Home | History | Annotate | Download | only in decoder
      1 /*
      2  * Copyright (c) 2017, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 
     12 #include <assert.h>
     13 
     14 #include "config/aom_config.h"
     15 #include "config/aom_scale_rtcd.h"
     16 
     17 #include "aom/aom_codec.h"
     18 #include "aom_dsp/bitreader_buffer.h"
     19 #include "aom_ports/mem_ops.h"
     20 
     21 #include "av1/common/common.h"
     22 #include "av1/common/obu_util.h"
     23 #include "av1/common/timing.h"
     24 #include "av1/decoder/decoder.h"
     25 #include "av1/decoder/decodeframe.h"
     26 #include "av1/decoder/obu.h"
     27 
     28 // Picture prediction structures (0-12 are predefined) in scalability metadata.
     29 enum {
     30   SCALABILITY_L1T2 = 0,
     31   SCALABILITY_L1T3 = 1,
     32   SCALABILITY_L2T1 = 2,
     33   SCALABILITY_L2T2 = 3,
     34   SCALABILITY_L2T3 = 4,
     35   SCALABILITY_S2T1 = 5,
     36   SCALABILITY_S2T2 = 6,
     37   SCALABILITY_S2T3 = 7,
     38   SCALABILITY_L2T1h = 8,
     39   SCALABILITY_L2T2h = 9,
     40   SCALABILITY_L2T3h = 10,
     41   SCALABILITY_S2T1h = 11,
     42   SCALABILITY_S2T2h = 12,
     43   SCALABILITY_S2T3h = 13,
     44   SCALABILITY_SS = 14
     45 } UENUM1BYTE(SCALABILITY_STRUCTURES);
     46 
     47 aom_codec_err_t aom_get_num_layers_from_operating_point_idc(
     48     int operating_point_idc, unsigned int *number_spatial_layers,
     49     unsigned int *number_temporal_layers) {
     50   // derive number of spatial/temporal layers from operating_point_idc
     51 
     52   if (!number_spatial_layers || !number_temporal_layers)
     53     return AOM_CODEC_INVALID_PARAM;
     54 
     55   if (operating_point_idc == 0) {
     56     *number_temporal_layers = 1;
     57     *number_spatial_layers = 1;
     58   } else {
     59     *number_spatial_layers = 0;
     60     *number_temporal_layers = 0;
     61     for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) {
     62       *number_spatial_layers +=
     63           (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1;
     64     }
     65     for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) {
     66       *number_temporal_layers += (operating_point_idc >> j) & 0x1;
     67     }
     68   }
     69 
     70   return AOM_CODEC_OK;
     71 }
     72 
     73 static int is_obu_in_current_operating_point(AV1Decoder *pbi,
     74                                              ObuHeader obu_header) {
     75   if (!pbi->current_operating_point) {
     76     return 1;
     77   }
     78 
     79   if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 &&
     80       (pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) &
     81           0x1) {
     82     return 1;
     83   }
     84   return 0;
     85 }
     86 
     87 static int byte_alignment(AV1_COMMON *const cm,
     88                           struct aom_read_bit_buffer *const rb) {
     89   while (rb->bit_offset & 7) {
     90     if (aom_rb_read_bit(rb)) {
     91       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
     92       return -1;
     93     }
     94   }
     95   return 0;
     96 }
     97 
     98 static uint32_t read_temporal_delimiter_obu() { return 0; }
     99 
    100 // Returns a boolean that indicates success.
    101 static int read_bitstream_level(AV1_LEVEL *seq_level_idx,
    102                                 struct aom_read_bit_buffer *rb) {
    103   *seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS);
    104   if (!is_valid_seq_level_idx(*seq_level_idx)) return 0;
    105   return 1;
    106 }
    107 
    108 // Returns whether two sequence headers are consistent with each other.
    109 // TODO(huisu,wtc (at) google.com): make sure the code matches the spec exactly.
    110 static int are_seq_headers_consistent(const SequenceHeader *seq_params_old,
    111                                       const SequenceHeader *seq_params_new) {
    112   return !memcmp(seq_params_old, seq_params_new, sizeof(SequenceHeader));
    113 }
    114 
    115 // On success, sets pbi->sequence_header_ready to 1 and returns the number of
    116 // bytes read from 'rb'.
    117 // On failure, sets pbi->common.error.error_code and returns 0.
    118 static uint32_t read_sequence_header_obu(AV1Decoder *pbi,
    119                                          struct aom_read_bit_buffer *rb) {
    120   AV1_COMMON *const cm = &pbi->common;
    121   const uint32_t saved_bit_offset = rb->bit_offset;
    122 
    123   // Verify rb has been configured to report errors.
