Home | History | Annotate | Download | only in swr
      1 /****************************************************************************
      2  * Copyright (C) 2015 Intel Corporation.   All Rights Reserved.
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  ***************************************************************************/
     23 
     24 // llvm redefines DEBUG
     25 #pragma push_macro("DEBUG")
     26 #undef DEBUG
     27 #include "JitManager.h"
     28 #include "llvm-c/Core.h"
     29 #include "llvm/Support/CBindingWrapping.h"
     30 #pragma pop_macro("DEBUG")
     31 
     32 #include "state.h"
     33 #include "gen_state_llvm.h"
     34 #include "builder.h"
     35 
     36 #include "tgsi/tgsi_strings.h"
     37 #include "util/u_format.h"
     38 #include "util/u_prim.h"
     39 #include "gallivm/lp_bld_init.h"
     40 #include "gallivm/lp_bld_flow.h"
     41 #include "gallivm/lp_bld_struct.h"
     42 #include "gallivm/lp_bld_tgsi.h"
     43 
     44 #include "swr_context.h"
     45 #include "gen_swr_context_llvm.h"
     46 #include "swr_resource.h"
     47 #include "swr_state.h"
     48 #include "swr_screen.h"
     49 
     50 using namespace SwrJit;
     51 using namespace llvm;
     52 
     53 static unsigned
     54 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
     55 
     56 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
     57 {
     58    return !memcmp(&lhs, &rhs, sizeof(lhs));
     59 }
     60 
     61 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
     62 {
     63    return !memcmp(&lhs, &rhs, sizeof(lhs));
     64 }
     65 
     66 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
     67 {
     68    return !memcmp(&lhs, &rhs, sizeof(lhs));
     69 }
     70 
     71 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
     72 {
     73    return !memcmp(&lhs, &rhs, sizeof(lhs));
     74 }
     75 
     76 static void
     77 swr_generate_sampler_key(const struct lp_tgsi_info &info,
     78                          struct swr_context *ctx,
     79                          enum pipe_shader_type shader_type,
     80                          struct swr_jit_sampler_key &key)
     81 {
     82    key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
     83 
     84    for (unsigned i = 0; i < key.nr_samplers; i++) {
     85       if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
     86          lp_sampler_static_sampler_state(
     87             &key.sampler[i].sampler_state,
     88             ctx->samplers[shader_type][i]);
     89       }
     90    }
     91 
     92    /*
     93     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
     94     * are dx10-style? Can't really have mixed opcodes, at least not
     95     * if we want to skip the holes here (without rescanning tgsi).
     96     */
     97    if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
     98       key.nr_sampler_views =
     99          info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
    100       for (unsigned i = 0; i < key.nr_sampler_views; i++) {
    101          if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
    102             const struct pipe_sampler_view *view =
    103                ctx->sampler_views[shader_type][i];
    104             lp_sampler_static_texture_state(
    105                &key.sampler[i].texture_state, view);
    106             if (view) {
    107                struct swr_resource *swr_res = swr_resource(view->texture);
    108                const struct util_format_description *desc =
    109                   util_format_description(view->format);
    110                if (swr_res->has_depth && swr_res->has_stencil &&
    111                    !util_format_has_depth(desc))
    112                   key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
    113             }
    114          }
    115       }
    116    } else {
    117       key.nr_sampler_views = key.nr_samplers;
    118       for (unsigned i = 0; i < key.nr_sampler_views; i++) {
    119          if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
    120             const struct pipe_sampler_view *view =
    121                ctx->sampler_views[shader_type][i];
    122             lp_sampler_static_texture_state(
    123                &key.sampler[i].texture_state, view);
    124             if (view) {
    125                struct swr_resource *swr_res = swr_resource(view->texture);
    126                const struct util_format_description *desc =
    127                   util_format_description(view->format);
    128                if (swr_res->has_depth && swr_res->has_stencil &&
    129                    !util_format_has_depth(desc))
    130                   key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
    131             }
    132          }
    133       }
    134    }
    135 }
    136 
    137 void
    138 swr_generate_fs_key(struct swr_jit_fs_key &key,
    139                     struct swr_context *ctx,
    140                     swr_fragment_shader *swr_fs)
    141 {
    142    memset(&key, 0, sizeof(key));
    143 
    144    key.nr_cbufs = ctx->framebuffer.nr_cbufs;
    145    key.light_twoside = ctx->rasterizer->light_twoside;
    146    key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
    147 
    148    struct tgsi_shader_info *pPrevShader;
    149    if (ctx->gs)
    150       pPrevShader = &ctx->gs->info.base;
    151    else
    152       pPrevShader = &ctx->vs->info.base;
    153 
    154    memcpy(&key.vs_output_semantic_name,
    155           &pPrevShader->output_semantic_name,
    156           sizeof(key.vs_output_semantic_name));
    157    memcpy(&key.vs_output_semantic_idx,
    158           &pPrevShader->output_semantic_index,
    159           sizeof(key.vs_output_semantic_idx));
    160 
    161    swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
    162 
    163    key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
    164       ctx->poly_stipple.prim_is_poly;
    165 }
    166 
    167 void
    168 swr_generate_vs_key(struct swr_jit_vs_key &key,
    169                     struct swr_context *ctx,
    170                     swr_vertex_shader *swr_vs)
    171 {
    172    memset(&key, 0, sizeof(key));
    173 
    174    key.clip_plane_mask =
    175       swr_vs->info.base.clipdist_writemask ?
