Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright 2006 VMware, Inc.
      3  * All Rights Reserved.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining a
      6  * copy of this software and associated documentation files (the
      7  * "Software"), to deal in the Software without restriction, including
      8  * without limitation the rights to use, copy, modify, merge, publish,
      9  * distribute, sublicense, and/or sell copies of the Software, and to
     10  * permit persons to whom the Software is furnished to do so, subject to
     11  * the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the
     14  * next paragraph) shall be included in all copies or substantial portions
     15  * of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     20  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 #include <GL/gl.h>
     27 #include <GL/internal/dri_interface.h>
     28 #include <drm_fourcc.h>
     29 
     30 #include "intel_batchbuffer.h"
     31 #include "intel_image.h"
     32 #include "intel_mipmap_tree.h"
     33 #include "intel_tex.h"
     34 #include "intel_blit.h"
     35 #include "intel_fbo.h"
     36 
     37 #include "brw_blorp.h"
     38 #include "brw_context.h"
     39 #include "brw_state.h"
     40 
     41 #include "main/enums.h"
     42 #include "main/fbobject.h"
     43 #include "main/formats.h"
     44 #include "main/glformats.h"
     45 #include "main/texcompress_etc.h"
     46 #include "main/teximage.h"
     47 #include "main/streaming-load-memcpy.h"
     48 #include "x86/common_x86_asm.h"
     49 
     50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
     51 
     52 static void *intel_miptree_map_raw(struct brw_context *brw,
     53                                    struct intel_mipmap_tree *mt,
     54                                    GLbitfield mode);
     55 
     56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
     57 
     58 static bool
     59 intel_miptree_alloc_aux(struct brw_context *brw,
     60                         struct intel_mipmap_tree *mt);
     61 
     62 static bool
     63 intel_miptree_supports_mcs(struct brw_context *brw,
     64                            const struct intel_mipmap_tree *mt)
     65 {
     66    const struct gen_device_info *devinfo = &brw->screen->devinfo;
     67 
     68    /* MCS compression only applies to multisampled miptrees */
     69    if (mt->surf.samples <= 1)
     70       return false;
     71 
     72    /* Prior to Gen7, all MSAA surfaces used IMS layout. */
     73    if (devinfo->gen < 7)
     74       return false;
     75 
     76    /* See isl_surf_get_mcs_surf for details. */
     77    if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
     78       return false;
     79 
     80    /* In Gen7, IMS layout is only used for depth and stencil buffers. */
     81    switch (_mesa_get_format_base_format(mt->format)) {
     82    case GL_DEPTH_COMPONENT:
     83    case GL_STENCIL_INDEX:
     84    case GL_DEPTH_STENCIL:
     85       return false;
     86    default:
     87       /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
     88        *
     89        *   This field must be set to 0 for all SINT MSRTs when all RT channels
     90        *   are not written
     91        *
     92        * In practice this means that we have to disable MCS for all signed
     93        * integer MSAA buffers.  The alternative, to disable MCS only when one
     94        * of the render target channels is disabled, is impractical because it
     95        * would require converting between CMS and UMS MSAA layouts on the fly,
     96        * which is expensive.
     97        */
     98       if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
     99          return false;
    100       } else {
    101          return true;
    102       }
    103    }
    104 }
    105 
    106 static bool
    107 intel_tiling_supports_ccs(const struct brw_context *brw,
    108                           enum isl_tiling tiling)
    109 {
    110    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    111 
    112    /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
    113     * Target(s)", beneath the "Fast Color Clear" bullet (p326):
    114     *
    115     *     - Support is limited to tiled render targets.
    116     *
    117     * Gen9 changes the restriction to Y-tile only.
    118     */
    119    if (devinfo->gen >= 9)
    120       return tiling == ISL_TILING_Y0;
    121    else if (devinfo->gen >= 7)
    122       return tiling != ISL_TILING_LINEAR;
    123    else
    124       return false;
    125 }
    126 
    127 /**
    128  * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
    129  * can be used. This doesn't (and should not) inspect any of the properties of
    130  * the miptree's BO.
    131  *
    132  * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
    133  * beneath the "Fast Color Clear" bullet (p326):
    134  *
    135  *     - Support is for non-mip-mapped and non-array surface types only.
    136  *
    137  * And then later, on p327:
    138  *
    139  *     - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
    140  *       64bpp, and 128bpp.
    141  *
    142  * From the Skylake documentation, it is made clear that X-tiling is no longer
    143  * supported:
    144  *
    145  *     - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
    146  *     non-MSRTs only.
    147  */
    148 static bool
    149 intel_miptree_supports_ccs(struct brw_context *brw,
    150                            const struct intel_mipmap_tree *mt)
    151 {
    152    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    153 
    154    /* MCS support does not exist prior to Gen7 */
    155    if (devinfo->gen < 7)
    156       return false;
    157 
    158    /* This function applies only to non-multisampled render targets. */
    159    if (mt->surf.samples > 1)
    160       return false;
    161 
    162    /* MCS is only supported for color buffers */
    163    switch (_mesa_get_format_base_format(mt->format)) {
    164    case GL_DEPTH_COMPONENT:
    165    case GL_DEPTH_STENCIL:
    166    case GL_STENCIL_INDEX:
    167       return false;
    168    }
    169 
    170    if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
    171       return false;
    172 
    173    const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
    174    const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
    175                         mt->surf.logical_level0_px.depth > 1;
    176 
    177    if (arrayed) {
    178        /* Multisample surfaces with the CMS layout are not layered surfaces,
    179         * yet still have physical_depth0 > 1. Assert that we don't
    180         * accidentally reject a multisampled surface here. We should have
    181         * rejected it earlier by explicitly checking the sample count.
    182         */
    183       assert(mt->surf.samples == 1);
    184    }
    185 
    186    /* Handle the hardware restrictions...
    187     *
    188     * All GENs have the following restriction: "MCS buffer for non-MSRT is
    189     * supported only for RT formats 32bpp, 64bpp, and 128bpp."
    190     *
    191     * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
    192     * Non-MultiSampler Render Target Restrictions) Support is for
    193     * non-mip-mapped and non-array surface types only.
    194     *
    195     * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
    196     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
    197     * surfaces are supported with MCS buffer layout with these alignments in
    198     * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
    199     *
    200     * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
    201     * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
    202     * surfaces are supported with MCS buffer layout with these alignments in
    203     * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
    204     */
    205    if (devinfo->gen < 8 && (mip_mapped || arrayed))
    206       return false;
    207 
    208    /* There's no point in using an MCS buffer if the surface isn't in a
    209     * renderable format.
    210     */
    211    if (!brw->mesa_format_supports_render[mt->format])
    212       return false;
    213 
    214    return true;
    215 }
    216 
    217 static bool
    218 intel_tiling_supports_hiz(const struct brw_context *brw,
    219                           enum isl_tiling tiling)
    220 {
    221    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    222 
    223    if (devinfo->gen < 6)
    224       return false;
    225 
    226    return tiling == ISL_TILING_Y0;
    227 }
    228 
    229 static bool
    230 intel_miptree_supports_hiz(const struct brw_context *brw,
    231                            const struct intel_mipmap_tree *mt)
    232 {
    233    if (!brw->has_hiz)
    234       return false;
    235 
    236    switch (mt->format) {
    237    case MESA_FORMAT_Z_FLOAT32:
    238    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
    239    case MESA_FORMAT_Z24_UNORM_X8_UINT:
    240    case MESA_FORMAT_Z24_UNORM_S8_UINT:
    241    case MESA_FORMAT_Z_UNORM16:
    242       return true;
    243    default:
    244       return false;
    245    }
    246 }
    247 
    248 /**
    249  * Return true if the format that will be used to access the miptree is
    250  * CCS_E-compatible with the miptree's linear/non-sRGB format.
    251  *
    252  * Why use the linear format? Well, although the miptree may be specified with
    253  * an sRGB format, the usage of that color space/format can be toggled. Since
    254  * our HW tends to support more linear formats than sRGB ones, we use this
    255  * format variant for check for CCS_E compatibility.
    256  */
    257 static bool
    258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
    259                                  const struct intel_mipmap_tree *mt,
    260                                  enum isl_format access_format)
    261 {
    262    assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
    263 
    264    mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
    265    enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
    266    return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
    267 }
    268 
    269 static bool
    270 intel_miptree_supports_ccs_e(struct brw_context *brw,
    271                              const struct intel_mipmap_tree *mt)
    272 {
    273    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    274 
    275    if (devinfo->gen < 9)
    276       return false;
    277 
    278    /* For now compression is only enabled for integer formats even though
    279     * there exist supported floating point formats also. This is a heuristic
    280     * decision based on current public benchmarks. In none of the cases these
    281     * formats provided any improvement but a few cases were seen to regress.
    282     * Hence these are left to to be enabled in the future when they are known
    283     * to improve things.
    284     */
    285    if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
    286       return false;
    287 
    288    if (!intel_miptree_supports_ccs(brw, mt))
    289       return false;
    290 
    291    /* Many window system buffers are sRGB even if they are never rendered as
    292     * sRGB.  For those, we want CCS_E for when sRGBEncode is false.  When the
    293     * surface is used as sRGB, we fall back to CCS_D.
    294     */
    295    mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
    296    enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
    297    return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
    298 }
    299 
    300 /**
    301  * Determine depth format corresponding to a depth+stencil format,
    302  * for separate stencil.
    303  */
    304 mesa_format
    305 intel_depth_format_for_depthstencil_format(mesa_format format) {
    306    switch (format) {
    307    case MESA_FORMAT_Z24_UNORM_S8_UINT:
    308       return MESA_FORMAT_Z24_UNORM_X8_UINT;
    309    case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
    310       return MESA_FORMAT_Z_FLOAT32;
    311    default:
    312       return format;
    313    }
    314 }
    315 
    316 static bool
    317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
    318                      unsigned depth0, struct intel_mipmap_level *table)
    319 {
    320    for (unsigned level = first_level; level <= last_level; level++) {
    321       const unsigned d =
    322          target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
    323 
    324       table[level].slice = calloc(d, sizeof(*table[0].slice));
    325       if (!table[level].slice)
    326          goto unwind;
    327    }
    328 
    329    return true;
    330 
    331 unwind:
    332    for (unsigned level = first_level; level <= last_level; level++)
    333       free(table[level].slice);
    334 
    335    return false;
    336 }
    337 
    338 static bool
    339 needs_separate_stencil(const struct brw_context *brw,
    340                        struct intel_mipmap_tree *mt,
    341                        mesa_format format)
    342 {
    343    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    344 
    345    if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
    346       return false;
    347 
    348    if (devinfo->must_use_separate_stencil)
    349       return true;
    350 
    351    return brw->has_separate_stencil &&
    352           intel_miptree_supports_hiz(brw, mt);
    353 }
    354 
    355 /**
    356  * Choose the aux usage for this miptree.  This function must be called fairly
    357  * late in the miptree create process after we have a tiling.
    358  */
    359 static void
    360 intel_miptree_choose_aux_usage(struct brw_context *brw,
    361                                struct intel_mipmap_tree *mt)
    362 {
    363    assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
    364 
    365    if (intel_miptree_supports_mcs(brw, mt)) {
    366       assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
    367       mt->aux_usage = ISL_AUX_USAGE_MCS;
    368    } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
    369               intel_miptree_supports_ccs(brw, mt)) {
    370       if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
    371           intel_miptree_supports_ccs_e(brw, mt)) {
    372          mt->aux_usage = ISL_AUX_USAGE_CCS_E;
    373       } else {
    374          mt->aux_usage = ISL_AUX_USAGE_CCS_D;
    375       }
    376    } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
    377               intel_miptree_supports_hiz(brw, mt)) {
    378       mt->aux_usage = ISL_AUX_USAGE_HIZ;
    379    }
    380 
    381    /* We can do fast-clear on all auxiliary surface types that are
    382     * allocated through the normal texture creation paths.
    383     */
    384    if (mt->aux_usage != ISL_AUX_USAGE_NONE)
    385       mt->supports_fast_clear = true;
    386 }
    387 
    388 
    389 /**
    390  * Choose an appropriate uncompressed format for a requested
    391  * compressed format, if unsupported.
    392  */
    393 mesa_format
    394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
    395 {
    396    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    397 
    398    /* No need to lower ETC formats on these platforms,
    399     * they are supported natively.
    400     */
    401    if (devinfo->gen >= 8 || devinfo->is_baytrail)
    402       return format;
    403 
    404    switch (format) {
    405    case MESA_FORMAT_ETC1_RGB8:
    406       return MESA_FORMAT_R8G8B8X8_UNORM;
    407    case MESA_FORMAT_ETC2_RGB8:
    408       return MESA_FORMAT_R8G8B8X8_UNORM;
    409    case MESA_FORMAT_ETC2_SRGB8:
    410    case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
    411    case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
    412       return MESA_FORMAT_B8G8R8A8_SRGB;
    413    case MESA_FORMAT_ETC2_RGBA8_EAC:
    414    case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
    415       return MESA_FORMAT_R8G8B8A8_UNORM;
    416    case MESA_FORMAT_ETC2_R11_EAC:
    417       return MESA_FORMAT_R_UNORM16;
    418    case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
    419       return MESA_FORMAT_R_SNORM16;
    420    case MESA_FORMAT_ETC2_RG11_EAC:
    421       return MESA_FORMAT_R16G16_UNORM;
    422    case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
    423       return MESA_FORMAT_R16G16_SNORM;
    424    default:
    425       /* Non ETC1 / ETC2 format */
    426       return format;
    427    }
    428 }
    429 
    430 unsigned
    431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
    432 {
    433    if (mt->surf.dim == ISL_SURF_DIM_3D)
    434       return minify(mt->surf.logical_level0_px.depth, level);
    435    else
    436       return mt->surf.logical_level0_px.array_len;
    437 }
    438 
    439 UNUSED static unsigned
    440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
    441 {
    442    /* In case of physical dimensions one needs to consider also the layout.
    443     * See isl_calc_phys_level0_extent_sa().
    444     */
    445    if (surf->dim != ISL_SURF_DIM_3D)
    446       return surf->phys_level0_sa.array_len;
    447 
    448    if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
    449       return minify(surf->phys_level0_sa.array_len, level);
    450 
    451    return minify(surf->phys_level0_sa.depth, level);
    452 }
    453 
    454 /** \brief Assert that the level and layer are valid for the miptree. */
    455 void
    456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
    457                                 uint32_t level,
    458                                 uint32_t layer)
    459 {
    460    (void) mt;
    461    (void) level;
    462    (void) layer;
    463 
    464    assert(level >= mt->first_level);
    465    assert(level <= mt->last_level);
    466    assert(layer < get_num_phys_layers(&mt->surf, level));
    467 }
    468 
    469 static enum isl_aux_state **
    470 create_aux_state_map(struct intel_mipmap_tree *mt,
    471                      enum isl_aux_state initial)
    472 {
    473    const uint32_t levels = mt->last_level + 1;
    474 
    475    uint32_t total_slices = 0;
    476    for (uint32_t level = 0; level < levels; level++)
    477       total_slices += brw_get_num_logical_layers(mt, level);
    478 
    479    const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
    480 
    481    /* We're going to allocate a single chunk of data for both the per-level
    482     * reference array and the arrays of aux_state.  This makes cleanup
    483     * significantly easier.
    484     */
    485    const size_t total_size = per_level_array_size +
    486                              total_slices * sizeof(enum isl_aux_state);
    487    void *data = malloc(total_size);
    488    if (data == NULL)
    489       return NULL;
    490 
    491    enum isl_aux_state **per_level_arr = data;
    492    enum isl_aux_state *s = data + per_level_array_size;
    493    for (uint32_t level = 0; level < levels; level++) {
    494       per_level_arr[level] = s;
    495       const unsigned level_layers = brw_get_num_logical_layers(mt, level);
    496       for (uint32_t a = 0; a < level_layers; a++)
    497          *(s++) = initial;
    498    }
    499    assert((void *)s == data + total_size);
    500 
    501    return per_level_arr;
    502 }
    503 
    504 static void
    505 free_aux_state_map(enum isl_aux_state **state)
    506 {
    507    free(state);
    508 }
    509 
    510 static bool
    511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
    512                          enum isl_tiling tiling, unsigned samples)
    513 {
    514    if (samples > 1)
    515       return false;
    516 
    517    if (tiling == ISL_TILING_LINEAR)
    518       return false;
    519 
    520     /* If the width is much smaller than a tile, don't bother tiling. */
    521    if (row_pitch < 64)
    522       return true;
    523 
    524    if (ALIGN(row_pitch, 512) >= 32768) {
    525       perf_debug("row pitch %u too large to blit, falling back to untiled",
    526                  row_pitch);
    527       return true;
    528    }
    529 
    530    return false;
    531 }
    532 
    533 static bool
    534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
    535                     enum isl_tiling tiling)
    536 {
    537    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    538 
    539    /* If the BO is too large to fit in the aperture, we need to use the
    540     * BLT engine to support it.  Prior to Sandybridge, the BLT paths can't
    541     * handle Y-tiling, so we need to fall back to X.