    124   assert(rb->error_handler);
    125 
    126   // Use a local variable to store the information as we decode. At the end,
    127   // if no errors have occurred, cm->seq_params is updated.
    128   SequenceHeader sh = cm->seq_params;
    129   SequenceHeader *const seq_params = &sh;
    130 
    131   seq_params->profile = av1_read_profile(rb);
    132   if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) {
    133     cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    134     return 0;
    135   }
    136 
    137   // Still picture or not
    138   seq_params->still_picture = aom_rb_read_bit(rb);
    139   seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb);
    140   // Video must have reduced_still_picture_hdr = 0
    141   if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) {
    142     cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    143     return 0;
    144   }
    145 
    146   if (seq_params->reduced_still_picture_hdr) {
    147     cm->timing_info_present = 0;
    148     seq_params->decoder_model_info_present_flag = 0;
    149     seq_params->display_model_info_present_flag = 0;
    150     seq_params->operating_points_cnt_minus_1 = 0;
    151     seq_params->operating_point_idc[0] = 0;
    152     if (!read_bitstream_level(&seq_params->seq_level_idx[0], rb)) {
    153       cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    154       return 0;
    155     }
    156     seq_params->tier[0] = 0;
    157     cm->op_params[0].decoder_model_param_present_flag = 0;
    158     cm->op_params[0].display_model_param_present_flag = 0;
    159   } else {
    160     cm->timing_info_present = aom_rb_read_bit(rb);  // timing_info_present_flag
    161     if (cm->timing_info_present) {
    162       av1_read_timing_info_header(cm, rb);
    163 
    164       seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb);
    165       if (seq_params->decoder_model_info_present_flag)
    166         av1_read_decoder_model_info(cm, rb);
    167     } else {
    168       seq_params->decoder_model_info_present_flag = 0;
    169     }
    170     seq_params->display_model_info_present_flag = aom_rb_read_bit(rb);
    171     seq_params->operating_points_cnt_minus_1 =
    172         aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS);
    173     for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
    174       seq_params->operating_point_idc[i] =
    175           aom_rb_read_literal(rb, OP_POINTS_IDC_BITS);
    176       if (!read_bitstream_level(&seq_params->seq_level_idx[i], rb)) {
    177         cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    178         return 0;
    179       }
    180       // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7
    181       // is equivalent to level 3.3.
    182       if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
    183         seq_params->tier[i] = aom_rb_read_bit(rb);
    184       else
    185         seq_params->tier[i] = 0;
    186       if (seq_params->decoder_model_info_present_flag) {
    187         cm->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb);
    188         if (cm->op_params[i].decoder_model_param_present_flag)
    189           av1_read_op_parameters_info(cm, rb, i);
    190       } else {
    191         cm->op_params[i].decoder_model_param_present_flag = 0;
    192       }
    193       if (cm->timing_info_present &&
    194           (cm->timing_info.equal_picture_interval ||
    195            cm->op_params[i].decoder_model_param_present_flag)) {
    196         cm->op_params[i].bitrate =
    197             max_level_bitrate(seq_params->profile, seq_params->seq_level_idx[i],
    198                               seq_params->tier[i]);
    199         // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass
    200         // the check
    201         if (cm->op_params[i].bitrate == 0)
    202           aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
    203                              "AV1 does not support this combination of "
    204                              "profile, level, and tier.");
    205         // Buffer size in bits/s is bitrate in bits/s * 1 s
    206         cm->op_params[i].buffer_size = cm->op_params[i].bitrate;
    207       }
    208       if (cm->timing_info_present && cm->timing_info.equal_picture_interval &&
    209           !cm->op_params[i].decoder_model_param_present_flag) {
    210         // When the decoder_model_parameters are not sent for this op, set
    211         // the default ones that can be used with the resource availability mode
    212         cm->op_params[i].decoder_buffer_delay = 70000;
    213         cm->op_params[i].encoder_buffer_delay = 20000;
    214         cm->op_params[i].low_delay_mode_flag = 0;
    215       }
    216 
    217       if (seq_params->display_model_info_present_flag) {
    218         cm->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb);
    219         if (cm->op_params[i].display_model_param_present_flag) {
    220           cm->op_params[i].initial_display_delay =
    221               aom_rb_read_literal(rb, 4) + 1;
    222           if (cm->op_params[i].initial_display_delay > 10)
