Home | History | Annotate | Download | only in brillo
      1 // Copyright 2014 The Chromium OS Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Internal implementation of brillo::Any class.
      6 
      7 #ifndef LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
      8 #define LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
      9 
     10 #include <type_traits>
     11 #include <typeinfo>
     12 #include <utility>
     13 
     14 #include <base/logging.h>
     15 #include <brillo/dbus/data_serialization.h>
     16 #include <brillo/type_name_undecorate.h>
     17 
     18 namespace brillo {
     19 
     20 namespace internal_details {
     21 
     22 // An extension to std::is_convertible to allow conversion from an enum to
     23 // an integral type which std::is_convertible does not indicate as supported.
     24 template <typename From, typename To>
     25 struct IsConvertible
     26     : public std::integral_constant<
     27           bool,
     28           std::is_convertible<From, To>::value ||
     29               (std::is_enum<From>::value && std::is_integral<To>::value)> {};
     30 
     31 // TryConvert is a helper function that does a safe compile-time conditional
     32 // type cast between data types that may not be always convertible.
     33 // From and To are the source and destination types.
     34 // The function returns true if conversion was possible/successful.
     35 template <typename From, typename To>
     36 inline typename std::enable_if<IsConvertible<From, To>::value, bool>::type
     37 TryConvert(const From& in, To* out) {
     38   *out = static_cast<To>(in);
     39   return true;
     40 }
     41 template <typename From, typename To>
     42 inline typename std::enable_if<!IsConvertible<From, To>::value, bool>::type
     43 TryConvert(const From& /* in */, To* /* out */) {
     44   return false;
     45 }
     46 
     47 //////////////////////////////////////////////////////////////////////////////
     48 // Provide a way to compare values of unspecified types without compiler errors
     49 // when no operator==() is provided for a given type. This is important to
     50 // allow Any class to have operator==(), yet still allowing arbitrary types
     51 // (not necessarily comparable) to be placed inside Any without resulting in
     52 // compile-time error.
     53 //
     54 // We achieve this in two ways. First, we provide a IsEqualityComparable<T>
     55 // class that can be used in compile-time conditions to determine if there is
     56 // operator==() defined that takes values of type T (or which can be implicitly
     57 // converted to type T). Secondly, this allows us to specialize a helper
     58 // compare function EqCompare<T>(v1, v2) to use operator==() for types that
     59 // are comparable, and just return false for those that are not.
     60 //
     61 // IsEqualityComparableHelper<T> is a helper class for implementing an
     62 // an STL-compatible IsEqualityComparable<T> containing a Boolean member |value|
     63 // which evaluates to true for comparable types and false otherwise.
     64 template<typename T>
     65 struct IsEqualityComparableHelper {
     66   struct IntWrapper {
     67     // A special structure that provides a constructor that takes an int.
     68     // This way, an int argument passed to a function will be favored over
     69     // IntWrapper when both overloads are provided.
     70     // Also this constructor must NOT be explicit.
     71     // NOLINTNEXTLINE(runtime/explicit)
     72     // NOLINT: Allow implicit conversion from int.
     73     IntWrapper(int /* dummy */) {}  // do nothing, NOLINT
     74   };
     75 
     76   // Here is an obscure trick to determine if a type U has operator==().
     77   // We are providing two function prototypes for TriggerFunction. One that
     78   // takes an argument of type IntWrapper (which is implicitly convertible from
     79   // an int), and returns an std::false_type. This is a fall-back mechanism.
     80   template<typename U>
     81   static std::false_type TriggerFunction(IntWrapper dummy);
     82 
     83   // The second overload of TriggerFunction takes an int (explicitly) and
     84   // returns std::true_type. If both overloads are available, this one will be
     85   // chosen when referencing it as TriggerFunction(0), since it is a better
     86   // (more specific) match.
     87   //
     88   // However this overload is available only for types that support operator==.
     89   // This is achieved by employing SFINAE mechanism inside a template function
     90   // overload that refers to operator==() for two values of types U&. This is
     91   // used inside decltype(), so no actual code is executed. If the types
     92   // are not comparable, reference to "==" would fail and the compiler will
     93   // simply ignore this overload due to SFIANE.
