Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jquant1.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009, 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains 1-pass color quantization (color mapping) routines.
     12  * These routines provide mapping to a fixed color map using equally spaced
     13  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 #ifdef QUANT_1PASS_SUPPORTED
     21 
     22 
     23 /*
     24  * The main purpose of 1-pass quantization is to provide a fast, if not very
     25  * high quality, colormapped output capability.  A 2-pass quantizer usually
     26  * gives better visual quality; however, for quantized grayscale output this
     27  * quantizer is perfectly adequate.  Dithering is highly recommended with this
     28  * quantizer, though you can turn it off if you really want to.
     29  *
     30  * In 1-pass quantization the colormap must be chosen in advance of seeing the
     31  * image.  We use a map consisting of all combinations of Ncolors[i] color
     32  * values for the i'th component.  The Ncolors[] values are chosen so that
     33  * their product, the total number of colors, is no more than that requested.
     34  * (In most cases, the product will be somewhat less.)
     35  *
     36  * Since the colormap is orthogonal, the representative value for each color
     37  * component can be determined without considering the other components;
     38  * then these indexes can be combined into a colormap index by a standard
     39  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
     40  * can be precalculated and stored in the lookup table colorindex[].
     41  * colorindex[i][j] maps pixel value j in component i to the nearest
     42  * representative value (grid plane) for that component; this index is
     43  * multiplied by the array stride for component i, so that the
     44  * index of the colormap entry closest to a given pixel value is just
     45  *    sum( colorindex[component-number][pixel-component-value] )
     46  * Aside from being fast, this scheme allows for variable spacing between
     47  * representative values with no additional lookup cost.
     48  *
     49  * If gamma correction has been applied in color conversion, it might be wise
     50  * to adjust the color grid spacing so that the representative colors are
     51  * equidistant in linear space.  At this writing, gamma correction is not
     52  * implemented by jdcolor, so nothing is done here.
     53  */
     54 
     55 
     56 /* Declarations for ordered dithering.
     57  *
     58  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
     59  * dithering is described in many references, for instance Dale Schumacher's
     60  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
     61  * In place of Schumacher's comparisons against a "threshold" value, we add a
     62  * "dither" value to the input pixel and then round the result to the nearest
     63  * output value.  The dither value is equivalent to (0.5 - threshold) times
     64  * the distance between output values.  For ordered dithering, we assume that
     65  * the output colors are equally spaced; if not, results will probably be
     66  * worse, since the dither may be too much or too little at a given point.
     67  *
     68  * The normal calculation would be to form pixel value + dither, range-limit
     69  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
     70  * We can skip the separate range-limiting step by extending the colorindex
     71  * table in both directions.
     72  */
     73 
     74 #define ODITHER_SIZE  16        /* dimension of dither matrix */
     75 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
     76 #define ODITHER_CELLS  (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */
     77 #define ODITHER_MASK  (ODITHER_SIZE - 1) /* mask for wrapping around
     78                                             counters */
     79 
     80 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
     81 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
     82 
     83 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
     84   /* Bayer's order-4 dither array.  Generated by the code given in
     85    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
     86    * The values in this array must range from 0 to ODITHER_CELLS-1.
     87    */
     88   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
     89   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
     90   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
     91   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
     92   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
     93   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
     94   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
     95   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
     96   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
     97   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
     98   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
     99   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
    100   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
    101   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
    102   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
    103   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
    104 };
    105 
    106 
    107 /* Declarations for Floyd-Steinberg dithering.
    108  *
    109  * Errors are accumulated into the array fserrors[], at a resolution of
    110  * 1/16th of a pixel count.  The error at a given pixel is propagated
    111  * to its not-yet-processed neighbors using the standard F-S fractions,
    112  *              ...     (here)  7/16
    113  *              3/16    5/16    1/16
    114  * We work left-to-right on even rows, right-to-left on odd rows.