    223             aom_internal_error(
    224                 &cm->error, AOM_CODEC_UNSUP_BITSTREAM,
    225                 "AV1 does not support more than 10 decoded frames delay");
    226         } else {
    227           cm->op_params[i].initial_display_delay = 10;
    228         }
    229       } else {
    230         cm->op_params[i].display_model_param_present_flag = 0;
    231         cm->op_params[i].initial_display_delay = 10;
    232       }
    233     }
    234   }
    235   // This decoder supports all levels.  Choose operating point provided by
    236   // external means
    237   int operating_point = pbi->operating_point;
    238   if (operating_point < 0 ||
    239       operating_point > seq_params->operating_points_cnt_minus_1)
    240     operating_point = 0;
    241   pbi->current_operating_point =
    242       seq_params->operating_point_idc[operating_point];
    243   if (aom_get_num_layers_from_operating_point_idc(
    244           pbi->current_operating_point, &cm->number_spatial_layers,
    245           &cm->number_temporal_layers) != AOM_CODEC_OK) {
    246     cm->error.error_code = AOM_CODEC_ERROR;
    247     return 0;
    248   }
    249 
    250   av1_read_sequence_header(cm, rb, seq_params);
    251 
    252   av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &cm->error);
    253   if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) &&
    254       !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) &&
    255       !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) {
    256     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
    257                        "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, "
    258                        "%d %d subsampling is not supported.\n",
    259                        seq_params->subsampling_x, seq_params->subsampling_y);
    260   }
    261 
    262   seq_params->film_grain_params_present = aom_rb_read_bit(rb);
    263 
    264   if (av1_check_trailing_bits(pbi, rb) != 0) {
    265     // cm->error.error_code is already set.
    266     return 0;
    267   }
    268 
    269   // If a sequence header has been decoded before, we check if the new
    270   // one is consistent with the old one.
    271   if (pbi->sequence_header_ready) {
    272     if (!are_seq_headers_consistent(&cm->seq_params, seq_params))
    273       pbi->sequence_header_changed = 1;
    274   }
    275 
    276   cm->seq_params = *seq_params;
    277   pbi->sequence_header_ready = 1;
    278 
    279   return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
    280 }
    281 
    282 // On success, returns the frame header size. On failure, calls
    283 // aom_internal_error and does not return.
    284 static uint32_t read_frame_header_obu(AV1Decoder *pbi,
    285                                       struct aom_read_bit_buffer *rb,
    286                                       const uint8_t *data,
    287                                       const uint8_t **p_data_end,
    288                                       int trailing_bits_present) {
    289   return av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end,
    290                                             trailing_bits_present);
    291 }
    292 
    293 // On success, returns the tile group header size. On failure, calls
    294 // aom_internal_error() and returns -1.
    295 static int32_t read_tile_group_header(AV1Decoder *pbi,
    296                                       struct aom_read_bit_buffer *rb,
    297                                       int *start_tile, int *end_tile,
    298                                       int tile_start_implicit) {
    299   AV1_COMMON *const cm = &pbi->common;
    300   uint32_t saved_bit_offset = rb->bit_offset;
    301   int tile_start_and_end_present_flag = 0;
    302   const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols;
    303 
    304   if (!pbi->common.large_scale_tile && num_tiles > 1) {
    305     tile_start_and_end_present_flag = aom_rb_read_bit(rb);
    306     if (tile_start_implicit && tile_start_and_end_present_flag) {
    307       aom_internal_error(
    308           &cm->error, AOM_CODEC_UNSUP_BITSTREAM,
    309           "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0");
    310       return -1;
    311     }
    312   }
    313   if (pbi->common.large_scale_tile || num_tiles == 1 ||
    314       !tile_start_and_end_present_flag) {
    315     *start_tile = 0;
    316     *end_tile = num_tiles - 1;
    317   } else {
    318     int tile_bits = cm->log2_tile_rows + cm->log2_tile_cols;
    319     *start_tile = aom_rb_read_literal(rb, tile_bits);
    320     *end_tile = aom_rb_read_literal(rb, tile_bits);
    321   }
    322   if (*start_tile > *end_tile) {
    323     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
    324                        "tg_end must be greater than or equal to tg_start");
    325     return -1;
    326   }
    327 
    328   return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
    329 }
    330 
    331 // On success, returns the tile group OBU size. On failure, sets
    332 // pbi->common.error.error_code and returns 0.