    542     */
    543    if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
    544        tiling == ISL_TILING_Y0)
    545       return true;
    546 
    547    return false;
    548 }
    549 
    550 static struct intel_mipmap_tree *
    551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
    552              unsigned first_level, unsigned last_level,
    553              unsigned width0, unsigned height0, unsigned depth0,
    554              unsigned num_samples, isl_tiling_flags_t tiling_flags,
    555              isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
    556              unsigned row_pitch, struct brw_bo *bo)
    557 {
    558    struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
    559    if (!mt)
    560       return NULL;
    561 
    562    if (!create_mapping_table(target, first_level, last_level, depth0,
    563                              mt->level)) {
    564       free(mt);
    565       return NULL;
    566    }
    567 
    568    mt->refcount = 1;
    569 
    570    if (target == GL_TEXTURE_CUBE_MAP ||
    571        target == GL_TEXTURE_CUBE_MAP_ARRAY)
    572       isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
    573 
    574    DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
    575         __func__,
    576        _mesa_enum_to_string(target),
    577        _mesa_get_format_name(format),
    578        num_samples, width0, height0, depth0,
    579        first_level, last_level, mt);
    580 
    581    struct isl_surf_init_info init_info = {
    582       .dim = get_isl_surf_dim(target),
    583       .format = translate_tex_format(brw, format, false),
    584       .width = width0,
    585       .height = height0,
    586       .depth = target == GL_TEXTURE_3D ? depth0 : 1,
    587       .levels = last_level - first_level + 1,
    588       .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
    589       .samples = num_samples,
    590       .row_pitch = row_pitch,
    591       .usage = isl_usage_flags,
    592       .tiling_flags = tiling_flags,
    593    };
    594 
    595    if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
    596       goto fail;
    597 
    598    /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
    599     * on gen7 platforms we also need to create Y-tiled copies of stencil for
    600     * texturing since the hardware can't sample from W-tiled surfaces. For
    601     * everything else, check for corner cases needing special treatment.
    602     */
    603    bool is_depth_stencil =
    604       mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
    605    if (!is_depth_stencil) {
    606       if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
    607                                    mt->surf.tiling, mt->surf.samples)) {
    608          init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
    609          if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
    610             goto fail;
    611       } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
    612          init_info.tiling_flags = 1u << ISL_TILING_X;
    613          if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
    614             goto fail;
    615       }
    616    }
    617 
    618    /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
    619     * the size may not be multiple of row_pitch.
    620     * See isl_apply_surface_padding().
    621     */
    622    if (mt->surf.tiling != ISL_TILING_LINEAR)
    623       assert(mt->surf.size % mt->surf.row_pitch == 0);
    624 
    625    if (!bo) {
    626       mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
    627                                   mt->surf.size,
    628                                   isl_tiling_to_i915_tiling(
    629                                      mt->surf.tiling),
    630                                   mt->surf.row_pitch, alloc_flags);
    631       if (!mt->bo)
    632          goto fail;
    633    } else {
    634       mt->bo = bo;
    635    }
    636 
    637    mt->first_level = first_level;
    638    mt->last_level = last_level;
    639    mt->target = target;
    640    mt->format = format;
    641    mt->aux_state = NULL;
    642    mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
    643    mt->compressed = _mesa_is_format_compressed(format);
    644    mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
    645 
    646    return mt;
    647 
    648 fail:
    649    intel_miptree_release(&mt);
    650    return NULL;
    651 }
    652 
    653 static bool
    654 make_separate_stencil_surface(struct brw_context *brw,
    655                               struct intel_mipmap_tree *mt)
    656 {
    657    mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
    658                                  0, mt->surf.levels - 1,
    659                                  mt->surf.logical_level0_px.width,
    660                                  mt->surf.logical_level0_px.height,
    661                                  mt->surf.dim == ISL_SURF_DIM_3D ?
    662                                     mt->surf.logical_level0_px.depth :
    663                                     mt->surf.logical_level0_px.array_len,
    664                                  mt->surf.samples, ISL_TILING_W_BIT,
    665                                  ISL_SURF_USAGE_STENCIL_BIT |
    666                                  ISL_SURF_USAGE_TEXTURE_BIT,
    667                                  BO_ALLOC_BUSY, 0, NULL);
    668 
    669    if (!mt->stencil_mt)
    670       return false;
    671 
    672    mt->stencil_mt->r8stencil_needs_update = true;
    673 
    674    return true;
    675 }
    676 
    677 static struct intel_mipmap_tree *
    678 miptree_create(struct brw_context *brw,
    679                GLenum target,
    680                mesa_format format,
    681                GLuint first_level,
    682                GLuint last_level,
    683                GLuint width0,
    684                GLuint height0,
    685                GLuint depth0,
    686                GLuint num_samples,
    687                enum intel_miptree_create_flags flags)
    688 {
    689    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    690 
    691    if (format == MESA_FORMAT_S_UINT8)
    692       return make_surface(brw, target, format, first_level, last_level,
    693                           width0, height0, depth0, num_samples,
    694                           ISL_TILING_W_BIT,
    695                           ISL_SURF_USAGE_STENCIL_BIT |
    696                           ISL_SURF_USAGE_TEXTURE_BIT,
    697                           BO_ALLOC_BUSY,
    698                           0,
    699                           NULL);
    700 
    701    const GLenum base_format = _mesa_get_format_base_format(format);
    702    if ((base_format == GL_DEPTH_COMPONENT ||
    703         base_format == GL_DEPTH_STENCIL) &&
    704        !(flags & MIPTREE_CREATE_LINEAR)) {
    705       /* Fix up the Z miptree format for how we're splitting out separate
    706        * stencil.  Gen7 expects there to be no stencil bits in its depth buffer.
    707        */
    708       const mesa_format depth_only_format =
    709          intel_depth_format_for_depthstencil_format(format);
    710       struct intel_mipmap_tree *mt = make_surface(
    711          brw, target, devinfo->gen >= 6 ? depth_only_format : format,
    712          first_level, last_level,
    713          width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
    714          ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
    715          BO_ALLOC_BUSY, 0, NULL);
    716 
    717       if (needs_separate_stencil(brw, mt, format) &&
    718           !make_separate_stencil_surface(brw, mt)) {
    719          intel_miptree_release(&mt);
    720          return NULL;
    721       }
    722 
    723       if (!(flags & MIPTREE_CREATE_NO_AUX))
    724          intel_miptree_choose_aux_usage(brw, mt);
    725 
    726       return mt;
    727    }
    728 
    729    mesa_format tex_format = format;
    730    mesa_format etc_format = MESA_FORMAT_NONE;
    731    uint32_t alloc_flags = 0;
    732 
    733    format = intel_lower_compressed_format(brw, format);
    734 
    735    etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
    736 
    737    if (flags & MIPTREE_CREATE_BUSY)
    738       alloc_flags |= BO_ALLOC_BUSY;
    739 
    740    isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
    741       ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
    742 
    743    /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
    744    if (devinfo->gen < 6)
    745       tiling_flags &= ~ISL_TILING_Y0_BIT;
    746 
    747    struct intel_mipmap_tree *mt = make_surface(
    748                                      brw, target, format,
    749                                      first_level, last_level,
    750                                      width0, height0, depth0,
    751                                      num_samples, tiling_flags,
    752                                      ISL_SURF_USAGE_RENDER_TARGET_BIT |
    753                                      ISL_SURF_USAGE_TEXTURE_BIT,
    754                                      alloc_flags, 0, NULL);
    755    if (!mt)
    756       return NULL;
    757 
    758    mt->etc_format = etc_format;
    759 
    760    if (!(flags & MIPTREE_CREATE_NO_AUX))
    761       intel_miptree_choose_aux_usage(brw, mt);
    762 
    763    return mt;
    764 }
    765 
    766 struct intel_mipmap_tree *
    767 intel_miptree_create(struct brw_context *brw,
    768                      GLenum target,
    769                      mesa_format format,
    770                      GLuint first_level,
    771                      GLuint last_level,
    772                      GLuint width0,
    773                      GLuint height0,
    774                      GLuint depth0,
    775                      GLuint num_samples,
    776                      enum intel_miptree_create_flags flags)
    777 {
    778    assert(num_samples > 0);
    779 
    780    struct intel_mipmap_tree *mt = miptree_create(
    781                                      brw, target, format,
    782                                      first_level, last_level,
    783                                      width0, height0, depth0, num_samples,
    784                                      flags);
    785    if (!mt)
    786       return NULL;
    787 
    788    mt->offset = 0;
    789 
    790    if (!intel_miptree_alloc_aux(brw, mt)) {
    791       intel_miptree_release(&mt);
    792       return NULL;
    793    }
    794 
    795    return mt;
    796 }
    797 
    798 struct intel_mipmap_tree *
    799 intel_miptree_create_for_bo(struct brw_context *brw,
    800                             struct brw_bo *bo,
    801                             mesa_format format,
    802                             uint32_t offset,
    803                             uint32_t width,
    804                             uint32_t height,
    805                             uint32_t depth,
    806                             int pitch,
    807                             enum isl_tiling tiling,
    808                             enum intel_miptree_create_flags flags)
    809 {
    810    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    811    struct intel_mipmap_tree *mt;
    812    const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
    813    const GLenum base_format = _mesa_get_format_base_format(format);
    814 
    815    if ((base_format == GL_DEPTH_COMPONENT ||
    816         base_format == GL_DEPTH_STENCIL)) {
    817       const mesa_format depth_only_format =
    818          intel_depth_format_for_depthstencil_format(format);
    819       mt = make_surface(brw, target,
    820                         devinfo->gen >= 6 ? depth_only_format : format,
    821                         0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
    822                         ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
    823                         BO_ALLOC_BUSY, pitch, bo);
    824       if (!mt)
    825          return NULL;
    826 
    827       brw_bo_reference(bo);
    828 
    829       if (!(flags & MIPTREE_CREATE_NO_AUX))
    830          intel_miptree_choose_aux_usage(brw, mt);
    831 
    832       return mt;
    833    } else if (format == MESA_FORMAT_S_UINT8) {
    834       mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
    835                         0, 0, width, height, depth, 1,
    836                         ISL_TILING_W_BIT,
    837                         ISL_SURF_USAGE_STENCIL_BIT |
    838                         ISL_SURF_USAGE_TEXTURE_BIT,
    839                         BO_ALLOC_BUSY, pitch, bo);
    840       if (!mt)
    841          return NULL;
    842 
    843       assert(bo->size >= mt->surf.size);
    844 
    845       brw_bo_reference(bo);
    846       return mt;
    847    }
    848 
    849    /* Nothing will be able to use this miptree with the BO if the offset isn't
    850     * aligned.
    851     */
    852    if (tiling != ISL_TILING_LINEAR)
    853       assert(offset % 4096 == 0);
    854 
    855    /* miptrees can't handle negative pitch.  If you need flipping of images,
    856     * that's outside of the scope of the mt.
    857     */
    858    assert(pitch >= 0);
    859 
    860    /* The BO already has a tiling format and we shouldn't confuse the lower
    861     * layers by making it try to find a tiling format again.
    862     */
    863    assert((flags & MIPTREE_CREATE_LINEAR) == 0);
    864 
    865    mt = make_surface(brw, target, format,
    866                      0, 0, width, height, depth, 1,
    867                      1lu << tiling,
    868                      ISL_SURF_USAGE_RENDER_TARGET_BIT |
    869                      ISL_SURF_USAGE_TEXTURE_BIT,
    870                      0, pitch, bo);
    871    if (!mt)
    872       return NULL;
    873 
    874    brw_bo_reference(bo);
    875    mt->bo = bo;
    876    mt->offset = offset;
    877 
    878    if (!(flags & MIPTREE_CREATE_NO_AUX)) {
    879       intel_miptree_choose_aux_usage(brw, mt);
    880 
    881       if (!intel_miptree_alloc_aux(brw, mt)) {
    882          intel_miptree_release(&mt);
    883          return NULL;
    884       }
    885    }
    886 
    887    return mt;
    888 }
    889 
    890 static struct intel_mipmap_tree *
    891 miptree_create_for_planar_image(struct brw_context *brw,
    892                                 __DRIimage *image, GLenum target,
    893                                 enum isl_tiling tiling)
    894 {
    895    const struct intel_image_format *f = image->planar_format;
    896    struct intel_mipmap_tree *planar_mt = NULL;
    897 
    898    for (int i = 0; i < f->nplanes; i++) {
    899       const int index = f->planes[i].buffer_index;
    900       const uint32_t dri_format = f->planes[i].dri_format;
    901       const mesa_format format = driImageFormatToGLFormat(dri_format);
    902       const uint32_t width = image->width >> f->planes[i].width_shift;
    903       const uint32_t height = image->height >> f->planes[i].height_shift;
    904 
    905       /* Disable creation of the texture's aux buffers because the driver
    906        * exposes no EGL API to manage them. That is, there is no API for
    907        * resolving the aux buffer's content to the main buffer nor for
    908        * invalidating the aux buffer's content.
    909        */
    910       struct intel_mipmap_tree *mt =
    911          intel_miptree_create_for_bo(brw, image->bo, format,
    912                                      image->offsets[index],
    913                                      width, height, 1,
    914                                      image->strides[index],
    915                                      tiling,
    916                                      MIPTREE_CREATE_NO_AUX);
    917       if (mt == NULL)
    918          return NULL;
    919 
    920       mt->target = target;
    921 
    922       if (i == 0)
    923          planar_mt = mt;
    924       else
    925          planar_mt->plane[i - 1] = mt;
    926    }
    927 
    928    planar_mt->drm_modifier = image->modifier;
    929 
    930    return planar_mt;
    931 }
    932 
    933 static bool
    934 create_ccs_buf_for_image(struct brw_context *brw,
    935                          __DRIimage *image,
    936                          struct intel_mipmap_tree *mt,
    937                          enum isl_aux_state initial_state)
    938 {
    939    struct isl_surf temp_ccs_surf;
    940 
    941    /* CCS is only supported for very simple miptrees */
    942    assert(image->aux_offset != 0 && image->aux_pitch != 0);
    943    assert(image->tile_x == 0 && image->tile_y == 0);
    944    assert(mt->surf.samples == 1);
    945    assert(mt->surf.levels == 1);
    946    assert(mt->surf.logical_level0_px.depth == 1);
    947    assert(mt->surf.logical_level0_px.array_len == 1);
    948    assert(mt->first_level == 0);
    949    assert(mt->last_level == 0);
    950 
    951    /* We shouldn't already have a CCS */
    952    assert(!mt->mcs_buf);
    953 
    954    if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
    955                               image->aux_pitch))
    956       return false;
    957 
    958    assert(image->aux_offset < image->bo->size);
    959    assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
    960 
    961    mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
    962    if (mt->mcs_buf == NULL)
    963       return false;
    964 
    965    mt->aux_state = create_aux_state_map(mt, initial_state);
    966    if (!mt->aux_state) {
    967       free(mt->mcs_buf);
    968       mt->mcs_buf = NULL;
    969       return false;
    970    }
    971 
    972    mt->mcs_buf->bo = image->bo;
    973    brw_bo_reference(image->bo);
    974 
    975    mt->mcs_buf->offset = image->aux_offset;
    976    mt->mcs_buf->size = image->bo->size - image->aux_offset;
    977    mt->mcs_buf->pitch = image->aux_pitch;
    978    mt->mcs_buf->qpitch = 0;
    979    mt->mcs_buf->surf = temp_ccs_surf;
    980 
    981    return true;
    982 }
    983 
    984 struct intel_mipmap_tree *
    985 intel_miptree_create_for_dri_image(struct brw_context *brw,
    986                                    __DRIimage *image, GLenum target,
    987                                    mesa_format format,
    988                                    bool is_winsys_image)
    989 {
    990    uint32_t bo_tiling, bo_swizzle;
    991    brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
    992 
    993    const struct isl_drm_modifier_info *mod_info =
    994       isl_drm_modifier_get_info(image->modifier);
    995 
    996    const enum isl_tiling tiling =
    997       mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
    998 
    999    if (image->planar_format && image->planar_format->nplanes > 1)
   1000       return miptree_create_for_planar_image(brw, image, target, tiling);
   1001 
   1002    if (image->planar_format)
   1003       assert(image->planar_format->planes[0].dri_format == image->dri_format);
   1004 
   1005    if (!brw->ctx.TextureFormatSupported[format]) {
   1006       /* The texture storage paths in core Mesa detect if the driver does not
   1007        * support the user-requested format, and then searches for a
   1008        * fallback format. The DRIimage code bypasses core Mesa, though. So we
   1009        * do the fallbacks here for important formats.
