1 //===- Object.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Object.h" 11 #include "llvm-objcopy.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/Object/ELFObjectFile.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/FileOutputBuffer.h" 21 #include "llvm/Support/Path.h" 22 #include <algorithm> 23 #include <cstddef> 24 #include <cstdint> 25 #include <iterator> 26 #include <utility> 27 #include <vector> 28 29 using namespace llvm; 30 using namespace llvm::objcopy; 31 using namespace object; 32 using namespace ELF; 33 34 Buffer::~Buffer() {} 35 36 void FileBuffer::allocate(size_t Size) { 37 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 38 FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable); 39 handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) { 40 error("failed to open " + getName() + ": " + E.message()); 41 }); 42 Buf = std::move(*BufferOrErr); 43 } 44 45 Error FileBuffer::commit() { return Buf->commit(); } 46 47 uint8_t *FileBuffer::getBufferStart() { 48 return reinterpret_cast<uint8_t *>(Buf->getBufferStart()); 49 } 50 51 void MemBuffer::allocate(size_t Size) { 52 Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName()); 53 } 54 55 Error MemBuffer::commit() { return Error::success(); } 56 57 uint8_t *MemBuffer::getBufferStart() { 58 return reinterpret_cast<uint8_t *>(Buf->getBufferStart()); 59 } 60 61 std::unique_ptr<WritableMemoryBuffer> MemBuffer::releaseMemoryBuffer() { 62 return std::move(Buf); 63 } 64 65 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { 66 using Elf_Phdr = typename ELFT::Phdr; 67 68 uint8_t *B = Buf.getBufferStart(); 69 B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); 70 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); 71 Phdr.p_type = Seg.Type; 72 Phdr.p_flags = Seg.Flags; 73 Phdr.p_offset = Seg.Offset; 74 Phdr.p_vaddr = Seg.VAddr; 75 Phdr.p_paddr = Seg.PAddr; 76 Phdr.p_filesz = Seg.FileSize; 77 Phdr.p_memsz = Seg.MemSize; 78 Phdr.p_align = Seg.Align; 79 } 80 81 void SectionBase::removeSectionReferences(const SectionBase *Sec) {} 82 void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {} 83 void SectionBase::initialize(SectionTableRef SecTable) {} 84 void SectionBase::finalize() {} 85 void SectionBase::markSymbols() {} 86 87 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { 88 uint8_t *B = Buf.getBufferStart(); 89 B += Sec.HeaderOffset; 90 typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(B); 91 Shdr.sh_name = Sec.NameIndex; 92 Shdr.sh_type = Sec.Type; 93 Shdr.sh_flags = Sec.Flags; 94 Shdr.sh_addr = Sec.Addr; 95 Shdr.sh_offset = Sec.Offset; 96 Shdr.sh_size = Sec.Size; 97 Shdr.sh_link = Sec.Link; 98 Shdr.sh_info = Sec.Info; 99 Shdr.sh_addralign = Sec.Align; 100 Shdr.sh_entsize = Sec.EntrySize; 101 } 102 103 SectionVisitor::~SectionVisitor() {} 104 105 void BinarySectionWriter::visit(const SectionIndexSection &Sec) { 106 error("Cannot write symbol section index table '" + Sec.Name + "' "); 107 } 108 109 void BinarySectionWriter::visit(const SymbolTableSection &Sec) { 110 error("Cannot write symbol table '" + Sec.Name + "' out to binary"); 111 } 112 113 void BinarySectionWriter::visit(const RelocationSection &Sec) { 114 error("Cannot write relocation section '" + Sec.Name + "' out to binary"); 115 } 116 117 void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { 118 error("Cannot write '" + Sec.Name + "' out to binary"); 119 } 120 121 void BinarySectionWriter::visit(const GroupSection &Sec) { 122 error("Cannot write '" + Sec.Name + "' out to binary"); 123 } 124 125 void SectionWriter::visit(const Section &Sec) { 126 if (Sec.Type == SHT_NOBITS) 127 return; 128 uint8_t *Buf = Out.getBufferStart() + Sec.Offset; 129 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf); 130 } 131 132 void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } 133 134 void SectionWriter::visit(const OwnedDataSection &Sec) { 135 uint8_t *Buf = Out.getBufferStart() + Sec.Offset; 136 std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf); 137 } 138 139 void OwnedDataSection::accept(SectionVisitor &Visitor) const { 140 Visitor.visit(*this); 141 } 142 143 void StringTableSection::addString(StringRef Name) { 144 StrTabBuilder.add(Name); 145 Size = StrTabBuilder.getSize(); 146 } 147 148 uint32_t StringTableSection::findIndex(StringRef Name) const { 149 return StrTabBuilder.getOffset(Name); 150 } 151 152 void StringTableSection::finalize() { StrTabBuilder.finalize(); } 153 154 void SectionWriter::visit(const StringTableSection &Sec) { 155 Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset); 156 } 157 158 void StringTableSection::accept(SectionVisitor &Visitor) const { 159 Visitor.visit(*this); 160 } 161 162 template <class ELFT> 163 void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { 164 uint8_t *Buf = Out.getBufferStart() + Sec.Offset; 165 auto *IndexesBuffer = reinterpret_cast<typename ELFT::Word *>(Buf); 166 std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer); 167 } 168 169 void SectionIndexSection::initialize(SectionTableRef SecTable) { 170 Size = 0; 171 setSymTab(SecTable.getSectionOfType<SymbolTableSection>( 172 Link, 173 "Link field value " + Twine(Link) + " in section " + Name + " is invalid", 174 "Link field value " + Twine(Link) + " in section " + Name + 175 " is not a symbol table")); 176 Symbols->setShndxTable(this); 177 } 178 179 void SectionIndexSection::finalize() { Link = Symbols->Index; } 180 181 void SectionIndexSection::accept(SectionVisitor &Visitor) const { 182 Visitor.visit(*this); 183 } 184 185 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { 186 switch (Index) { 187 case SHN_ABS: 188 case SHN_COMMON: 189 return true; 190 } 191 if (Machine == EM_HEXAGON) { 192 switch (Index) { 193 case SHN_HEXAGON_SCOMMON: 194 case SHN_HEXAGON_SCOMMON_2: 195 case SHN_HEXAGON_SCOMMON_4: 196 case SHN_HEXAGON_SCOMMON_8: 197 return true; 198 } 199 } 200 return false; 201 } 202 203 // Large indexes force us to clarify exactly what this function should do. This 204 // function should return the value that will appear in st_shndx when written 205 // out. 206 uint16_t Symbol::getShndx() const { 207 if (DefinedIn != nullptr) { 208 if (DefinedIn->Index >= SHN_LORESERVE) 209 return SHN_XINDEX; 210 return DefinedIn->Index; 211 } 212 switch (ShndxType) { 213 // This means that we don't have a defined section but we do need to 214 // output a legitimate section index. 