    333 static uint32_t read_one_tile_group_obu(
    334     AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg,
    335     const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end,
    336     int *is_last_tg, int tile_start_implicit) {
    337   AV1_COMMON *const cm = &pbi->common;
    338   int start_tile, end_tile;
    339   int32_t header_size, tg_payload_size;
    340 
    341   assert((rb->bit_offset & 7) == 0);
    342   assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data);
    343 
    344   header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile,
    345                                        tile_start_implicit);
    346   if (header_size == -1 || byte_alignment(cm, rb)) return 0;
    347   data += header_size;
    348   av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile,
    349                                  end_tile, is_first_tg);
    350 
    351   tg_payload_size = (uint32_t)(*p_data_end - data);
    352 
    353   // TODO(shan):  For now, assume all tile groups received in order
    354   *is_last_tg = end_tile == cm->tile_rows * cm->tile_cols - 1;
    355   return header_size + tg_payload_size;
    356 }
    357 
    358 static void alloc_tile_list_buffer(AV1Decoder *pbi) {
    359   // The resolution of the output frame is read out from the bitstream. The data
    360   // are stored in the order of Y plane, U plane and V plane. As an example, for
    361   // image format 4:2:0, the output frame of U plane and V plane is 1/4 of the
    362   // output frame.
    363   AV1_COMMON *const cm = &pbi->common;
    364   int tile_width, tile_height;
    365   av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
    366   const int tile_width_in_pixels = tile_width * MI_SIZE;
    367   const int tile_height_in_pixels = tile_height * MI_SIZE;
    368   const int output_frame_width =
    369       (pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels;
    370   const int output_frame_height =
    371       (pbi->output_frame_height_in_tiles_minus_1 + 1) * tile_height_in_pixels;
    372   // The output frame is used to store the decoded tile list. The decoded tile
    373   // list has to fit into 1 output frame.
    374   assert((pbi->tile_count_minus_1 + 1) <=
    375          (pbi->output_frame_width_in_tiles_minus_1 + 1) *
    376              (pbi->output_frame_height_in_tiles_minus_1 + 1));
    377 
    378   // Allocate the tile list output buffer.
    379   // Note: if cm->seq_params.use_highbitdepth is 1 and cm->seq_params.bit_depth
    380   // is 8, we could allocate less memory, namely, 8 bits/pixel.
    381   if (aom_alloc_frame_buffer(&pbi->tile_list_outbuf, output_frame_width,
    382                              output_frame_height, cm->seq_params.subsampling_x,
    383                              cm->seq_params.subsampling_y,
    384                              (cm->seq_params.use_highbitdepth &&
    385                               (cm->seq_params.bit_depth > AOM_BITS_8)),
    386                              0, cm->byte_alignment))
    387     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
    388                        "Failed to allocate the tile list output buffer");
    389 }
    390 
    391 static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1,
    392                            int hend1, int vstart1, int vend1,
    393                            YV12_BUFFER_CONFIG *dst, int hstart2, int vstart2,
    394                            int plane) {
    395   const int src_stride = (plane > 0) ? src->strides[1] : src->strides[0];
    396   const int dst_stride = (plane > 0) ? dst->strides[1] : dst->strides[0];
    397   int row, col;
    398 
    399   assert(src->flags & YV12_FLAG_HIGHBITDEPTH);
    400   assert(!(dst->flags & YV12_FLAG_HIGHBITDEPTH));
    401 
    402   const uint16_t *src16 =
    403       CONVERT_TO_SHORTPTR(src->buffers[plane] + vstart1 * src_stride + hstart1);
    404   uint8_t *dst8 = dst->buffers[plane] + vstart2 * dst_stride + hstart2;
    405 
    406   for (row = vstart1; row < vend1; ++row) {
    407     for (col = 0; col < (hend1 - hstart1); ++col) *dst8++ = (uint8_t)(*src16++);
    408     src16 += src_stride - (hend1 - hstart1);
    409     dst8 += dst_stride - (hend1 - hstart1);
    410   }
    411   return;
    412 }
    413 
    414 static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi,
    415                                                   int tile_idx) {
    416   AV1_COMMON *const cm = &pbi->common;
    417   int tile_width, tile_height;
    418   av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
    419   const int tile_width_in_pixels = tile_width * MI_SIZE;
    420   const int tile_height_in_pixels = tile_height * MI_SIZE;
    421   const int ssy = cm->seq_params.subsampling_y;
    422   const int ssx = cm->seq_params.subsampling_x;
    423   const int num_planes = av1_num_planes(cm);
    424 
    425   YV12_BUFFER_CONFIG *cur_frame = &cm->cur_frame->buf;
    426   const int tr = tile_idx / (pbi->output_frame_width_in_tiles_minus_1 + 1);
    427   const int tc = tile_idx % (pbi->output_frame_width_in_tiles_minus_1 + 1);
    428   int plane;
    429 
    430   // Copy decoded tile to the tile list output buffer.
