return false; 8568 } else if (isa<PragmaCommentDecl>(D)) 8569 return true; 8570 else if (isa<OMPThreadPrivateDecl>(D) || 8571 D->hasAttr<OMPDeclareTargetDeclAttr>()) 8572 return true; 8573 else if (isa<PragmaDetectMismatchDecl>(D)) 8574 return true; 8575 else if (isa<OMPThreadPrivateDecl>(D)) 8576 return !D->getDeclContext()->isDependentContext(); 8577 else if (isa<OMPDeclareReductionDecl>(D)) 8578 return !D->getDeclContext()->isDependentContext(); 8579 else 8580 return false; 8581 8582 // If this is a member of a class template, we do not need to emit it. 8583 if (D->getDeclContext()->isDependentContext()) 8584 return false; 8585 8586 // Weak references don't produce any output by themselves. 8587 if (D->hasAttr<WeakRefAttr>()) 8588 return false; 8589 8590 // Aliases and used decls are required. 8591 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 8592 return true; 8593 8594 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8595 // Forward declarations aren't required. 8596 if (!FD->doesThisDeclarationHaveABody()) 8597 return FD->doesDeclarationForceExternallyVisibleDefinition(); 8598 8599 // Constructors and destructors are required. 8600 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 8601 return true; 8602 8603 // The key function for a class is required. This rule only comes 8604 // into play when inline functions can be key functions, though. 8605 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 8606 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8607 const CXXRecordDecl *RD = MD->getParent(); 8608 if (MD->isOutOfLine() && RD->isDynamicClass()) { 8609 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 8610 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 8611 return true; 8612 } 8613 } 8614 } 8615 8616 GVALinkage Linkage = GetGVALinkageForFunction(FD); 8617 8618 // static, static inline, always_inline, and extern inline functions can 8619 // always be deferred. Normal inline functions can be deferred in C99/C++. 8620 // Implicit template instantiations can also be deferred in C++. 8621 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || 8622 Linkage == GVA_DiscardableODR) 8623 return false; 8624 return true; 8625 } 8626 8627 const VarDecl *VD = cast<VarDecl>(D); 8628 assert(VD->isFileVarDecl() && "Expected file scoped var"); 8629 8630 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 8631 !isMSStaticDataMemberInlineDefinition(VD)) 8632 return false; 8633 8634 // Variables that can be needed in other TUs are required. 8635 GVALinkage L = GetGVALinkageForVariable(VD); 8636 if (L != GVA_Internal && L != GVA_AvailableExternally && 8637 L != GVA_DiscardableODR) 8638 return true; 8639 8640 // Variables that have destruction with side-effects are required. 8641 if (VD->getType().isDestructedType()) 8642 return true; 8643 8644 // Variables that have initialization with side-effects are required. 8645 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && 8646 !VD->evaluateValue()) 8647 return true; 8648 8649 return false; 8650 } 8651 8652 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 8653 bool IsCXXMethod) const { 8654 // Pass through to the C++ ABI object 8655 if (IsCXXMethod) 8656 return ABI->getDefaultMethodCallConv(IsVariadic); 8657 8658 switch (LangOpts.getDefaultCallingConv()) { 8659 case LangOptions::DCC_None: 8660 break; 8661 case LangOptions::DCC_CDecl: 8662 return CC_C; 8663 case LangOptions::DCC_FastCall: 8664 if (getTargetInfo().hasFeature("sse2")) 8665 return CC_X86FastCall; 8666 break; 8667 case LangOptions::DCC_StdCall: 8668 if (!IsVariadic) 8669 return CC_X86StdCall; 8670 break; 8671 case LangOptions::DCC_VectorCall: 8672 // __vectorcall cannot be applied to variadic functions. 8673 if (!IsVariadic) 8674 return CC_X86VectorCall; 8675 break; 8676 } 8677 return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown); 8678 } 8679 8680 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 8681 // Pass through to the C++ ABI object 8682 return ABI->isNearlyEmpty(RD); 8683 } 8684 8685 VTableContextBase *ASTContext::getVTableContext() { 8686 if (!VTContext.get()) { 8687 if (Target->getCXXABI().isMicrosoft()) 8688 VTContext.reset(new MicrosoftVTableContext(*this)); 8689 else 8690 VTContext.reset(new ItaniumVTableContext(*this)); 8691 } 8692 return VTContext.get(); 8693 } 8694 8695 MangleContext *ASTContext::createMangleContext() { 8696 switch (Target->getCXXABI().getKind()) { 8697 case TargetCXXABI::GenericAArch64: 8698 case TargetCXXABI::GenericItanium: 8699 case TargetCXXABI::GenericARM: 8700 case TargetCXXABI::GenericMIPS: 8701 case TargetCXXABI::iOS: 8702 case TargetCXXABI::iOS64: 8703 case TargetCXXABI::WebAssembly: 8704 case TargetCXXABI::WatchOS: 8705 return ItaniumMangleContext::create(*this, getDiagnostics()); 8706 case TargetCXXABI::Microsoft: 