215 case SYMBOL_SIMPLE_INDEX: 216 return SHN_UNDEF; 217 case SYMBOL_ABS: 218 case SYMBOL_COMMON: 219 case SYMBOL_HEXAGON_SCOMMON: 220 case SYMBOL_HEXAGON_SCOMMON_2: 221 case SYMBOL_HEXAGON_SCOMMON_4: 222 case SYMBOL_HEXAGON_SCOMMON_8: 223 case SYMBOL_XINDEX: 224 return static_cast<uint16_t>(ShndxType); 225 } 226 llvm_unreachable("Symbol with invalid ShndxType encountered"); 227 } 228 229 void SymbolTableSection::assignIndices() { 230 uint32_t Index = 0; 231 for (auto &Sym : Symbols) 232 Sym->Index = Index++; 233 } 234 235 void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type, 236 SectionBase *DefinedIn, uint64_t Value, 237 uint8_t Visibility, uint16_t Shndx, 238 uint64_t Sz) { 239 Symbol Sym; 240 Sym.Name = Name; 241 Sym.Binding = Bind; 242 Sym.Type = Type; 243 Sym.DefinedIn = DefinedIn; 244 if (DefinedIn != nullptr) 245 DefinedIn->HasSymbol = true; 246 if (DefinedIn == nullptr) { 247 if (Shndx >= SHN_LORESERVE) 248 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); 249 else 250 Sym.ShndxType = SYMBOL_SIMPLE_INDEX; 251 } 252 Sym.Value = Value; 253 Sym.Visibility = Visibility; 254 Sym.Size = Sz; 255 Sym.Index = Symbols.size(); 256 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym)); 257 Size += this->EntrySize; 258 } 259 260 void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { 261 if (SectionIndexTable == Sec) 262 SectionIndexTable = nullptr; 263 if (SymbolNames == Sec) { 264 error("String table " + SymbolNames->Name + 265 " cannot be removed because it is referenced by the symbol table " + 266 this->Name); 267 } 268 removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; }); 269 } 270 271 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { 272 std::for_each(std::begin(Symbols) + 1, std::end(Symbols), 273 [Callable](SymPtr &Sym) { Callable(*Sym); }); 274 std::stable_partition( 275 std::begin(Symbols), std::end(Symbols), 276 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); 277 assignIndices(); 278 } 279 280 void SymbolTableSection::removeSymbols( 281 function_ref<bool(const Symbol &)> ToRemove) { 282 Symbols.erase( 283 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), 284 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), 285 std::end(Symbols)); 286 Size = Symbols.size() * EntrySize; 287 assignIndices(); 288 } 289 290 void SymbolTableSection::initialize(SectionTableRef SecTable) { 291 Size = 0; 292 setStrTab(SecTable.getSectionOfType<StringTableSection>( 293 Link, 294 "Symbol table has link index of " + Twine(Link) + 295 " which is not a valid index", 296 "Symbol table has link index of " + Twine(Link) + 297 " which is not a string table")); 298 } 299 300 void SymbolTableSection::finalize() { 301 // Make sure SymbolNames is finalized before getting name indexes. 302 SymbolNames->finalize(); 303 304 uint32_t MaxLocalIndex = 0; 305 for (auto &Sym : Symbols) { 306 Sym->NameIndex = SymbolNames->findIndex(Sym->Name); 307 if (Sym->Binding == STB_LOCAL) 308 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); 309 } 310 // Now we need to set the Link and Info fields. 311 Link = SymbolNames->Index; 312 Info = MaxLocalIndex + 1; 313 } 314 315 void SymbolTableSection::prepareForLayout() { 316 // Add all potential section indexes before file layout so that the section 317 // index section has the approprite size. 318 if (SectionIndexTable != nullptr) { 319 for (const auto &Sym : Symbols) { 320 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) 321 SectionIndexTable->addIndex(Sym->DefinedIn->Index); 322 else 323 SectionIndexTable->addIndex(SHN_UNDEF); 324 } 325 } 326 // Add all of our strings to SymbolNames so that SymbolNames has the right 327 // size before layout is decided. 328 for (auto &Sym : Symbols) 329 SymbolNames->addString(Sym->Name); 330 } 331 332 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { 333 if (Symbols.size() <= Index) 334 error("Invalid symbol index: " + Twine(Index)); 335 return Symbols[Index].get(); 336 } 337 338 Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) { 339 return const_cast<Symbol *>( 340 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index)); 341 } 342 343 template <class ELFT> 344 void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { 345 uint8_t *Buf = Out.getBufferStart(); 346 Buf += Sec.Offset; 347 typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf); 348 // Loop though symbols setting each entry of the symbol table. 349 for (auto &Symbol : Sec.Symbols) { 350 Sym->st_name = Symbol->NameIndex; 351 Sym->st_value = Symbol->Value; 352 Sym->st_size = Symbol->Size; 353 Sym->st_other = Symbol->Visibility; 354 Sym->setBinding(Symbol->Binding); 355 Sym->setType(Symbol->Type); 356 Sym->st_shndx = Symbol->getShndx(); 357 ++Sym; 358 } 359 } 360 361 void SymbolTableSection::accept(SectionVisitor &Visitor) const { 362 Visitor.visit(*this); 363 } 364 365 template <class SymTabType> 366 void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences( 367 const SectionBase *Sec) { 368 if (Symbols == Sec) { 369 error("Symbol table " + Symbols->Name + 370 " cannot be removed because it is " 371 "referenced by the relocation " 372 "section " + 373 this->Name); 374 } 375 } 376 377 template <class SymTabType> 378 void RelocSectionWithSymtabBase<SymTabType>::initialize( 379 SectionTableRef SecTable) { 380 setSymTab(SecTable.getSectionOfType<SymTabType>( 381 Link, 382 "Link field value " + Twine(Link) + " in section " + Name + " is invalid", 383 "Link field value " + Twine(Link) + " in section " + Name + 384 " is not a symbol table")); 385 386 if (Info != SHN_UNDEF) 387 setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) + 388 " in section " + Name + 389 " is invalid")); 390 else 391 setSection(nullptr); 392 } 393 394 template <class SymTabType> 395 void RelocSectionWithSymtabBase<SymTabType>::finalize() { 396 this->Link = Symbols->Index; 397 if (SecToApplyRel != nullptr) 398 this->Info = SecToApplyRel->Index; 399 } 400 401 template <class ELFT> 402 static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {} 403 404 template <class ELFT> 405 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { 406 Rela.r_addend = Addend; 407 } 408 409 template <class RelRange, class T> 