    431   for (plane = 0; plane < num_planes; ++plane) {
    432     const int shift_x = plane > 0 ? ssx : 0;
    433     const int shift_y = plane > 0 ? ssy : 0;
    434     const int h = tile_height_in_pixels >> shift_y;
    435     const int w = tile_width_in_pixels >> shift_x;
    436 
    437     // src offset
    438     int vstart1 = pbi->dec_tile_row * h;
    439     int vend1 = vstart1 + h;
    440     int hstart1 = pbi->dec_tile_col * w;
    441     int hend1 = hstart1 + w;
    442     // dst offset
    443     int vstart2 = tr * h;
    444     int hstart2 = tc * w;
    445 
    446     if (cm->seq_params.use_highbitdepth &&
    447         cm->seq_params.bit_depth == AOM_BITS_8) {
    448       yv12_tile_copy(cur_frame, hstart1, hend1, vstart1, vend1,
    449                      &pbi->tile_list_outbuf, hstart2, vstart2, plane);
    450     } else {
    451       switch (plane) {
    452         case 0:
    453           aom_yv12_partial_copy_y(cur_frame, hstart1, hend1, vstart1, vend1,
    454                                   &pbi->tile_list_outbuf, hstart2, vstart2);
    455           break;
    456         case 1:
    457           aom_yv12_partial_copy_u(cur_frame, hstart1, hend1, vstart1, vend1,
    458                                   &pbi->tile_list_outbuf, hstart2, vstart2);
    459           break;
    460         case 2:
    461           aom_yv12_partial_copy_v(cur_frame, hstart1, hend1, vstart1, vend1,
    462                                   &pbi->tile_list_outbuf, hstart2, vstart2);
    463           break;
    464         default: assert(0);
    465       }
    466     }
    467   }
    468 }
    469 
    470 // Only called while large_scale_tile = 1.
    471 //
    472 // On success, returns the tile list OBU size. On failure, sets
    473 // pbi->common.error.error_code and returns 0.
    474 static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi,
    475                                               struct aom_read_bit_buffer *rb,
    476                                               const uint8_t *data,
    477                                               const uint8_t *data_end,
    478                                               const uint8_t **p_data_end,
    479                                               int *frame_decoding_finished) {
    480   AV1_COMMON *const cm = &pbi->common;
    481   uint32_t tile_list_payload_size = 0;
    482   const int num_tiles = cm->tile_cols * cm->tile_rows;
    483   const int start_tile = 0;
    484   const int end_tile = num_tiles - 1;
    485   int i = 0;
    486 
    487   // Process the tile list info.
    488   pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
    489   pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
    490   pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16);
    491   if (pbi->tile_count_minus_1 > MAX_TILES - 1) {
    492     cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    493     return 0;
    494   }
    495 
    496   // Allocate output frame buffer for the tile list.
    497   alloc_tile_list_buffer(pbi);
    498 
    499   uint32_t tile_list_info_bytes = 4;
    500   tile_list_payload_size += tile_list_info_bytes;
    501   data += tile_list_info_bytes;
    502 
    503   int tile_idx = 0;
    504   for (i = 0; i <= pbi->tile_count_minus_1; i++) {
    505     // Process 1 tile.
    506     // Reset the bit reader.
    507     rb->bit_offset = 0;
    508     rb->bit_buffer = data;
    509 
    510     // Read out the tile info.
    511     uint32_t tile_info_bytes = 5;
    512     // Set reference for each tile.
    513     int ref_idx = aom_rb_read_literal(rb, 8);
    514     if (ref_idx >= MAX_EXTERNAL_REFERENCES) {
    515       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    516       return 0;
    517     }
    518     av1_set_reference_dec(cm, 0, 1, &pbi->ext_refs.refs[ref_idx]);
    519 
    520     pbi->dec_tile_row = aom_rb_read_literal(rb, 8);
    521     pbi->dec_tile_col = aom_rb_read_literal(rb, 8);
    522     if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 ||
    523         pbi->dec_tile_row >= cm->tile_rows ||
    524         pbi->dec_tile_col >= cm->tile_cols) {
    525       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    526       return 0;
    527     }
    528 
    529     pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1;
    530     data += tile_info_bytes;
    531     if ((size_t)(data_end - data) < pbi->coded_tile_data_size) {
    532       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    533       return 0;
    534     }
    535 
    536     av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size,
    537                                    p_data_end, start_tile, end_tile, 0);
    538     uint32_t tile_payload_size = (uint32_t)(*p_data_end - data);
    539 
    540     tile_list_payload_size += tile_info_bytes + tile_payload_size;
    541 
    542     // Update data ptr for next tile decoding.