   1010        *
   1011        * We must support DRM_FOURCC_XBGR8888 textures because the Android
   1012        * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
   1013        * the Chrome OS compositor consumes as dma_buf EGLImages.
   1014        */
   1015       format = _mesa_format_fallback_rgbx_to_rgba(format);
   1016    }
   1017 
   1018    if (!brw->ctx.TextureFormatSupported[format])
   1019       return NULL;
   1020 
   1021    enum intel_miptree_create_flags mt_create_flags = 0;
   1022 
   1023    /* If this image comes in from a window system, we have different
   1024     * requirements than if it comes in via an EGL import operation.  Window
   1025     * system images can use any form of auxiliary compression we wish because
   1026     * they get "flushed" before being handed off to the window system and we
   1027     * have the opportunity to do resolves.  Non window-system images, on the
   1028     * other hand, have no resolve point so we can't have aux without a
   1029     * modifier.
   1030     */
   1031    if (!is_winsys_image)
   1032       mt_create_flags |= MIPTREE_CREATE_NO_AUX;
   1033 
   1034    /* If we have a modifier which specifies aux, don't create one yet */
   1035    if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
   1036       mt_create_flags |= MIPTREE_CREATE_NO_AUX;
   1037 
   1038    /* Disable creation of the texture's aux buffers because the driver exposes
   1039     * no EGL API to manage them. That is, there is no API for resolving the aux
   1040     * buffer's content to the main buffer nor for invalidating the aux buffer's
   1041     * content.
   1042     */
   1043    struct intel_mipmap_tree *mt =
   1044       intel_miptree_create_for_bo(brw, image->bo, format,
   1045                                   image->offset, image->width, image->height, 1,
   1046                                   image->pitch, tiling, mt_create_flags);
   1047    if (mt == NULL)
   1048       return NULL;
   1049 
   1050    mt->target = target;
   1051    mt->level[0].level_x = image->tile_x;
   1052    mt->level[0].level_y = image->tile_y;
   1053    mt->drm_modifier = image->modifier;
   1054 
   1055    /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
   1056     * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
   1057     * trouble resolving back to destination image due to alignment issues.
   1058     */
   1059    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   1060    if (!devinfo->has_surface_tile_offset) {
   1061       uint32_t draw_x, draw_y;
   1062       intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
   1063 
   1064       if (draw_x != 0 || draw_y != 0) {
   1065          _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
   1066          intel_miptree_release(&mt);
   1067          return NULL;
   1068       }
   1069    }
   1070 
   1071    if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
   1072       assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
   1073 
   1074       mt->aux_usage = mod_info->aux_usage;
   1075       /* If we are a window system buffer, then we can support fast-clears
   1076        * even if the modifier doesn't support them by doing a partial resolve
   1077        * as part of the flush operation.
   1078        */
   1079       mt->supports_fast_clear =
   1080          is_winsys_image || mod_info->supports_clear_color;
   1081 
   1082       /* We don't know the actual state of the surface when we get it but we
   1083        * can make a pretty good guess based on the modifier.  What we do know
   1084        * for sure is that it isn't in the AUX_INVALID state, so we just assume
   1085        * a worst case of compression.
   1086        */
   1087       enum isl_aux_state initial_state =
   1088          isl_drm_modifier_get_default_aux_state(image->modifier);
   1089 
   1090       if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
   1091          intel_miptree_release(&mt);
   1092          return NULL;
   1093       }
   1094    }
   1095 
   1096    /* Don't assume coherency for imported EGLimages.  We don't know what
   1097     * external clients are going to do with it.  They may scan it out.
   1098     */
   1099    image->bo->cache_coherent = false;
   1100 
   1101    return mt;
   1102 }
   1103 
   1104 /**
   1105  * For a singlesample renderbuffer, this simply wraps the given BO with a
   1106  * miptree.
   1107  *
   1108  * For a multisample renderbuffer, this wraps the window system's
   1109  * (singlesample) BO with a singlesample miptree attached to the
   1110  * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
   1111  * that will contain the actual rendering (which is lazily resolved to
   1112  * irb->singlesample_mt).
   1113  */
   1114 bool
   1115 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
   1116                                          struct intel_renderbuffer *irb,
   1117                                          struct intel_mipmap_tree *singlesample_mt,
   1118                                          uint32_t width, uint32_t height,
   1119                                          uint32_t pitch)
   1120 {
   1121    struct intel_mipmap_tree *multisample_mt = NULL;
   1122    struct gl_renderbuffer *rb = &irb->Base.Base;
   1123    mesa_format format = rb->Format;
   1124    const unsigned num_samples = MAX2(rb->NumSamples, 1);
   1125 
   1126    /* Only the front and back buffers, which are color buffers, are allocated
   1127     * through the image loader.
   1128     */
   1129    assert(_mesa_get_format_base_format(format) == GL_RGB ||
   1130           _mesa_get_format_base_format(format) == GL_RGBA);
   1131 
   1132    assert(singlesample_mt);
   1133 
   1134    if (num_samples == 1) {
   1135       intel_miptree_release(&irb->mt);
   1136       irb->mt = singlesample_mt;
   1137 
   1138       assert(!irb->singlesample_mt);
   1139    } else {
   1140       intel_miptree_release(&irb->singlesample_mt);
   1141       irb->singlesample_mt = singlesample_mt;
   1142 
   1143       if (!irb->mt ||
   1144           irb->mt->surf.logical_level0_px.width != width ||
   1145           irb->mt->surf.logical_level0_px.height != height) {
   1146          multisample_mt = intel_miptree_create_for_renderbuffer(intel,
   1147                                                                 format,
   1148                                                                 width,
   1149                                                                 height,
   1150                                                                 num_samples);
   1151          if (!multisample_mt)
   1152             goto fail;
   1153 
   1154          irb->need_downsample = false;
   1155          intel_miptree_release(&irb->mt);
   1156          irb->mt = multisample_mt;
   1157       }
   1158    }
   1159    return true;
   1160 
   1161 fail:
   1162    intel_miptree_release(&irb->mt);
   1163    return false;
   1164 }
   1165 
   1166 struct intel_mipmap_tree*
   1167 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
   1168                                       mesa_format format,
   1169                                       uint32_t width,
   1170                                       uint32_t height,
   1171                                       uint32_t num_samples)
   1172 {
   1173    struct intel_mipmap_tree *mt;
   1174    uint32_t depth = 1;
   1175    GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
   1176 
   1177    mt = intel_miptree_create(brw, target, format, 0, 0,
   1178                              width, height, depth, num_samples,
   1179                              MIPTREE_CREATE_BUSY);
   1180    if (!mt)
   1181       goto fail;
   1182 
   1183    return mt;
   1184 
   1185 fail:
   1186    intel_miptree_release(&mt);
   1187    return NULL;
   1188 }
   1189 
   1190 void
   1191 intel_miptree_reference(struct intel_mipmap_tree **dst,
   1192                         struct intel_mipmap_tree *src)
   1193 {
   1194    if (*dst == src)
   1195       return;
   1196 
   1197    intel_miptree_release(dst);
   1198 
   1199    if (src) {
   1200       src->refcount++;
   1201       DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
   1202    }
   1203 
   1204    *dst = src;
   1205 }
   1206 
   1207 static void
   1208 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
   1209 {
   1210    if (aux_buf == NULL)
   1211       return;
   1212 
   1213    brw_bo_unreference(aux_buf->bo);
   1214 
   1215    free(aux_buf);
   1216 }
   1217 
   1218 void
   1219 intel_miptree_release(struct intel_mipmap_tree **mt)
   1220 {
   1221    if (!*mt)
   1222       return;
   1223 
   1224    DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
   1225    if (--(*mt)->refcount <= 0) {
   1226       GLuint i;
   1227 
   1228       DBG("%s deleting %p\n", __func__, *mt);
   1229 
   1230       brw_bo_unreference((*mt)->bo);
   1231       intel_miptree_release(&(*mt)->stencil_mt);
   1232       intel_miptree_release(&(*mt)->r8stencil_mt);
   1233       intel_miptree_aux_buffer_free((*mt)->hiz_buf);
   1234       intel_miptree_aux_buffer_free((*mt)->mcs_buf);
   1235       free_aux_state_map((*mt)->aux_state);
   1236 
   1237       intel_miptree_release(&(*mt)->plane[0]);
   1238       intel_miptree_release(&(*mt)->plane[1]);
   1239 
   1240       for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
   1241 	 free((*mt)->level[i].slice);
   1242       }
   1243 
   1244       free(*mt);
   1245    }
   1246    *mt = NULL;
   1247 }
   1248 
   1249 
   1250 void
   1251 intel_get_image_dims(struct gl_texture_image *image,
   1252                      int *width, int *height, int *depth)
   1253 {
   1254    switch (image->TexObject->Target) {
   1255    case GL_TEXTURE_1D_ARRAY:
   1256       /* For a 1D Array texture the OpenGL API will treat the image height as
   1257        * the number of array slices. For Intel hardware, we treat the 1D array
   1258        * as a 2D Array with a height of 1. So, here we want to swap image
   1259        * height and depth.
   1260        */
   1261       assert(image->Depth == 1);
   1262       *width = image->Width;
   1263       *height = 1;
   1264       *depth = image->Height;
   1265       break;
   1266    case GL_TEXTURE_CUBE_MAP:
   1267       /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
   1268        * though we really have 6 slices.
   1269        */
   1270       assert(image->Depth == 1);
   1271       *width = image->Width;
   1272       *height = image->Height;
   1273       *depth = 6;
   1274       break;
   1275    default:
   1276       *width = image->Width;
   1277       *height = image->Height;
   1278       *depth = image->Depth;
   1279       break;
   1280    }
   1281 }
   1282 
   1283 /**
   1284  * Can the image be pulled into a unified mipmap tree?  This mirrors
   1285  * the completeness test in a lot of ways.
   1286  *
   1287  * Not sure whether I want to pass gl_texture_image here.
   1288  */
   1289 bool
   1290 intel_miptree_match_image(struct intel_mipmap_tree *mt,
   1291                           struct gl_texture_image *image)
   1292 {
   1293    struct intel_texture_image *intelImage = intel_texture_image(image);
   1294    GLuint level = intelImage->base.Base.Level;
   1295    int width, height, depth;
   1296 
   1297    /* glTexImage* choose the texture object based on the target passed in, and
   1298     * objects can't change targets over their lifetimes, so this should be
   1299     * true.
   1300     */
   1301    assert(image->TexObject->Target == mt->target);
   1302 
   1303    mesa_format mt_format = mt->format;
   1304    if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
   1305       mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
   1306    if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
   1307       mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
   1308    if (mt->etc_format != MESA_FORMAT_NONE)
   1309       mt_format = mt->etc_format;
   1310 
   1311    if (image->TexFormat != mt_format)
   1312       return false;
   1313 
   1314    intel_get_image_dims(image, &width, &height, &depth);
   1315 
   1316    if (mt->target == GL_TEXTURE_CUBE_MAP)
   1317       depth = 6;
   1318 
   1319    if (level >= mt->surf.levels)
   1320       return false;
   1321 
   1322    const unsigned level_depth =
   1323       mt->surf.dim == ISL_SURF_DIM_3D ?
   1324          minify(mt->surf.logical_level0_px.depth, level) :
   1325          mt->surf.logical_level0_px.array_len;
   1326 
   1327    return width == minify(mt->surf.logical_level0_px.width, level) &&
   1328           height == minify(mt->surf.logical_level0_px.height, level) &&
   1329           depth == level_depth &&
   1330           MAX2(image->NumSamples, 1) == mt->surf.samples;
   1331 }
   1332 
   1333 void
   1334 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
   1335 			       GLuint level, GLuint slice,
   1336 			       GLuint *x, GLuint *y)
   1337 {
   1338    if (level == 0 && slice == 0) {
   1339       *x = mt->level[0].level_x;
   1340       *y = mt->level[0].level_y;
   1341       return;
   1342    }
   1343 
   1344    uint32_t x_offset_sa, y_offset_sa;
   1345 
   1346    /* Miptree itself can have an offset only if it represents a single
   1347     * slice in an imported buffer object.
   1348     * See intel_miptree_create_for_dri_image().
   1349     */
   1350    assert(mt->level[0].level_x == 0);
   1351    assert(mt->level[0].level_y == 0);
   1352 
   1353    /* Given level is relative to level zero while the miptree may be
   1354     * represent just a subset of all levels starting from 'first_level'.
   1355     */
   1356    assert(level >= mt->first_level);
   1357    level -= mt->first_level;
   1358 
   1359    const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
   1360    slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
   1361    isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
   1362                                 &x_offset_sa, &y_offset_sa);
   1363 
   1364    *x = x_offset_sa;
   1365    *y = y_offset_sa;
   1366 }
   1367 
   1368 
   1369 /**
   1370  * This function computes the tile_w (in bytes) and tile_h (in rows) of
   1371  * different tiling patterns. If the BO is untiled, tile_w is set to cpp
   1372  * and tile_h is set to 1.
   1373  */
   1374 void
   1375 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
   1376                     uint32_t *tile_w, uint32_t *tile_h)
   1377 {
   1378    switch (tiling) {
   1379    case ISL_TILING_X:
   1380       *tile_w = 512;
   1381       *tile_h = 8;
   1382       break;
   1383    case ISL_TILING_Y0:
   1384       *tile_w = 128;
   1385       *tile_h = 32;
   1386       break;
   1387    case ISL_TILING_LINEAR:
   1388       *tile_w = cpp;
   1389       *tile_h = 1;
   1390       break;
   1391    default:
   1392       unreachable("not reached");
   1393    }
   1394 }
   1395 
   1396 
   1397 /**
   1398  * This function computes masks that may be used to select the bits of the X
   1399  * and Y coordinates that indicate the offset within a tile.  If the BO is
   1400  * untiled, the masks are set to 0.
   1401  */
   1402 void
   1403 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
   1404                      uint32_t *mask_x, uint32_t *mask_y)
   1405 {
   1406    uint32_t tile_w_bytes, tile_h;
   1407 
   1408    intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
   1409 
   1410    *mask_x = tile_w_bytes / cpp - 1;
   1411    *mask_y = tile_h - 1;
   1412 }
   1413 
   1414 /**
   1415  * Compute the offset (in bytes) from the start of the BO to the given x
   1416  * and y coordinate.  For tiled BOs, caller must ensure that x and y are
   1417  * multiples of the tile size.
   1418  */
   1419 uint32_t
   1420 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
   1421                                  uint32_t x, uint32_t y)
   1422 {
   1423    int cpp = mt->cpp;
   1424    uint32_t pitch = mt->surf.row_pitch;
   1425 
   1426    switch (mt->surf.tiling) {
   1427    default:
   1428       unreachable("not reached");
   1429    case ISL_TILING_LINEAR:
   1430       return y * pitch + x * cpp;
   1431    case ISL_TILING_X:
   1432       assert((x % (512 / cpp)) == 0);
   1433       assert((y % 8) == 0);
   1434       return y * pitch + x / (512 / cpp) * 4096;
   1435    case ISL_TILING_Y0:
   1436       assert((x % (128 / cpp)) == 0);
   1437       assert((y % 32) == 0);
   1438       return y * pitch + x / (128 / cpp) * 4096;
   1439    }
   1440 }
   1441 
   1442 /**
   1443  * Rendering with tiled buffers requires that the base address of the buffer
   1444  * be aligned to a page boundary.  For renderbuffers, and sometimes with
   1445  * textures, we may want the surface to point at a texture image level that
   1446  * isn't at a page boundary.
   1447  *
   1448  * This function returns an appropriately-aligned base offset
   1449  * according to the tiling restrictions, plus any required x/y offset
   1450  * from there.