410 static void writeRel(const RelRange &Relocations, T *Buf) { 411 for (const auto &Reloc : Relocations) { 412 Buf->r_offset = Reloc.Offset; 413 setAddend(*Buf, Reloc.Addend); 414 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); 415 ++Buf; 416 } 417 } 418 419 template <class ELFT> 420 void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { 421 uint8_t *Buf = Out.getBufferStart() + Sec.Offset; 422 if (Sec.Type == SHT_REL) 423 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf)); 424 else 425 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf)); 426 } 427 428 void RelocationSection::accept(SectionVisitor &Visitor) const { 429 Visitor.visit(*this); 430 } 431 432 void RelocationSection::removeSymbols( 433 function_ref<bool(const Symbol &)> ToRemove) { 434 for (const Relocation &Reloc : Relocations) 435 if (ToRemove(*Reloc.RelocSymbol)) 436 error("not stripping symbol `" + Reloc.RelocSymbol->Name + 437 "' because it is named in a relocation"); 438 } 439 440 void RelocationSection::markSymbols() { 441 for (const Relocation &Reloc : Relocations) 442 Reloc.RelocSymbol->Referenced = true; 443 } 444 445 void SectionWriter::visit(const DynamicRelocationSection &Sec) { 446 std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), 447 Out.getBufferStart() + Sec.Offset); 448 } 449 450 void DynamicRelocationSection::accept(SectionVisitor &Visitor) const { 451 Visitor.visit(*this); 452 } 453 454 void Section::removeSectionReferences(const SectionBase *Sec) { 455 if (LinkSection == Sec) { 456 error("Section " + LinkSection->Name + 457 " cannot be removed because it is " 458 "referenced by the section " + 459 this->Name); 460 } 461 } 462 463 void GroupSection::finalize() { 464 this->Info = Sym->Index; 465 this->Link = SymTab->Index; 466 } 467 468 void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 469 if (ToRemove(*Sym)) { 470 error("Symbol " + Sym->Name + 471 " cannot be removed because it is " 472 "referenced by the section " + 473 this->Name + "[" + Twine(this->Index) + "]"); 474 } 475 } 476 477 void GroupSection::markSymbols() { 478 if (Sym) 479 Sym->Referenced = true; 480 } 481 482 void Section::initialize(SectionTableRef SecTable) { 483 if (Link != ELF::SHN_UNDEF) { 484 LinkSection = 485 SecTable.getSection(Link, "Link field value " + Twine(Link) + 486 " in section " + Name + " is invalid"); 487 if (LinkSection->Type == ELF::SHT_SYMTAB) 488 LinkSection = nullptr; 489 } 490 } 491 492 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } 493 494 void GnuDebugLinkSection::init(StringRef File, StringRef Data) { 495 FileName = sys::path::filename(File); 496 // The format for the .gnu_debuglink starts with the file name and is 497 // followed by a null terminator and then the CRC32 of the file. The CRC32 498 // should be 4 byte aligned. So we add the FileName size, a 1 for the null 499 // byte, and then finally push the size to alignment and add 4. 500 Size = alignTo(FileName.size() + 1, 4) + 4; 501 // The CRC32 will only be aligned if we align the whole section. 502 Align = 4; 503 Type = ELF::SHT_PROGBITS; 504 Name = ".gnu_debuglink"; 505 // For sections not found in segments, OriginalOffset is only used to 506 // establish the order that sections should go in. By using the maximum 507 // possible offset we cause this section to wind up at the end. 508 OriginalOffset = std::numeric_limits<uint64_t>::max(); 509 JamCRC crc; 510 crc.update(ArrayRef<char>(Data.data(), Data.size())); 511 // The CRC32 value needs to be complemented because the JamCRC dosn't 512 // finalize the CRC32 value. It also dosn't negate the initial CRC32 value 513 // but it starts by default at 0xFFFFFFFF which is the complement of zero. 514 CRC32 = ~crc.getCRC(); 515 } 516 517 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) { 518 // Read in the file to compute the CRC of it. 519 auto DebugOrErr = MemoryBuffer::getFile(File); 520 if (!DebugOrErr) 521 error("'" + File + "': " + DebugOrErr.getError().message()); 522 auto Debug = std::move(*DebugOrErr); 523 init(File, Debug->getBuffer()); 524 } 525 526 template <class ELFT> 527 void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { 528 auto Buf = Out.getBufferStart() + Sec.Offset; 529 char *File = reinterpret_cast<char *>(Buf); 530 Elf_Word *CRC = 531 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); 532 *CRC = Sec.CRC32; 533 std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File); 534 } 535 536 void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { 537 Visitor.visit(*this); 538 } 539 540 template <class ELFT> 541 void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { 542 ELF::Elf32_Word *Buf = 543 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); 544 *Buf++ = Sec.FlagWord; 545 for (const auto *S : Sec.GroupMembers) 546 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); 547 } 548 549 void GroupSection::accept(SectionVisitor &Visitor) const { 550 Visitor.visit(*this); 551 } 552 553 // Returns true IFF a section is wholly inside the range of a segment 554 static bool sectionWithinSegment(const SectionBase &Section, 555 const Segment &Segment) { 556 // If a section is empty it should be treated like it has a size of 1. This is 557 // to clarify the case when an empty section lies on a boundary between two 558 // segments and ensures that the section "belongs" to the second segment and 559 // not the first. 560 uint64_t SecSize = Section.Size ? Section.Size : 1; 561 return Segment.Offset <= Section.OriginalOffset && 562 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; 563 } 564 565 // Returns true IFF a segment's original offset is inside of another segment's 566 // range. 567 static bool segmentOverlapsSegment(const Segment &Child, 568 const Segment &Parent) { 569 570 return Parent.OriginalOffset <= Child.OriginalOffset && 571 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; 572 } 573 574 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { 575 // Any segment without a parent segment should come before a segment 576 // that has a parent segment. 