    115  *
    116  * We can get away with a single array (holding one row's worth of errors)
    117  * by using it to store the current row's errors at pixel columns not yet
    118  * processed, but the next row's errors at columns already processed.  We
    119  * need only a few extra variables to hold the errors immediately around the
    120  * current column.  (If we are lucky, those variables are in registers, but
    121  * even if not, they're probably cheaper to access than array elements are.)
    122  *
    123  * The fserrors[] array is indexed [component#][position].
    124  * We provide (#columns + 2) entries per component; the extra entry at each
    125  * end saves us from special-casing the first and last pixels.
    126  */
    127 
    128 #if BITS_IN_JSAMPLE == 8
    129 typedef INT16 FSERROR;          /* 16 bits should be enough */
    130 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
    131 #else
    132 typedef JLONG FSERROR;          /* may need more than 16 bits */
    133 typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
    134 #endif
    135 
    136 typedef FSERROR *FSERRPTR;      /* pointer to error array */
    137 
    138 
    139 /* Private subobject */
    140 
    141 #define MAX_Q_COMPS  4          /* max components I can handle */
    142 
    143 typedef struct {
    144   struct jpeg_color_quantizer pub; /* public fields */
    145 
    146   /* Initially allocated colormap is saved here */
    147   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
    148   int sv_actual;                /* number of entries in use */
    149 
    150   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
    151   /* colorindex[i][j] = index of color closest to pixel value j in component i,
    152    * premultiplied as described above.  Since colormap indexes must fit into
    153    * JSAMPLEs, the entries of this array will too.
    154    */
    155   boolean is_padded;            /* is the colorindex padded for odither? */
    156 
    157   int Ncolors[MAX_Q_COMPS];     /* # of values allocated to each component */
    158 
    159   /* Variables for ordered dithering */
    160   int row_index;                /* cur row's vertical index in dither matrix */
    161   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
    162 
    163   /* Variables for Floyd-Steinberg dithering */
    164   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
    165   boolean on_odd_row;           /* flag to remember which row we are on */
    166 } my_cquantizer;
    167 
    168 typedef my_cquantizer *my_cquantize_ptr;
    169 
    170 
    171 /*
    172  * Policy-making subroutines for create_colormap and create_colorindex.
    173  * These routines determine the colormap to be used.  The rest of the module
    174  * only assumes that the colormap is orthogonal.
    175  *
    176  *  * select_ncolors decides how to divvy up the available colors
    177  *    among the components.
    178  *  * output_value defines the set of representative values for a component.
    179  *  * largest_input_value defines the mapping from input values to
    180  *    representative values for a component.
    181  * Note that the latter two routines may impose different policies for
    182  * different components, though this is not currently done.
    183  */
    184 
    185 
    186 LOCAL(int)
    187 select_ncolors(j_decompress_ptr cinfo, int Ncolors[])
    188 /* Determine allocation of desired colors to components, */
    189 /* and fill in Ncolors[] array to indicate choice. */
    190 /* Return value is total number of colors (product of Ncolors[] values). */
    191 {
    192   int nc = cinfo->out_color_components; /* number of color components */
    193   int max_colors = cinfo->desired_number_of_colors;
    194   int total_colors, iroot, i, j;
    195   boolean changed;
    196   long temp;
    197   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
    198   RGB_order[0] = rgb_green[cinfo->out_color_space];
    199   RGB_order[1] = rgb_red[cinfo->out_color_space];
    200   RGB_order[2] = rgb_blue[cinfo->out_color_space];
    201 
    202   /* We can allocate at least the nc'th root of max_colors per component. */
    203   /* Compute floor(nc'th root of max_colors). */
    204   iroot = 1;
    205   do {
    206     iroot++;
    207     temp = iroot;               /* set temp = iroot ** nc */
    208     for (i = 1; i < nc; i++)
    209       temp *= iroot;
    210   } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */
    211   iroot--;                      /* now iroot = floor(root) */
    212 
    213   /* Must have at least 2 color values per component */
    214   if (iroot < 2)
    215     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp);
    216 
    217   /* Initialize to iroot color values for each component */
    218   total_colors = 1;
    219   for (i = 0; i < nc; i++) {
    220     Ncolors[i] = iroot;
    221     total_colors *= iroot;
    222   }
    223   /* We may be able to increment the count for one or more components without
    224    * exceeding max_colors, though we know not all can be incremented.
