1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/HexagonMCInstrInfo.h" 15 #include "Hexagon.h" 16 #include "MCTargetDesc/HexagonBaseInfo.h" 17 #include "MCTargetDesc/HexagonMCChecker.h" 18 #include "MCTargetDesc/HexagonMCExpr.h" 19 #include "MCTargetDesc/HexagonMCShuffler.h" 20 #include "MCTargetDesc/HexagonMCTargetDesc.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCInst.h" 25 #include "llvm/MC/MCInstrInfo.h" 26 #include "llvm/MC/MCInstrItineraries.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include <cassert> 31 #include <cstdint> 32 #include <limits> 33 34 using namespace llvm; 35 36 bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const { 37 return Register != Hexagon::NoRegister; 38 } 39 40 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII, 41 MCInst const &Inst) 42 : MCII(MCII), BundleCurrent(Inst.begin() + 43 HexagonMCInstrInfo::bundleInstructionsOffset), 44 BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {} 45 46 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII, 47 MCInst const &Inst, std::nullptr_t) 48 : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()), 49 DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {} 50 51 Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() { 52 if (DuplexCurrent != DuplexEnd) { 53 ++DuplexCurrent; 54 if (DuplexCurrent == DuplexEnd) { 55 DuplexCurrent = BundleEnd; 56 DuplexEnd = BundleEnd; 57 ++BundleCurrent; 58 } 59 return *this; 60 } 61 ++BundleCurrent; 62 if (BundleCurrent != BundleEnd) { 63 MCInst const &Inst = *BundleCurrent->getInst(); 64 if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) { 65 DuplexCurrent = Inst.begin(); 66 DuplexEnd = Inst.end(); 67 } 68 } 69 return *this; 70 } 71 72 MCInst const &Hexagon::PacketIterator::operator*() const { 73 if (DuplexCurrent != DuplexEnd) 74 return *DuplexCurrent->getInst(); 75 return *BundleCurrent->getInst(); 76 } 77 78 bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const { 79 return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd && 80 DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd; 81 } 82 83 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value, 84 MCContext &Context) { 85 MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context))); 86 } 87 88 void HexagonMCInstrInfo::addConstExtender(MCContext &Context, 89 MCInstrInfo const &MCII, MCInst &MCB, 90 MCInst const &MCI) { 91 assert(HexagonMCInstrInfo::isBundle(MCB)); 92 MCOperand const &exOp = 93 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); 94 95 // Create the extender. 96 MCInst *XMCI = 97 new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp)); 98 XMCI->setLoc(MCI.getLoc()); 99 100 MCB.addOperand(MCOperand::createInst(XMCI)); 101 } 102 103 iterator_range<Hexagon::PacketIterator> 104 HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII, 105 MCInst const &MCI) { 106 assert(isBundle(MCI)); 107 return make_range(Hexagon::PacketIterator(MCII, MCI), 108 Hexagon::PacketIterator(MCII, MCI, nullptr)); 109 } 110 111 iterator_range<MCInst::const_iterator> 112 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) { 113 assert(isBundle(MCI)); 114 return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end()); 115 } 116 117 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) { 118 if (HexagonMCInstrInfo::isBundle(MCI)) 119 return (MCI.size() - bundleInstructionsOffset); 120 else 121 return (1); 122 } 123 124 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII, 125 MCSubtargetInfo const &STI, 126 MCContext &Context, MCInst &MCB, 127 HexagonMCChecker *Check) { 128 // Check the bundle for errors. 129 bool CheckOk = Check ? Check->check(false) : true; 130 if (!CheckOk) 131 return false; 132 // Examine the packet and convert pairs of instructions to compound 133 // instructions when possible. 134 if (!HexagonDisableCompound) 135 HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB); 136 HexagonMCShuffle(Context, false, MCII, STI, MCB); 137 // Examine the packet and convert pairs of instructions to duplex 138 // instructions when possible. 139 MCInst InstBundlePreDuplex = MCInst(MCB); 140 if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) { 141 SmallVector<DuplexCandidate, 8> possibleDuplexes; 142 possibleDuplexes = 143 HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB); 144 HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes); 145 } 146 // Examines packet and pad the packet, if needed, when an 147 // end-loop is in the bundle. 148 HexagonMCInstrInfo::padEndloop(MCB, Context); 149 // If compounding and duplexing didn't reduce the size below 150 // 4 or less we have a packet that is too big. 151 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) 152 return false; 153 // Check the bundle for errors. 