577 if (A->OriginalOffset < B->OriginalOffset) 578 return true; 579 if (A->OriginalOffset > B->OriginalOffset) 580 return false; 581 return A->Index < B->Index; 582 } 583 584 static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) { 585 if (A->PAddr < B->PAddr) 586 return true; 587 if (A->PAddr > B->PAddr) 588 return false; 589 return A->Index < B->Index; 590 } 591 592 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { 593 for (auto &Parent : Obj.segments()) { 594 // Every segment will overlap with itself but we don't want a segment to 595 // be it's own parent so we avoid that situation. 596 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { 597 // We want a canonical "most parental" segment but this requires 598 // inspecting the ParentSegment. 599 if (compareSegmentsByOffset(&Parent, &Child)) 600 if (Child.ParentSegment == nullptr || 601 compareSegmentsByOffset(&Parent, Child.ParentSegment)) { 602 Child.ParentSegment = &Parent; 603 } 604 } 605 } 606 } 607 608 template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() { 609 uint32_t Index = 0; 610 for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { 611 ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset, 612 (size_t)Phdr.p_filesz}; 613 Segment &Seg = Obj.addSegment(Data); 614 Seg.Type = Phdr.p_type; 615 Seg.Flags = Phdr.p_flags; 616 Seg.OriginalOffset = Phdr.p_offset; 617 Seg.Offset = Phdr.p_offset; 618 Seg.VAddr = Phdr.p_vaddr; 619 Seg.PAddr = Phdr.p_paddr; 620 Seg.FileSize = Phdr.p_filesz; 621 Seg.MemSize = Phdr.p_memsz; 622 Seg.Align = Phdr.p_align; 623 Seg.Index = Index++; 624 for (auto &Section : Obj.sections()) { 625 if (sectionWithinSegment(Section, Seg)) { 626 Seg.addSection(&Section); 627 if (!Section.ParentSegment || 628 Section.ParentSegment->Offset > Seg.Offset) { 629 Section.ParentSegment = &Seg; 630 } 631 } 632 } 633 } 634 635 auto &ElfHdr = Obj.ElfHdrSegment; 636 // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD 637 // segments must not overlap, and other types fit even less. 638 ElfHdr.Type = PT_PHDR; 639 ElfHdr.Flags = 0; 640 ElfHdr.OriginalOffset = ElfHdr.Offset = 0; 641 ElfHdr.VAddr = 0; 642 ElfHdr.PAddr = 0; 643 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); 644 ElfHdr.Align = 0; 645 ElfHdr.Index = Index++; 646 647 const auto &Ehdr = *ElfFile.getHeader(); 648 auto &PrHdr = Obj.ProgramHdrSegment; 649 PrHdr.Type = PT_PHDR; 650 PrHdr.Flags = 0; 651 // The spec requires us to have p_vaddr % p_align == p_offset % p_align. 652 // Whereas this works automatically for ElfHdr, here OriginalOffset is 653 // always non-zero and to ensure the equation we assign the same value to 654 // VAddr as well. 655 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff; 656 PrHdr.PAddr = 0; 657 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; 658 // The spec requires us to naturally align all the fields. 659 PrHdr.Align = sizeof(Elf_Addr); 660 PrHdr.Index = Index++; 661 662 // Now we do an O(n^2) loop through the segments in order to match up 663 // segments. 664 for (auto &Child : Obj.segments()) 665 setParentSegment(Child); 666 setParentSegment(ElfHdr); 667 setParentSegment(PrHdr); 668 } 669 670 template <class ELFT> 671 void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { 672 auto SecTable = Obj.sections(); 673 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( 674 GroupSec->Link, 675 "Link field value " + Twine(GroupSec->Link) + " in section " + 676 GroupSec->Name + " is invalid", 677 "Link field value " + Twine(GroupSec->Link) + " in section " + 678 GroupSec->Name + " is not a symbol table"); 679 auto Sym = SymTab->getSymbolByIndex(GroupSec->Info); 680 if (!Sym) 681 error("Info field value " + Twine(GroupSec->Info) + " in section " + 682 GroupSec->Name + " is not a valid symbol index"); 683 GroupSec->setSymTab(SymTab); 684 GroupSec->setSymbol(Sym); 685 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || 686 GroupSec->Contents.empty()) 687 error("The content of the section " + GroupSec->Name + " is malformed"); 688 const ELF::Elf32_Word *Word = 689 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); 690 const ELF::Elf32_Word *End = 691 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); 692 GroupSec->setFlagWord(*Word++); 693 for (; Word != End; ++Word) { 694 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); 695 GroupSec->addMember(SecTable.getSection( 696 Index, "Group member index " + Twine(Index) + " in section " + 697 GroupSec->Name + " is invalid")); 698 } 699 } 700 701 template <class ELFT> 702 void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { 703 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); 704 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); 705 ArrayRef<Elf_Word> ShndxData; 706 707 auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr)); 708 for (const auto &Sym : Symbols) { 709 SectionBase *DefSection = nullptr; 710 StringRef Name = unwrapOrError(Sym.getName(StrTabData)); 711 712 if (Sym.st_shndx == SHN_XINDEX) { 713 if (SymTab->getShndxTable() == nullptr) 714 error("Symbol '" + Name + 715 "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists."); 716 if (ShndxData.data() == nullptr) { 717 const Elf_Shdr &ShndxSec = 718 *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index)); 719 ShndxData = unwrapOrError( 720 ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec)); 721 if (ShndxData.size() != Symbols.size()) 722 error("Symbol section index table does not have the same number of " 723 "entries as the symbol table."); 724 } 725 Elf_Word Index = ShndxData[&Sym - Symbols.begin()]; 726 DefSection = Obj.sections().getSection( 727 Index, 728 "Symbol '" + Name + "' has invalid section index " + 729 Twine(Index)); 730 } else if (Sym.st_shndx >= SHN_LORESERVE) { 731 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { 732 error( 733 "Symbol '" + Name + 734 "' has unsupported value greater than or equal to SHN_LORESERVE: " + 735 Twine(Sym.st_shndx)); 736 } 737 } else if (Sym.st_shndx != SHN_UNDEF) { 738 DefSection = Obj.sections().getSection( 739 Sym.st_shndx, "Symbol '" + Name + 740 "' is defined has invalid section index " + 741 Twine(Sym.st_shndx)); 742 } 743 744 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, 745 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); 746 } 747 } 748 749 template <class ELFT> 750 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {} 751 752 template <class ELFT> 753 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { 754 ToSet = Rela.r_addend; 755 } 756 757 template <class T> 758 