    225    * Sometimes, the first component can be incremented more than once!
    226    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
    227    * In RGB colorspace, try to increment G first, then R, then B.
    228    */
    229   do {
    230     changed = FALSE;
    231     for (i = 0; i < nc; i++) {
    232       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
    233       /* calculate new total_colors if Ncolors[j] is incremented */
    234       temp = total_colors / Ncolors[j];
    235       temp *= Ncolors[j] + 1;   /* done in long arith to avoid oflo */
    236       if (temp > (long)max_colors)
    237         break;                  /* won't fit, done with this pass */
    238       Ncolors[j]++;             /* OK, apply the increment */
    239       total_colors = (int)temp;
    240       changed = TRUE;
    241     }
    242   } while (changed);
    243 
    244   return total_colors;
    245 }
    246 
    247 
    248 LOCAL(int)
    249 output_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
    250 /* Return j'th output value, where j will range from 0 to maxj */
    251 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
    252 {
    253   /* We always provide values 0 and MAXJSAMPLE for each component;
    254    * any additional values are equally spaced between these limits.
    255    * (Forcing the upper and lower values to the limits ensures that
    256    * dithering can't produce a color outside the selected gamut.)
    257    */
    258   return (int)(((JLONG)j * MAXJSAMPLE + maxj / 2) / maxj);
    259 }
    260 
    261 
    262 LOCAL(int)
    263 largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
    264 /* Return largest input value that should map to j'th output value */
    265 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
    266 {
    267   /* Breakpoints are halfway between values returned by output_value */
    268   return (int)(((JLONG)(2 * j + 1) * MAXJSAMPLE + maxj) / (2 * maxj));
    269 }
    270 
    271 
    272 /*
    273  * Create the colormap.
    274  */
    275 
    276 LOCAL(void)
    277 create_colormap(j_decompress_ptr cinfo)
    278 {
    279   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    280   JSAMPARRAY colormap;          /* Created colormap */
    281   int total_colors;             /* Number of distinct output colors */
    282   int i, j, k, nci, blksize, blkdist, ptr, val;
    283 
    284   /* Select number of colors for each component */
    285   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
    286 
    287   /* Report selected color counts */
    288   if (cinfo->out_color_components == 3)
    289     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors,
    290              cquantize->Ncolors[0], cquantize->Ncolors[1],
    291              cquantize->Ncolors[2]);
    292   else
    293     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
    294 
    295   /* Allocate and fill in the colormap. */
    296   /* The colors are ordered in the map in standard row-major order, */
    297   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
    298 
    299   colormap = (*cinfo->mem->alloc_sarray)
    300     ((j_common_ptr)cinfo, JPOOL_IMAGE,
    301      (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components);
    302 
    303   /* blksize is number of adjacent repeated entries for a component */
    304   /* blkdist is distance between groups of identical entries for a component */
    305   blkdist = total_colors;
    306 
    307   for (i = 0; i < cinfo->out_color_components; i++) {
    308     /* fill in colormap entries for i'th color component */
    309     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    310     blksize = blkdist / nci;
    311     for (j = 0; j < nci; j++) {
    312       /* Compute j'th output value (out of nci) for component */
    313       val = output_value(cinfo, i, j, nci - 1);
    314       /* Fill in all colormap entries that have this value of this component */
    315       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
    316         /* fill in blksize entries beginning at ptr */
    317         for (k = 0; k < blksize; k++)
    318           colormap[i][ptr + k] = (JSAMPLE)val;
    319       }
    320     }
    321     blkdist = blksize;          /* blksize of this color is blkdist of next */
    322   }
    323 
    324   /* Save the colormap in private storage,
    325    * where it will survive color quantization mode changes.