    543     data = *p_data_end;
    544     assert(data <= data_end);
    545 
    546     // Copy the decoded tile to the tile list output buffer.
    547     copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx);
    548     tile_idx++;
    549   }
    550 
    551   *frame_decoding_finished = 1;
    552   return tile_list_payload_size;
    553 }
    554 
    555 static void read_metadata_itut_t35(const uint8_t *data, size_t sz) {
    556   struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
    557   for (size_t i = 0; i < sz; i++) {
    558     aom_rb_read_literal(&rb, 8);
    559   }
    560 }
    561 
    562 static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) {
    563   struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
    564   aom_rb_read_literal(&rb, 16);  // max_cll
    565   aom_rb_read_literal(&rb, 16);  // max_fall
    566 }
    567 
    568 static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) {
    569   struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
    570   for (int i = 0; i < 3; i++) {
    571     aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_x
    572     aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_y
    573   }
    574 
    575   aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_x
    576   aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_y
    577 
    578   aom_rb_read_unsigned_literal(&rb, 32);  // luminance_max
    579   aom_rb_read_unsigned_literal(&rb, 32);  // luminance_min
    580 }
    581 
    582 static void scalability_structure(struct aom_read_bit_buffer *rb) {
    583   int spatial_layers_cnt = aom_rb_read_literal(rb, 2);
    584   int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb);
    585   int spatial_layer_description_present_flag = aom_rb_read_bit(rb);
    586   int temporal_group_description_present_flag = aom_rb_read_bit(rb);
    587   aom_rb_read_literal(rb, 3);  // reserved
    588 
    589   if (spatial_layer_dimensions_present_flag) {
    590     int i;
    591     for (i = 0; i < spatial_layers_cnt + 1; i++) {
    592       aom_rb_read_literal(rb, 16);
    593       aom_rb_read_literal(rb, 16);
    594     }
    595   }
    596   if (spatial_layer_description_present_flag) {
    597     int i;
    598     for (i = 0; i < spatial_layers_cnt + 1; i++) {
    599       aom_rb_read_literal(rb, 8);
    600     }
    601   }
    602   if (temporal_group_description_present_flag) {
    603     int i, j, temporal_group_size;
    604     temporal_group_size = aom_rb_read_literal(rb, 8);
    605     for (i = 0; i < temporal_group_size; i++) {
    606       aom_rb_read_literal(rb, 3);
    607       aom_rb_read_bit(rb);
    608       aom_rb_read_bit(rb);
    609       int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3);
    610       for (j = 0; j < temporal_group_ref_cnt; j++) {
    611         aom_rb_read_literal(rb, 8);
    612       }
    613     }
    614   }
    615 }
    616 
    617 static void read_metadata_scalability(const uint8_t *data, size_t sz) {
    618   struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
    619   int scalability_mode_idc = aom_rb_read_literal(&rb, 8);
    620   if (scalability_mode_idc == SCALABILITY_SS) {
    621     scalability_structure(&rb);
    622   }
    623 }
    624 
    625 static void read_metadata_timecode(const uint8_t *data, size_t sz) {
    626   struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
    627   aom_rb_read_literal(&rb, 5);                     // counting_type f(5)
    628   int full_timestamp_flag = aom_rb_read_bit(&rb);  // full_timestamp_flag f(1)
    629   aom_rb_read_bit(&rb);                            // discontinuity_flag (f1)
    630   aom_rb_read_bit(&rb);                            // cnt_dropped_flag f(1)
    631   aom_rb_read_literal(&rb, 9);                     // n_frames f(9)
    632   if (full_timestamp_flag) {
    633     aom_rb_read_literal(&rb, 6);  // seconds_value f(6)
    634     aom_rb_read_literal(&rb, 6);  // minutes_value f(6)
    635     aom_rb_read_literal(&rb, 5);  // hours_value f(5)
    636   } else {
    637     int seconds_flag = aom_rb_read_bit(&rb);  // seconds_flag f(1)
    638     if (seconds_flag) {
    639       aom_rb_read_literal(&rb, 6);              // seconds_value f(6)
    640       int minutes_flag = aom_rb_read_bit(&rb);  // minutes_flag f(1)
    641       if (minutes_flag) {
    642         aom_rb_read_literal(&rb, 6);            // minutes_value f(6)
    643         int hours_flag = aom_rb_read_bit(&rb);  // hours_flag f(1)
    644         if (hours_flag) {
    645           aom_rb_read_literal(&rb, 5);  // hours_value f(5)
    646         }
    647       }
    648     }
    649   }
    650   // time_offset_length f(5)
    651   int time_offset_length = aom_rb_read_literal(&rb, 5);
    652   if (time_offset_length) {
    653     aom_rb_read_literal(&rb, time_offset_length);  // f(time_offset_length)
    654   }
    655 }
    656 
    657 // Not fully implemented. Always succeeds and returns sz.