static void initRelocations(RelocationSection *Relocs, 759 SymbolTableSection *SymbolTable, T RelRange) { 760 for (const auto &Rel : RelRange) { 761 Relocation ToAdd; 762 ToAdd.Offset = Rel.r_offset; 763 getAddend(ToAdd.Addend, Rel); 764 ToAdd.Type = Rel.getType(false); 765 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); 766 Relocs->addRelocation(ToAdd); 767 } 768 } 769 770 SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) { 771 if (Index == SHN_UNDEF || Index > Sections.size()) 772 error(ErrMsg); 773 return Sections[Index - 1].get(); 774 } 775 776 template <class T> 777 T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg, 778 Twine TypeErrMsg) { 779 if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg))) 780 return Sec; 781 error(TypeErrMsg); 782 } 783 784 template <class ELFT> 785 SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { 786 ArrayRef<uint8_t> Data; 787 switch (Shdr.sh_type) { 788 case SHT_REL: 789 case SHT_RELA: 790 if (Shdr.sh_flags & SHF_ALLOC) { 791 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 792 return Obj.addSection<DynamicRelocationSection>(Data); 793 } 794 return Obj.addSection<RelocationSection>(); 795 case SHT_STRTAB: 796 // If a string table is allocated we don't want to mess with it. That would 797 // mean altering the memory image. There are no special link types or 798 // anything so we can just use a Section. 799 if (Shdr.sh_flags & SHF_ALLOC) { 800 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 801 return Obj.addSection<Section>(Data); 802 } 803 return Obj.addSection<StringTableSection>(); 804 case SHT_HASH: 805 case SHT_GNU_HASH: 806 // Hash tables should refer to SHT_DYNSYM which we're not going to change. 807 // Because of this we don't need to mess with the hash tables either. 808 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 809 return Obj.addSection<Section>(Data); 810 case SHT_GROUP: 811 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 812 return Obj.addSection<GroupSection>(Data); 813 case SHT_DYNSYM: 814 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 815 return Obj.addSection<DynamicSymbolTableSection>(Data); 816 case SHT_DYNAMIC: 817 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 818 return Obj.addSection<DynamicSection>(Data); 819 case SHT_SYMTAB: { 820 auto &SymTab = Obj.addSection<SymbolTableSection>(); 821 Obj.SymbolTable = &SymTab; 822 return SymTab; 823 } 824 case SHT_SYMTAB_SHNDX: { 825 auto &ShndxSection = Obj.addSection<SectionIndexSection>(); 826 Obj.SectionIndexTable = &ShndxSection; 827 return ShndxSection; 828 } 829 case SHT_NOBITS: 830 return Obj.addSection<Section>(Data); 831 default: 832 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); 833 return Obj.addSection<Section>(Data); 834 } 835 } 836 837 template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() { 838 uint32_t Index = 0; 839 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { 840 if (Index == 0) { 841 ++Index; 842 continue; 843 } 844 auto &Sec = makeSection(Shdr); 845 Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); 846 Sec.Type = Shdr.sh_type; 847 Sec.Flags = Shdr.sh_flags; 848 Sec.Addr = Shdr.sh_addr; 849 Sec.Offset = Shdr.sh_offset; 850 Sec.OriginalOffset = Shdr.sh_offset; 851 Sec.Size = Shdr.sh_size; 852 Sec.Link = Shdr.sh_link; 853 Sec.Info = Shdr.sh_info; 854 Sec.Align = Shdr.sh_addralign; 855 Sec.EntrySize = Shdr.sh_entsize; 856 Sec.Index = Index++; 857 } 858 859 // If a section index table exists we'll need to initialize it before we 860 // initialize the symbol table because the symbol table might need to 861 // reference it. 862 if (Obj.SectionIndexTable) 863 Obj.SectionIndexTable->initialize(Obj.sections()); 864 865 // Now that all of the sections have been added we can fill out some extra 866 // details about symbol tables. We need the symbol table filled out before 867 // any relocations. 868 if (Obj.SymbolTable) { 869 Obj.SymbolTable->initialize(Obj.sections()); 870 initSymbolTable(Obj.SymbolTable); 871 } 872 873 // Now that all sections and symbols have been added we can add 874 // relocations that reference symbols and set the link and info fields for 875 // relocation sections. 876 for (auto &Section : Obj.sections()) { 877 if (&Section == Obj.SymbolTable) 878 continue; 879 Section.initialize(Obj.sections()); 880 if (auto RelSec = dyn_cast<RelocationSection>(&Section)) { 881 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; 882 if (RelSec->Type == SHT_REL) 883 initRelocations(RelSec, Obj.SymbolTable, 884 unwrapOrError(ElfFile.rels(Shdr))); 885 else 886 initRelocations(RelSec, Obj.SymbolTable, 887 unwrapOrError(ElfFile.relas(Shdr))); 888 } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) { 889 initGroupSection(GroupSec); 890 } 891 } 892 } 893 894 template <class ELFT> void ELFBuilder<ELFT>::build() { 895 const auto &Ehdr = *ElfFile.getHeader(); 896 897 std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident); 898 Obj.Type = Ehdr.e_type; 899 Obj.Machine = Ehdr.e_machine; 900 Obj.Version = Ehdr.e_version; 901 Obj.Entry = Ehdr.e_entry; 902 Obj.Flags = Ehdr.e_flags; 903 904 readSectionHeaders(); 905 readProgramHeaders(); 906 907 uint32_t ShstrIndex = Ehdr.e_shstrndx; 908 if (ShstrIndex == SHN_XINDEX) 909 ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link; 910 911 Obj.SectionNames = 912 Obj.sections().template getSectionOfType<StringTableSection>( 913 ShstrIndex, 914 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + 915 " in elf header " + " is invalid", 916 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + 917 " in elf header " + " is not a string table"); 918 } 919 920 // A generic size function which computes sizes of any random access range. 