    326    */
    327   cquantize->sv_colormap = colormap;
    328   cquantize->sv_actual = total_colors;
    329 }
    330 
    331 
    332 /*
    333  * Create the color index table.
    334  */
    335 
    336 LOCAL(void)
    337 create_colorindex(j_decompress_ptr cinfo)
    338 {
    339   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    340   JSAMPROW indexptr;
    341   int i, j, k, nci, blksize, val, pad;
    342 
    343   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
    344    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
    345    * This is not necessary in the other dithering modes.  However, we
    346    * flag whether it was done in case user changes dithering mode.
    347    */
    348   if (cinfo->dither_mode == JDITHER_ORDERED) {
    349     pad = MAXJSAMPLE * 2;
    350     cquantize->is_padded = TRUE;
    351   } else {
    352     pad = 0;
    353     cquantize->is_padded = FALSE;
    354   }
    355 
    356   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
    357     ((j_common_ptr)cinfo, JPOOL_IMAGE,
    358      (JDIMENSION)(MAXJSAMPLE + 1 + pad),
    359      (JDIMENSION)cinfo->out_color_components);
    360 
    361   /* blksize is number of adjacent repeated entries for a component */
    362   blksize = cquantize->sv_actual;
    363 
    364   for (i = 0; i < cinfo->out_color_components; i++) {
    365     /* fill in colorindex entries for i'th color component */
    366     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    367     blksize = blksize / nci;
    368 
    369     /* adjust colorindex pointers to provide padding at negative indexes. */
    370     if (pad)
    371       cquantize->colorindex[i] += MAXJSAMPLE;
    372 
    373     /* in loop, val = index of current output value, */
    374     /* and k = largest j that maps to current val */
    375     indexptr = cquantize->colorindex[i];
    376     val = 0;
    377     k = largest_input_value(cinfo, i, 0, nci - 1);
    378     for (j = 0; j <= MAXJSAMPLE; j++) {
    379       while (j > k)             /* advance val if past boundary */
    380         k = largest_input_value(cinfo, i, ++val, nci - 1);
    381       /* premultiply so that no multiplication needed in main processing */
    382       indexptr[j] = (JSAMPLE)(val * blksize);
    383     }
    384     /* Pad at both ends if necessary */
    385     if (pad)
    386       for (j = 1; j <= MAXJSAMPLE; j++) {
    387         indexptr[-j] = indexptr[0];
    388         indexptr[MAXJSAMPLE + j] = indexptr[MAXJSAMPLE];
    389       }
    390   }
    391 }
    392 
    393 
    394 /*
    395  * Create an ordered-dither array for a component having ncolors
    396  * distinct output values.
    397  */
    398 
    399 LOCAL(ODITHER_MATRIX_PTR)
    400 make_odither_array(j_decompress_ptr cinfo, int ncolors)
    401 {
    402   ODITHER_MATRIX_PTR odither;
    403   int j, k;
    404   JLONG num, den;
    405 
    406   odither = (ODITHER_MATRIX_PTR)
    407     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
    408                                 sizeof(ODITHER_MATRIX));
    409   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
    410    * Hence the dither value for the matrix cell with fill order f
    411    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
    412    * On 16-bit-int machine, be careful to avoid overflow.
    413    */
    414   den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1));
    415   for (j = 0; j < ODITHER_SIZE; j++) {
    416     for (k = 0; k < ODITHER_SIZE; k++) {
    417       num = ((JLONG)(ODITHER_CELLS - 1 -
    418                      2 * ((int)base_dither_matrix[j][k]))) * MAXJSAMPLE;
    419       /* Ensure round towards zero despite C's lack of consistency
    420        * about rounding negative values in integer division...
    421        */
    422       odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den);
    423     }
    424   }
    425   return odither;
    426 }
    427 
    428 
    429 /*
    430  * Create the ordered-dither tables.
    431  * Components having the same number of representative colors may
    432  * share a dither table.