8707 return MicrosoftMangleContext::create(*this, getDiagnostics()); 8708 } 8709 llvm_unreachable("Unsupported ABI"); 8710 } 8711 8712 CXXABI::~CXXABI() {} 8713 8714 size_t ASTContext::getSideTableAllocatedMemory() const { 8715 return ASTRecordLayouts.getMemorySize() + 8716 llvm::capacity_in_bytes(ObjCLayouts) + 8717 llvm::capacity_in_bytes(KeyFunctions) + 8718 llvm::capacity_in_bytes(ObjCImpls) + 8719 llvm::capacity_in_bytes(BlockVarCopyInits) + 8720 llvm::capacity_in_bytes(DeclAttrs) + 8721 llvm::capacity_in_bytes(TemplateOrInstantiation) + 8722 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 8723 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 8724 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 8725 llvm::capacity_in_bytes(OverriddenMethods) + 8726 llvm::capacity_in_bytes(Types) + 8727 llvm::capacity_in_bytes(VariableArrayTypes) + 8728 llvm::capacity_in_bytes(ClassScopeSpecializationPattern); 8729 } 8730 8731 /// getIntTypeForBitwidth - 8732 /// sets integer QualTy according to specified details: 8733 /// bitwidth, signed/unsigned. 8734 /// Returns empty type if there is no appropriate target types. 8735 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 8736 unsigned Signed) const { 8737 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 8738 CanQualType QualTy = getFromTargetType(Ty); 8739 if (!QualTy && DestWidth == 128) 8740 return Signed ? Int128Ty : UnsignedInt128Ty; 8741 return QualTy; 8742 } 8743 8744 /// getRealTypeForBitwidth - 8745 /// sets floating point QualTy according to specified bitwidth. 8746 /// Returns empty type if there is no appropriate target types. 8747 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { 8748 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); 8749 switch (Ty) { 8750 case TargetInfo::Float: 8751 return FloatTy; 8752 case TargetInfo::Double: 8753 return DoubleTy; 8754 case TargetInfo::LongDouble: 8755 return LongDoubleTy; 8756 case TargetInfo::Float128: 8757 return Float128Ty; 8758 case TargetInfo::NoFloat: 8759 return QualType(); 8760 } 8761 8762 llvm_unreachable("Unhandled TargetInfo::RealType value"); 8763 } 8764 8765 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 8766 if (Number > 1) 8767 MangleNumbers[ND] = Number; 8768 } 8769 8770 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 8771 auto I = MangleNumbers.find(ND); 8772 return I != MangleNumbers.end() ? I->second : 1; 8773 } 8774 8775 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 8776 if (Number > 1) 8777 StaticLocalNumbers[VD] = Number; 8778 } 8779 8780 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 8781 auto I = StaticLocalNumbers.find(VD); 8782 return I != StaticLocalNumbers.end() ? I->second : 1; 8783 } 8784 8785 MangleNumberingContext & 8786 ASTContext::getManglingNumberContext(const DeclContext *DC) { 8787 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 8788 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; 8789 if (!MCtx) 8790 MCtx = createMangleNumberingContext(); 8791 return *MCtx; 8792 } 8793 8794 MangleNumberingContext *ASTContext::createMangleNumberingContext() const { 8795 return ABI->createMangleNumberingContext(); 8796 } 8797 8798 const CXXConstructorDecl * 8799 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { 8800 return ABI->getCopyConstructorForExceptionObject( 8801 cast<CXXRecordDecl>(RD->getFirstDecl())); 8802 } 8803 8804 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, 8805 CXXConstructorDecl *CD) { 8806 return ABI->addCopyConstructorForExceptionObject( 8807 cast<CXXRecordDecl>(RD->getFirstDecl()), 8808 cast<CXXConstructorDecl>(CD->getFirstDecl())); 8809 } 8810 8811 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8812 unsigned ParmIdx, Expr *DAE) { 8813 ABI->addDefaultArgExprForConstructor( 8814 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE); 8815 } 8816 8817 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8818 unsigned ParmIdx) { 8819 return ABI->getDefaultArgExprForConstructor( 8820 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx); 8821 } 8822 8823 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, 8824 TypedefNameDecl *DD) { 8825 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); 8826 } 8827 8828 TypedefNameDecl * 8829 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { 8830 return ABI->getTypedefNameForUnnamedTagDecl(TD); 8831 } 8832 8833 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, 8834 DeclaratorDecl *DD) { 8835 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); 8836 } 8837 8838 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { 8839 return ABI->getDeclaratorForUnnamedTagDecl(TD); 8840 } 8841 8842 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 8843 ParamIndices[D] = index; 8844 } 8845 8846 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 