921 template <class R> size_t size(R &&Range) { 922 return static_cast<size_t>(std::end(Range) - std::begin(Range)); 923 } 924 925 Writer::~Writer() {} 926 927 Reader::~Reader() {} 928 929 ElfType ELFReader::getElfType() const { 930 if (isa<ELFObjectFile<ELF32LE>>(Bin)) 931 return ELFT_ELF32LE; 932 if (isa<ELFObjectFile<ELF64LE>>(Bin)) 933 return ELFT_ELF64LE; 934 if (isa<ELFObjectFile<ELF32BE>>(Bin)) 935 return ELFT_ELF32BE; 936 if (isa<ELFObjectFile<ELF64BE>>(Bin)) 937 return ELFT_ELF64BE; 938 llvm_unreachable("Invalid ELFType"); 939 } 940 941 std::unique_ptr<Object> ELFReader::create() const { 942 auto Obj = llvm::make_unique<Object>(); 943 if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { 944 ELFBuilder<ELF32LE> Builder(*o, *Obj); 945 Builder.build(); 946 return Obj; 947 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { 948 ELFBuilder<ELF64LE> Builder(*o, *Obj); 949 Builder.build(); 950 return Obj; 951 } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { 952 ELFBuilder<ELF32BE> Builder(*o, *Obj); 953 Builder.build(); 954 return Obj; 955 } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { 956 ELFBuilder<ELF64BE> Builder(*o, *Obj); 957 Builder.build(); 958 return Obj; 959 } 960 error("Invalid file type"); 961 } 962 963 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { 964 uint8_t *B = Buf.getBufferStart(); 965 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B); 966 std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident); 967 Ehdr.e_type = Obj.Type; 968 Ehdr.e_machine = Obj.Machine; 969 Ehdr.e_version = Obj.Version; 970 Ehdr.e_entry = Obj.Entry; 971 Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset; 972 Ehdr.e_flags = Obj.Flags; 973 Ehdr.e_ehsize = sizeof(Elf_Ehdr); 974 Ehdr.e_phentsize = sizeof(Elf_Phdr); 975 Ehdr.e_phnum = size(Obj.segments()); 976 Ehdr.e_shentsize = sizeof(Elf_Shdr); 977 if (WriteSectionHeaders) { 978 Ehdr.e_shoff = Obj.SHOffset; 979 // """ 980 // If the number of sections is greater than or equal to 981 // SHN_LORESERVE (0xff00), this member has the value zero and the actual 982 // number of section header table entries is contained in the sh_size field 983 // of the section header at index 0. 984 // """ 985 auto Shnum = size(Obj.sections()) + 1; 986 if (Shnum >= SHN_LORESERVE) 987 Ehdr.e_shnum = 0; 988 else 989 Ehdr.e_shnum = Shnum; 990 // """ 991 // If the section name string table section index is greater than or equal 992 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) 993 // and the actual index of the section name string table section is 994 // contained in the sh_link field of the section header at index 0. 995 // """ 996 if (Obj.SectionNames->Index >= SHN_LORESERVE) 997 Ehdr.e_shstrndx = SHN_XINDEX; 998 else 999 Ehdr.e_shstrndx = Obj.SectionNames->Index; 1000 } else { 1001 Ehdr.e_shoff = 0; 1002 Ehdr.e_shnum = 0; 1003 Ehdr.e_shstrndx = 0; 1004 } 1005 } 1006 1007 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { 1008 for (auto &Seg : Obj.segments()) 1009 writePhdr(Seg); 1010 } 1011 1012 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { 1013 uint8_t *B = Buf.getBufferStart() + Obj.SHOffset; 1014 // This reference serves to write the dummy section header at the begining 1015 // of the file. It is not used for anything else 1016 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); 1017 Shdr.sh_name = 0; 1018 Shdr.sh_type = SHT_NULL; 1019 Shdr.sh_flags = 0; 1020 Shdr.sh_addr = 0; 1021 Shdr.sh_offset = 0; 1022 // See writeEhdr for why we do this. 1023 uint64_t Shnum = size(Obj.sections()) + 1; 1024 if (Shnum >= SHN_LORESERVE) 1025 Shdr.sh_size = Shnum; 1026 else 1027 Shdr.sh_size = 0; 1028 // See writeEhdr for why we do this. 1029 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) 1030 Shdr.sh_link = Obj.SectionNames->Index; 1031 else 1032 Shdr.sh_link = 0; 1033 Shdr.sh_info = 0; 1034 Shdr.sh_addralign = 0; 1035 Shdr.sh_entsize = 0; 1036 1037 for (auto &Sec : Obj.sections()) 1038 writeShdr(Sec); 1039 } 1040 1041 template <class ELFT> void ELFWriter<ELFT>::writeSectionData() { 1042 for (auto &Sec : Obj.sections()) 1043 Sec.accept(*SecWriter); 1044 } 1045 1046 void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) { 1047 1048 auto Iter = std::stable_partition( 1049 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { 1050 if (ToRemove(*Sec)) 1051 return false; 1052 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { 1053 if (auto ToRelSec = RelSec->getSection()) 1054 return !ToRemove(*ToRelSec); 1055 } 1056 return true; 1057 }); 1058 if (SymbolTable != nullptr && ToRemove(*SymbolTable)) 1059 SymbolTable = nullptr; 1060 if (SectionNames != nullptr && ToRemove(*SectionNames)) 1061 SectionNames = nullptr; 1062 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) 1063 SectionIndexTable = nullptr; 1064 // Now make sure there are no remaining references to the sections that will 1065 // be removed. Sometimes it is impossible to remove a reference so we emit 1066 // an error here instead. 1067 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { 1068 for (auto &Segment : Segments) 1069 Segment->removeSection(RemoveSec.get()); 1070 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) 1071 KeepSec->removeSectionReferences(RemoveSec.get()); 1072 } 1073 // Now finally get rid of them all togethor. 1074 Sections.erase(Iter, std::end(Sections)); 1075 } 1076 1077 void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 1078 if (!SymbolTable) 1079 return; 1080 1081 for (const SecPtr &Sec : Sections) 1082 Sec->removeSymbols(ToRemove); 1083 } 1084 1085 void Object::sortSections() { 1086 // Put all sections in offset order. Maintain the ordering as closely as 1087 // possible while meeting that demand however. 1088 auto CompareSections = [](const SecPtr &A, const SecPtr &B) { 1089 return A->OriginalOffset < B->OriginalOffset; 1090 }; 1091 std::stable_sort(std::begin(this->Sections), std::end(this->Sections), 1092 CompareSections); 1093 } 1094 1095 static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) { 1096 // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align. 1097 if (Align == 0) 1098 Align = 1; 1099 auto Diff = 1100 static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align); 1101 // We only want to add to Offset, however, so if Diff < 0 we can add Align and 1102 // (Offset + Diff) & -Align == Addr & -Align will still hold. 1103 if (Diff < 0) 1104 Diff += Align; 1105 return Offset + Diff; 1106 } 1107 1108 // Orders segments such that if x = y->ParentSegment then y comes before x. 1109 static void OrderSegments(std::vector<Segment *> &Segments) { 1110 std::stable_sort(std::begin(Segments), std::end(Segments), 1111 compareSegmentsByOffset); 1112 } 1113 1114 // This function finds a consistent layout for a list of segments starting from 1115 // an Offset. It assumes that Segments have been sorted by OrderSegments and 1116 // returns an Offset one past the end of the last segment. 