     94   //
     95   // The final little trick used here is the reliance on operator comma inside
     96   // the decltype() expression. The result of the expression is always
     97   // std::true_type(). The expression on the left of comma is just evaluated and
     98   // discarded. If it evaluates successfully (i.e. the type has operator==), the
     99   // return value of the function is set to be std::true_value. If it fails,
    100   // the whole function prototype is discarded and is not available in the
    101   // IsEqualityComparableHelper<T> class.
    102   //
    103   // Here we use std::declval<U&>() to make sure we have operator==() that takes
    104   // lvalue references to type U which is not necessarily default-constructible.
    105   template<typename U>
    106   static decltype((std::declval<U&>() == std::declval<U&>()), std::true_type())
    107   TriggerFunction(int dummy);
    108 
    109   // Finally, use the return type of the overload of TriggerFunction that
    110   // matches the argument (int) to be aliased to type |type|. If T is
    111   // comparable, there will be two overloads and the more specific (int) will
    112   // be chosen which returns std::true_value. If the type is non-comparable,
    113   // there will be only one version of TriggerFunction available which
    114   // returns std::false_value.
    115   using type = decltype(TriggerFunction<T>(0));
    116 };
    117 
    118 // IsEqualityComparable<T> is simply a class that derives from either
    119 // std::true_value, if type T is comparable, or from std::false_value, if the
    120 // type is non-comparable. We just use |type| alias from
    121 // IsEqualityComparableHelper<T> as the base class.
    122 template<typename T>
    123 struct IsEqualityComparable : IsEqualityComparableHelper<T>::type {};
    124 
    125 // EqCompare() overload for non-comparable types. Always returns false.
    126 template<typename T>
    127 inline typename std::enable_if<!IsEqualityComparable<T>::value, bool>::type
    128 EqCompare(const T& /* v1 */, const T& /* v2 */) {
    129   return false;
    130 }
    131 
    132 // EqCompare overload for comparable types. Calls operator==(v1, v2) to compare.
    133 template<typename T>
    134 inline typename std::enable_if<IsEqualityComparable<T>::value, bool>::type
    135 EqCompare(const T& v1, const T& v2) {
    136   return (v1 == v2);
    137 }
    138 
    139 //////////////////////////////////////////////////////////////////////////////
    140 
    141 class Buffer;  // Forward declaration of data buffer container.
    142 
    143 // Abstract base class for contained variant data.
    144 struct Data {
    145   virtual ~Data() {}
    146   // Returns the type tag (name) for the contained data.
    147   virtual const char* GetTypeTag() const = 0;
    148   // Copies the contained data to the output |buffer|.
    149   virtual void CopyTo(Buffer* buffer) const = 0;
    150   // Moves the contained data to the output |buffer|.
    151   virtual void MoveTo(Buffer* buffer) = 0;
    152   // Checks if the contained data is an integer type (not necessarily an 'int').
    153   virtual bool IsConvertibleToInteger() const = 0;
    154   // Gets the contained integral value as an integer.
    155   virtual intmax_t GetAsInteger() const = 0;
    156   // Writes the contained value to the D-Bus message buffer.
    157   virtual void AppendToDBusMessage(dbus::MessageWriter* writer) const = 0;
    158   // Compares if the two data containers have objects of the same value.
    159   virtual bool CompareEqual(const Data* other_data) const = 0;
    160 };
    161 
    162 // Concrete implementation of variant data of type T.