    176       swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
    177       ctx->rasterizer->clip_plane_enable;
    178 
    179    swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
    180 }
    181 
    182 void
    183 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
    184                        struct swr_vertex_element_state *velems)
    185 {
    186    memset(&key, 0, sizeof(key));
    187 
    188    key.fsState = velems->fsState;
    189 }
    190 
    191 void
    192 swr_generate_gs_key(struct swr_jit_gs_key &key,
    193                     struct swr_context *ctx,
    194                     swr_geometry_shader *swr_gs)
    195 {
    196    memset(&key, 0, sizeof(key));
    197 
    198    struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
    199 
    200    memcpy(&key.vs_output_semantic_name,
    201           &pPrevShader->output_semantic_name,
    202           sizeof(key.vs_output_semantic_name));
    203    memcpy(&key.vs_output_semantic_idx,
    204           &pPrevShader->output_semantic_index,
    205           sizeof(key.vs_output_semantic_idx));
    206 
    207    swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
    208 }
    209 
    210 struct BuilderSWR : public Builder {
    211    BuilderSWR(JitManager *pJitMgr, const char *pName)
    212       : Builder(pJitMgr)
    213    {
    214       pJitMgr->SetupNewModule();
    215       gallivm = gallivm_create(pName, wrap(&JM()->mContext));
    216       pJitMgr->mpCurrentModule = unwrap(gallivm->module);
    217    }
    218 
    219    ~BuilderSWR() {
    220       gallivm_free_ir(gallivm);
    221    }
    222 
    223    void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
    224                 unsigned slot, unsigned channel);
    225 
    226    struct gallivm_state *gallivm;
    227    PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
    228    PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
    229    PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
    230 
    231    LLVMValueRef
    232    swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
    233                            struct lp_build_tgsi_context * bld_base,
    234                            boolean is_vindex_indirect,
    235                            LLVMValueRef vertex_index,
    236                            boolean is_aindex_indirect,
    237                            LLVMValueRef attrib_index,
    238                            LLVMValueRef swizzle_index);
    239    void
    240    swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
    241                            struct lp_build_tgsi_context * bld_base,
    242                            LLVMValueRef (*outputs)[4],
    243                            LLVMValueRef emitted_vertices_vec);
    244 
    245    void
    246    swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
    247                              struct lp_build_tgsi_context * bld_base,
    248                              LLVMValueRef verts_per_prim_vec,
    249                              LLVMValueRef emitted_prims_vec);
    250 
    251    void
    252    swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
    253                         struct lp_build_tgsi_context * bld_base,
    254                         LLVMValueRef total_emitted_vertices_vec,
    255                         LLVMValueRef emitted_prims_vec);
    256 
    257 };
    258 
    259 struct swr_gs_llvm_iface {
    260    struct lp_build_tgsi_gs_iface base;
    261    struct tgsi_shader_info *info;
    262 
    263    BuilderSWR *pBuilder;
    264 
    265    Value *pGsCtx;
    266    SWR_GS_STATE *pGsState;
    267    uint32_t num_outputs;
    268    uint32_t num_verts_per_prim;
    269 
    270    Value *pVtxAttribMap;
    271 };
    272 
    273 // trampoline functions so we can use the builder llvm construction methods
    274 static LLVMValueRef
    275 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
    276                            struct lp_build_tgsi_context * bld_base,
    277                            boolean is_vindex_indirect,
    278                            LLVMValueRef vertex_index,
    279                            boolean is_aindex_indirect,
    280                            LLVMValueRef attrib_index,
    281                            LLVMValueRef swizzle_index)
    282 {
    283     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
    284 
    285     return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
    286                                                    is_vindex_indirect,
    287                                                    vertex_index,
    288                                                    is_aindex_indirect,
    289                                                    attrib_index,
    290                                                    swizzle_index);
    291 }
    292 
    293 static void
    294 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
    295                            struct lp_build_tgsi_context * bld_base,
    296                            LLVMValueRef (*outputs)[4],
    297                            LLVMValueRef emitted_vertices_vec)
    298 {
    299     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    300 
    301     iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
    302                                             outputs,
    303                                             emitted_vertices_vec);
    304 }
    305 
    306 static void
    307 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
    308                              struct lp_build_tgsi_context * bld_base,
    309                              LLVMValueRef verts_per_prim_vec,
    310                              LLVMValueRef emitted_prims_vec)
    311 {
    312     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    313 
    314     iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
    315                                               verts_per_prim_vec,
    316                                               emitted_prims_vec);
    317 }
    318 
    319 static void
    320 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
    321                         struct lp_build_tgsi_context * bld_base,
    322                         LLVMValueRef total_emitted_vertices_vec,
    323                         LLVMValueRef emitted_prims_vec)
    324 {
    325     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    326 
    327     iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
    328                                          total_emitted_vertices_vec,
    329                                          emitted_prims_vec);
    330 }
    331 
    332 LLVMValueRef
    333 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
    334                            struct lp_build_tgsi_context * bld_base,
    335                            boolean is_vindex_indirect,
    336                            LLVMValueRef vertex_index,
    337                            boolean is_aindex_indirect,
    338                            LLVMValueRef attrib_index,
    339                            LLVMValueRef swizzle_index)
    340 {
    341     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
    342     Value *vert_index = unwrap(vertex_index);
    343     Value *attr_index = unwrap(attrib_index);
    344 
    345     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    346 
    347     if (is_vindex_indirect || is_aindex_indirect) {
    348        int i;
    349        Value *res = unwrap(bld_base->base.zero);
    350        struct lp_type type = bld_base->base.type;
    351 
    352        for (i = 0; i < type.length; i++) {
    353           Value *vert_chan_index = vert_index;
    354           Value *attr_chan_index = attr_index;
    355 
    356           if (is_vindex_indirect) {
    357              vert_chan_index = VEXTRACT(vert_index, C(i));
    358           }
    359           if (is_aindex_indirect) {
    360              attr_chan_index = VEXTRACT(attr_index, C(i));
    361           }
    362 
    363           Value *attrib =
    364              LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_chan_index}));