8847 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 8848 assert(I != ParamIndices.end() && 8849 "ParmIndices lacks entry set by ParmVarDecl"); 8850 return I->second; 8851 } 8852 8853 APValue * 8854 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, 8855 bool MayCreate) { 8856 assert(E && E->getStorageDuration() == SD_Static && 8857 "don't need to cache the computed value for this temporary"); 8858 if (MayCreate) { 8859 APValue *&MTVI = MaterializedTemporaryValues[E]; 8860 if (!MTVI) 8861 MTVI = new (*this) APValue; 8862 return MTVI; 8863 } 8864 8865 return MaterializedTemporaryValues.lookup(E); 8866 } 8867 8868 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 8869 const llvm::Triple &T = getTargetInfo().getTriple(); 8870 if (!T.isOSDarwin()) 8871 return false; 8872 8873 if (!(T.isiOS() && T.isOSVersionLT(7)) && 8874 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 8875 return false; 8876 8877 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 8878 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 8879 uint64_t Size = sizeChars.getQuantity(); 8880 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 8881 unsigned Align = alignChars.getQuantity(); 8882 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 8883 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 8884 } 8885 8886 namespace { 8887 8888 ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap( 8889 ASTContext::ParentMapPointers::mapped_type U) { 8890 if (const auto *D = U.dyn_cast<const Decl *>()) 8891 return ast_type_traits::DynTypedNode::create(*D); 8892 if (const auto *S = U.dyn_cast<const Stmt *>()) 8893 return ast_type_traits::DynTypedNode::create(*S); 8894 return *U.get<ast_type_traits::DynTypedNode *>(); 8895 } 8896 8897 /// Template specializations to abstract away from pointers and TypeLocs. 8898 /// @{ 8899 template <typename T> 8900 ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) { 8901 return ast_type_traits::DynTypedNode::create(*Node); 8902 } 8903 template <> 8904 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) { 8905 return ast_type_traits::DynTypedNode::create(Node); 8906 } 8907 template <> 8908 ast_type_traits::DynTypedNode 8909 createDynTypedNode(const NestedNameSpecifierLoc &Node) { 8910 return ast_type_traits::DynTypedNode::create(Node); 8911 } 8912 /// @} 8913 8914 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their 8915 /// parents as defined by the \c RecursiveASTVisitor. 8916 /// 8917 /// Note that the relationship described here is purely in terms of AST 8918 /// traversal - there are other relationships (for example declaration context) 8919 /// in the AST that are better modeled by special matchers. 8920 /// 8921 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. 8922 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { 8923 public: 8924 /// \brief Builds and returns the translation unit's parent map. 8925 /// 8926 /// The caller takes ownership of the returned \c ParentMap. 8927 static std::pair<ASTContext::ParentMapPointers *, 8928 ASTContext::ParentMapOtherNodes *> 8929 buildMap(TranslationUnitDecl &TU) { 8930 ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers, 8931 new ASTContext::ParentMapOtherNodes); 8932 Visitor.TraverseDecl(&TU); 8933 return std::make_pair(Visitor.Parents, Visitor.OtherParents); 8934 } 8935 8936 private: 8937 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; 8938 8939 ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents, 8940 ASTContext::ParentMapOtherNodes *OtherParents) 8941 : Parents(Parents), OtherParents(OtherParents) {} 8942 8943 bool shouldVisitTemplateInstantiations() const { 8944 return true; 8945 } 8946 bool shouldVisitImplicitCode() const { 8947 return true; 8948 } 8949 8950 template <typename T, typename MapNodeTy, typename BaseTraverseFn, 8951 typename MapTy> 8952 bool TraverseNode(T Node, MapNodeTy MapNode, 8953 BaseTraverseFn BaseTraverse, MapTy *Parents) { 8954 if (!Node) 8955 return true; 8956 if (ParentStack.size() > 0) { 8957 // FIXME: Currently we add the same parent multiple times, but only 8958 // when no memoization data is available for the type. 8959 // For example when we visit all subexpressions of template 8960 // instantiations; this is suboptimal, but benign: the only way to 8961 // visit those is with hasAncestor / hasParent, and those do not create 8962 // new matches. 8963 // The plan is to enable DynTypedNode to be storable in a map or hash 8964 // map. The main problem there is to implement hash functions / 8965 // comparison operators for all types that DynTypedNode supports that 8966 // do not have pointer identity. 