    163 template<typename T>
    164 struct TypedData : public Data {
    165   explicit TypedData(const T& value) : value_(value) {}
    166   // NOLINTNEXTLINE(build/c++11)
    167   explicit TypedData(T&& value) : value_(std::move(value)) {}
    168 
    169   const char* GetTypeTag() const override { return brillo::GetTypeTag<T>(); }
    170   void CopyTo(Buffer* buffer) const override;
    171   void MoveTo(Buffer* buffer) override;
    172   bool IsConvertibleToInteger() const override {
    173     return std::is_integral<T>::value || std::is_enum<T>::value;
    174   }
    175   intmax_t GetAsInteger() const override {
    176     intmax_t int_val = 0;
    177     bool converted = TryConvert(value_, &int_val);
    178     CHECK(converted) << "Unable to convert value of type '"
    179                      << GetUndecoratedTypeName<T>() << "' to integer";
    180     return int_val;
    181   }
    182 
    183   template<typename U>
    184   static typename std::enable_if<dbus_utils::IsTypeSupported<U>::value>::type
    185   AppendValueHelper(dbus::MessageWriter* writer, const U& value) {
    186     brillo::dbus_utils::AppendValueToWriterAsVariant(writer, value);
    187   }
    188   template<typename U>
    189   static typename std::enable_if<!dbus_utils::IsTypeSupported<U>::value>::type
    190   AppendValueHelper(dbus::MessageWriter* /* writer */, const U& /* value */) {
    191     LOG(FATAL) << "Type '" << GetUndecoratedTypeName<U>()
    192                << "' is not supported by D-Bus";
    193   }
    194 
    195   void AppendToDBusMessage(dbus::MessageWriter* writer) const override {
    196     return AppendValueHelper(writer, value_);
    197   }
    198 
    199   bool CompareEqual(const Data* other_data) const override {
    200     return EqCompare<T>(value_,
    201                         static_cast<const TypedData<T>*>(other_data)->value_);
    202   }
    203 
    204   // Special methods to copy/move data of the same type
    205   // without reallocating the buffer.
    206   void FastAssign(const T& source) { value_ = source; }
    207   // NOLINTNEXTLINE(build/c++11)
    208   void FastAssign(T&& source) { value_ = std::move(source); }
    209 
    210   T value_;
    211 };
    212 
    213 // Buffer class that stores the contained variant data.
    214 // To improve performance and reduce memory fragmentation, small variants
    215 // are stored in pre-allocated memory buffers that are part of the Any class.
    216 // If the memory requirements are larger than the set limit or the type is
    217 // non-trivially copyable, then the contained class is allocated in a separate
    218 // memory block and the pointer to that memory is contained within this memory
    219 // buffer class.
    220 class Buffer final {
    221  public:
    222   enum StorageType { kExternal, kContained };
    223   Buffer() : external_ptr_(nullptr), storage_(kExternal) {}
    224   ~Buffer() { Clear(); }
    225 
    226   Buffer(const Buffer& rhs) : Buffer() { rhs.CopyTo(this); }
    227   // NOLINTNEXTLINE(build/c++11)
    228   Buffer(Buffer&& rhs) : Buffer() { rhs.MoveTo(this); }
    229   Buffer& operator=(const Buffer& rhs) {
    230     rhs.CopyTo(this);
    231     return *this;
    232   }
    233   // NOLINTNEXTLINE(build/c++11)
    234   Buffer& operator=(Buffer&& rhs) {
    235     rhs.MoveTo(this);
    236     return *this;
    237   }
    238 
    239   // Returns the underlying pointer to contained data. Uses either the pointer
    240   // or the raw data depending on |storage_| type.
    241   inline Data* GetDataPtr() {
    242     return (storage_ == kExternal) ? external_ptr_
    243                                    : reinterpret_cast<Data*>(contained_buffer_);
    244   }
    245   inline const Data* GetDataPtr() const {
    246     return (storage_ == kExternal)
    247                ? external_ptr_
    248                : reinterpret_cast<const Data*>(contained_buffer_);
    249   }
    250 
    251   // Destroys the contained object (and frees memory if needed).
    252   void Clear() {
    253     Data* data = GetDataPtr();
    254     if (storage_ == kExternal) {
    255       delete data;
    256     } else {
    257       // Call the destructor manually, since the object was constructed inline
    258       // in the pre-allocated buffer. We still need to call the destructor
    259       // to free any associated resources, but we can't call delete |data| here.
    260       data->~Data();
    261     }
    262     external_ptr_ = nullptr;
    263     storage_ = kExternal;
    264   }
    265 
    266   // Stores a value of type T.
    267   template<typename T>
    268   void Assign(T&& value) {  // NOLINT(build/c++11)
    269     using Type = typename std::decay<T>::type;
    270     using DataType = TypedData<Type>;
    271     Data* ptr = GetDataPtr();
    272     if (ptr && strcmp(ptr->GetTypeTag(), GetTypeTag<Type>()) == 0) {
    273       // We assign the data to the variant container, which already
    274       // has the data of the same type. Do fast copy/move with no memory
    275       // reallocation.