    658 static size_t read_metadata(const uint8_t *data, size_t sz) {
    659   size_t type_length;
    660   uint64_t type_value;
    661   OBU_METADATA_TYPE metadata_type;
    662   if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) {
    663     return sz;
    664   }
    665   metadata_type = (OBU_METADATA_TYPE)type_value;
    666   if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) {
    667     read_metadata_itut_t35(data + type_length, sz - type_length);
    668   } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) {
    669     read_metadata_hdr_cll(data + type_length, sz - type_length);
    670   } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) {
    671     read_metadata_hdr_mdcv(data + type_length, sz - type_length);
    672   } else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) {
    673     read_metadata_scalability(data + type_length, sz - type_length);
    674   } else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) {
    675     read_metadata_timecode(data + type_length, sz - type_length);
    676   }
    677 
    678   return sz;
    679 }
    680 
    681 // On success, returns a boolean that indicates whether the decoding of the
    682 // current frame is finished. On failure, sets cm->error.error_code and
    683 // returns -1.
    684 int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data,
    685                                const uint8_t *data_end,
    686                                const uint8_t **p_data_end) {
    687   AV1_COMMON *const cm = &pbi->common;
    688   int frame_decoding_finished = 0;
    689   int is_first_tg_obu_received = 1;
    690   uint32_t frame_header_size = 0;
    691   ObuHeader obu_header;
    692   memset(&obu_header, 0, sizeof(obu_header));
    693   pbi->seen_frame_header = 0;
    694 
    695   if (data_end < data) {
    696     cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    697     return -1;
    698   }
    699 
    700   // Reset pbi->camera_frame_header_ready to 0 if cm->large_scale_tile = 0.
    701   if (!cm->large_scale_tile) pbi->camera_frame_header_ready = 0;
    702 
    703   // decode frame as a series of OBUs
    704   while (!frame_decoding_finished && cm->error.error_code == AOM_CODEC_OK) {
    705     struct aom_read_bit_buffer rb;
    706     size_t payload_size = 0;
    707     size_t decoded_payload_size = 0;
    708     size_t obu_payload_offset = 0;
    709     size_t bytes_read = 0;
    710     const size_t bytes_available = data_end - data;
    711 
    712     if (bytes_available == 0 && !pbi->seen_frame_header) {
    713       *p_data_end = data;
    714       cm->error.error_code = AOM_CODEC_OK;
    715       break;
    716     }
    717 
    718     aom_codec_err_t status =
    719         aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb,
    720                                      &obu_header, &payload_size, &bytes_read);
    721 
    722     if (status != AOM_CODEC_OK) {
    723       cm->error.error_code = status;
    724       return -1;
    725     }
    726 
    727     // Record obu size header information.
    728     pbi->obu_size_hdr.data = data + obu_header.size;
    729     pbi->obu_size_hdr.size = bytes_read - obu_header.size;
    730 
    731     // Note: aom_read_obu_header_and_size() takes care of checking that this
    732     // doesn't cause 'data' to advance past 'data_end'.
    733     data += bytes_read;
    734 
    735     if ((size_t)(data_end - data) < payload_size) {
    736       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    737       return -1;
    738     }
    739 
    740     cm->temporal_layer_id = obu_header.temporal_layer_id;
    741     cm->spatial_layer_id = obu_header.spatial_layer_id;
    742 
    743     if (obu_header.type != OBU_TEMPORAL_DELIMITER &&
    744         obu_header.type != OBU_SEQUENCE_HEADER &&
    745         obu_header.type != OBU_PADDING) {
    746       // don't decode obu if it's not in current operating mode
    747       if (!is_obu_in_current_operating_point(pbi, obu_header)) {
    748         data += payload_size;
    749         continue;
    750       }
    751     }
    752 
    753     av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size);
    754 
    755     switch (obu_header.type) {
    756       case OBU_TEMPORAL_DELIMITER:
    757         decoded_payload_size = read_temporal_delimiter_obu();
    758         pbi->seen_frame_header = 0;
    759         break;
    760       case OBU_SEQUENCE_HEADER:
    761         decoded_payload_size = read_sequence_header_obu(pbi, &rb);
    762         if (cm->error.error_code != AOM_CODEC_OK) return -1;
    763         break;
    764       case OBU_FRAME_HEADER:
    765       case OBU_REDUNDANT_FRAME_HEADER:
    766       case OBU_FRAME:
    767         // Only decode first frame header received
    768         if (!pbi->seen_frame_header ||
    769             (cm->large_scale_tile && !pbi->camera_frame_header_ready)) {
    770           frame_header_size = read_frame_header_obu(
    771               pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME);
    772           pbi->seen_frame_header = 1;
    773           if (!pbi->ext_tile_debug && cm->large_scale_tile)
    774             pbi->camera_frame_header_ready = 1;
    775         } else {
    776           // TODO(wtc): Verify that the frame_header_obu is identical to the
    777           // original frame_header_obu. For now just skip frame_header_size
    778           // bytes in the bit buffer.