154 CheckOk = Check ? Check->check(true) : true; 155 if (!CheckOk) 156 return false; 157 HexagonMCShuffle(Context, true, MCII, STI, MCB); 158 return true; 159 } 160 161 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII, 162 MCInst const &Inst, 163 MCOperand const &MO) { 164 assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) || 165 HexagonMCInstrInfo::isExtended(MCII, Inst)); 166 167 MCInst XMI; 168 XMI.setOpcode(Hexagon::A4_ext); 169 if (MO.isImm()) 170 XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f))); 171 else if (MO.isExpr()) 172 XMI.addOperand(MCOperand::createExpr(MO.getExpr())); 173 else 174 llvm_unreachable("invalid extendable operand"); 175 return XMI; 176 } 177 178 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass, 179 MCInst const &inst0, 180 MCInst const &inst1) { 181 assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf"); 182 MCInst *duplexInst = new (Context) MCInst; 183 duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass); 184 185 MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0)); 186 MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1)); 187 duplexInst->addOperand(MCOperand::createInst(SubInst0)); 188 duplexInst->addOperand(MCOperand::createInst(SubInst1)); 189 return duplexInst; 190 } 191 192 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB, 193 size_t Index) { 194 assert(Index <= bundleSize(MCB)); 195 if (Index == 0) 196 return nullptr; 197 MCInst const *Inst = 198 MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst(); 199 if (isImmext(*Inst)) 200 return Inst; 201 return nullptr; 202 } 203 204 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context, 205 MCInstrInfo const &MCII, MCInst &MCB, 206 MCInst const &MCI) { 207 if (isConstExtended(MCII, MCI)) 208 addConstExtender(Context, MCII, MCB, MCI); 209 } 210 211 unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII, 212 MCInst const &MCI) { 213 uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 214 unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask; 215 return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S)); 216 } 217 218 unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII, 219 MCInst const &MCI) { 220 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 221 return static_cast<unsigned>((F >> HexagonII::AddrModePos) & 222 HexagonII::AddrModeMask); 223 } 224 225 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII, 226 MCInst const &MCI) { 227 return MCII.get(MCI.getOpcode()); 228 } 229 230 unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) { 231 using namespace Hexagon; 232 233 switch (Reg) { 234 default: 235 llvm_unreachable("unknown duplex register"); 236 // Rs Rss 237 case R0: 238 case D0: 239 return 0; 240 case R1: 241 case D1: 242 return 1; 243 case R2: 244 case D2: 245 return 2; 246 case R3: 247 case D3: 248 return 3; 249 case R4: 250 case D8: 251 return 4; 252 case R5: 253 case D9: 254 return 5; 255 case R6: 256 case D10: 257 return 6; 258 case R7: 259 case D11: 260 return 7; 261 case R16: 262 return 8; 263 case R17: 264 return 9; 265 case R18: 266 return 10; 267 case R19: 268 return 11; 269 case R20: 270 return 12; 271 case R21: 272 return 13; 273 case R22: 274 return 14; 275 case R23: 276 return 15; 277 } 278 } 279 280 MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) { 281 const auto &HExpr = cast<HexagonMCExpr>(Expr); 282 assert(HExpr.getExpr()); 283 return *HExpr.getExpr(); 284 } 285 286 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII, 287 MCInst const &MCI) { 288 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 289 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); 290 } 291 292 MCOperand const & 293 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII, 294 MCInst const &MCI) { 295 unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI); 296 MCOperand const &MO = MCI.getOperand(O); 297 298 assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) || 299 HexagonMCInstrInfo::isExtended(MCII, MCI)) && 300 (MO.isImm() || MO.isExpr())); 301 return (MO); 302 } 303 304 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII, 305 MCInst const &MCI) { 306 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 307 return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask); 308 } 309 310 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII, 311 MCInst const &MCI) { 312 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 313 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); 314 } 315 316 bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII, 317 MCInst const &MCI) { 318 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 319 return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; 320 } 321 322 /// Return the maximum value of an extendable operand. 323 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII, 324 MCInst const &MCI) { 325 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) || 326 HexagonMCInstrInfo::isExtended(MCII, MCI)); 327 328 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed 329 return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1; 330 return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1; 331 } 332 333 /// Return the minimum value of an extendable operand. 