    276       DataType* typed_ptr = static_cast<DataType*>(ptr);
    277       // NOLINTNEXTLINE(build/c++11)
    278       typed_ptr->FastAssign(std::forward<T>(value));
    279     } else {
    280       Clear();
    281       // TODO(avakulenko): [see crbug.com/379833]
    282       // Unfortunately, GCC doesn't support std::is_trivially_copyable<T> yet,
    283       // so using std::is_trivial instead, which is a bit more restrictive.
    284       // Once GCC has support for is_trivially_copyable, update the following.
    285       if (!std::is_trivial<Type>::value ||
    286           sizeof(DataType) > sizeof(contained_buffer_)) {
    287         // If it is too big or not trivially copyable, allocate it separately.
    288         // NOLINTNEXTLINE(build/c++11)
    289         external_ptr_ = new DataType(std::forward<T>(value));
    290         storage_ = kExternal;
    291       } else {
    292         // Otherwise just use the pre-allocated buffer.
    293         DataType* address = reinterpret_cast<DataType*>(contained_buffer_);
    294         // Make sure we still call the copy/move constructor.
    295         // Call the constructor manually by using placement 'new'.
    296         // NOLINTNEXTLINE(build/c++11)
    297         new (address) DataType(std::forward<T>(value));
    298         storage_ = kContained;
    299       }
    300     }
    301   }
    302 
    303   // Helper methods to retrieve a reference to contained data.
    304   // These assume that type checking has already been performed by Any
    305   // so the type cast is valid and will succeed.
    306   template<typename T>
    307   const T& GetData() const {
    308     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
    309     return static_cast<const DataType*>(GetDataPtr())->value_;
    310   }
    311   template<typename T>
    312   T& GetData() {
    313     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
    314     return static_cast<DataType*>(GetDataPtr())->value_;
    315   }
    316 
    317   // Returns true if the buffer has no contained data.
    318   bool IsEmpty() const {
    319     return (storage_ == kExternal && external_ptr_ == nullptr);
    320   }
    321 
    322   // Copies the data from the current buffer into the |destination|.
    323   void CopyTo(Buffer* destination) const {
    324     if (IsEmpty()) {
    325       destination->Clear();
    326     } else {
    327       GetDataPtr()->CopyTo(destination);
    328     }
    329   }
    330 
    331   // Moves the data from the current buffer into the |destination|.
    332   void MoveTo(Buffer* destination) {
    333     if (IsEmpty()) {
    334       destination->Clear();
    335     } else {
    336       if (storage_ == kExternal) {
    337         destination->Clear();
    338         destination->storage_ = kExternal;
    339         destination->external_ptr_ = external_ptr_;
    340         external_ptr_ = nullptr;
    341       } else {
    342         GetDataPtr()->MoveTo(destination);
    343       }
    344     }
    345   }
    346 
    347   union {
    348     // |external_ptr_| is a pointer to a larger object allocated in
    349     // a separate memory block.
    350     Data* external_ptr_;
    351     // |contained_buffer_| is a pre-allocated buffer for smaller/simple objects.
    352     // Pre-allocate enough memory to store objects as big as "double".
    353     unsigned char contained_buffer_[sizeof(TypedData<double>)];
    354   };
    355   // Depending on a value of |storage_|, either |external_ptr_| or
    356   // |contained_buffer_| above is used to get a pointer to memory containing
    357   // the variant data.
    358   StorageType storage_;  // Declare after the union to eliminate member padding.
    359 };
    360 
    361 template <typename T>
    362 void TypedData<T>::CopyTo(Buffer* buffer) const {
    363   buffer->Assign(value_);
    364 }
    365 template <typename T>
    366 void TypedData<T>::MoveTo(Buffer* buffer) {
    367   buffer->Assign(std::move(value_));
    368 }
    369 
    370 }  // namespace internal_details
    371 
    372 }  // namespace brillo
    373 
    374 #endif  // LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
    375