   1451  */
   1452 uint32_t
   1453 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
   1454                                GLuint level, GLuint slice,
   1455                                uint32_t *tile_x,
   1456                                uint32_t *tile_y)
   1457 {
   1458    uint32_t x, y;
   1459    uint32_t mask_x, mask_y;
   1460 
   1461    intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
   1462    intel_miptree_get_image_offset(mt, level, slice, &x, &y);
   1463 
   1464    *tile_x = x & mask_x;
   1465    *tile_y = y & mask_y;
   1466 
   1467    return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
   1468 }
   1469 
   1470 static void
   1471 intel_miptree_copy_slice_sw(struct brw_context *brw,
   1472                             struct intel_mipmap_tree *src_mt,
   1473                             unsigned src_level, unsigned src_layer,
   1474                             struct intel_mipmap_tree *dst_mt,
   1475                             unsigned dst_level, unsigned dst_layer,
   1476                             unsigned width, unsigned height)
   1477 {
   1478    void *src, *dst;
   1479    ptrdiff_t src_stride, dst_stride;
   1480    const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
   1481 
   1482    intel_miptree_map(brw, src_mt,
   1483                      src_level, src_layer,
   1484                      0, 0,
   1485                      width, height,
   1486                      GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
   1487                      &src, &src_stride);
   1488 
   1489    intel_miptree_map(brw, dst_mt,
   1490                      dst_level, dst_layer,
   1491                      0, 0,
   1492                      width, height,
   1493                      GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
   1494                      BRW_MAP_DIRECT_BIT,
   1495                      &dst, &dst_stride);
   1496 
   1497    DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
   1498        _mesa_get_format_name(src_mt->format),
   1499        src_mt, src, src_stride,
   1500        _mesa_get_format_name(dst_mt->format),
   1501        dst_mt, dst, dst_stride,
   1502        width, height);
   1503 
   1504    int row_size = cpp * width;
   1505    if (src_stride == row_size &&
   1506        dst_stride == row_size) {
   1507       memcpy(dst, src, row_size * height);
   1508    } else {
   1509       for (int i = 0; i < height; i++) {
   1510          memcpy(dst, src, row_size);
   1511          dst += dst_stride;
   1512          src += src_stride;
   1513       }
   1514    }
   1515 
   1516    intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
   1517    intel_miptree_unmap(brw, src_mt, src_level, src_layer);
   1518 
   1519    /* Don't forget to copy the stencil data over, too.  We could have skipped
   1520     * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
   1521     * shuffling the two data sources in/out of temporary storage instead of
   1522     * the direct mapping we get this way.
   1523     */
   1524    if (dst_mt->stencil_mt) {
   1525       assert(src_mt->stencil_mt);
   1526       intel_miptree_copy_slice_sw(brw,
   1527                                   src_mt->stencil_mt, src_level, src_layer,
   1528                                   dst_mt->stencil_mt, dst_level, dst_layer,
   1529                                   width, height);
   1530    }
   1531 }
   1532 
   1533 void
   1534 intel_miptree_copy_slice(struct brw_context *brw,
   1535                          struct intel_mipmap_tree *src_mt,
   1536                          unsigned src_level, unsigned src_layer,
   1537                          struct intel_mipmap_tree *dst_mt,
   1538                          unsigned dst_level, unsigned dst_layer)
   1539 
   1540 {
   1541    mesa_format format = src_mt->format;
   1542    unsigned width = minify(src_mt->surf.phys_level0_sa.width,
   1543                            src_level - src_mt->first_level);
   1544    unsigned height = minify(src_mt->surf.phys_level0_sa.height,
   1545                             src_level - src_mt->first_level);
   1546 
   1547    assert(src_layer < get_num_phys_layers(&src_mt->surf,
   1548                                           src_level - src_mt->first_level));
   1549 
   1550    assert(src_mt->format == dst_mt->format);
   1551 
   1552    if (dst_mt->compressed) {
   1553       unsigned int i, j;
   1554       _mesa_get_format_block_size(dst_mt->format, &i, &j);
   1555       height = ALIGN_NPOT(height, j) / j;
   1556       width = ALIGN_NPOT(width, i) / i;
   1557    }
   1558 
   1559    /* If it's a packed depth/stencil buffer with separate stencil, the blit
   1560     * below won't apply since we can't do the depth's Y tiling or the
   1561     * stencil's W tiling in the blitter.
   1562     */
   1563    if (src_mt->stencil_mt) {
   1564       intel_miptree_copy_slice_sw(brw,
   1565                                   src_mt, src_level, src_layer,
   1566                                   dst_mt, dst_level, dst_layer,
   1567                                   width, height);
   1568       return;
   1569    }
   1570 
   1571    uint32_t dst_x, dst_y, src_x, src_y;
   1572    intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
   1573                                   &dst_x, &dst_y);
   1574    intel_miptree_get_image_offset(src_mt, src_level, src_layer,
   1575                                   &src_x, &src_y);
   1576 
   1577    DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
   1578        _mesa_get_format_name(src_mt->format),
   1579        src_mt, src_x, src_y, src_mt->surf.row_pitch,
   1580        _mesa_get_format_name(dst_mt->format),
   1581        dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
   1582        width, height);
   1583 
   1584    if (!intel_miptree_blit(brw,
   1585                            src_mt, src_level, src_layer, 0, 0, false,
   1586                            dst_mt, dst_level, dst_layer, 0, 0, false,
   1587                            width, height, GL_COPY)) {
   1588       perf_debug("miptree validate blit for %s failed\n",
   1589                  _mesa_get_format_name(format));
   1590 
   1591       intel_miptree_copy_slice_sw(brw,
   1592                                   src_mt, src_level, src_layer,
   1593                                   dst_mt, dst_level, dst_layer,
   1594                                   width, height);
   1595    }
   1596 }
   1597 
   1598 /**
   1599  * Copies the image's current data to the given miptree, and associates that
   1600  * miptree with the image.
   1601  */
   1602 void
   1603 intel_miptree_copy_teximage(struct brw_context *brw,
   1604 			    struct intel_texture_image *intelImage,
   1605 			    struct intel_mipmap_tree *dst_mt)
   1606 {
   1607    struct intel_mipmap_tree *src_mt = intelImage->mt;
   1608    struct intel_texture_object *intel_obj =
   1609       intel_texture_object(intelImage->base.Base.TexObject);
   1610    int level = intelImage->base.Base.Level;
   1611    const unsigned face = intelImage->base.Base.Face;
   1612    unsigned start_layer, end_layer;
   1613 
   1614    if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
   1615       assert(face == 0);
   1616       assert(intelImage->base.Base.Height);
   1617       start_layer = 0;
   1618       end_layer = intelImage->base.Base.Height - 1;
   1619    } else if (face > 0) {
   1620       start_layer = face;
   1621       end_layer = face;
   1622    } else {
   1623       assert(intelImage->base.Base.Depth);
   1624       start_layer = 0;
   1625       end_layer = intelImage->base.Base.Depth - 1;
   1626    }
   1627 
   1628    for (unsigned i = start_layer; i <= end_layer; i++) {
   1629       intel_miptree_copy_slice(brw,
   1630                                src_mt, level, i,
   1631                                dst_mt, level, i);
   1632    }
   1633 
   1634    intel_miptree_reference(&intelImage->mt, dst_mt);
   1635    intel_obj->needs_validate = true;
   1636 }
   1637 
   1638 static void
   1639 intel_miptree_init_mcs(struct brw_context *brw,
   1640                        struct intel_mipmap_tree *mt,
   1641                        int init_value)
   1642 {
   1643    assert(mt->mcs_buf != NULL);
   1644 
   1645    /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
   1646     *
   1647     *     When MCS buffer is enabled and bound to MSRT, it is required that it
   1648     *     is cleared prior to any rendering.
   1649     *
   1650     * Since we don't use the MCS buffer for any purpose other than rendering,
   1651     * it makes sense to just clear it immediately upon allocation.
   1652     *
   1653     * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
   1654     */
   1655    void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
   1656    if (unlikely(map == NULL)) {
   1657       fprintf(stderr, "Failed to map mcs buffer into GTT\n");
   1658       brw_bo_unreference(mt->mcs_buf->bo);
   1659       free(mt->mcs_buf);
   1660       return;
   1661    }
   1662    void *data = map;
   1663    memset(data, init_value, mt->mcs_buf->size);
   1664    brw_bo_unmap(mt->mcs_buf->bo);
   1665 }
   1666 
   1667 static struct intel_miptree_aux_buffer *
   1668 intel_alloc_aux_buffer(struct brw_context *brw,
   1669                        const char *name,
   1670                        const struct isl_surf *aux_surf,
   1671                        uint32_t alloc_flags,
   1672                        struct intel_mipmap_tree *mt)
   1673 {
   1674    struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
   1675    if (!buf)
   1676       return false;
   1677 
   1678    buf->size = aux_surf->size;
   1679    buf->pitch = aux_surf->row_pitch;
   1680    buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
   1681 
   1682    /* ISL has stricter set of alignment rules then the drm allocator.
   1683     * Therefore one can pass the ISL dimensions in terms of bytes instead of
   1684     * trying to recalculate based on different format block sizes.
   1685     */
   1686    buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
   1687                                 I915_TILING_Y, buf->pitch, alloc_flags);
   1688    if (!buf->bo) {
   1689       free(buf);
   1690       return NULL;
   1691    }
   1692 
   1693    buf->surf = *aux_surf;
   1694 
   1695    return buf;
   1696 }
   1697 
   1698 static bool
   1699 intel_miptree_alloc_mcs(struct brw_context *brw,
   1700                         struct intel_mipmap_tree *mt,
   1701                         GLuint num_samples)
   1702 {
   1703    assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
   1704    assert(mt->mcs_buf == NULL);
   1705    assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
   1706 
   1707    /* Multisampled miptrees are only supported for single level. */
   1708    assert(mt->first_level == 0);
   1709    enum isl_aux_state **aux_state =
   1710       create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
   1711    if (!aux_state)
   1712       return false;
   1713 
   1714    struct isl_surf temp_mcs_surf;
   1715 
   1716    MAYBE_UNUSED bool ok =
   1717       isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
   1718    assert(ok);
   1719 
   1720    /* Buffer needs to be initialised requiring the buffer to be immediately
   1721     * mapped to cpu space for writing. Therefore do not use the gpu access
   1722     * flag which can cause an unnecessary delay if the backing pages happened
   1723     * to be just used by the GPU.
   1724     */
   1725    const uint32_t alloc_flags = 0;
   1726    mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
   1727                                         &temp_mcs_surf, alloc_flags, mt);
   1728    if (!mt->mcs_buf) {
   1729       free(aux_state);
   1730       return false;
   1731    }
   1732 
   1733    mt->aux_state = aux_state;
   1734 
   1735    intel_miptree_init_mcs(brw, mt, 0xFF);
   1736 
   1737    return true;
   1738 }
   1739 
   1740 bool
   1741 intel_miptree_alloc_ccs(struct brw_context *brw,
   1742                         struct intel_mipmap_tree *mt)
   1743 {
   1744    assert(mt->mcs_buf == NULL);
   1745    assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
   1746           mt->aux_usage == ISL_AUX_USAGE_CCS_D);
   1747 
   1748    struct isl_surf temp_ccs_surf;
   1749 
   1750    if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
   1751       return false;
   1752 
   1753    assert(temp_ccs_surf.size &&
   1754           (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
   1755 
   1756    enum isl_aux_state **aux_state =
   1757       create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
   1758    if (!aux_state)
   1759       return false;
   1760 
   1761    /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
   1762     * state.  From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
   1763     *
   1764     *    "If Software wants to enable Color Compression without Fast clear,
   1765     *    Software needs to initialize MCS with zeros."
   1766     *
   1767     * A CCS value of 0 indicates that the corresponding block is in the
   1768     * pass-through state which is what we want.
   1769     *
   1770     * For CCS_D, on the other hand, we don't care as we're about to perform a
   1771     * fast-clear operation.  In that case, being hot in caches more useful.
   1772     */
   1773    const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
   1774                                 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
   1775    mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
   1776                                         &temp_ccs_surf, alloc_flags, mt);
   1777    if (!mt->mcs_buf) {
   1778       free(aux_state);
   1779       return false;
   1780    }
   1781 
   1782    mt->aux_state = aux_state;
   1783 
   1784    return true;
   1785 }
   1786 
   1787 /**
   1788  * Helper for intel_miptree_alloc_hiz() that sets
   1789  * \c mt->level[level].has_hiz. Return true if and only if
   1790  * \c has_hiz was set.
   1791  */
   1792 static bool
   1793 intel_miptree_level_enable_hiz(struct brw_context *brw,
   1794                                struct intel_mipmap_tree *mt,
   1795                                uint32_t level)
   1796 {
   1797    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   1798 
   1799    assert(mt->hiz_buf);
   1800    assert(mt->surf.size > 0);
   1801 
   1802    if (devinfo->gen >= 8 || devinfo->is_haswell) {
   1803       uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
   1804       uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
   1805 
   1806       /* Disable HiZ for LOD > 0 unless the width is 8 aligned
   1807        * and the height is 4 aligned. This allows our HiZ support
   1808        * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
   1809        * we can grow the width & height to allow the HiZ op to
   1810        * force the proper size alignments.
   1811        */
   1812       if (level > 0 && ((width & 7) || (height & 3))) {
   1813          DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
   1814          return false;
   1815       }
   1816    }
   1817 
   1818    DBG("mt %p level %d: HiZ enabled\n", mt, level);
   1819    mt->level[level].has_hiz = true;
   1820    return true;
   1821 }
   1822 
   1823 bool
   1824 intel_miptree_alloc_hiz(struct brw_context *brw,
   1825 			struct intel_mipmap_tree *mt)
   1826 {
   1827    assert(mt->hiz_buf == NULL);
   1828    assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
   1829 
   1830    enum isl_aux_state **aux_state =
   1831       create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
   1832    if (!aux_state)
   1833       return false;
   1834 
   1835    struct isl_surf temp_hiz_surf;
   1836 
   1837    MAYBE_UNUSED bool ok =
   1838       isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
   1839    assert(ok);
   1840 
   1841    const uint32_t alloc_flags = BO_ALLOC_BUSY;
   1842    mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
   1843                                         &temp_hiz_surf, alloc_flags, mt);
   1844 
   1845    if (!mt->hiz_buf) {
   1846       free(aux_state);
   1847       return false;
   1848    }
   1849 
   1850    for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
   1851       intel_miptree_level_enable_hiz(brw, mt, level);
   1852 
   1853    mt->aux_state = aux_state;
   1854 
   1855    return true;
   1856 }
   1857 
   1858 
   1859 /**
   1860  * Allocate the initial aux surface for a miptree based on mt->aux_usage
   1861  *
   1862  * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
   1863  * create the auxiliary surfaces up-front.  CCS_D, on the other hand, can only
   1864  * compress clear color so we wait until an actual fast-clear to allocate it.
   1865  */
   1866 static bool
   1867 intel_miptree_alloc_aux(struct brw_context *brw,
   1868                         struct intel_mipmap_tree *mt)
   1869 {
   1870    switch (mt->aux_usage) {
   1871    case ISL_AUX_USAGE_NONE:
   1872       return true;
   1873 
   1874    case ISL_AUX_USAGE_HIZ:
   1875       assert(!_mesa_is_format_color_format(mt->format));
   1876       if (!intel_miptree_alloc_hiz(brw, mt))
   1877          return false;
   1878       return true;
   1879 
   1880    case ISL_AUX_USAGE_MCS:
   1881       assert(_mesa_is_format_color_format(mt->format));
   1882       assert(mt->surf.samples > 1);
   1883       if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
   1884          return false;
   1885       return true;
   1886 
   1887    case ISL_AUX_USAGE_CCS_D:
   1888       /* Since CCS_D can only compress clear color so we wait until an actual
   1889        * fast-clear to allocate it.
   1890        */
   1891       return true;
   1892 
   1893    case ISL_AUX_USAGE_CCS_E:
   1894       assert(_mesa_is_format_color_format(mt->format));
   1895       assert(mt->surf.samples == 1);
   1896       if (!intel_miptree_alloc_ccs(brw, mt))
   1897          return false;
   1898       return true;
   1899    }
   1900 
   1901    unreachable("Invalid aux usage");
   1902 }
   1903 
   1904 
   1905 /**
   1906  * Can the miptree sample using the hiz buffer?
   1907  */
   1908 bool
   1909 intel_miptree_sample_with_hiz(struct brw_context *brw,
   1910                               struct intel_mipmap_tree *mt)
   1911 {
   1912    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   1913 
   1914    /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
   1915     * so keep things conservative for now and never enable it unless we're SKL+.
   1916     */
   1917    if (devinfo->gen < 9) {
   1918       return false;
   1919    }
   1920 
   1921    if (!mt->hiz_buf) {
   1922       return false;
   1923    }
   1924 
   1925    /* It seems the hardware won't fallback to the depth buffer if some of the
   1926     * mipmap levels aren't available in the HiZ buffer. So we need all levels
   1927     * of the texture to be HiZ enabled.
   1928     */
   1929    for (unsigned level = 0; level < mt->surf.levels; ++level) {
   1930       if (!intel_miptree_level_has_hiz(mt, level))
   1931          return false;
   1932    }
   1933 
   1934    /* If compressed multisampling is enabled, then we use it for the auxiliary
   1935     * buffer instead.