334 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII, 335 MCInst const &MCI) { 336 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) || 337 HexagonMCInstrInfo::isExtended(MCII, MCI)); 338 339 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed 340 return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)); 341 return 0; 342 } 343 344 StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII, 345 MCInst const &MCI) { 346 return MCII.getName(MCI.getOpcode()); 347 } 348 349 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII, 350 MCInst const &MCI) { 351 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 352 return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask); 353 } 354 355 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII, 356 MCInst const &MCI) { 357 if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) { 358 // VTMP doesn't actually exist in the encodings for these 184 359 // 3 instructions so go ahead and create it here. 360 static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP); 361 return (MCO); 362 } else { 363 unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI); 364 MCOperand const &MCO = MCI.getOperand(O); 365 366 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || 367 HexagonMCInstrInfo::hasNewValue(MCII, MCI)) && 368 MCO.isReg()); 369 return (MCO); 370 } 371 } 372 373 /// Return the new value or the newly produced value. 374 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII, 375 MCInst const &MCI) { 376 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 377 return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2); 378 } 379 380 MCOperand const & 381 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII, 382 MCInst const &MCI) { 383 unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI); 384 MCOperand const &MCO = MCI.getOperand(O); 385 386 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || 387 HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) && 388 MCO.isReg()); 389 return (MCO); 390 } 391 392 /// Return the Hexagon ISA class for the insn. 393 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII, 394 MCInst const &MCI) { 395 const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags; 396 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); 397 } 398 399 /// Return the slots this instruction can execute out of 400 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII, 401 MCSubtargetInfo const &STI, 402 MCInst const &MCI) { 403 const InstrItinerary *II = STI.getSchedModel().InstrItineraries; 404 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); 405 return ((II[SchedClass].FirstStage + HexagonStages)->getUnits()); 406 } 407 408 /// Return the slots this instruction consumes in addition to 409 /// the slot(s) it can execute out of 410 411 unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII, 412 MCSubtargetInfo const &STI, 413 MCInst const &MCI) { 414 const InstrItinerary *II = STI.getSchedModel().InstrItineraries; 415 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); 416 unsigned Slots = 0; 417 418 // FirstStage are slots that this instruction can execute in. 419 // FirstStage+1 are slots that are also consumed by this instruction. 420 // For example: vmemu can only execute in slot 0 but also consumes slot 1. 421 for (unsigned Stage = II[SchedClass].FirstStage + 1; 422 Stage < II[SchedClass].LastStage; ++Stage) { 423 unsigned Units = (Stage + HexagonStages)->getUnits(); 424 if (Units > HexagonGetLastSlot()) 425 break; 426 // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8 427 Slots |= Units; 428 } 429 430 // if 0 is returned, then no additional slots are consumed by this inst. 431 return Slots; 432 } 433 434 bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { 435 if (!HexagonMCInstrInfo::isBundle(MCI)) 436 return false; 437 438 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { 439 if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst())) 440 return true; 441 } 442 443 return false; 444 } 445 446 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) { 447 return extenderForIndex(MCB, Index) != nullptr; 448 } 449 450 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) { 451 if (!HexagonMCInstrInfo::isBundle(MCI)) 452 return false; 453 454 for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { 455 if (isImmext(*I.getInst())) 456 return true; 457 } 458 459 return false; 460 } 461 462 /// Return whether the insn produces a value. 463 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII, 464 MCInst const &MCI) { 465 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 466 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); 467 } 468 469 /// Return whether the insn produces a second value. 