1117 static uint64_t LayoutSegments(std::vector<Segment *> &Segments, 1118 uint64_t Offset) { 1119 assert(std::is_sorted(std::begin(Segments), std::end(Segments), 1120 compareSegmentsByOffset)); 1121 // The only way a segment should move is if a section was between two 1122 // segments and that section was removed. If that section isn't in a segment 1123 // then it's acceptable, but not ideal, to simply move it to after the 1124 // segments. So we can simply layout segments one after the other accounting 1125 // for alignment. 1126 for (auto &Segment : Segments) { 1127 // We assume that segments have been ordered by OriginalOffset and Index 1128 // such that a parent segment will always come before a child segment in 1129 // OrderedSegments. This means that the Offset of the ParentSegment should 1130 // already be set and we can set our offset relative to it. 1131 if (Segment->ParentSegment != nullptr) { 1132 auto Parent = Segment->ParentSegment; 1133 Segment->Offset = 1134 Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; 1135 } else { 1136 Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align); 1137 Segment->Offset = Offset; 1138 } 1139 Offset = std::max(Offset, Segment->Offset + Segment->FileSize); 1140 } 1141 return Offset; 1142 } 1143 1144 // This function finds a consistent layout for a list of sections. It assumes 1145 // that the ->ParentSegment of each section has already been laid out. The 1146 // supplied starting Offset is used for the starting offset of any section that 1147 // does not have a ParentSegment. It returns either the offset given if all 1148 // sections had a ParentSegment or an offset one past the last section if there 1149 // was a section that didn't have a ParentSegment. 1150 template <class Range> 1151 static uint64_t LayoutSections(Range Sections, uint64_t Offset) { 1152 // Now the offset of every segment has been set we can assign the offsets 1153 // of each section. For sections that are covered by a segment we should use 1154 // the segment's original offset and the section's original offset to compute 1155 // the offset from the start of the segment. Using the offset from the start 1156 // of the segment we can assign a new offset to the section. For sections not 1157 // covered by segments we can just bump Offset to the next valid location. 1158 uint32_t Index = 1; 1159 for (auto &Section : Sections) { 1160 Section.Index = Index++; 1161 if (Section.ParentSegment != nullptr) { 1162 auto Segment = *Section.ParentSegment; 1163 Section.Offset = 1164 Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset); 1165 } else { 1166 Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align); 1167 Section.Offset = Offset; 1168 if (Section.Type != SHT_NOBITS) 1169 Offset += Section.Size; 1170 } 1171 } 1172 return Offset; 1173 } 1174 1175 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { 1176 // We need a temporary list of segments that has a special order to it 1177 // so that we know that anytime ->ParentSegment is set that segment has 1178 // already had its offset properly set. 1179 std::vector<Segment *> OrderedSegments; 1180 for (auto &Segment : Obj.segments()) 1181 OrderedSegments.push_back(&Segment); 1182 OrderedSegments.push_back(&Obj.ElfHdrSegment); 1183 OrderedSegments.push_back(&Obj.ProgramHdrSegment); 1184 OrderSegments(OrderedSegments); 1185 // Offset is used as the start offset of the first segment to be laid out. 1186 // Since the ELF Header (ElfHdrSegment) must be at the start of the file, 1187 // we start at offset 0. 1188 uint64_t Offset = 0; 1189 Offset = LayoutSegments(OrderedSegments, Offset); 1190 Offset = LayoutSections(Obj.sections(), Offset); 1191 // If we need to write the section header table out then we need to align the 1192 // Offset so that SHOffset is valid. 1193 if (WriteSectionHeaders) 1194 Offset = alignTo(Offset, sizeof(typename ELFT::Addr)); 1195 Obj.SHOffset = Offset; 1196 } 1197 1198 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { 1199 // We already have the section header offset so we can calculate the total 1200 // size by just adding up the size of each section header. 1201 auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; 1202 return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) + 1203 NullSectionSize; 1204 } 1205 1206 template <class ELFT> void ELFWriter<ELFT>::write() { 1207 writeEhdr(); 1208 writePhdrs(); 1209 writeSectionData(); 1210 if (WriteSectionHeaders) 1211 writeShdrs(); 1212 if (auto E = Buf.commit()) 1213 reportError(Buf.getName(), errorToErrorCode(std::move(E))); 1214 } 1215 1216 template <class ELFT> void ELFWriter<ELFT>::finalize() { 1217 // It could happen that SectionNames has been removed and yet the user wants 1218 // a section header table output. We need to throw an error if a user tries 1219 // to do that. 1220 if (Obj.SectionNames == nullptr && WriteSectionHeaders) 1221 error("Cannot write section header table because section header string " 1222 "table was removed."); 1223 1224 Obj.sortSections(); 1225 1226 // We need to assign indexes before we perform layout because we need to know 1227 // if we need large indexes or not. We can assign indexes first and check as 1228 // we go to see if we will actully need large indexes. 1229 bool NeedsLargeIndexes = false; 1230 if (size(Obj.sections()) >= SHN_LORESERVE) { 1231 auto Sections = Obj.sections(); 1232 NeedsLargeIndexes = 1233 std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(), 1234 [](const SectionBase &Sec) { return Sec.HasSymbol; }); 1235 // TODO: handle case where only one section needs the large index table but 1236 // only needs it because the large index table hasn't been removed yet. 1237 } 1238 1239 if (NeedsLargeIndexes) { 1240 // This means we definitely need to have a section index table but if we 1241 // already have one then we should use it instead of making a new one. 1242 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { 1243 // Addition of a section to the end does not invalidate the indexes of 1244 // other sections and assigns the correct index to the new section. 