   1936     *
   1937     * From the BDW PRM (Volume 2d: Command Reference: Structures
   1938     *                   RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
   1939     *
   1940     *  "If this field is set to AUX_HIZ, Number of Multisamples must be
   1941     *   MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
   1942     *
   1943     * There is no such blurb for 1D textures, but there is sufficient evidence
   1944     * that this is broken on SKL+.
   1945     */
   1946    return (mt->surf.samples == 1 &&
   1947            mt->target != GL_TEXTURE_3D &&
   1948            mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
   1949 }
   1950 
   1951 /**
   1952  * Does the miptree slice have hiz enabled?
   1953  */
   1954 bool
   1955 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
   1956 {
   1957    intel_miptree_check_level_layer(mt, level, 0);
   1958    return mt->level[level].has_hiz;
   1959 }
   1960 
   1961 static inline uint32_t
   1962 miptree_level_range_length(const struct intel_mipmap_tree *mt,
   1963                            uint32_t start_level, uint32_t num_levels)
   1964 {
   1965    assert(start_level >= mt->first_level);
   1966    assert(start_level <= mt->last_level);
   1967 
   1968    if (num_levels == INTEL_REMAINING_LAYERS)
   1969       num_levels = mt->last_level - start_level + 1;
   1970    /* Check for overflow */
   1971    assert(start_level + num_levels >= start_level);
   1972    assert(start_level + num_levels <= mt->last_level + 1);
   1973 
   1974    return num_levels;
   1975 }
   1976 
   1977 static inline uint32_t
   1978 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
   1979                            uint32_t start_layer, uint32_t num_layers)
   1980 {
   1981    assert(level <= mt->last_level);
   1982 
   1983    const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
   1984    assert(start_layer < total_num_layers);
   1985    if (num_layers == INTEL_REMAINING_LAYERS)
   1986       num_layers = total_num_layers - start_layer;
   1987    /* Check for overflow */
   1988    assert(start_layer + num_layers >= start_layer);
   1989    assert(start_layer + num_layers <= total_num_layers);
   1990 
   1991    return num_layers;
   1992 }
   1993 
   1994 bool
   1995 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
   1996                                    unsigned start_level, unsigned num_levels,
   1997                                    unsigned start_layer, unsigned num_layers)
   1998 {
   1999    assert(_mesa_is_format_color_format(mt->format));
   2000 
   2001    if (!mt->mcs_buf)
   2002       return false;
   2003 
   2004    /* Clamp the level range to fit the miptree */
   2005    num_levels = miptree_level_range_length(mt, start_level, num_levels);
   2006 
   2007    for (uint32_t l = 0; l < num_levels; l++) {
   2008       const uint32_t level = start_level + l;
   2009       const uint32_t level_layers =
   2010          miptree_layer_range_length(mt, level, start_layer, num_layers);
   2011       for (unsigned a = 0; a < level_layers; a++) {
   2012          enum isl_aux_state aux_state =
   2013             intel_miptree_get_aux_state(mt, level, start_layer + a);
   2014          assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
   2015          if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
   2016             return true;
   2017       }
   2018    }
   2019 
   2020    return false;
   2021 }
   2022 
   2023 static void
   2024 intel_miptree_check_color_resolve(const struct brw_context *brw,
   2025                                   const struct intel_mipmap_tree *mt,
   2026                                   unsigned level, unsigned layer)
   2027 {
   2028    if (!mt->mcs_buf)
   2029       return;
   2030 
   2031    /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
   2032    assert(brw->screen->devinfo.gen >= 8 ||
   2033           (level == 0 && mt->first_level == 0 && mt->last_level == 0));
   2034 
   2035    /* Compression of arrayed msaa surfaces is supported. */
   2036    if (mt->surf.samples > 1)
   2037       return;
   2038 
   2039    /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
   2040    assert(brw->screen->devinfo.gen >= 8 ||
   2041           (layer == 0 &&
   2042            mt->surf.logical_level0_px.depth == 1 &&
   2043            mt->surf.logical_level0_px.array_len == 1));
   2044 
   2045    (void)level;
   2046    (void)layer;
   2047 }
   2048 
   2049 static enum blorp_fast_clear_op
   2050 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
   2051                      enum isl_aux_usage aux_usage,
   2052                      bool fast_clear_supported)
   2053 {
   2054    assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
   2055 
   2056    const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
   2057 
   2058    assert(ccs_supported == fast_clear_supported);
   2059 
   2060    switch (aux_state) {
   2061    case ISL_AUX_STATE_CLEAR:
   2062    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2063       if (!ccs_supported)
   2064          return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
   2065       else
   2066          return BLORP_FAST_CLEAR_OP_NONE;
   2067 
   2068    case ISL_AUX_STATE_PASS_THROUGH:
   2069       return BLORP_FAST_CLEAR_OP_NONE;
   2070 
   2071    case ISL_AUX_STATE_RESOLVED:
   2072    case ISL_AUX_STATE_AUX_INVALID:
   2073    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2074    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2075       break;
   2076    }
   2077 
   2078    unreachable("Invalid aux state for CCS_D");
   2079 }
   2080 
   2081 static enum blorp_fast_clear_op
   2082 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
   2083                      enum isl_aux_usage aux_usage,
   2084                      bool fast_clear_supported)
   2085 {
   2086    /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
   2087    assert(aux_usage == ISL_AUX_USAGE_NONE ||
   2088           aux_usage == ISL_AUX_USAGE_CCS_D ||
   2089           aux_usage == ISL_AUX_USAGE_CCS_E);
   2090 
   2091    if (aux_usage == ISL_AUX_USAGE_CCS_D)
   2092       assert(fast_clear_supported);
   2093 
   2094    switch (aux_state) {
   2095    case ISL_AUX_STATE_CLEAR:
   2096    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2097       if (fast_clear_supported)
   2098          return BLORP_FAST_CLEAR_OP_NONE;
   2099       else if (aux_usage == ISL_AUX_USAGE_CCS_E)
   2100          return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
   2101       else
   2102          return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
   2103 
   2104    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2105       if (aux_usage != ISL_AUX_USAGE_CCS_E)
   2106          return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
   2107       else if (!fast_clear_supported)
   2108          return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
   2109       else
   2110          return BLORP_FAST_CLEAR_OP_NONE;
   2111 
   2112    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2113       if (aux_usage != ISL_AUX_USAGE_CCS_E)
   2114          return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
   2115       else
   2116          return BLORP_FAST_CLEAR_OP_NONE;
   2117 
   2118    case ISL_AUX_STATE_PASS_THROUGH:
   2119       return BLORP_FAST_CLEAR_OP_NONE;
   2120 
   2121    case ISL_AUX_STATE_RESOLVED:
   2122    case ISL_AUX_STATE_AUX_INVALID:
   2123       break;
   2124    }
   2125 
   2126    unreachable("Invalid aux state for CCS_E");
   2127 }
   2128 
   2129 static void
   2130 intel_miptree_prepare_ccs_access(struct brw_context *brw,
   2131                                  struct intel_mipmap_tree *mt,
   2132                                  uint32_t level, uint32_t layer,
   2133                                  enum isl_aux_usage aux_usage,
   2134                                  bool fast_clear_supported)
   2135 {
   2136    enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
   2137 
   2138    enum blorp_fast_clear_op resolve_op;
   2139    if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
   2140       resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
   2141                                         fast_clear_supported);
   2142    } else {
   2143       assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
   2144       resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
   2145                                         fast_clear_supported);
   2146    }
   2147 
   2148    if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
   2149       intel_miptree_check_color_resolve(brw, mt, level, layer);
   2150       brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
   2151 
   2152       switch (resolve_op) {
   2153       case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
   2154          /* The CCS full resolve operation destroys the CCS and sets it to the
   2155           * pass-through state.  (You can also think of this as being both a
   2156           * resolve and an ambiguate in one operation.)
   2157           */
   2158          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2159                                      ISL_AUX_STATE_PASS_THROUGH);
   2160          break;
   2161 
   2162       case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
   2163          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2164                                      ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
   2165          break;
   2166 
   2167       default:
   2168          unreachable("Invalid resolve op");
   2169       }
   2170    }
   2171 }
   2172 
   2173 static void
   2174 intel_miptree_finish_ccs_write(struct brw_context *brw,
   2175                                struct intel_mipmap_tree *mt,
   2176                                uint32_t level, uint32_t layer,
   2177                                enum isl_aux_usage aux_usage)
   2178 {
   2179    assert(aux_usage == ISL_AUX_USAGE_NONE ||
   2180           aux_usage == ISL_AUX_USAGE_CCS_D ||
   2181           aux_usage == ISL_AUX_USAGE_CCS_E);
   2182 
   2183    enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
   2184 
   2185    if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
   2186       switch (aux_state) {
   2187       case ISL_AUX_STATE_CLEAR:
   2188       case ISL_AUX_STATE_PARTIAL_CLEAR:
   2189          assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
   2190                 aux_usage == ISL_AUX_USAGE_CCS_D);
   2191 
   2192          if (aux_usage == ISL_AUX_USAGE_CCS_E) {
   2193             intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2194                                         ISL_AUX_STATE_COMPRESSED_CLEAR);
   2195          } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
   2196             intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2197                                         ISL_AUX_STATE_PARTIAL_CLEAR);
   2198          }
   2199          break;
   2200 
   2201       case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2202       case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2203          assert(aux_usage == ISL_AUX_USAGE_CCS_E);
   2204          break; /* Nothing to do */
   2205 
   2206       case ISL_AUX_STATE_PASS_THROUGH:
   2207          if (aux_usage == ISL_AUX_USAGE_CCS_E) {
   2208             intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2209                                         ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
   2210          } else {
   2211             /* Nothing to do */
   2212          }
   2213          break;
   2214 
   2215       case ISL_AUX_STATE_RESOLVED:
   2216       case ISL_AUX_STATE_AUX_INVALID:
   2217          unreachable("Invalid aux state for CCS_E");
   2218       }
   2219    } else {
   2220       assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
   2221       /* CCS_D is a bit simpler */
   2222       switch (aux_state) {
   2223       case ISL_AUX_STATE_CLEAR:
   2224          assert(aux_usage == ISL_AUX_USAGE_CCS_D);
   2225          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2226                                      ISL_AUX_STATE_PARTIAL_CLEAR);
   2227          break;
   2228 
   2229       case ISL_AUX_STATE_PARTIAL_CLEAR:
   2230          assert(aux_usage == ISL_AUX_USAGE_CCS_D);
   2231          break; /* Nothing to do */
   2232 
   2233       case ISL_AUX_STATE_PASS_THROUGH:
   2234          /* Nothing to do */
   2235          break;
   2236 
   2237       case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2238       case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2239       case ISL_AUX_STATE_RESOLVED:
   2240       case ISL_AUX_STATE_AUX_INVALID:
   2241          unreachable("Invalid aux state for CCS_D");
   2242       }
   2243    }
   2244 }
   2245 
   2246 static void
   2247 intel_miptree_prepare_mcs_access(struct brw_context *brw,
   2248                                  struct intel_mipmap_tree *mt,
   2249                                  uint32_t layer,
   2250                                  enum isl_aux_usage aux_usage,
   2251                                  bool fast_clear_supported)
   2252 {
   2253    assert(aux_usage == ISL_AUX_USAGE_MCS);
   2254 
   2255    switch (intel_miptree_get_aux_state(mt, 0, layer)) {
   2256    case ISL_AUX_STATE_CLEAR:
   2257    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2258       if (!fast_clear_supported) {
   2259          brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
   2260          intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
   2261                                      ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
   2262       }
   2263       break;
   2264 
   2265    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2266       break; /* Nothing to do */
   2267 
   2268    case ISL_AUX_STATE_RESOLVED:
   2269    case ISL_AUX_STATE_PASS_THROUGH:
   2270    case ISL_AUX_STATE_AUX_INVALID:
   2271    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2272       unreachable("Invalid aux state for MCS");
   2273    }
   2274 }
   2275 
   2276 static void
   2277 intel_miptree_finish_mcs_write(struct brw_context *brw,
   2278                                struct intel_mipmap_tree *mt,
   2279                                uint32_t layer,
   2280                                enum isl_aux_usage aux_usage)
   2281 {
   2282    assert(aux_usage == ISL_AUX_USAGE_MCS);
   2283 
   2284    switch (intel_miptree_get_aux_state(mt, 0, layer)) {
   2285    case ISL_AUX_STATE_CLEAR:
   2286       intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
   2287                                   ISL_AUX_STATE_COMPRESSED_CLEAR);
   2288       break;
   2289 
   2290    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2291    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2292       break; /* Nothing to do */
   2293 
   2294    case ISL_AUX_STATE_RESOLVED:
   2295    case ISL_AUX_STATE_PASS_THROUGH:
   2296    case ISL_AUX_STATE_AUX_INVALID:
   2297    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2298       unreachable("Invalid aux state for MCS");
   2299    }
   2300 }
   2301 
   2302 static void
   2303 intel_miptree_prepare_hiz_access(struct brw_context *brw,
   2304                                  struct intel_mipmap_tree *mt,
   2305                                  uint32_t level, uint32_t layer,
   2306                                  enum isl_aux_usage aux_usage,
   2307                                  bool fast_clear_supported)
   2308 {
   2309    assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
   2310 
   2311    enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
   2312    switch (intel_miptree_get_aux_state(mt, level, layer)) {
   2313    case ISL_AUX_STATE_CLEAR:
   2314    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2315       if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
   2316          hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
   2317       break;
   2318 
   2319    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2320       if (aux_usage != ISL_AUX_USAGE_HIZ)
   2321          hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
   2322       break;
   2323 
   2324    case ISL_AUX_STATE_PASS_THROUGH:
   2325    case ISL_AUX_STATE_RESOLVED:
   2326       break;
   2327 
   2328    case ISL_AUX_STATE_AUX_INVALID:
   2329       if (aux_usage == ISL_AUX_USAGE_HIZ)
   2330          hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
   2331       break;
   2332 
   2333    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2334       unreachable("Invalid HiZ state");
   2335    }
   2336 
   2337    if (hiz_op != BLORP_HIZ_OP_NONE) {
   2338       intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
   2339 
   2340       switch (hiz_op) {
   2341       case BLORP_HIZ_OP_DEPTH_RESOLVE:
   2342          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2343                                      ISL_AUX_STATE_RESOLVED);
   2344          break;
   2345 
   2346       case BLORP_HIZ_OP_HIZ_RESOLVE:
   2347          /* The HiZ resolve operation is actually an ambiguate */
   2348          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2349                                      ISL_AUX_STATE_PASS_THROUGH);
   2350          break;
   2351 
   2352       default:
   2353          unreachable("Invalid HiZ op");
   2354       }
   2355    }
   2356 }
   2357 
   2358 static void
   2359 intel_miptree_finish_hiz_write(struct brw_context *brw,
   2360                                struct intel_mipmap_tree *mt,
   2361                                uint32_t level, uint32_t layer,
   2362                                enum isl_aux_usage aux_usage)
   2363 {
   2364    assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
   2365 
   2366    switch (intel_miptree_get_aux_state(mt, level, layer)) {
   2367    case ISL_AUX_STATE_CLEAR:
   2368       assert(aux_usage == ISL_AUX_USAGE_HIZ);
   2369       intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2370                                   ISL_AUX_STATE_COMPRESSED_CLEAR);
   2371       break;
   2372 
   2373    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   2374    case ISL_AUX_STATE_COMPRESSED_CLEAR:
   2375       assert(aux_usage == ISL_AUX_USAGE_HIZ);
   2376       break; /* Nothing to do */
   2377 
   2378    case ISL_AUX_STATE_RESOLVED:
   2379       if (aux_usage == ISL_AUX_USAGE_HIZ) {
   2380          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2381                                      ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
   2382       } else {
   2383          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2384                                      ISL_AUX_STATE_AUX_INVALID);
   2385       }
   2386       break;
   2387 
   2388    case ISL_AUX_STATE_PASS_THROUGH:
   2389       if (aux_usage == ISL_AUX_USAGE_HIZ) {
   2390          intel_miptree_set_aux_state(brw, mt, level, layer, 1,
   2391                                      ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
   2392       }
   2393       break;
   2394 
   2395    case ISL_AUX_STATE_AUX_INVALID:
   2396       assert(aux_usage != ISL_AUX_USAGE_HIZ);
   2397       break;
   2398 
   2399    case ISL_AUX_STATE_PARTIAL_CLEAR:
   2400       unreachable("Invalid HiZ state");
   2401    }
   2402 }
   2403 
   2404 void
   2405 intel_miptree_prepare_access(struct brw_context *brw,
   2406                              struct intel_mipmap_tree *mt,
   2407                              uint32_t start_level, uint32_t num_levels,
   2408                              uint32_t start_layer, uint32_t num_layers,
   2409                              enum isl_aux_usage aux_usage,
   2410                              bool fast_clear_supported)
   2411 {
   2412    num_levels = miptree_level_range_length(mt, start_level, num_levels);
   2413 
   2414    switch (mt->aux_usage) {
   2415    case ISL_AUX_USAGE_NONE:
   2416       /* Nothing to do */
   2417       break;
   2418 
   2419    case ISL_AUX_USAGE_MCS:
   2420       assert(mt->mcs_buf);
   2421       assert(start_level == 0 && num_levels == 1);
   2422       const uint32_t level_layers =
   2423          miptree_layer_range_length(mt, 0, start_layer, num_layers);
   2424       for (uint32_t a = 0; a < level_layers; a++) {
   2425          intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
   2426                                           aux_usage, fast_clear_supported);
   2427       }
   2428       break;
   2429 
   2430    case ISL_AUX_USAGE_CCS_D:
   2431    case ISL_AUX_USAGE_CCS_E:
   2432       if (!mt->mcs_buf)
   2433          return;
   2434 
   2435       for (uint32_t l = 0; l < num_levels; l++) {
   2436          const uint32_t level = start_level + l;
   2437          const uint32_t level_layers =
   2438             miptree_layer_range_length(mt, level, start_layer, num_layers);
   2439          for (uint32_t a = 0; a < level_layers; a++) {
   2440             intel_miptree_prepare_ccs_access(brw, mt, level,
   2441                                              start_layer + a,
   2442                                              aux_usage, fast_clear_supported);
   2443          }
   2444       }
   2445       break;
   2446 
   2447    case ISL_AUX_USAGE_HIZ:
   2448       assert(mt->hiz_buf);
   2449       for (uint32_t l = 0; l < num_levels; l++) {
   2450          const uint32_t level = start_level + l;
   2451          if (!intel_miptree_level_has_hiz(mt, level))
   2452             continue;
   2453 
   2454          const uint32_t level_layers =
   2455             miptree_layer_range_length(mt, level, start_layer, num_layers);
   2456          for (uint32_t a = 0; a < level_layers; a++) {
   2457             intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
   2458                                              aux_usage, fast_clear_supported);
   2459          }
   2460       }
   2461       break;
   2462 
   2463    default:
   2464       unreachable("Invalid aux usage");
   2465    }
   2466 }
   2467 
   2468 void
   2469 intel_miptree_finish_write(struct brw_context *brw,
   2470                            struct intel_mipmap_tree *mt, uint32_t level,
   2471                            uint32_t start_layer, uint32_t num_layers,
   2472                            enum isl_aux_usage aux_usage)
   2473 {
   2474    num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
   2475 
   2476    switch (mt->aux_usage) {
   2477    case ISL_AUX_USAGE_NONE:
   2478       /* Nothing to do */
   2479       break;
   2480 
   2481    case ISL_AUX_USAGE_MCS:
   2482       assert(mt->mcs_buf);
   2483       for (uint32_t a = 0; a < num_layers; a++) {
   2484          intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
   2485                                         aux_usage);
   2486       }
   2487       break;
   2488 
   2489    case ISL_AUX_USAGE_CCS_D:
   2490    case ISL_AUX_USAGE_CCS_E:
   2491       if (!mt->mcs_buf)
   2492          return;
   2493 
   2494       for (uint32_t a = 0; a < num_layers; a++) {
   2495          intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
   2496                                         aux_usage);
   2497       }
   2498       break;
   2499 
   2500    case ISL_AUX_USAGE_HIZ:
   2501       if (!intel_miptree_level_has_hiz(mt, level))
   2502          return;
   2503 
   2504       for (uint32_t a = 0; a < num_layers; a++) {
   2505          intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
   2506                                         aux_usage);
   2507       }
   2508       break;
   2509 
   2510    default:
   2511       unreachable("Invavlid aux usage");
   2512    }
   2513 }
   2514 
   2515 enum isl_aux_state
   2516 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
   2517                             uint32_t level, uint32_t layer)
   2518 {
   2519    intel_miptree_check_level_layer(mt, level, layer);
   2520 
   2521    if (_mesa_is_format_color_format(mt->format)) {
   2522       assert(mt->mcs_buf != NULL);
   2523       assert(mt->surf.samples == 1 ||
   2524              mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
   2525    } else if (mt->format == MESA_FORMAT_S_UINT8) {
   2526       unreachable("Cannot get aux state for stencil");
   2527    } else {
   2528       assert(intel_miptree_level_has_hiz(mt, level));
   2529    }
   2530 
   2531    return mt->aux_state[level][layer];
   2532 }
   2533 
   2534 void
   2535 intel_miptree_set_aux_state(struct brw_context *brw,
   2536                             struct intel_mipmap_tree *mt, uint32_t level,
   2537                             uint32_t start_layer, uint32_t num_layers,
   2538                             enum isl_aux_state aux_state)
   2539 {
   2540    num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
   2541 
   2542    if (_mesa_is_format_color_format(mt->format)) {
   2543       assert(mt->mcs_buf != NULL);
   2544       assert(mt->surf.samples == 1 ||
   2545              mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
   2546    } else if (mt->format == MESA_FORMAT_S_UINT8) {
   2547       unreachable("Cannot get aux state for stencil");
   2548    } else {
   2549       assert(intel_miptree_level_has_hiz(mt, level));
   2550    }
   2551 
   2552    for (unsigned a = 0; a < num_layers; a++) {
   2553       if (mt->aux_state[level][start_layer + a] != aux_state) {
   2554          mt->aux_state[level][start_layer + a] = aux_state;
   2555          brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
   2556       }
   2557    }
   2558 }
   2559 
   2560 /* On Gen9 color buffers may be compressed by the hardware (lossless
   2561  * compression). There are, however, format restrictions and care needs to be
   2562  * taken that the sampler engine is capable for re-interpreting a buffer with
   2563  * format different the buffer was originally written with.
   2564  *
   2565  * For example, SRGB formats are not compressible and the sampler engine isn't
   2566  * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
   2567  * color buffer needs to be resolved so that the sampling surface can be
   2568  * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
   2569  * set).
   2570  */
   2571 static bool
   2572 can_texture_with_ccs(struct brw_context *brw,
   2573                      struct intel_mipmap_tree *mt,
   2574                      enum isl_format view_format)
   2575 {
   2576    if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
   2577       return false;
   2578 
   2579    if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
   2580                                          mt, view_format)) {
   2581       perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
   2582                  isl_format_get_layout(view_format)->name,
   2583                  _mesa_get_format_name(mt->format));
   2584       return false;
   2585    }
   2586 
   2587    return true;
   2588 }
   2589 
   2590 enum isl_aux_usage
   2591 intel_miptree_texture_aux_usage(struct brw_context *brw,
   2592                                 struct intel_mipmap_tree *mt,
   2593                                 enum isl_format view_format)
   2594 {
   2595    switch (mt->aux_usage) {
   2596    case ISL_AUX_USAGE_HIZ:
   2597       if (intel_miptree_sample_with_hiz(brw, mt))
   2598          return ISL_AUX_USAGE_HIZ;
   2599       break;
   2600 
   2601    case ISL_AUX_USAGE_MCS:
   2602       return ISL_AUX_USAGE_MCS;
   2603 
   2604    case ISL_AUX_USAGE_CCS_D:
   2605    case ISL_AUX_USAGE_CCS_E:
   2606       if (!mt->mcs_buf) {
   2607          assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
   2608          return ISL_AUX_USAGE_NONE;
   2609       }
   2610 
   2611       /* If we don't have any unresolved color, report an aux usage of
   2612        * ISL_AUX_USAGE_NONE.  This way, texturing won't even look at the
   2613        * aux surface and we can save some bandwidth.
   2614        */
   2615       if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
   2616                                               0, INTEL_REMAINING_LAYERS))
   2617          return ISL_AUX_USAGE_NONE;
   2618 
   2619       if (can_texture_with_ccs(brw, mt, view_format))
   2620          return ISL_AUX_USAGE_CCS_E;
   2621       break;
   2622 
   2623    default:
   2624       break;
   2625    }
   2626 
   2627    return ISL_AUX_USAGE_NONE;
   2628 }
   2629 
   2630 static bool
   2631 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
   2632 {
   2633    /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
   2634     * values so sRGB curve application was a no-op for all fast-clearable
   2635     * formats.
   2636     *
   2637     * On gen9+, the hardware supports arbitrary clear values.  For sRGB clear
   2638     * values, the hardware interprets the floats, not as what would be
   2639     * returned from the sampler (or written by the shader), but as being
   2640     * between format conversion and sRGB curve application.  This means that
   2641     * we can switch between sRGB and UNORM without having to whack the clear
   2642     * color.
   2643     */
   2644    return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
   2645 }
   2646 
   2647 void
   2648 intel_miptree_prepare_texture(struct brw_context *brw,
   2649                               struct intel_mipmap_tree *mt,
   2650                               enum isl_format view_format,
   2651                               uint32_t start_level, uint32_t num_levels,
   2652                               uint32_t start_layer, uint32_t num_layers,
   2653                               bool disable_aux)
   2654 {
   2655    enum isl_aux_usage aux_usage = disable_aux ? ISL_AUX_USAGE_NONE :
   2656       intel_miptree_texture_aux_usage(brw, mt, view_format);
   2657    bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
   2658 
   2659    /* Clear color is specified as ints or floats and the conversion is done by
   2660     * the sampler.  If we have a texture view, we would have to perform the
   2661     * clear color conversion manually.  Just disable clear color.
   2662     */
   2663    if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
   2664       clear_supported = false;
   2665 
   2666    intel_miptree_prepare_access(brw, mt, start_level, num_levels,
   2667                                 start_layer, num_layers,
   2668                                 aux_usage, clear_supported);
   2669 }
   2670 
   2671 void
   2672 intel_miptree_prepare_image(struct brw_context *brw,
   2673                             struct intel_mipmap_tree *mt)
   2674 {
   2675    /* The data port doesn't understand any compression */
   2676    intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
   2677                                 0, INTEL_REMAINING_LAYERS,
   2678                                 ISL_AUX_USAGE_NONE, false);
   2679 }
   2680 
   2681 enum isl_aux_usage
   2682 intel_miptree_render_aux_usage(struct brw_context *brw,
   2683                                struct intel_mipmap_tree *mt,
   2684                                enum isl_format render_format,
   2685                                bool blend_enabled,
   2686                                bool draw_aux_disabled)
   2687 {
   2688    struct gen_device_info *devinfo = &brw->screen->devinfo;
   2689 
   2690    if (draw_aux_disabled)
   2691       return ISL_AUX_USAGE_NONE;
   2692 
   2693    switch (mt->aux_usage) {
   2694    case ISL_AUX_USAGE_MCS:
   2695       assert(mt->mcs_buf);
   2696       return ISL_AUX_USAGE_MCS;
   2697 
   2698    case ISL_AUX_USAGE_CCS_D:
   2699    case ISL_AUX_USAGE_CCS_E:
   2700       if (!mt->mcs_buf) {
   2701          assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
   2702          return ISL_AUX_USAGE_NONE;
   2703       }
   2704 
   2705       /* gen9 hardware technically supports non-0/1 clear colors with sRGB
   2706        * formats.  However, there are issues with blending where it doesn't
   2707        * properly apply the sRGB curve to the clear color when blending.
   2708        */
   2709       if (devinfo->gen == 9 && blend_enabled &&
   2710           isl_format_is_srgb(render_format) &&
   2711           !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
   2712          return ISL_AUX_USAGE_NONE;
   2713 
   2714       if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
   2715           format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
   2716                                            mt, render_format))
   2717          return ISL_AUX_USAGE_CCS_E;
   2718 
   2719       /* Otherwise, we have to fall back to CCS_D */
   2720       return ISL_AUX_USAGE_CCS_D;
   2721 
   2722    default:
   2723       return ISL_AUX_USAGE_NONE;
   2724    }
   2725 }
   2726 
   2727 void
   2728 intel_miptree_prepare_render(struct brw_context *brw,
   2729                              struct intel_mipmap_tree *mt, uint32_t level,
   2730                              uint32_t start_layer, uint32_t layer_count,
   2731                              enum isl_aux_usage aux_usage)
   2732 {
   2733    intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
   2734                                 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
   2735 }
   2736 
   2737 void
   2738 intel_miptree_finish_render(struct brw_context *brw,
   2739                             struct intel_mipmap_tree *mt, uint32_t level,
   2740                             uint32_t start_layer, uint32_t layer_count,
   2741                             enum isl_aux_usage aux_usage)
   2742 {
   2743    assert(_mesa_is_format_color_format(mt->format));
   2744 
   2745    intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
   2746                               aux_usage);
   2747 }
   2748 
   2749 void
   2750 intel_miptree_prepare_depth(struct brw_context *brw,
   2751                             struct intel_mipmap_tree *mt, uint32_t level,
   2752                             uint32_t start_layer, uint32_t layer_count)
   2753 {
   2754    intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
   2755                                 mt->aux_usage, mt->hiz_buf != NULL);
   2756 }
   2757 
   2758 void
   2759 intel_miptree_finish_depth(struct brw_context *brw,
   2760                            struct intel_mipmap_tree *mt, uint32_t level,
   2761                            uint32_t start_layer, uint32_t layer_count,
   2762                            bool depth_written)
   2763 {
   2764    if (depth_written) {
   2765       intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
   2766                                  mt->hiz_buf != NULL);
   2767    }
   2768 }
   2769 
   2770 void
   2771 intel_miptree_prepare_external(struct brw_context *brw,
   2772                                struct intel_mipmap_tree *mt)
   2773 {
   2774    enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
   2775    bool supports_fast_clear = false;
   2776 
   2777    const struct isl_drm_modifier_info *mod_info =
   2778       isl_drm_modifier_get_info(mt->drm_modifier);
   2779 
   2780    if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
   2781       /* CCS_E is the only supported aux for external images and it's only
   2782        * supported on very simple images.
   2783        */
   2784       assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
   2785       assert(_mesa_is_format_color_format(mt->format));
   2786       assert(mt->first_level == 0 && mt->last_level == 0);
   2787       assert(mt->surf.logical_level0_px.depth == 1);
   2788       assert(mt->surf.logical_level0_px.array_len == 1);
   2789       assert(mt->surf.samples == 1);
   2790       assert(mt->mcs_buf != NULL);
   2791 
   2792       aux_usage = mod_info->aux_usage;
   2793       supports_fast_clear = mod_info->supports_clear_color;
   2794    }
   2795 
   2796    intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
   2797                                 0, INTEL_REMAINING_LAYERS,
   2798                                 aux_usage, supports_fast_clear);
   2799 }
   2800 
   2801 /**
   2802  * Make it possible to share the BO backing the given miptree with another
   2803  * process or another miptree.
   2804  *
   2805  * Fast color clears are unsafe with shared buffers, so we need to resolve and
   2806  * then discard the MCS buffer, if present.  We also set the no_ccs flag to
   2807  * ensure that no MCS buffer gets allocated in the future.
   2808  *
   2809  * HiZ is similarly unsafe with shared buffers.
   2810  */
   2811 void
   2812 intel_miptree_make_shareable(struct brw_context *brw,
   2813                              struct intel_mipmap_tree *mt)
   2814 {
   2815    /* MCS buffers are also used for multisample buffers, but we can't resolve
   2816     * away a multisample MCS buffer because it's an integral part of how the
   2817     * pixel data is stored.  Fortunately this code path should never be
   2818     * reached for multisample buffers.
   2819     */
   2820    assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
   2821           mt->surf.samples == 1);
   2822 
   2823    intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
   2824                                 0, INTEL_REMAINING_LAYERS,
   2825                                 ISL_AUX_USAGE_NONE, false);
   2826 
   2827    if (mt->mcs_buf) {
   2828       brw_bo_unreference(mt->mcs_buf->bo);
   2829       free(mt->mcs_buf);
   2830       mt->mcs_buf = NULL;
   2831 
   2832       /* Any pending MCS/CCS operations are no longer needed. Trying to
   2833        * execute any will likely crash due to the missing aux buffer. So let's
   2834        * delete all pending ops.
   2835        */
   2836       free(mt->aux_state);
   2837       mt->aux_state = NULL;
   2838       brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
   2839    }
   2840 
   2841    if (mt->hiz_buf) {
   2842       intel_miptree_aux_buffer_free(mt->hiz_buf);
   2843       mt->hiz_buf = NULL;
   2844 
   2845       for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
   2846          mt->level[l].has_hiz = false;
   2847       }
   2848 
   2849       /* Any pending HiZ operations are no longer needed. Trying to execute
   2850        * any will likely crash due to the missing aux buffer. So let's delete
   2851        * all pending ops.