470 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII, 471 MCInst const &MCI) { 472 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 473 return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2); 474 } 475 476 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) { 477 assert(isBundle(MCB)); 478 assert(Index < HEXAGON_PACKET_SIZE); 479 return *MCB.getOperand(bundleInstructionsOffset + Index).getInst(); 480 } 481 482 /// Return where the instruction is an accumulator. 483 bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII, 484 MCInst const &MCI) { 485 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 486 return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); 487 } 488 489 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) { 490 auto Result = Hexagon::BUNDLE == MCI.getOpcode(); 491 assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm())); 492 return Result; 493 } 494 495 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII, 496 MCInst const &MCI) { 497 if (HexagonMCInstrInfo::isExtended(MCII, MCI)) 498 return true; 499 if (!HexagonMCInstrInfo::isExtendable(MCII, MCI)) 500 return false; 501 MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI); 502 if (isa<HexagonMCExpr>(MO.getExpr()) && 503 HexagonMCInstrInfo::mustExtend(*MO.getExpr())) 504 return true; 505 // Branch insns are handled as necessary by relaxation. 506 if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) || 507 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ && 508 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) || 509 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ && 510 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch())) 511 return false; 512 // Otherwise loop instructions and other CR insts are handled by relaxation 513 else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) && 514 (MCI.getOpcode() != Hexagon::C4_addipc)) 515 return false; 516 517 assert(!MO.isImm()); 518 if (isa<HexagonMCExpr>(MO.getExpr()) && 519 HexagonMCInstrInfo::mustNotExtend(*MO.getExpr())) 520 return false; 521 int64_t Value; 522 if (!MO.getExpr()->evaluateAsAbsolute(Value)) 523 return true; 524 int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); 525 int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); 526 return (MinValue > Value || Value > MaxValue); 527 } 528 529 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) { 530 return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() && 531 !HexagonMCInstrInfo::isPrefix(MCII, MCI); 532 } 533 534 bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) { 535 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 536 return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask); 537 } 538 539 bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII, 540 MCInst const &MCI) { 541 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 542 return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask); 543 } 544 545 bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII, 546 MCInst const &MCI) { 547 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 548 return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask); 549 } 550 551 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII, 552 MCInst const &MCI) { 553 return (getType(MCII, MCI) == HexagonII::TypeCJ); 554 } 555 556 bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) { 557 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 558 return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask); 559 } 560 561 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) { 562 return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) || 563 (Reg >= Hexagon::D8 && Reg <= Hexagon::D11)); 564 } 565 566 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { 567 return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI); 568 } 569 570 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII, 571 MCInst const &MCI) { 572 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 573 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; 574 } 575 576 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII, 577 MCInst const &MCI) { 578 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 579 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; 580 } 581 582 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) { 583 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 584 return ((F >> HexagonII::FPPos) & HexagonII::FPMask); 585 } 586 587 bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) { 588 const uint64_t V = getType(MCII, MCI); 589 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; 590 } 591 592 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) { 593 return MCI.getOpcode() == Hexagon::A4_ext; 594 } 595 596 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) { 597 assert(isBundle(MCI)); 598 int64_t Flags = MCI.getOperand(0).getImm(); 599 return (Flags & innerLoopMask) != 0; 600 } 601 602 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) { 603 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31); 604 } 605 606 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) { 607 return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || 608 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23)); 609 } 610 611 /// Return whether the insn expects newly produced value. 