    365 
    366           Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
    367           Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
    368 
    369           Value *pVector = ADD(MUL(vert_chan_index, pInputVertStride), attrib);
    370           Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
    371 
    372           Value *value = VEXTRACT(pInput, C(i));
    373           res = VINSERT(res, value, C(i));
    374        }
    375 
    376        return wrap(res);
    377     } else {
    378        Value *attrib = LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_index}));
    379 
    380        Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
    381        Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
    382 
    383        Value *pVector = ADD(MUL(vert_index, pInputVertStride), attrib);
    384 
    385        Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
    386 
    387        return wrap(pInput);
    388     }
    389 }
    390 
    391 // GS output stream layout
    392 #define VERTEX_COUNT_SIZE 32
    393 #define CONTROL_HEADER_SIZE (8*32)
    394 
    395 void
    396 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
    397                            struct lp_build_tgsi_context * bld_base,
    398                            LLVMValueRef (*outputs)[4],
    399                            LLVMValueRef emitted_vertices_vec)
    400 {
    401     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    402 
    403     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    404 
    405     const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
    406     const uint32_t attribSize = 4 * sizeof(float);
    407     const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
    408     Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
    409 
    410     Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
    411     Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
    412 
    413     Value *pStack = STACKSAVE();
    414     Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
    415 
    416     for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
    417        uint32_t attribSlot = attrib;
    418        uint32_t sgvChannel = 0;
    419        if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
    420           attribSlot = VERTEX_SGV_SLOT;
    421           sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
    422        } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
    423           attribSlot = VERTEX_SGV_SLOT;
    424           sgvChannel = VERTEX_SGV_RTAI_COMP;
    425        } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
    426           attribSlot = VERTEX_POSITION_SLOT;
    427        } else {
    428           attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
    429           if (iface->info->writes_position) {
    430              attribSlot--;
    431           }
    432        }
    433 
    434        Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
    435 
    436        for (uint32_t lane = 0; lane < mVWidth; ++lane) {
    437           Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
    438           Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
    439           Value *pStreamOffset = GEP(pStream, pLaneOffset);
    440           pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
    441 
    442           Value *pLaneMask = VEXTRACT(vMask1, C(lane));
    443           pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
    444 
    445           for (uint32_t channel = 0; channel < 4; ++channel) {
    446              Value *vData;
    447 
    448              if (attribSlot == VERTEX_SGV_SLOT)
    449                 vData = LOAD(unwrap(outputs[attrib][0]));
    450              else
    451                 vData = LOAD(unwrap(outputs[attrib][channel]));
    452 
    453              if (attribSlot != VERTEX_SGV_SLOT ||
    454                  sgvChannel == channel) {
    455                 vData = VEXTRACT(vData, C(lane));
    456                 STORE(vData, pStreamOffset);
    457              }
    458              pStreamOffset = GEP(pStreamOffset, C(1));
    459           }
    460        }
    461     }
    462 
    463     STACKRESTORE(pStack);
    464 }
    465 
    466 void
    467 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
    468                              struct lp_build_tgsi_context * bld_base,
    469                              LLVMValueRef verts_per_prim_vec,
    470                              LLVMValueRef emitted_prims_vec)
    471 {
    472     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    473 
    474     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    475 
    476     Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
    477     Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
    478 
    479     uint32_t vertsPerPrim = iface->num_verts_per_prim;
    480 
    481     Value *vCount =
    482        ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
    483            unwrap(verts_per_prim_vec));
    484 
    485     struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
    486     vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
    487 
    488     struct lp_exec_mask *exec_mask = &bld->exec_mask;
    489     Value *mask = unwrap(lp_build_mask_value(bld->mask));
    490     if (exec_mask->has_mask)
    491        mask = AND(mask, unwrap(exec_mask->exec_mask));
    492 
    493     Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
    494     mask = AND(mask, cmpMask);
    495     vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
    496 
    497     vCount = SUB(vCount, VIMMED1(1));
    498     Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
    499     Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
    500 
    501     vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
    502 
    503     Value *pStack = STACKSAVE();
    504     Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
    505 
    506     for (uint32_t lane = 0; lane < mVWidth; ++lane) {
    507        Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
    508        Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
    509        Value *pStreamOffset = GEP(pStream, vLaneOffset);
    510 
    511        Value *pLaneMask = VEXTRACT(vMask1, C(lane));
    512        pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
    513 
    514        Value *vVal = LOAD(pStreamOffset);
    515        vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
    516        STORE(vVal, pStreamOffset);
    517     }
    518 
    519     STACKRESTORE(pStack);
    520 }
    521 
    522 void
    523 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
    524                         struct lp_build_tgsi_context * bld_base,
    525                         LLVMValueRef total_emitted_vertices_vec,
    526                         LLVMValueRef emitted_prims_vec)
    527 {
    528    swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
    529 
    530    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    531 
    532    // Store emit count to each output stream in the first DWORD
    533    for (uint32_t lane = 0; lane < mVWidth; ++lane)
    534    {
    535       Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
    536       pStream = BITCAST(pStream, mInt32PtrTy);
    537       Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
    538       STORE(pLaneCount, pStream);
    539    }
    540 }
    541 
    542 PFN_GS_FUNC
    543 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
    544 {
    545    SWR_GS_STATE *pGS = &ctx->gs->gsState;
    546    struct tgsi_shader_info *info = &ctx->gs->info.base;
    547 
    548    memset(pGS, 0, sizeof(*pGS));
    549 
    550    pGS->gsEnable = true;
    551 
    552    pGS->numInputAttribs = info->num_inputs;
    553    pGS->outputTopology =
    554       swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
    555    pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
    556    pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
    557 
    558    // XXX: single stream for now...