8967 auto &NodeOrVector = (*Parents)[MapNode]; 8968 if (NodeOrVector.isNull()) { 8969 if (const auto *D = ParentStack.back().get<Decl>()) 8970 NodeOrVector = D; 8971 else if (const auto *S = ParentStack.back().get<Stmt>()) 8972 NodeOrVector = S; 8973 else 8974 NodeOrVector = 8975 new ast_type_traits::DynTypedNode(ParentStack.back()); 8976 } else { 8977 if (!NodeOrVector.template is<ASTContext::ParentVector *>()) { 8978 auto *Vector = new ASTContext::ParentVector( 8979 1, getSingleDynTypedNodeFromParentMap(NodeOrVector)); 8980 if (auto *Node = 8981 NodeOrVector 8982 .template dyn_cast<ast_type_traits::DynTypedNode *>()) 8983 delete Node; 8984 NodeOrVector = Vector; 8985 } 8986 8987 auto *Vector = 8988 NodeOrVector.template get<ASTContext::ParentVector *>(); 8989 // Skip duplicates for types that have memoization data. 8990 // We must check that the type has memoization data before calling 8991 // std::find() because DynTypedNode::operator== can't compare all 8992 // types. 8993 bool Found = ParentStack.back().getMemoizationData() && 8994 std::find(Vector->begin(), Vector->end(), 8995 ParentStack.back()) != Vector->end(); 8996 if (!Found) 8997 Vector->push_back(ParentStack.back()); 8998 } 8999 } 9000 ParentStack.push_back(createDynTypedNode(Node)); 9001 bool Result = BaseTraverse(); 9002 ParentStack.pop_back(); 9003 return Result; 9004 } 9005 9006 bool TraverseDecl(Decl *DeclNode) { 9007 return TraverseNode(DeclNode, DeclNode, 9008 [&] { return VisitorBase::TraverseDecl(DeclNode); }, 9009 Parents); 9010 } 9011 9012 bool TraverseStmt(Stmt *StmtNode) { 9013 return TraverseNode(StmtNode, StmtNode, 9014 [&] { return VisitorBase::TraverseStmt(StmtNode); }, 9015 Parents); 9016 } 9017 9018 bool TraverseTypeLoc(TypeLoc TypeLocNode) { 9019 return TraverseNode( 9020 TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode), 9021 [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); }, 9022 OtherParents); 9023 } 9024 9025 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) { 9026 return TraverseNode( 9027 NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode), 9028 [&] { 9029 return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); 9030 }, 9031 OtherParents); 9032 } 9033 9034 ASTContext::ParentMapPointers *Parents; 9035 ASTContext::ParentMapOtherNodes *OtherParents; 9036 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; 9037 9038 friend class RecursiveASTVisitor<ParentMapASTVisitor>; 9039 }; 9040 9041 } // anonymous namespace 9042 9043 template <typename NodeTy, typename MapTy> 9044 static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node, 9045 const MapTy &Map) { 9046 auto I = Map.find(Node); 9047 if (I == Map.end()) { 9048 return llvm::ArrayRef<ast_type_traits::DynTypedNode>(); 9049 } 9050 if (auto *V = I->second.template dyn_cast<ASTContext::ParentVector *>()) { 9051 return llvm::makeArrayRef(*V); 9052 } 9053 return getSingleDynTypedNodeFromParentMap(I->second); 9054 } 9055 9056 ASTContext::DynTypedNodeList 9057 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { 9058 if (!PointerParents) { 9059 // We always need to run over the whole translation unit, as 9060 // hasAncestor can escape any subtree. 9061 auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()); 9062 PointerParents.reset(Maps.first); 9063 OtherParents.reset(Maps.second); 9064 } 9065 if (Node.getNodeKind().hasPointerIdentity()) 9066 return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents); 9067 return getDynNodeFromMap(Node, *OtherParents); 9068 } 9069 9070 bool 9071 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 9072 const ObjCMethodDecl *MethodImpl) { 9073 // No point trying to match an unavailable/deprecated mothod. 9074 if (MethodDecl->hasAttr<UnavailableAttr>() 9075 || MethodDecl->hasAttr<DeprecatedAttr>()) 9076 return false; 9077 if (MethodDecl->getObjCDeclQualifier() != 9078 MethodImpl->getObjCDeclQualifier()) 9079 return false; 9080 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 9081 return false; 9082 9083 if (MethodDecl->param_size() != MethodImpl->param_size()) 9084 return false; 9085 9086 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 9087 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 9088 EF = MethodDecl->param_end(); 9089 IM != EM && IF != EF; ++IM, ++IF) { 9090 const ParmVarDecl *DeclVar = (*IF); 9091 const ParmVarDecl *ImplVar = (*IM); 9092 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 9093 return false; 9094 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 9095 return false; 9096 } 9097 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 9098 9099 } 9100 9101 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 9102 // doesn't include ASTContext.h 9103 template 9104 clang::LazyGenerationalUpdatePtr< 9105 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 9106 clang::LazyGenerationalUpdatePtr< 9107 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 9108 const clang::ASTContext &Ctx, Decl *Value); 9109