612 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII, 613 MCInst const &MCI) { 614 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 615 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); 616 } 617 618 /// Return whether the operand is extendable. 619 bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII, 620 MCInst const &MCI, unsigned short O) { 621 return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); 622 } 623 624 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) { 625 assert(isBundle(MCI)); 626 int64_t Flags = MCI.getOperand(0).getImm(); 627 return (Flags & outerLoopMask) != 0; 628 } 629 630 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII, 631 MCInst const &MCI) { 632 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 633 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 634 } 635 636 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) { 637 return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI); 638 } 639 640 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII, 641 MCInst const &MCI) { 642 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 643 return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask); 644 } 645 646 /// Return whether the insn is newly predicated. 647 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII, 648 MCInst const &MCI) { 649 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 650 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); 651 } 652 653 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII, 654 MCInst const &MCI) { 655 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 656 return ( 657 !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); 658 } 659 660 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) { 661 return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0); 662 } 663 664 /// Return whether the insn can be packaged only with A and X-type insns. 665 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) { 666 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 667 return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask); 668 } 669 670 /// Return whether the insn can be packaged only with an A-type insn in slot #1. 671 bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII, 672 MCInst const &MCI) { 673 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 674 return ((F >> HexagonII::RestrictSlot1AOKPos) & 675 HexagonII::RestrictSlot1AOKMask); 676 } 677 678 bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII, 679 MCInst const &MCI) { 680 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 681 return ((F >> HexagonII::RestrictNoSlot1StorePos) & 682 HexagonII::RestrictNoSlot1StoreMask); 683 } 684 685 /// Return whether the insn is solo, i.e., cannot be in a packet. 686 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) { 687 const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags; 688 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); 689 } 690 691 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) { 692 assert(isBundle(MCI)); 693 auto Flags = MCI.getOperand(0).getImm(); 694 return (Flags & memReorderDisabledMask) != 0; 695 } 696 697 bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) { 698 switch (MCI.getOpcode()) { 699 default: 700 return false; 701 case Hexagon::SA1_addi: 702 case Hexagon::SA1_addrx: 703 case Hexagon::SA1_addsp: 704 case Hexagon::SA1_and1: 705 case Hexagon::SA1_clrf: 706 case Hexagon::SA1_clrfnew: 707 case Hexagon::SA1_clrt: 708 case Hexagon::SA1_clrtnew: 709 case Hexagon::SA1_cmpeqi: 710 case Hexagon::SA1_combine0i: 711 case Hexagon::SA1_combine1i: 712 case Hexagon::SA1_combine2i: 713 case Hexagon::SA1_combine3i: 714 case Hexagon::SA1_combinerz: 715 case Hexagon::SA1_combinezr: 716 case Hexagon::SA1_dec: 717 case Hexagon::SA1_inc: 718 case Hexagon::SA1_seti: 719 case Hexagon::SA1_setin1: 720 case Hexagon::SA1_sxtb: 721 case Hexagon::SA1_sxth: 722 case Hexagon::SA1_tfr: 723 case Hexagon::SA1_zxtb: 724 case Hexagon::SA1_zxth: 725 case Hexagon::SL1_loadri_io: 726 case Hexagon::SL1_loadrub_io: 727 case Hexagon::SL2_deallocframe: 728 case Hexagon::SL2_jumpr31: 729 case Hexagon::SL2_jumpr31_f: 730 case Hexagon::SL2_jumpr31_fnew: 731 case Hexagon::SL2_jumpr31_t: 732 case Hexagon::SL2_jumpr31_tnew: 733 case Hexagon::SL2_loadrb_io: 734 case Hexagon::SL2_loadrd_sp: 735 case Hexagon::SL2_loadrh_io: 736 case Hexagon::SL2_loadri_sp: 737 case Hexagon::SL2_loadruh_io: 738 case Hexagon::SL2_return: 739 case Hexagon::SL2_return_f: 740 case Hexagon::SL2_return_fnew: 741 case Hexagon::SL2_return_t: 742 case Hexagon::SL2_return_tnew: 743 case Hexagon::SS1_storeb_io: 744 case Hexagon::SS1_storew_io: 745 case Hexagon::SS2_allocframe: 746 case Hexagon::SS2_storebi0: 747 case Hexagon::SS2_storebi1: 