    559    pGS->isSingleStream = true;
    560    pGS->singleStreamID = 0;
    561 
    562    pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
    563    pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
    564    pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
    565    pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
    566    pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
    567    pGS->controlDataOffset = VERTEX_COUNT_SIZE;
    568    pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
    569 
    570    pGS->allocationSize =
    571       VERTEX_COUNT_SIZE + // vertex count
    572       CONTROL_HEADER_SIZE + // control header
    573       (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
    574       pGS->maxNumVerts; // num verts
    575 
    576    struct swr_geometry_shader *gs = ctx->gs;
    577 
    578    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
    579    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
    580 
    581    memset(outputs, 0, sizeof(outputs));
    582 
    583    AttrBuilder attrBuilder;
    584    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
    585 
    586    std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
    587                               PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
    588    FunctionType *vsFuncType =
    589       FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
    590 
    591    // create new vertex shader function
    592    auto pFunction = Function::Create(vsFuncType,
    593                                      GlobalValue::ExternalLinkage,
    594                                      "GS",
    595                                      JM()->mpCurrentModule);
    596 #if HAVE_LLVM < 0x0500
    597    AttributeSet attrSet = AttributeSet::get(
    598       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
    599    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
    600 #else
    601    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
    602 #endif
    603 
    604    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
    605    IRB()->SetInsertPoint(block);
    606    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
    607 
    608    auto argitr = pFunction->arg_begin();
    609    Value *hPrivateData = &*argitr++;
    610    hPrivateData->setName("hPrivateData");
    611    Value *pGsCtx = &*argitr++;
    612    pGsCtx->setName("gsCtx");
    613 
    614    Value *consts_ptr =
    615       GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
    616    consts_ptr->setName("gs_constants");
    617    Value *const_sizes_ptr =
    618       GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
    619    const_sizes_ptr->setName("num_gs_constants");
    620 
    621    struct lp_build_sampler_soa *sampler =
    622       swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
    623 
    624    struct lp_bld_tgsi_system_values system_values;
    625    memset(&system_values, 0, sizeof(system_values));
    626    system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
    627    system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
    628 
    629    std::vector<Constant*> mapConstants;
    630    Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
    631    for (unsigned slot = 0; slot < info->num_inputs; slot++) {
    632       ubyte semantic_name = info->input_semantic_name[slot];
    633       ubyte semantic_idx = info->input_semantic_index[slot];
    634 
    635       unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
    636 
    637       vs_slot += VERTEX_ATTRIB_START_SLOT;
    638 
    639       if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
    640          vs_slot--;
    641 
    642       if (semantic_name == TGSI_SEMANTIC_POSITION)
    643          vs_slot = VERTEX_POSITION_SLOT;
    644 
    645       STORE(C(vs_slot), vtxAttribMap, {0, slot});
    646       mapConstants.push_back(C(vs_slot));
    647    }
    648 
    649    struct lp_build_mask_context mask;
    650    Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
    651    lp_build_mask_begin(&mask, gallivm,
    652                        lp_type_float_vec(32, 32 * 8), wrap(mask_val));
    653 
    654    // zero out cut buffer so we can load/modify/store bits
    655    for (uint32_t lane = 0; lane < mVWidth; ++lane)
    656    {
    657       Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
    658       MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
    659    }
    660 
    661    struct swr_gs_llvm_iface gs_iface;
    662    gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
    663    gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
    664    gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
    665    gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
    666    gs_iface.pBuilder = this;
    667    gs_iface.pGsCtx = pGsCtx;
    668    gs_iface.pGsState = pGS;
    669    gs_iface.num_outputs = gs->info.base.num_outputs;
    670    gs_iface.num_verts_per_prim =
    671       u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
    672    gs_iface.info = info;
    673    gs_iface.pVtxAttribMap = vtxAttribMap;
    674 
    675    lp_build_tgsi_soa(gallivm,
    676                      gs->pipe.tokens,
    677                      lp_type_float_vec(32, 32 * 8),
    678                      &mask,
    679                      wrap(consts_ptr),
    680                      wrap(const_sizes_ptr),
    681                      &system_values,
    682                      inputs,
    683                      outputs,
    684                      wrap(hPrivateData), // (sampler context)
    685                      NULL, // thread data
    686                      sampler,
    687                      &gs->info.base,
    688                      &gs_iface.base);
    689 
    690    lp_build_mask_end(&mask);
    691 
    692    sampler->destroy(sampler);
    693 
    694    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    695 
    696    RET_VOID();
    697 
    698    gallivm_verify_function(gallivm, wrap(pFunction));
    699    gallivm_compile_module(gallivm);
    700 
    701    PFN_GS_FUNC pFunc =
    702       (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
    703 
    704    debug_printf("geom shader  %p\n", pFunc);
    705    assert(pFunc && "Error: GeomShader = NULL");
    706 
    707    JM()->mIsModuleFinalized = true;
    708 
    709    return pFunc;
    710 }
    711 
    712 PFN_GS_FUNC
    713 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
    714 {
    715    BuilderSWR builder(
    716       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
    717       "GS");
    718    PFN_GS_FUNC func = builder.CompileGS(ctx, key);
    719 
    720    ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
    721    return func;
    722 }
    723 
    724 void
    725 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
    726 {
    727 #if USE_SIMD16_FRONTEND && !USE_SIMD16_VS
    728    // interleave the simdvertex components into the dest simd16vertex
    729    //   slot16offset = slot8offset * 2
    730    //   comp16offset = comp8offset * 2 + alternateOffset
    731 
    732    Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