1245 auto &Shndx = Obj.addSection<SectionIndexSection>(); 1246 Obj.SymbolTable->setShndxTable(&Shndx); 1247 Shndx.setSymTab(Obj.SymbolTable); 1248 } 1249 } else { 1250 // Since we don't need SectionIndexTable we should remove it and all 1251 // references to it. 1252 if (Obj.SectionIndexTable != nullptr) { 1253 Obj.removeSections([this](const SectionBase &Sec) { 1254 return &Sec == Obj.SectionIndexTable; 1255 }); 1256 } 1257 } 1258 1259 // Make sure we add the names of all the sections. Importantly this must be 1260 // done after we decide to add or remove SectionIndexes. 1261 if (Obj.SectionNames != nullptr) 1262 for (const auto &Section : Obj.sections()) { 1263 Obj.SectionNames->addString(Section.Name); 1264 } 1265 1266 // Before we can prepare for layout the indexes need to be finalized. 1267 uint64_t Index = 0; 1268 for (auto &Sec : Obj.sections()) 1269 Sec.Index = Index++; 1270 1271 // The symbol table does not update all other sections on update. For 1272 // instance, symbol names are not added as new symbols are added. This means 1273 // that some sections, like .strtab, don't yet have their final size. 1274 if (Obj.SymbolTable != nullptr) 1275 Obj.SymbolTable->prepareForLayout(); 1276 1277 assignOffsets(); 1278 1279 // Finalize SectionNames first so that we can assign name indexes. 1280 if (Obj.SectionNames != nullptr) 1281 Obj.SectionNames->finalize(); 1282 // Finally now that all offsets and indexes have been set we can finalize any 1283 // remaining issues. 1284 uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr); 1285 for (auto &Section : Obj.sections()) { 1286 Section.HeaderOffset = Offset; 1287 Offset += sizeof(Elf_Shdr); 1288 if (WriteSectionHeaders) 1289 Section.NameIndex = Obj.SectionNames->findIndex(Section.Name); 1290 Section.finalize(); 1291 } 1292 1293 Buf.allocate(totalSize()); 1294 SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf); 1295 } 1296 1297 void BinaryWriter::write() { 1298 for (auto &Section : Obj.sections()) { 1299 if ((Section.Flags & SHF_ALLOC) == 0) 1300 continue; 1301 Section.accept(*SecWriter); 1302 } 1303 if (auto E = Buf.commit()) 1304 reportError(Buf.getName(), errorToErrorCode(std::move(E))); 1305 } 1306 1307 void BinaryWriter::finalize() { 1308 // TODO: Create a filter range to construct OrderedSegments from so that this 1309 // code can be deduped with assignOffsets above. This should also solve the 1310 // todo below for LayoutSections. 1311 // We need a temporary list of segments that has a special order to it 1312 // so that we know that anytime ->ParentSegment is set that segment has 1313 // already had it's offset properly set. We only want to consider the segments 1314 // that will affect layout of allocated sections so we only add those. 1315 std::vector<Segment *> OrderedSegments; 1316 for (auto &Section : Obj.sections()) { 1317 if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) { 1318 OrderedSegments.push_back(Section.ParentSegment); 1319 } 1320 } 1321 1322 // For binary output, we're going to use physical addresses instead of 1323 // virtual addresses, since a binary output is used for cases like ROM 1324 // loading and physical addresses are intended for ROM loading. 1325 // However, if no segment has a physical address, we'll fallback to using 1326 // virtual addresses for all. 1327 if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments), 1328 [](const Segment *Segment) { return Segment->PAddr == 0; })) 1329 for (const auto &Segment : OrderedSegments) 1330 Segment->PAddr = Segment->VAddr; 1331 1332 std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), 1333 compareSegmentsByPAddr); 1334 1335 // Because we add a ParentSegment for each section we might have duplicate 1336 // segments in OrderedSegments. If there were duplicates then LayoutSegments 1337 // would do very strange things. 1338 auto End = 1339 std::unique(std::begin(OrderedSegments), std::end(OrderedSegments)); 1340 OrderedSegments.erase(End, std::end(OrderedSegments)); 1341 1342 uint64_t Offset = 0; 1343 1344 // Modify the first segment so that there is no gap at the start. This allows 1345 // our layout algorithm to proceed as expected while not out writing out the 1346 // gap at the start. 1347 if (!OrderedSegments.empty()) { 1348 auto Seg = OrderedSegments[0]; 1349 auto Sec = Seg->firstSection(); 1350 auto Diff = Sec->OriginalOffset - Seg->OriginalOffset; 1351 Seg->OriginalOffset += Diff; 1352 // The size needs to be shrunk as well. 1353 Seg->FileSize -= Diff; 1354 // The PAddr needs to be increased to remove the gap before the first 1355 // section. 1356 Seg->PAddr += Diff; 1357 uint64_t LowestPAddr = Seg->PAddr; 1358 for (auto &Segment : OrderedSegments) { 1359 Segment->Offset = Segment->PAddr - LowestPAddr; 1360 Offset = std::max(Offset, Segment->Offset + Segment->FileSize); 1361 } 1362 } 1363 1364 // TODO: generalize LayoutSections to take a range. Pass a special range 1365 // constructed from an iterator that skips values for which a predicate does 1366 // not hold. Then pass such a range to LayoutSections instead of constructing 1367 // AllocatedSections here. 1368 std::vector<SectionBase *> AllocatedSections; 1369 for (auto &Section : Obj.sections()) { 1370 if ((Section.Flags & SHF_ALLOC) == 0) 1371 continue; 1372 AllocatedSections.push_back(&Section); 1373 } 1374 LayoutSections(make_pointee_range(AllocatedSections), Offset); 1375 1376 // Now that every section has been laid out we just need to compute the total 1377 // file size. This might not be the same as the offset returned by 1378 // LayoutSections, because we want to truncate the last segment to the end of 1379 // its last section, to match GNU objcopy's behaviour. 1380 TotalSize = 0; 1381 for (const auto &Section : AllocatedSections) { 1382 if (Section->Type != SHT_NOBITS) 1383 TotalSize = std::max(TotalSize, Section->Offset + Section->Size); 1384 } 1385 1386 Buf.allocate(TotalSize); 1387 SecWriter = llvm::make_unique<BinarySectionWriter>(Buf); 1388 } 1389 1390 namespace llvm { 1391 namespace objcopy { 1392 1393 template class ELFBuilder<ELF64LE>; 1394 template class ELFBuilder<ELF64BE>; 1395 template class ELFBuilder<ELF32LE>; 1396 template class ELFBuilder<ELF32BE>; 1397 1398 template class ELFWriter<ELF64LE>; 1399 template class ELFWriter<ELF64BE>; 1400 template class ELFWriter<ELF32LE>; 1401 template class ELFWriter<ELF32BE>; 1402 } // end namespace objcopy 1403 } // end namespace llvm 1404