748 case Hexagon::SS2_stored_sp: 749 case Hexagon::SS2_storeh_io: 750 case Hexagon::SS2_storew_sp: 751 case Hexagon::SS2_storewi0: 752 case Hexagon::SS2_storewi1: 753 return true; 754 } 755 } 756 757 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) { 758 if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) && 759 (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST)) 760 return true; 761 return false; 762 } 763 764 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) { 765 auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max()) 766 << 8; 767 if (MCI.size() <= Index) 768 return Sentinal; 769 MCOperand const &MCO = MCI.getOperand(Index); 770 if (!MCO.isExpr()) 771 return Sentinal; 772 int64_t Value; 773 if (!MCO.getExpr()->evaluateAsAbsolute(Value)) 774 return Sentinal; 775 return Value; 776 } 777 778 void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) { 779 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr)); 780 HExpr.setMustExtend(Val); 781 } 782 783 bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) { 784 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr); 785 return HExpr.mustExtend(); 786 } 787 void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) { 788 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr)); 789 HExpr.setMustNotExtend(Val); 790 } 791 bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) { 792 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr); 793 return HExpr.mustNotExtend(); 794 } 795 void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) { 796 HexagonMCExpr &HExpr = 797 const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr)); 798 HExpr.setS27_2_reloc(Val); 799 } 800 bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) { 801 HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr); 802 if (!HExpr) 803 return false; 804 return HExpr->s27_2_reloc(); 805 } 806 807 void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) { 808 MCInst Nop; 809 Nop.setOpcode(Hexagon::A2_nop); 810 assert(isBundle(MCB)); 811 while ((HexagonMCInstrInfo::isInnerLoop(MCB) && 812 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) || 813 ((HexagonMCInstrInfo::isOuterLoop(MCB) && 814 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE)))) 815 MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop))); 816 } 817 818 HexagonMCInstrInfo::PredicateInfo 819 HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) { 820 if (!isPredicated(MCII, MCI)) 821 return {0, 0, false}; 822 MCInstrDesc const &Desc = getDesc(MCII, MCI); 823 for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I) 824 if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID) 825 return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)}; 826 return {0, 0, false}; 827 } 828 829 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII, 830 MCInst const &MCI) { 831 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 832 return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask; 833 } 834 835 /// return true if instruction has hasTmpDst attribute. 836 bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) { 837 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; 838 return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask; 839 } 840 841 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB, 842 DuplexCandidate Candidate) { 843 assert(Candidate.packetIndexI < MCB.size()); 844 assert(Candidate.packetIndexJ < MCB.size()); 845 assert(isBundle(MCB)); 846 MCInst *Duplex = 847 deriveDuplex(Context, Candidate.iClass, 848 *MCB.getOperand(Candidate.packetIndexJ).getInst(), 849 *MCB.getOperand(Candidate.packetIndexI).getInst()); 850 assert(Duplex != nullptr); 851 MCB.getOperand(Candidate.packetIndexI).setInst(Duplex); 852 MCB.erase(MCB.begin() + Candidate.packetIndexJ); 853 } 854 855 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) { 856 assert(isBundle(MCI)); 857 MCOperand &Operand = MCI.getOperand(0); 858 Operand.setImm(Operand.getImm() | innerLoopMask); 859 } 860 861 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) { 862 assert(isBundle(MCI)); 863 MCOperand &Operand = MCI.getOperand(0); 864 Operand.setImm(Operand.getImm() | memReorderDisabledMask); 865 assert(isMemReorderDisabled(MCI)); 866 } 867 868 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) { 869 assert(isBundle(MCI)); 870 MCOperand &Operand = MCI.getOperand(0); 871 Operand.setImm(Operand.getImm() | outerLoopMask); 872 } 873 874 unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer, 875 unsigned Producer, 876 unsigned Producer2) { 877 // If we're a single vector consumer of a double producer, set subreg bit 878 // based on if we're accessing the lower or upper register component 879 if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15) 880 if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31) 881 return (Consumer - Hexagon::V0) & 0x1; 882 if (Producer2 != Hexagon::NoRegister) 883 return Consumer == Producer; 884 return 0; 885 } 886