    733    Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
    734    STORE(pVal, pOut, {channel * 2});
    735 #else
    736    Value *pOut = GEP(pVtxOutput, {0, 0, slot});
    737    STORE(pVal, pOut, {0, channel});
    738 #endif
    739 }
    740 
    741 PFN_VERTEX_FUNC
    742 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
    743 {
    744    struct swr_vertex_shader *swr_vs = ctx->vs;
    745 
    746    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
    747    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
    748 
    749    memset(outputs, 0, sizeof(outputs));
    750 
    751    AttrBuilder attrBuilder;
    752    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
    753 
    754    std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
    755                               PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
    756    FunctionType *vsFuncType =
    757       FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
    758 
    759    // create new vertex shader function
    760    auto pFunction = Function::Create(vsFuncType,
    761                                      GlobalValue::ExternalLinkage,
    762                                      "VS",
    763                                      JM()->mpCurrentModule);
    764 #if HAVE_LLVM < 0x0500
    765    AttributeSet attrSet = AttributeSet::get(
    766       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
    767    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
    768 #else
    769    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
    770 #endif
    771 
    772    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
    773    IRB()->SetInsertPoint(block);
    774    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
    775 
    776    auto argitr = pFunction->arg_begin();
    777    Value *hPrivateData = &*argitr++;
    778    hPrivateData->setName("hPrivateData");
    779    Value *pVsCtx = &*argitr++;
    780    pVsCtx->setName("vsCtx");
    781 
    782    Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
    783 
    784    consts_ptr->setName("vs_constants");
    785    Value *const_sizes_ptr =
    786       GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
    787    const_sizes_ptr->setName("num_vs_constants");
    788 
    789    Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
    790 #if USE_SIMD16_VS
    791    vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0));
    792 #endif
    793 
    794    for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
    795       const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
    796       for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
    797          if (mask & (1 << channel)) {
    798             inputs[attrib][channel] =
    799                wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
    800          }
    801       }
    802    }
    803 
    804    struct lp_build_sampler_soa *sampler =
    805       swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
    806 
    807    struct lp_bld_tgsi_system_values system_values;
    808    memset(&system_values, 0, sizeof(system_values));
    809    system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
    810 
    811 #if USE_SIMD16_VS
    812    system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID16}));
    813 #else
    814    system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
    815 #endif
    816 
    817 #if USE_SIMD16_VS
    818    uint32_t vectorWidth = mVWidth16;
    819 #else
    820    uint32_t vectorWidth = mVWidth;
    821 #endif
    822 
    823    lp_build_tgsi_soa(gallivm,
    824                      swr_vs->pipe.tokens,
    825                      lp_type_float_vec(32, 32 * vectorWidth),
    826                      NULL, // mask
    827                      wrap(consts_ptr),
    828                      wrap(const_sizes_ptr),
    829                      &system_values,
    830                      inputs,
    831                      outputs,
    832                      wrap(hPrivateData), // (sampler context)
    833                      NULL, // thread data
    834                      sampler, // sampler
    835                      &swr_vs->info.base,
    836                      NULL); // geometry shader face
    837 
    838    sampler->destroy(sampler);
    839 
    840    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
    841 
    842    Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
    843 #if USE_SIMD16_VS
    844    vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0));
    845 #endif
    846 
    847    for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
    848       for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
    849          if (!outputs[attrib][channel])
    850             continue;
    851 
    852          Value *val;
    853          uint32_t outSlot;
    854 
    855          if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
    856             if (channel != VERTEX_SGV_POINT_SIZE_COMP)
    857                continue;
    858             val = LOAD(unwrap(outputs[attrib][0]));
    859             outSlot = VERTEX_SGV_SLOT;
    860          } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
    861             val = LOAD(unwrap(outputs[attrib][channel]));
    862             outSlot = VERTEX_POSITION_SLOT;
    863          } else {
    864             val = LOAD(unwrap(outputs[attrib][channel]));
    865             outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
    866             if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
    867                outSlot--;
    868          }
    869 
    870          WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
    871       }
    872    }
    873 
    874    if (ctx->rasterizer->clip_plane_enable ||
    875        swr_vs->info.base.culldist_writemask) {
    876       unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
    877 
    878       unsigned cv = 0;
    879       if (swr_vs->info.base.writes_clipvertex) {
    880          cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
    881                              &swr_vs->info.base);
    882       } else {
    883          for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
    884             if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
    885                 swr_vs->info.base.output_semantic_index[i] == 0) {
    886                cv = i;
    887                break;
    888             }
    889          }
    890       }
    891       LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
    892       LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
    893       LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
    894       LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
    895 
    896       for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
    897          // clip distance overrides user clip planes
    898          if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
    899              ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
    900             unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
    901                                          &swr_vs->info.base);