    433  */
    434 
    435 LOCAL(void)
    436 create_odither_tables(j_decompress_ptr cinfo)
    437 {
    438   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    439   ODITHER_MATRIX_PTR odither;
    440   int i, j, nci;
    441 
    442   for (i = 0; i < cinfo->out_color_components; i++) {
    443     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    444     odither = NULL;             /* search for matching prior component */
    445     for (j = 0; j < i; j++) {
    446       if (nci == cquantize->Ncolors[j]) {
    447         odither = cquantize->odither[j];
    448         break;
    449       }
    450     }
    451     if (odither == NULL)        /* need a new table? */
    452       odither = make_odither_array(cinfo, nci);
    453     cquantize->odither[i] = odither;
    454   }
    455 }
    456 
    457 
    458 /*
    459  * Map some rows of pixels to the output colormapped representation.
    460  */
    461 
    462 METHODDEF(void)
    463 color_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    464                JSAMPARRAY output_buf, int num_rows)
    465 /* General case, no dithering */
    466 {
    467   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    468   JSAMPARRAY colorindex = cquantize->colorindex;
    469   register int pixcode, ci;
    470   register JSAMPROW ptrin, ptrout;
    471   int row;
    472   JDIMENSION col;
    473   JDIMENSION width = cinfo->output_width;
    474   register int nc = cinfo->out_color_components;
    475 
    476   for (row = 0; row < num_rows; row++) {
    477     ptrin = input_buf[row];
    478     ptrout = output_buf[row];
    479     for (col = width; col > 0; col--) {
    480       pixcode = 0;
    481       for (ci = 0; ci < nc; ci++) {
    482         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
    483       }
    484       *ptrout++ = (JSAMPLE)pixcode;
    485     }
    486   }
    487 }
    488 
    489 
    490 METHODDEF(void)
    491 color_quantize3(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    492                 JSAMPARRAY output_buf, int num_rows)
    493 /* Fast path for out_color_components==3, no dithering */
    494 {
    495   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    496   register int pixcode;
    497   register JSAMPROW ptrin, ptrout;
    498   JSAMPROW colorindex0 = cquantize->colorindex[0];
    499   JSAMPROW colorindex1 = cquantize->colorindex[1];
    500   JSAMPROW colorindex2 = cquantize->colorindex[2];
    501   int row;
    502   JDIMENSION col;
    503   JDIMENSION width = cinfo->output_width;
    504 
    505   for (row = 0; row < num_rows; row++) {
    506     ptrin = input_buf[row];
    507     ptrout = output_buf[row];
    508     for (col = width; col > 0; col--) {
    509       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
    510       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
    511       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
    512       *ptrout++ = (JSAMPLE)pixcode;
    513     }
    514   }
    515 }
    516 
    517 
    518 METHODDEF(void)
    519 quantize_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    520                     JSAMPARRAY output_buf, int num_rows)
    521 /* General case, with ordered dithering */
    522 {
    523   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    524   register JSAMPROW input_ptr;
    525   register JSAMPROW output_ptr;
    526   JSAMPROW colorindex_ci;
    527   int *dither;                  /* points to active row of dither matrix */
    528   int row_index, col_index;     /* current indexes into dither matrix */
    529   int nc = cinfo->out_color_components;
    530   int ci;
    531   int row;
    532   JDIMENSION col;
    533   JDIMENSION width = cinfo->output_width;
    534 
    535   for (row = 0; row < num_rows; row++) {
    536     /* Initialize output values to 0 so can process components separately */
    537     jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE)));
    538     row_index = cquantize->row_index;
    539     for (ci = 0; ci < nc; ci++) {
    540       input_ptr = input_buf[row] + ci;
    541       output_ptr = output_buf[row];
    542       colorindex_ci = cquantize->colorindex[ci];
    543       dither = cquantize->odither[ci][row_index];
    544       col_index = 0;
    545 
    546       for (col = width; col > 0; col--) {
    547         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
    548          * select output value, accumulate into output code for this pixel.