   2852        */
   2853       free(mt->aux_state);
   2854       mt->aux_state = NULL;
   2855       brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
   2856    }
   2857 
   2858    mt->aux_usage = ISL_AUX_USAGE_NONE;
   2859    mt->supports_fast_clear = false;
   2860 }
   2861 
   2862 
   2863 /**
   2864  * \brief Get pointer offset into stencil buffer.
   2865  *
   2866  * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
   2867  * must decode the tile's layout in software.
   2868  *
   2869  * See
   2870  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
   2871  *     Format.
   2872  *   - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
   2873  *
   2874  * Even though the returned offset is always positive, the return type is
   2875  * signed due to
   2876  *    commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
   2877  *    mesa: Fix return type of  _mesa_get_format_bytes() (#37351)
   2878  */
   2879 static intptr_t
   2880 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
   2881 {
   2882    uint32_t tile_size = 4096;
   2883    uint32_t tile_width = 64;
   2884    uint32_t tile_height = 64;
   2885    uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
   2886 
   2887    uint32_t tile_x = x / tile_width;
   2888    uint32_t tile_y = y / tile_height;
   2889 
   2890    /* The byte's address relative to the tile's base addres. */
   2891    uint32_t byte_x = x % tile_width;
   2892    uint32_t byte_y = y % tile_height;
   2893 
   2894    uintptr_t u = tile_y * row_size
   2895                + tile_x * tile_size
   2896                + 512 * (byte_x / 8)
   2897                +  64 * (byte_y / 8)
   2898                +  32 * ((byte_y / 4) % 2)
   2899                +  16 * ((byte_x / 4) % 2)
   2900                +   8 * ((byte_y / 2) % 2)
   2901                +   4 * ((byte_x / 2) % 2)
   2902                +   2 * (byte_y % 2)
   2903                +   1 * (byte_x % 2);
   2904 
   2905    if (swizzled) {
   2906       /* adjust for bit6 swizzling */
   2907       if (((byte_x / 8) % 2) == 1) {
   2908 	 if (((byte_y / 8) % 2) == 0) {
   2909 	    u += 64;
   2910 	 } else {
   2911 	    u -= 64;
   2912 	 }
   2913       }
   2914    }
   2915 
   2916    return u;
   2917 }
   2918 
   2919 void
   2920 intel_miptree_updownsample(struct brw_context *brw,
   2921                            struct intel_mipmap_tree *src,
   2922                            struct intel_mipmap_tree *dst)
   2923 {
   2924    unsigned src_w = src->surf.logical_level0_px.width;
   2925    unsigned src_h = src->surf.logical_level0_px.height;
   2926    unsigned dst_w = dst->surf.logical_level0_px.width;
   2927    unsigned dst_h = dst->surf.logical_level0_px.height;
   2928 
   2929    brw_blorp_blit_miptrees(brw,
   2930                            src, 0 /* level */, 0 /* layer */,
   2931                            src->format, SWIZZLE_XYZW,
   2932                            dst, 0 /* level */, 0 /* layer */, dst->format,
   2933                            0, 0, src_w, src_h,
   2934                            0, 0, dst_w, dst_h,
   2935                            GL_NEAREST, false, false /*mirror x, y*/,
   2936                            false, false);
   2937 
   2938    if (src->stencil_mt) {
   2939       src_w = src->stencil_mt->surf.logical_level0_px.width;
   2940       src_h = src->stencil_mt->surf.logical_level0_px.height;
   2941       dst_w = dst->stencil_mt->surf.logical_level0_px.width;
   2942       dst_h = dst->stencil_mt->surf.logical_level0_px.height;
   2943 
   2944       brw_blorp_blit_miptrees(brw,
   2945                               src->stencil_mt, 0 /* level */, 0 /* layer */,
   2946                               src->stencil_mt->format, SWIZZLE_XYZW,
   2947                               dst->stencil_mt, 0 /* level */, 0 /* layer */,
   2948                               dst->stencil_mt->format,
   2949                               0, 0, src_w, src_h,
   2950                               0, 0, dst_w, dst_h,
   2951                               GL_NEAREST, false, false /*mirror x, y*/,
   2952                               false, false /* decode/encode srgb */);
   2953    }
   2954 }
   2955 
   2956 void
   2957 intel_update_r8stencil(struct brw_context *brw,
   2958                        struct intel_mipmap_tree *mt)
   2959 {
   2960    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   2961 
   2962    assert(devinfo->gen >= 7);
   2963    struct intel_mipmap_tree *src =
   2964       mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
   2965    if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
   2966       return;
   2967 
   2968    assert(src->surf.size > 0);
   2969 
   2970    if (!mt->r8stencil_mt) {
   2971       assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
   2972       mt->r8stencil_mt = make_surface(
   2973                             brw,
   2974                             src->target,
   2975                             MESA_FORMAT_R_UINT8,
   2976                             src->first_level, src->last_level,
   2977                             src->surf.logical_level0_px.width,
   2978                             src->surf.logical_level0_px.height,
   2979                             src->surf.dim == ISL_SURF_DIM_3D ?
   2980                                src->surf.logical_level0_px.depth :
   2981                                src->surf.logical_level0_px.array_len,
   2982                             src->surf.samples,
   2983                             ISL_TILING_Y0_BIT,
   2984                             ISL_SURF_USAGE_TEXTURE_BIT,
   2985                             BO_ALLOC_BUSY, 0, NULL);
   2986       assert(mt->r8stencil_mt);
   2987    }
   2988 
   2989    struct intel_mipmap_tree *dst = mt->r8stencil_mt;
   2990 
   2991    for (int level = src->first_level; level <= src->last_level; level++) {
   2992       const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
   2993          minify(src->surf.phys_level0_sa.depth, level) :
   2994          src->surf.phys_level0_sa.array_len;
   2995 
   2996       for (unsigned layer = 0; layer < depth; layer++) {
   2997          brw_blorp_copy_miptrees(brw,
   2998                                  src, level, layer,
   2999                                  dst, level, layer,
   3000                                  0, 0, 0, 0,
   3001                                  minify(src->surf.logical_level0_px.width,
   3002                                         level),
   3003                                  minify(src->surf.logical_level0_px.height,
   3004                                         level));
   3005       }
   3006    }
   3007 
   3008    brw_cache_flush_for_read(brw, dst->bo);
   3009    src->r8stencil_needs_update = false;
   3010 }
   3011 
   3012 static void *
   3013 intel_miptree_map_raw(struct brw_context *brw,
   3014                       struct intel_mipmap_tree *mt,
   3015                       GLbitfield mode)
   3016 {
   3017    struct brw_bo *bo = mt->bo;
   3018 
   3019    if (brw_batch_references(&brw->batch, bo))
   3020       intel_batchbuffer_flush(brw);
   3021 
   3022    return brw_bo_map(brw, bo, mode);
   3023 }
   3024 
   3025 static void
   3026 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
   3027 {
   3028    brw_bo_unmap(mt->bo);
   3029 }
   3030 
   3031 static void
   3032 intel_miptree_map_gtt(struct brw_context *brw,
   3033 		      struct intel_mipmap_tree *mt,
   3034 		      struct intel_miptree_map *map,
   3035 		      unsigned int level, unsigned int slice)
   3036 {
   3037    unsigned int bw, bh;
   3038    void *base;
   3039    unsigned int image_x, image_y;
   3040    intptr_t x = map->x;
   3041    intptr_t y = map->y;
   3042 
   3043    /* For compressed formats, the stride is the number of bytes per
   3044     * row of blocks.  intel_miptree_get_image_offset() already does
   3045     * the divide.
   3046     */
   3047    _mesa_get_format_block_size(mt->format, &bw, &bh);
   3048    assert(y % bh == 0);
   3049    assert(x % bw == 0);
   3050    y /= bh;
   3051    x /= bw;
   3052 
   3053    base = intel_miptree_map_raw(brw, mt, map->mode);
   3054 
   3055    if (base == NULL)
   3056       map->ptr = NULL;
   3057    else {
   3058       base += mt->offset;
   3059 
   3060       /* Note that in the case of cube maps, the caller must have passed the
   3061        * slice number referencing the face.
   3062       */
   3063       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   3064       x += image_x;
   3065       y += image_y;
   3066 
   3067       map->stride = mt->surf.row_pitch;
   3068       map->ptr = base + y * map->stride + x * mt->cpp;
   3069    }
   3070 
   3071    DBG("%s: %d,%d %dx%d from mt %p (%s) "
   3072        "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
   3073        map->x, map->y, map->w, map->h,
   3074        mt, _mesa_get_format_name(mt->format),
   3075        x, y, map->ptr, map->stride);
   3076 }
   3077 
   3078 static void
   3079 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
   3080 {
   3081    intel_miptree_unmap_raw(mt);
   3082 }
   3083 
   3084 static void
   3085 intel_miptree_map_blit(struct brw_context *brw,
   3086 		       struct intel_mipmap_tree *mt,
   3087 		       struct intel_miptree_map *map,
   3088 		       unsigned int level, unsigned int slice)
   3089 {
   3090    map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
   3091                                          /* first_level */ 0,
   3092                                          /* last_level */ 0,
   3093                                          map->w, map->h, 1,
   3094                                          /* samples */ 1,
   3095                                          MIPTREE_CREATE_LINEAR);
   3096 
   3097    if (!map->linear_mt) {
   3098       fprintf(stderr, "Failed to allocate blit temporary\n");
   3099       goto fail;
   3100    }
   3101    map->stride = map->linear_mt->surf.row_pitch;
   3102 
   3103    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   3104     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   3105     * invalidate is set, since we'll be writing the whole rectangle from our
   3106     * temporary buffer back out.
   3107     */
   3108    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   3109       if (!intel_miptree_copy(brw,
   3110                               mt, level, slice, map->x, map->y,
   3111                               map->linear_mt, 0, 0, 0, 0,
   3112                               map->w, map->h)) {
   3113          fprintf(stderr, "Failed to blit\n");
   3114          goto fail;
   3115       }
   3116    }
   3117 
   3118    map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
   3119 
   3120    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
   3121        map->x, map->y, map->w, map->h,
   3122        mt, _mesa_get_format_name(mt->format),
   3123        level, slice, map->ptr, map->stride);
   3124 
   3125    return;
   3126 
   3127 fail:
   3128    intel_miptree_release(&map->linear_mt);
   3129    map->ptr = NULL;
   3130    map->stride = 0;
   3131 }
   3132 
   3133 static void
   3134 intel_miptree_unmap_blit(struct brw_context *brw,
   3135 			 struct intel_mipmap_tree *mt,
   3136 			 struct intel_miptree_map *map,
   3137 			 unsigned int level,
   3138 			 unsigned int slice)
   3139 {
   3140    struct gl_context *ctx = &brw->ctx;
   3141 
   3142    intel_miptree_unmap_raw(map->linear_mt);
   3143 
   3144    if (map->mode & GL_MAP_WRITE_BIT) {
   3145       bool ok = intel_miptree_copy(brw,
   3146                                    map->linear_mt, 0, 0, 0, 0,
   3147                                    mt, level, slice, map->x, map->y,
   3148                                    map->w, map->h);
   3149       WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
   3150    }
   3151 
   3152    intel_miptree_release(&map->linear_mt);
   3153 }
   3154 
   3155 /**
   3156  * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
   3157  */
   3158 #if defined(USE_SSE41)
   3159 static void
   3160 intel_miptree_map_movntdqa(struct brw_context *brw,
   3161                            struct intel_mipmap_tree *mt,
   3162                            struct intel_miptree_map *map,
   3163                            unsigned int level, unsigned int slice)
   3164 {
   3165    assert(map->mode & GL_MAP_READ_BIT);
   3166    assert(!(map->mode & GL_MAP_WRITE_BIT));
   3167 
   3168    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
   3169        map->x, map->y, map->w, map->h,
   3170        mt, _mesa_get_format_name(mt->format),
   3171        level, slice, map->ptr, map->stride);
   3172 
   3173    /* Map the original image */
   3174    uint32_t image_x;
   3175    uint32_t image_y;
   3176    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   3177    image_x += map->x;
   3178    image_y += map->y;
   3179 
   3180    void *src = intel_miptree_map_raw(brw, mt, map->mode);
   3181    if (!src)
   3182       return;
   3183 
   3184    src += mt->offset;
   3185 
   3186    src += image_y * mt->surf.row_pitch;
   3187    src += image_x * mt->cpp;
   3188 
   3189    /* Due to the pixel offsets for the particular image being mapped, our
   3190     * src pointer may not be 16-byte aligned.  However, if the pitch is
   3191     * divisible by 16, then the amount by which it's misaligned will remain
   3192     * consistent from row to row.
   3193     */
   3194    assert((mt->surf.row_pitch % 16) == 0);
   3195    const int misalignment = ((uintptr_t) src) & 15;
   3196 
   3197    /* Create an untiled temporary buffer for the mapping. */
   3198    const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
   3199 
   3200    map->stride = ALIGN(misalignment + width_bytes, 16);
   3201 
   3202    map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
   3203    /* Offset the destination so it has the same misalignment as src. */
   3204    map->ptr = map->buffer + misalignment;
   3205 
   3206    assert((((uintptr_t) map->ptr) & 15) == misalignment);
   3207 
   3208    for (uint32_t y = 0; y < map->h; y++) {
   3209       void *dst_ptr = map->ptr + y * map->stride;
   3210       void *src_ptr = src + y * mt->surf.row_pitch;
   3211 
   3212       _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
   3213    }
   3214 
   3215    intel_miptree_unmap_raw(mt);
   3216 }
   3217 
   3218 static void
   3219 intel_miptree_unmap_movntdqa(struct brw_context *brw,
   3220                              struct intel_mipmap_tree *mt,
   3221                              struct intel_miptree_map *map,
   3222                              unsigned int level,
   3223                              unsigned int slice)
   3224 {
   3225    _mesa_align_free(map->buffer);
   3226    map->buffer = NULL;
   3227    map->ptr = NULL;
   3228 }
   3229 #endif
   3230 
   3231 static void
   3232 intel_miptree_map_s8(struct brw_context *brw,
   3233 		     struct intel_mipmap_tree *mt,
   3234 		     struct intel_miptree_map *map,
   3235 		     unsigned int level, unsigned int slice)
   3236 {
   3237    map->stride = map->w;
   3238    map->buffer = map->ptr = malloc(map->stride * map->h);
   3239    if (!map->buffer)
   3240       return;
   3241 
   3242    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   3243     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   3244     * invalidate is set, since we'll be writing the whole rectangle from our
   3245     * temporary buffer back out.
   3246     */
   3247    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   3248       uint8_t *untiled_s8_map = map->ptr;
   3249       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
   3250       unsigned int image_x, image_y;
   3251 
   3252       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   3253 
   3254       for (uint32_t y = 0; y < map->h; y++) {
   3255 	 for (uint32_t x = 0; x < map->w; x++) {
   3256 	    ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
   3257 	                                       x + image_x + map->x,
   3258 	                                       y + image_y + map->y,
   3259 					       brw->has_swizzling);
   3260 	    untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
   3261 	 }
   3262       }
   3263 
   3264       intel_miptree_unmap_raw(mt);
   3265 
   3266       DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
   3267 	  map->x, map->y, map->w, map->h,
   3268 	  mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
   3269    } else {
   3270       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
   3271 	  map->x, map->y, map->w, map->h,
   3272 	  mt, map->ptr, map->stride);
   3273    }
   3274 }
   3275 
   3276 static void
   3277 intel_miptree_unmap_s8(struct brw_context *brw,
   3278 		       struct intel_mipmap_tree *mt,
   3279 		       struct intel_miptree_map *map,
   3280 		       unsigned int level,
   3281 		       unsigned int slice)
   3282 {
   3283    if (map->mode & GL_MAP_WRITE_BIT) {
   3284       unsigned int image_x, image_y;
   3285       uint8_t *untiled_s8_map = map->ptr;
   3286       uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
   3287 
   3288       intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   3289 
   3290       for (uint32_t y = 0; y < map->h; y++) {
   3291 	 for (uint32_t x = 0; x < map->w; x++) {
   3292 	    ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
   3293 	                                       image_x + x + map->x,
   3294 	                                       image_y + y + map->y,
   3295 					       brw->has_swizzling);
   3296 	    tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
   3297 	 }
   3298       }
   3299 
   3300       intel_miptree_unmap_raw(mt);
   3301    }
   3302 
   3303    free(map->buffer);
   3304 }
   3305 
   3306 static void
   3307 intel_miptree_map_etc(struct brw_context *brw,
   3308                       struct intel_mipmap_tree *mt,
   3309                       struct intel_miptree_map *map,
   3310                       unsigned int level,
   3311                       unsigned int slice)
   3312 {
   3313    assert(mt->etc_format != MESA_FORMAT_NONE);
   3314    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
   3315       assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
   3316    }
   3317 
   3318    assert(map->mode & GL_MAP_WRITE_BIT);
   3319    assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
   3320 
   3321    map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
   3322    map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
   3323                                                 map->w, map->h, 1));
   3324    map->ptr = map->buffer;
   3325 }
   3326 
   3327 static void
   3328 intel_miptree_unmap_etc(struct brw_context *brw,
   3329                         struct intel_mipmap_tree *mt,
   3330                         struct intel_miptree_map *map,
   3331                         unsigned int level,
   3332                         unsigned int slice)
   3333 {
   3334    uint32_t image_x;
   3335    uint32_t image_y;
   3336    intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
   3337 
   3338    image_x += map->x;
   3339    image_y += map->y;
   3340 
   3341    uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
   3342                 + image_y * mt->surf.row_pitch
   3343                 + image_x * mt->cpp;
   3344 
   3345    if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
   3346       _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
   3347                                  map->ptr, map->stride,
   3348                                  map->w, map->h);
   3349    else
   3350       _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
   3351                                map->ptr, map->stride,
   3352                                map->w, map->h, mt->etc_format);
   3353 
   3354    intel_miptree_unmap_raw(mt);
   3355    free(map->buffer);
   3356 }
   3357 
   3358 /**
   3359  * Mapping function for packed depth/stencil miptrees backed by real separate
   3360  * miptrees for depth and stencil.