    902             if (val < 4) {
    903                LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
    904                WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
    905             } else {
    906                LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
    907                WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
    908             }
    909             continue;
    910          }
    911 
    912          if (!(clip_mask & (1 << val)))
    913             continue;
    914 
    915          Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
    916          Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
    917          Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
    918          Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
    919 #if USE_SIMD16_VS
    920          Value *bpx = VBROADCAST_16(px);
    921          Value *bpy = VBROADCAST_16(py);
    922          Value *bpz = VBROADCAST_16(pz);
    923          Value *bpw = VBROADCAST_16(pw);
    924 #else
    925          Value *bpx = VBROADCAST(px);
    926          Value *bpy = VBROADCAST(py);
    927          Value *bpz = VBROADCAST(pz);
    928          Value *bpw = VBROADCAST(pw);
    929 #endif
    930          Value *dist = FADD(FMUL(unwrap(cx), bpx),
    931                             FADD(FMUL(unwrap(cy), bpy),
    932                                  FADD(FMUL(unwrap(cz), bpz),
    933                                       FMUL(unwrap(cw), bpw))));
    934 
    935          if (val < 4)
    936             WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
    937          else
    938             WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
    939       }
    940    }
    941 
    942    RET_VOID();
    943 
    944    gallivm_verify_function(gallivm, wrap(pFunction));
    945    gallivm_compile_module(gallivm);
    946 
    947    //   lp_debug_dump_value(func);
    948 
    949    PFN_VERTEX_FUNC pFunc =
    950       (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
    951 
    952    debug_printf("vert shader  %p\n", pFunc);
    953    assert(pFunc && "Error: VertShader = NULL");
    954 
    955    JM()->mIsModuleFinalized = true;
    956 
    957    return pFunc;
    958 }
    959 
    960 PFN_VERTEX_FUNC
    961 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
    962 {
    963    if (!ctx->vs->pipe.tokens)
    964       return NULL;
    965 
    966    BuilderSWR builder(
    967       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
    968       "VS");
    969    PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
    970 
    971    ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
    972    return func;
    973 }
    974 
    975 unsigned
    976 swr_so_adjust_attrib(unsigned in_attrib,
    977                      swr_vertex_shader *swr_vs)
    978 {
    979    ubyte semantic_name;
    980    unsigned attrib;
    981 
    982    attrib = in_attrib + VERTEX_ATTRIB_START_SLOT;
    983 
    984    if (swr_vs) {
    985       semantic_name = swr_vs->info.base.output_semantic_name[in_attrib];
    986       if (semantic_name == TGSI_SEMANTIC_POSITION) {
    987          attrib = VERTEX_POSITION_SLOT;
    988       } else if (semantic_name == TGSI_SEMANTIC_PSIZE) {
    989          attrib = VERTEX_SGV_SLOT;
    990       } else if (semantic_name == TGSI_SEMANTIC_LAYER) {
    991          attrib = VERTEX_SGV_SLOT;
    992       } else {
    993          if (swr_vs->info.base.writes_position) {
    994                attrib--;
    995          }
    996       }
    997    }
    998 
    999    return attrib;
   1000 }
   1001 
   1002 static unsigned
   1003 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
   1004 {
   1005    for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
   1006       if ((info->output_semantic_name[i] == name)
   1007           && (info->output_semantic_index[i] == index)) {
   1008          return i;
   1009       }
   1010    }
   1011 
   1012    return 0xFFFFFFFF;
   1013 }
   1014 
   1015 PFN_PIXEL_KERNEL
   1016 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
   1017 {
   1018    struct swr_fragment_shader *swr_fs = ctx->fs;
   1019 
   1020    struct tgsi_shader_info *pPrevShader;
   1021    if (ctx->gs)
   1022       pPrevShader = &ctx->gs->info.base;
   1023    else
   1024       pPrevShader = &ctx->vs->info.base;
   1025 
   1026    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
   1027    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
   1028 
   1029    memset(inputs, 0, sizeof(inputs));
   1030    memset(outputs, 0, sizeof(outputs));
   1031 
   1032    struct lp_build_sampler_soa *sampler = NULL;
   1033 
   1034    AttrBuilder attrBuilder;
   1035    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
   1036 
   1037    std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
   1038                               PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
   1039    FunctionType *funcType =
   1040       FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
   1041 
   1042    auto pFunction = Function::Create(funcType,
   1043                                      GlobalValue::ExternalLinkage,
   1044                                      "FS",
   1045                                      JM()->mpCurrentModule);
   1046 #if HAVE_LLVM < 0x0500
   1047    AttributeSet attrSet = AttributeSet::get(
   1048       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
   1049    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
   1050 #else
   1051    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
   1052 #endif
   1053 
   1054    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
   1055    IRB()->SetInsertPoint(block);
   1056    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
   1057 
   1058    auto args = pFunction->arg_begin();
   1059    Value *hPrivateData = &*args++;
   1060    hPrivateData->setName("hPrivateData");
   1061    Value *pPS = &*args++;
   1062    pPS->setName("psCtx");
   1063 
   1064    Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
   1065    consts_ptr->setName("fs_constants");
   1066    Value *const_sizes_ptr =
   1067       GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
   1068    const_sizes_ptr->setName("num_fs_constants");
   1069 
   1070    // load *pAttribs, *pPerspAttribs
   1071    Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
   1072    Value *pPerspAttribs =
   1073       LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
   1074 
   1075    swr_fs->constantMask = 0;
   1076    swr_fs->flatConstantMask = 0;
   1077    swr_fs->pointSpriteMask = 0;
   1078 
   1079    for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
   1080       const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
   1081       const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
   1082       const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
   1083 
   1084       if (!mask)
   1085          continue;
   1086 
   1087       // load i,j
   1088       Value *vi = nullptr, *vj = nullptr;
   1089       switch (interpLoc) {
   1090       case TGSI_INTERPOLATE_LOC_CENTER:
   1091          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
   1092          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
   1093          break;
   1094       case TGSI_INTERPOLATE_LOC_CENTROID:
   1095          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
   1096          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
   1097          break;
   1098       case TGSI_INTERPOLATE_LOC_SAMPLE:
   1099          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
   1100          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
   1101          break;
   1102       }
   1103 
   1104       // load/compute w
   1105       Value *vw = nullptr, *pAttribs;
   1106       if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
   1107           interpMode == TGSI_INTERPOLATE_COLOR) {
   1108          pAttribs = pPerspAttribs;
   1109          switch (interpLoc) {
   1110          case TGSI_INTERPOLATE_LOC_CENTER:
   1111             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
   1112             break;
   1113          case TGSI_INTERPOLATE_LOC_CENTROID:
   1114             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
   1115             break;
   1116          case TGSI_INTERPOLATE_LOC_SAMPLE:
   1117             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
   1118             break;
   1119          }
   1120       } else {
   1121          pAttribs = pRawAttribs;
   1122          vw = VIMMED1(1.f);
   1123       }
   1124 
   1125       vw->setName("w");
   1126 
   1127       ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
   1128       ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
   1129 
   1130       if (semantic_name == TGSI_SEMANTIC_FACE) {
   1131          Value *ff =
   1132             UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
   1133          ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
   1134          ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
   1135 
   1136          inputs[attrib][0] = wrap(ff);
   1137          inputs[attrib][1] = wrap(VIMMED1(0.0f));
   1138          inputs[attrib][2] = wrap(VIMMED1(0.0f));
   1139          inputs[attrib][3] = wrap(VIMMED1(1.0f));
   1140          continue;
   1141       } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
   1142          if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
   1143              TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
   1144             inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
   1145             inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
   1146          } else {
   1147             inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
   1148             inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
   1149          }
   1150          inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
   1151          inputs[attrib][3] =
   1152             wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
   1153          continue;
   1154       }
   1155 
   1156       unsigned linkedAttrib =
   1157          locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
   1158 
   1159       uint32_t extraAttribs = 0;
   1160       if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
   1161          /* non-gs generated primID - need to grab from swizzleMap override */
   1162          linkedAttrib = pPrevShader->num_outputs - 1;
   1163          swr_fs->constantMask |= 1 << linkedAttrib;
   1164          extraAttribs++;
   1165       } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
   1166           key.sprite_coord_enable & (1 << semantic_idx)) {
   1167          /* we add an extra attrib to the backendState in swr_update_derived. */
   1168          linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
   1169          swr_fs->pointSpriteMask |= (1 << linkedAttrib);
   1170          extraAttribs++;
   1171       } else if (linkedAttrib == 0xFFFFFFFF) {
   1172          inputs[attrib][0] = wrap(VIMMED1(0.0f));
   1173          inputs[attrib][1] = wrap(VIMMED1(0.0f));
   1174          inputs[attrib][2] = wrap(VIMMED1(0.0f));
   1175          inputs[attrib][3] = wrap(VIMMED1(1.0f));
   1176          /* If we're reading in color and 2-sided lighting is enabled, we have
   1177           * to keep going.
   1178           */
   1179          if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
   1180             continue;
   1181       } else {
   1182          if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
   1183             swr_fs->constantMask |= 1 << linkedAttrib;
   1184          } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
   1185             swr_fs->flatConstantMask |= 1 << linkedAttrib;
   1186          }
   1187       }
   1188 
   1189       unsigned bcolorAttrib = 0xFFFFFFFF;
   1190       Value *offset = NULL;
   1191       if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
   1192          bcolorAttrib = locate_linkage(
   1193                TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
   1194          /* Neither front nor back colors were available. Nothing to load. */
   1195          if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
   1196             continue;
   1197          /* If there is no front color, just always use the back color. */
   1198          if (linkedAttrib == 0xFFFFFFFF)
   1199             linkedAttrib = bcolorAttrib;
   1200 
   1201          if (bcolorAttrib != 0xFFFFFFFF) {
   1202             if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
   1203                swr_fs->constantMask |= 1 << bcolorAttrib;
   1204             } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
   1205                swr_fs->flatConstantMask |= 1 << bcolorAttrib;
   1206             }
   1207 
   1208             unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
   1209 
   1210             if (diff) {
   1211                Value *back =
   1212                   XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
   1213 
   1214                offset = MUL(back, C(diff));
   1215                offset->setName("offset");
   1216             }
   1217          }
   1218       }
   1219 
   1220       for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
   1221          if (mask & (1 << channel)) {
   1222             Value *indexA = C(linkedAttrib * 12 + channel);
   1223             Value *indexB = C(linkedAttrib * 12 + channel + 4);
   1224             Value *indexC = C(linkedAttrib * 12 + channel + 8);
   1225 
   1226             if (offset) {
   1227                indexA = ADD(indexA, offset);
   1228                indexB = ADD(indexB, offset);
   1229                indexC = ADD(indexC, offset);
   1230             }
   1231 
   1232             Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
   1233             Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
   1234             Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
   1235 
   1236             if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
   1237                inputs[attrib][channel] = wrap(va);
   1238             } else {
   1239                Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
   1240 
   1241                vc = FMUL(vk, vc);
   1242 