    549          * Range-limiting need not be done explicitly, as we have extended
    550          * the colorindex table to produce the right answers for out-of-range
    551          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
    552          * required amount of padding.
    553          */
    554         *output_ptr +=
    555           colorindex_ci[GETJSAMPLE(*input_ptr) + dither[col_index]];
    556         input_ptr += nc;
    557         output_ptr++;
    558         col_index = (col_index + 1) & ODITHER_MASK;
    559       }
    560     }
    561     /* Advance row index for next row */
    562     row_index = (row_index + 1) & ODITHER_MASK;
    563     cquantize->row_index = row_index;
    564   }
    565 }
    566 
    567 
    568 METHODDEF(void)
    569 quantize3_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    570                      JSAMPARRAY output_buf, int num_rows)
    571 /* Fast path for out_color_components==3, with ordered dithering */
    572 {
    573   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    574   register int pixcode;
    575   register JSAMPROW input_ptr;
    576   register JSAMPROW output_ptr;
    577   JSAMPROW colorindex0 = cquantize->colorindex[0];
    578   JSAMPROW colorindex1 = cquantize->colorindex[1];
    579   JSAMPROW colorindex2 = cquantize->colorindex[2];
    580   int *dither0;                 /* points to active row of dither matrix */
    581   int *dither1;
    582   int *dither2;
    583   int row_index, col_index;     /* current indexes into dither matrix */
    584   int row;
    585   JDIMENSION col;
    586   JDIMENSION width = cinfo->output_width;
    587 
    588   for (row = 0; row < num_rows; row++) {
    589     row_index = cquantize->row_index;
    590     input_ptr = input_buf[row];
    591     output_ptr = output_buf[row];
    592     dither0 = cquantize->odither[0][row_index];
    593     dither1 = cquantize->odither[1][row_index];
    594     dither2 = cquantize->odither[2][row_index];
    595     col_index = 0;
    596 
    597     for (col = width; col > 0; col--) {
    598       pixcode  =
    599         GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + dither0[col_index]]);
    600       pixcode +=
    601         GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + dither1[col_index]]);
    602       pixcode +=
    603         GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + dither2[col_index]]);
    604       *output_ptr++ = (JSAMPLE)pixcode;
    605       col_index = (col_index + 1) & ODITHER_MASK;
    606     }
    607     row_index = (row_index + 1) & ODITHER_MASK;
    608     cquantize->row_index = row_index;
    609   }
    610 }
    611 
    612 
    613 METHODDEF(void)
    614 quantize_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    615                    JSAMPARRAY output_buf, int num_rows)
    616 /* General case, with Floyd-Steinberg dithering */
    617 {
    618   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    619   register LOCFSERROR cur;      /* current error or pixel value */
    620   LOCFSERROR belowerr;          /* error for pixel below cur */
    621   LOCFSERROR bpreverr;          /* error for below/prev col */
    622   LOCFSERROR bnexterr;          /* error for below/next col */
    623   LOCFSERROR delta;
    624   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
    625   register JSAMPROW input_ptr;
    626   register JSAMPROW output_ptr;
    627   JSAMPROW colorindex_ci;
    628   JSAMPROW colormap_ci;
    629   int pixcode;
    630   int nc = cinfo->out_color_components;
    631   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
    632   int dirnc;                    /* dir * nc */
    633   int ci;
    634   int row;
    635   JDIMENSION col;
    636   JDIMENSION width = cinfo->output_width;
    637   JSAMPLE *range_limit = cinfo->sample_range_limit;
    638   SHIFT_TEMPS
    639 
    640   for (row = 0; row < num_rows; row++) {
    641     /* Initialize output values to 0 so can process components separately */
    642     jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE)));
    643     for (ci = 0; ci < nc; ci++) {
    644       input_ptr = input_buf[row] + ci;
    645       output_ptr = output_buf[row];
    646       if (cquantize->on_odd_row) {
    647         /* work right to left in this row */
    648         input_ptr += (width - 1) * nc; /* so point to rightmost pixel */
    649         output_ptr += width - 1;
    650         dir = -1;
    651         dirnc = -nc;
    652         errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */
    653       } else {
    654         /* work left to right in this row */
    655         dir = 1;
    656         dirnc = nc;
    657         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
    658       }
    659       colorindex_ci = cquantize->colorindex[ci];
    660       colormap_ci = cquantize->sv_colormap[ci];
    661       /* Preset error values: no error propagated to first pixel from left */
    662       cur = 0;
    663       /* and no error propagated to row below yet */
    664       belowerr = bpreverr = 0;
    665 
    666       for (col = width; col > 0; col--) {
    667         /* cur holds the error propagated from the previous pixel on the
    668          * current line.  Add the error propagated from the previous line
    669          * to form the complete error correction term for this pixel, and
    670          * round the error term (which is expressed * 16) to an integer.