    779           if (frame_header_size > payload_size) {
    780             cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    781             return -1;
    782           }
    783           assert(rb.bit_offset == 0);
    784           rb.bit_offset = 8 * frame_header_size;
    785         }
    786 
    787         decoded_payload_size = frame_header_size;
    788         pbi->frame_header_size = frame_header_size;
    789 
    790         if (cm->show_existing_frame) {
    791           if (obu_header.type == OBU_FRAME) {
    792             cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    793             return -1;
    794           }
    795           frame_decoding_finished = 1;
    796           pbi->seen_frame_header = 0;
    797           break;
    798         }
    799 
    800         // In large scale tile coding, decode the common camera frame header
    801         // before any tile list OBU.
    802         if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) {
    803           frame_decoding_finished = 1;
    804           // Skip the rest of the frame data.
    805           decoded_payload_size = payload_size;
    806           // Update data_end.
    807           *p_data_end = data_end;
    808           break;
    809         }
    810 
    811         if (obu_header.type != OBU_FRAME) break;
    812         obu_payload_offset = frame_header_size;
    813         // Byte align the reader before reading the tile group.
    814         // byte_alignment() has set cm->error.error_code if it returns -1.
    815         if (byte_alignment(cm, &rb)) return -1;
    816         AOM_FALLTHROUGH_INTENDED;  // fall through to read tile group.
    817       case OBU_TILE_GROUP:
    818         if (!pbi->seen_frame_header) {
    819           cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    820           return -1;
    821         }
    822         if (obu_payload_offset > payload_size) {
    823           cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    824           return -1;
    825         }
    826         decoded_payload_size += read_one_tile_group_obu(
    827             pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset,
    828             data + payload_size, p_data_end, &frame_decoding_finished,
    829             obu_header.type == OBU_FRAME);
    830         if (cm->error.error_code != AOM_CODEC_OK) return -1;
    831         is_first_tg_obu_received = 0;
    832         if (frame_decoding_finished) pbi->seen_frame_header = 0;
    833         break;
    834       case OBU_METADATA:
    835         decoded_payload_size = read_metadata(data, payload_size);
    836         break;
    837       case OBU_TILE_LIST:
    838         if (CONFIG_NORMAL_TILE_MODE) {
    839           cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    840           return -1;
    841         }
    842 
    843         // This OBU type is purely for the large scale tile coding mode.
    844         // The common camera frame header has to be already decoded.
    845         if (!pbi->camera_frame_header_ready) {
    846           cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    847           return -1;
    848         }
    849 
    850         cm->large_scale_tile = 1;
    851         av1_set_single_tile_decoding_mode(cm);
    852         decoded_payload_size =
    853             read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size,
    854                                           p_data_end, &frame_decoding_finished);
    855         if (cm->error.error_code != AOM_CODEC_OK) return -1;
    856         break;
    857       case OBU_PADDING:
    858       default:
    859         // Skip unrecognized OBUs
    860         decoded_payload_size = payload_size;
    861         break;
    862     }
    863 
    864     // Check that the signalled OBU size matches the actual amount of data read
    865     if (decoded_payload_size > payload_size) {
    866       cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    867       return -1;
    868     }
    869 
    870     // If there are extra padding bytes, they should all be zero
    871     while (decoded_payload_size < payload_size) {
    872       uint8_t padding_byte = data[decoded_payload_size++];
    873       if (padding_byte != 0) {
    874         cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    875         return -1;
    876       }
    877     }
    878 
    879     data += payload_size;
    880   }
    881 
    882   if (cm->error.error_code != AOM_CODEC_OK) return -1;
    883   return frame_decoding_finished;
    884 }
    885