   1243                Value *interp = FMUL(va, vi);
   1244                Value *interp1 = FMUL(vb, vj);
   1245                interp = FADD(interp, interp1);
   1246                interp = FADD(interp, vc);
   1247                if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
   1248                    interpMode == TGSI_INTERPOLATE_COLOR)
   1249                   interp = FMUL(interp, vw);
   1250                inputs[attrib][channel] = wrap(interp);
   1251             }
   1252          }
   1253       }
   1254    }
   1255 
   1256    sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
   1257 
   1258    struct lp_bld_tgsi_system_values system_values;
   1259    memset(&system_values, 0, sizeof(system_values));
   1260 
   1261    struct lp_build_mask_context mask;
   1262    bool uses_mask = false;
   1263 
   1264    if (swr_fs->info.base.uses_kill ||
   1265        key.poly_stipple_enable) {
   1266       Value *vActiveMask = NULL;
   1267       if (swr_fs->info.base.uses_kill) {
   1268          vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
   1269       }
   1270       if (key.poly_stipple_enable) {
   1271          // first get fragment xy coords and clip to stipple bounds
   1272          Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
   1273          Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
   1274          Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
   1275          Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
   1276 
   1277          // stipple pattern is 32x32, which means that one line of stipple
   1278          // is stored in one word:
   1279          // vXstipple is bit offset inside 32-bit stipple word
   1280          // vYstipple is word index is stipple array
   1281          Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
   1282          Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
   1283 
   1284          // grab stipple pattern base address
   1285          Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
   1286          stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
   1287 
   1288          // peform a gather to grab stipple words for each lane
   1289          Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
   1290                                     VIMMED1(0xffffffff), 4);
   1291 
   1292          // create a mask with one bit corresponding to the x stipple
   1293          // and AND it with the pattern, to see if we have a bit
   1294          Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
   1295          Value *vStippleMask = AND(vStipple, vBitMask);
   1296          vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
   1297          vStippleMask = VMASK(vStippleMask);
   1298 
   1299          if (swr_fs->info.base.uses_kill) {
   1300             vActiveMask = AND(vActiveMask, vStippleMask);
   1301          } else {
   1302             vActiveMask = vStippleMask;
   1303          }
   1304       }
   1305       lp_build_mask_begin(
   1306          &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
   1307       uses_mask = true;
   1308    }
   1309 
   1310    lp_build_tgsi_soa(gallivm,
   1311                      swr_fs->pipe.tokens,
   1312                      lp_type_float_vec(32, 32 * 8),
   1313                      uses_mask ? &mask : NULL, // mask
   1314                      wrap(consts_ptr),
   1315                      wrap(const_sizes_ptr),
   1316                      &system_values,
   1317                      inputs,
   1318                      outputs,
   1319                      wrap(hPrivateData),
   1320                      NULL, // thread data
   1321                      sampler, // sampler
   1322                      &swr_fs->info.base,
   1323                      NULL); // geometry shader face
   1324 
   1325    sampler->destroy(sampler);
   1326 
   1327    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
   1328 
   1329    for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
   1330         attrib++) {
   1331       switch (swr_fs->info.base.output_semantic_name[attrib]) {
   1332       case TGSI_SEMANTIC_POSITION: {
   1333          // write z
   1334          LLVMValueRef outZ =
   1335             LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
   1336          STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
   1337          break;
   1338       }
   1339       case TGSI_SEMANTIC_COLOR: {
   1340          for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
   1341             if (!outputs[attrib][channel])
   1342                continue;
   1343 
   1344             LLVMValueRef out =
   1345                LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
   1346             if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
   1347                 swr_fs->info.base.output_semantic_index[attrib] == 0) {
   1348                for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
   1349                   STORE(unwrap(out),
   1350                         pPS,
   1351                         {0, SWR_PS_CONTEXT_shaded, rt, channel});
   1352                }
   1353             } else {
   1354                STORE(unwrap(out),
   1355                      pPS,
   1356                      {0,
   1357                            SWR_PS_CONTEXT_shaded,
   1358                            swr_fs->info.base.output_semantic_index[attrib],
   1359                            channel});
   1360             }
   1361          }
   1362          break;
   1363       }
   1364       default: {
   1365          fprintf(stderr,
   1366                  "unknown output from FS %s[%d]\n",
   1367                  tgsi_semantic_names[swr_fs->info.base
   1368                                         .output_semantic_name[attrib]],
   1369                  swr_fs->info.base.output_semantic_index[attrib]);
   1370          break;
   1371       }
   1372       }
   1373    }
   1374 
   1375    LLVMValueRef mask_result = 0;
   1376    if (uses_mask) {
   1377       mask_result = lp_build_mask_end(&mask);
   1378    }
   1379 
   1380    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
   1381 
   1382    if (uses_mask) {
   1383       STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
   1384    }
   1385 
   1386    RET_VOID();
   1387 
   1388    gallivm_verify_function(gallivm, wrap(pFunction));
   1389 
   1390    gallivm_compile_module(gallivm);
   1391 
   1392    PFN_PIXEL_KERNEL kernel =
   1393       (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
   1394    debug_printf("frag shader  %p\n", kernel);
   1395    assert(kernel && "Error: FragShader = NULL");
   1396 
   1397    JM()->mIsModuleFinalized = true;
   1398 
   1399    return kernel;
   1400 }
   1401 
   1402 PFN_PIXEL_KERNEL
   1403 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
   1404 {
   1405    if (!ctx->fs->pipe.tokens)
   1406       return NULL;
   1407 
   1408    BuilderSWR builder(
   1409       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
   1410       "FS");
   1411    PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
   1412 
   1413    ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
   1414    return func;
   1415 }
   1416