    671          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
    672          * for either sign of the error value.
    673          * Note: errorptr points to *previous* column's array entry.
    674          */
    675         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
    676         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
    677          * The maximum error is +- MAXJSAMPLE; this sets the required size
    678          * of the range_limit array.
    679          */
    680         cur += GETJSAMPLE(*input_ptr);
    681         cur = GETJSAMPLE(range_limit[cur]);
    682         /* Select output value, accumulate into output code for this pixel */
    683         pixcode = GETJSAMPLE(colorindex_ci[cur]);
    684         *output_ptr += (JSAMPLE)pixcode;
    685         /* Compute actual representation error at this pixel */
    686         /* Note: we can do this even though we don't have the final */
    687         /* pixel code, because the colormap is orthogonal. */
    688         cur -= GETJSAMPLE(colormap_ci[pixcode]);
    689         /* Compute error fractions to be propagated to adjacent pixels.
    690          * Add these into the running sums, and simultaneously shift the
    691          * next-line error sums left by 1 column.
    692          */
    693         bnexterr = cur;
    694         delta = cur * 2;
    695         cur += delta;           /* form error * 3 */
    696         errorptr[0] = (FSERROR)(bpreverr + cur);
    697         cur += delta;           /* form error * 5 */
    698         bpreverr = belowerr + cur;
    699         belowerr = bnexterr;
    700         cur += delta;           /* form error * 7 */
    701         /* At this point cur contains the 7/16 error value to be propagated
    702          * to the next pixel on the current line, and all the errors for the
    703          * next line have been shifted over. We are therefore ready to move on.
    704          */
    705         input_ptr += dirnc;     /* advance input ptr to next column */
    706         output_ptr += dir;      /* advance output ptr to next column */
    707         errorptr += dir;        /* advance errorptr to current column */
    708       }
    709       /* Post-loop cleanup: we must unload the final error value into the
    710        * final fserrors[] entry.  Note we need not unload belowerr because
    711        * it is for the dummy column before or after the actual array.
    712        */
    713       errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */
    714     }
    715     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
    716   }
    717 }
    718 
    719 
    720 /*
    721  * Allocate workspace for Floyd-Steinberg errors.
    722  */
    723 
    724 LOCAL(void)
    725 alloc_fs_workspace(j_decompress_ptr cinfo)
    726 {
    727   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    728   size_t arraysize;
    729   int i;
    730 
    731   arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
    732   for (i = 0; i < cinfo->out_color_components; i++) {
    733     cquantize->fserrors[i] = (FSERRPTR)
    734       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
    735   }
    736 }
    737 
    738 
    739 /*
    740  * Initialize for one-pass color quantization.