   3361  *
   3362  * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
   3363  * separate from the depth buffer.  Yet at the GL API level, we have to expose
   3364  * packed depth/stencil textures and FBO attachments, and Mesa core expects to
   3365  * be able to map that memory for texture storage and glReadPixels-type
   3366  * operations.  We give Mesa core that access by mallocing a temporary and
   3367  * copying the data between the actual backing store and the temporary.
   3368  */
   3369 static void
   3370 intel_miptree_map_depthstencil(struct brw_context *brw,
   3371 			       struct intel_mipmap_tree *mt,
   3372 			       struct intel_miptree_map *map,
   3373 			       unsigned int level, unsigned int slice)
   3374 {
   3375    struct intel_mipmap_tree *z_mt = mt;
   3376    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
   3377    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
   3378    int packed_bpp = map_z32f_x24s8 ? 8 : 4;
   3379 
   3380    map->stride = map->w * packed_bpp;
   3381    map->buffer = map->ptr = malloc(map->stride * map->h);
   3382    if (!map->buffer)
   3383       return;
   3384 
   3385    /* One of either READ_BIT or WRITE_BIT or both is set.  READ_BIT implies no
   3386     * INVALIDATE_RANGE_BIT.  WRITE_BIT needs the original values read in unless
   3387     * invalidate is set, since we'll be writing the whole rectangle from our
   3388     * temporary buffer back out.
   3389     */
   3390    if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
   3391       uint32_t *packed_map = map->ptr;
   3392       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
   3393       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
   3394       unsigned int s_image_x, s_image_y;
   3395       unsigned int z_image_x, z_image_y;
   3396 
   3397       intel_miptree_get_image_offset(s_mt, level, slice,
   3398 				     &s_image_x, &s_image_y);
   3399       intel_miptree_get_image_offset(z_mt, level, slice,
   3400 				     &z_image_x, &z_image_y);
   3401 
   3402       for (uint32_t y = 0; y < map->h; y++) {
   3403 	 for (uint32_t x = 0; x < map->w; x++) {
   3404 	    int map_x = map->x + x, map_y = map->y + y;
   3405 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
   3406 						 map_x + s_image_x,
   3407 						 map_y + s_image_y,
   3408 						 brw->has_swizzling);
   3409 	    ptrdiff_t z_offset = ((map_y + z_image_y) *
   3410                                   (z_mt->surf.row_pitch / 4) +
   3411 				  (map_x + z_image_x));
   3412 	    uint8_t s = s_map[s_offset];
   3413 	    uint32_t z = z_map[z_offset];
   3414 
   3415 	    if (map_z32f_x24s8) {
   3416 	       packed_map[(y * map->w + x) * 2 + 0] = z;
   3417 	       packed_map[(y * map->w + x) * 2 + 1] = s;
   3418 	    } else {
   3419 	       packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
   3420 	    }
   3421 	 }
   3422       }
   3423 
   3424       intel_miptree_unmap_raw(s_mt);
   3425       intel_miptree_unmap_raw(z_mt);
   3426 
   3427       DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
   3428 	  __func__,
   3429 	  map->x, map->y, map->w, map->h,
   3430 	  z_mt, map->x + z_image_x, map->y + z_image_y,
   3431 	  s_mt, map->x + s_image_x, map->y + s_image_y,
   3432 	  map->ptr, map->stride);
   3433    } else {
   3434       DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
   3435 	  map->x, map->y, map->w, map->h,
   3436 	  mt, map->ptr, map->stride);
   3437    }
   3438 }
   3439 
   3440 static void
   3441 intel_miptree_unmap_depthstencil(struct brw_context *brw,
   3442 				 struct intel_mipmap_tree *mt,
   3443 				 struct intel_miptree_map *map,
   3444 				 unsigned int level,
   3445 				 unsigned int slice)
   3446 {
   3447    struct intel_mipmap_tree *z_mt = mt;
   3448    struct intel_mipmap_tree *s_mt = mt->stencil_mt;
   3449    bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
   3450 
   3451    if (map->mode & GL_MAP_WRITE_BIT) {
   3452       uint32_t *packed_map = map->ptr;
   3453       uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
   3454       uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
   3455       unsigned int s_image_x, s_image_y;
   3456       unsigned int z_image_x, z_image_y;
   3457 
   3458       intel_miptree_get_image_offset(s_mt, level, slice,
   3459 				     &s_image_x, &s_image_y);
   3460       intel_miptree_get_image_offset(z_mt, level, slice,
   3461 				     &z_image_x, &z_image_y);
   3462 
   3463       for (uint32_t y = 0; y < map->h; y++) {
   3464 	 for (uint32_t x = 0; x < map->w; x++) {
   3465 	    ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
   3466 						 x + s_image_x + map->x,
   3467 						 y + s_image_y + map->y,
   3468 						 brw->has_swizzling);
   3469 	    ptrdiff_t z_offset = ((y + z_image_y + map->y) *
   3470                                   (z_mt->surf.row_pitch / 4) +
   3471 				  (x + z_image_x + map->x));
   3472 
   3473 	    if (map_z32f_x24s8) {
   3474 	       z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
   3475 	       s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
   3476 	    } else {
   3477 	       uint32_t packed = packed_map[y * map->w + x];
   3478 	       s_map[s_offset] = packed >> 24;
   3479 	       z_map[z_offset] = packed;
   3480 	    }
   3481 	 }
   3482       }
   3483 
   3484       intel_miptree_unmap_raw(s_mt);
   3485       intel_miptree_unmap_raw(z_mt);
   3486 
   3487       DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
   3488 	  __func__,
   3489 	  map->x, map->y, map->w, map->h,
   3490 	  z_mt, _mesa_get_format_name(z_mt->format),
   3491 	  map->x + z_image_x, map->y + z_image_y,
   3492 	  s_mt, map->x + s_image_x, map->y + s_image_y,
   3493 	  map->ptr, map->stride);
   3494    }
   3495 
   3496    free(map->buffer);
   3497 }
   3498 
   3499 /**
   3500  * Create and attach a map to the miptree at (level, slice). Return the
   3501  * attached map.
   3502  */
   3503 static struct intel_miptree_map*
   3504 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
   3505                          unsigned int level,
   3506                          unsigned int slice,
   3507                          unsigned int x,
   3508                          unsigned int y,
   3509                          unsigned int w,
   3510                          unsigned int h,
   3511                          GLbitfield mode)
   3512 {
   3513    struct intel_miptree_map *map = calloc(1, sizeof(*map));
   3514 
   3515    if (!map)
   3516       return NULL;
   3517 
   3518    assert(mt->level[level].slice[slice].map == NULL);
   3519    mt->level[level].slice[slice].map = map;
   3520 
   3521    map->mode = mode;
   3522    map->x = x;
   3523    map->y = y;
   3524    map->w = w;
   3525    map->h = h;
   3526 
   3527    return map;
   3528 }
   3529 
   3530 /**
   3531  * Release the map at (level, slice).
   3532  */
   3533 static void
   3534 intel_miptree_release_map(struct intel_mipmap_tree *mt,
   3535                          unsigned int level,
   3536                          unsigned int slice)
   3537 {
   3538    struct intel_miptree_map **map;
   3539 
   3540    map = &mt->level[level].slice[slice].map;
   3541    free(*map);
   3542    *map = NULL;
   3543 }
   3544 
   3545 static bool
   3546 can_blit_slice(struct intel_mipmap_tree *mt,
   3547                unsigned int level, unsigned int slice)
   3548 {
   3549    /* See intel_miptree_blit() for details on the 32k pitch limit. */
   3550    if (mt->surf.row_pitch >= 32768)
   3551       return false;
   3552 
   3553    return true;
   3554 }
   3555 
   3556 static bool
   3557 use_intel_mipree_map_blit(struct brw_context *brw,
   3558                           struct intel_mipmap_tree *mt,
   3559                           GLbitfield mode,
   3560                           unsigned int level,
   3561                           unsigned int slice)
   3562 {
   3563    const struct gen_device_info *devinfo = &brw->screen->devinfo;
   3564 
   3565    if (devinfo->has_llc &&
   3566       /* It's probably not worth swapping to the blit ring because of
   3567        * all the overhead involved.
   3568        */
   3569        !(mode & GL_MAP_WRITE_BIT) &&
   3570        !mt->compressed &&
   3571        (mt->surf.tiling == ISL_TILING_X ||
   3572         /* Prior to Sandybridge, the blitter can't handle Y tiling */
   3573         (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
   3574         /* Fast copy blit on skl+ supports all tiling formats. */
   3575         devinfo->gen >= 9) &&
   3576        can_blit_slice(mt, level, slice))
   3577       return true;
   3578 
   3579    if (mt->surf.tiling != ISL_TILING_LINEAR &&
   3580        mt->bo->size >= brw->max_gtt_map_object_size) {
   3581       assert(can_blit_slice(mt, level, slice));
   3582       return true;
   3583    }
   3584 
   3585    return false;
   3586 }
   3587 
   3588 /**
   3589  * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
   3590  * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
   3591  * arithmetic overflow.
   3592  *
   3593  * If you call this function and use \a out_stride, then you're doing pointer
   3594  * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
   3595  * bugs.  The caller must still take care to avoid 32-bit overflow errors in
   3596  * all arithmetic expressions that contain buffer offsets and pixel sizes,
   3597  * which usually have type uint32_t or GLuint.
   3598  */
   3599 void
   3600 intel_miptree_map(struct brw_context *brw,
   3601                   struct intel_mipmap_tree *mt,
   3602                   unsigned int level,
   3603                   unsigned int slice,
   3604                   unsigned int x,
   3605                   unsigned int y,
   3606                   unsigned int w,
   3607                   unsigned int h,
   3608                   GLbitfield mode,
   3609                   void **out_ptr,
   3610                   ptrdiff_t *out_stride)
   3611 {
   3612    struct intel_miptree_map *map;
   3613 
   3614    assert(mt->surf.samples == 1);
   3615 
   3616    map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
   3617    if (!map){
   3618       *out_ptr = NULL;
   3619       *out_stride = 0;
   3620       return;
   3621    }
   3622 
   3623    intel_miptree_access_raw(brw, mt, level, slice,
   3624                             map->mode & GL_MAP_WRITE_BIT);
   3625 
   3626    if (mt->format == MESA_FORMAT_S_UINT8) {
   3627       intel_miptree_map_s8(brw, mt, map, level, slice);
   3628    } else if (mt->etc_format != MESA_FORMAT_NONE &&
   3629               !(mode & BRW_MAP_DIRECT_BIT)) {
   3630       intel_miptree_map_etc(brw, mt, map, level, slice);
   3631    } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
   3632       intel_miptree_map_depthstencil(brw, mt, map, level, slice);
   3633    } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
   3634       intel_miptree_map_blit(brw, mt, map, level, slice);
   3635 #if defined(USE_SSE41)
   3636    } else if (!(mode & GL_MAP_WRITE_BIT) &&
   3637               !mt->compressed && cpu_has_sse4_1 &&
   3638               (mt->surf.row_pitch % 16 == 0)) {
   3639       intel_miptree_map_movntdqa(brw, mt, map, level, slice);
   3640 #endif
   3641    } else {
   3642       intel_miptree_map_gtt(brw, mt, map, level, slice);
   3643    }
   3644 
   3645    *out_ptr = map->ptr;
   3646    *out_stride = map->stride;
   3647 
   3648    if (map->ptr == NULL)
   3649       intel_miptree_release_map(mt, level, slice);
   3650 }
   3651 
   3652 void
   3653 intel_miptree_unmap(struct brw_context *brw,
   3654                     struct intel_mipmap_tree *mt,
   3655                     unsigned int level,
   3656                     unsigned int slice)
   3657 {
   3658    struct intel_miptree_map *map = mt->level[level].slice[slice].map;
   3659 
   3660    assert(mt->surf.samples == 1);
   3661 
   3662    if (!map)
   3663       return;
   3664 
   3665    DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
   3666        mt, _mesa_get_format_name(mt->format), level, slice);
   3667 
   3668    if (mt->format == MESA_FORMAT_S_UINT8) {
   3669       intel_miptree_unmap_s8(brw, mt, map, level, slice);
   3670    } else if (mt->etc_format != MESA_FORMAT_NONE &&
   3671               !(map->mode & BRW_MAP_DIRECT_BIT)) {
   3672       intel_miptree_unmap_etc(brw, mt, map, level, slice);
   3673    } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
   3674       intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
   3675    } else if (map->linear_mt) {
   3676       intel_miptree_unmap_blit(brw, mt, map, level, slice);
   3677 #if defined(USE_SSE41)
   3678    } else if (map->buffer && cpu_has_sse4_1) {
   3679       intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
   3680 #endif
   3681    } else {
   3682       intel_miptree_unmap_gtt(mt);
   3683    }
   3684 
   3685    intel_miptree_release_map(mt, level, slice);
   3686 }
   3687 
   3688 enum isl_surf_dim
   3689 get_isl_surf_dim(GLenum target)
   3690 {
   3691    switch (target) {
   3692    case GL_TEXTURE_1D:
   3693    case GL_TEXTURE_1D_ARRAY:
   3694       return ISL_SURF_DIM_1D;
   3695 
   3696    case GL_TEXTURE_2D:
   3697    case GL_TEXTURE_2D_ARRAY:
   3698    case GL_TEXTURE_RECTANGLE:
   3699    case GL_TEXTURE_CUBE_MAP:
   3700    case GL_TEXTURE_CUBE_MAP_ARRAY:
   3701    case GL_TEXTURE_2D_MULTISAMPLE:
   3702    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
   3703    case GL_TEXTURE_EXTERNAL_OES:
   3704       return ISL_SURF_DIM_2D;
   3705 
   3706    case GL_TEXTURE_3D:
   3707       return ISL_SURF_DIM_3D;
   3708    }
   3709 
   3710    unreachable("Invalid texture target");
   3711 }
   3712 
   3713 enum isl_dim_layout
   3714 get_isl_dim_layout(const struct gen_device_info *devinfo,
   3715                    enum isl_tiling tiling, GLenum target)
   3716 {
   3717    switch (target) {
   3718    case GL_TEXTURE_1D:
   3719    case GL_TEXTURE_1D_ARRAY:
   3720       return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
   3721               ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
   3722 
   3723    case GL_TEXTURE_2D:
   3724    case GL_TEXTURE_2D_ARRAY:
   3725    case GL_TEXTURE_RECTANGLE:
   3726    case GL_TEXTURE_2D_MULTISAMPLE:
   3727    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
   3728    case GL_TEXTURE_EXTERNAL_OES:
   3729       return ISL_DIM_LAYOUT_GEN4_2D;
   3730 
   3731    case GL_TEXTURE_CUBE_MAP:
   3732    case GL_TEXTURE_CUBE_MAP_ARRAY:
   3733       return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
   3734               ISL_DIM_LAYOUT_GEN4_2D);
   3735 
   3736    case GL_TEXTURE_3D:
   3737       return (devinfo->gen >= 9 ?
   3738               ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
   3739    }
   3740 
   3741    unreachable("Invalid texture target");
   3742 }
   3743 
   3744 enum isl_aux_usage
   3745 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
   3746                                 const struct intel_mipmap_tree *mt)
   3747 {
   3748    if (mt->hiz_buf)
   3749       return ISL_AUX_USAGE_HIZ;
   3750 
   3751    if (!mt->mcs_buf)
   3752       return ISL_AUX_USAGE_NONE;
   3753 
   3754    return mt->aux_usage;
   3755 }
   3756