    741  */
    742 
    743 METHODDEF(void)
    744 start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
    745 {
    746   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
    747   size_t arraysize;
    748   int i;
    749 
    750   /* Install my colormap. */
    751   cinfo->colormap = cquantize->sv_colormap;
    752   cinfo->actual_number_of_colors = cquantize->sv_actual;
    753 
    754   /* Initialize for desired dithering mode. */
    755   switch (cinfo->dither_mode) {
    756   case JDITHER_NONE:
    757     if (cinfo->out_color_components == 3)
    758       cquantize->pub.color_quantize = color_quantize3;
    759     else
    760       cquantize->pub.color_quantize = color_quantize;
    761     break;
    762   case JDITHER_ORDERED:
    763     if (cinfo->out_color_components == 3)
    764       cquantize->pub.color_quantize = quantize3_ord_dither;
    765     else
    766       cquantize->pub.color_quantize = quantize_ord_dither;
    767     cquantize->row_index = 0;   /* initialize state for ordered dither */
    768     /* If user changed to ordered dither from another mode,
    769      * we must recreate the color index table with padding.
    770      * This will cost extra space, but probably isn't very likely.
    771      */
    772     if (!cquantize->is_padded)
    773       create_colorindex(cinfo);
    774     /* Create ordered-dither tables if we didn't already. */
    775     if (cquantize->odither[0] == NULL)
    776       create_odither_tables(cinfo);
    777     break;
    778   case JDITHER_FS:
    779     cquantize->pub.color_quantize = quantize_fs_dither;
    780     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
    781     /* Allocate Floyd-Steinberg workspace if didn't already. */
    782     if (cquantize->fserrors[0] == NULL)
    783       alloc_fs_workspace(cinfo);
    784     /* Initialize the propagated errors to zero. */
    785     arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
    786     for (i = 0; i < cinfo->out_color_components; i++)
    787       jzero_far((void *)cquantize->fserrors[i], arraysize);
    788     break;
    789   default:
    790     ERREXIT(cinfo, JERR_NOT_COMPILED);
    791     break;
    792   }
    793 }
    794 
    795 
    796 /*
    797  * Finish up at the end of the pass.
    798  */
    799 
    800 METHODDEF(void)
    801 finish_pass_1_quant(j_decompress_ptr cinfo)
    802 {
    803   /* no work in 1-pass case */
    804 }
    805 
    806 
    807 /*
    808  * Switch to a new external colormap between output passes.
    809  * Shouldn't get to this module!
    810  */
    811 
    812 METHODDEF(void)
    813 new_color_map_1_quant(j_decompress_ptr cinfo)
    814 {
    815   ERREXIT(cinfo, JERR_MODE_CHANGE);
    816 }
    817 
    818 
    819 /*
    820  * Module initialization routine for 1-pass color quantization.
    821  */
    822 
    823 GLOBAL(void)
    824 jinit_1pass_quantizer(j_decompress_ptr cinfo)
    825 {
    826   my_cquantize_ptr cquantize;
    827 
    828   cquantize = (my_cquantize_ptr)
    829     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
    830                                 sizeof(my_cquantizer));
    831   cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
    832   cquantize->pub.start_pass = start_pass_1_quant;
    833   cquantize->pub.finish_pass = finish_pass_1_quant;
    834   cquantize->pub.new_color_map = new_color_map_1_quant;
    835   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
    836   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
    837 
    838   /* Make sure my internal arrays won't overflow */
    839   if (cinfo->out_color_components > MAX_Q_COMPS)
    840     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
    841   /* Make sure colormap indexes can be represented by JSAMPLEs */
    842   if (cinfo->desired_number_of_colors > (MAXJSAMPLE + 1))
    843     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE + 1);
    844 
    845   /* Create the colormap and color index table. */
    846   create_colormap(cinfo);
    847   create_colorindex(cinfo);
    848 
    849   /* Allocate Floyd-Steinberg workspace now if requested.
    850    * We do this now since it may affect the memory manager's space
    851    * calculations.  If the user changes to FS dither mode in a later pass, we
    852    * will allocate the space then, and will possibly overrun the
    853    * max_memory_to_use setting.
    854    */
    855   if (cinfo->dither_mode == JDITHER_FS)
    856     alloc_fs_workspace(cinfo);
    857 }
    858 
    859 #endif /* QUANT_1PASS_SUPPORTED */
    860