Home | History | Annotate | Download | only in ARM
      1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ARM specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARM.h"
     15 
     16 #include "ARMCallLowering.h"
     17 #include "ARMLegalizerInfo.h"
     18 #include "ARMRegisterBankInfo.h"
     19 #include "ARMSubtarget.h"
     20 #include "ARMFrameLowering.h"
     21 #include "ARMInstrInfo.h"
     22 #include "ARMSubtarget.h"
     23 #include "ARMTargetMachine.h"
     24 #include "MCTargetDesc/ARMMCTargetDesc.h"
     25 #include "Thumb1FrameLowering.h"
     26 #include "Thumb1InstrInfo.h"
     27 #include "Thumb2InstrInfo.h"
     28 #include "llvm/ADT/StringRef.h"
     29 #include "llvm/ADT/Triple.h"
     30 #include "llvm/ADT/Twine.h"
     31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
     32 #include "llvm/CodeGen/MachineFunction.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/IR/GlobalValue.h"
     35 #include "llvm/MC/MCAsmInfo.h"
     36 #include "llvm/MC/MCTargetOptions.h"
     37 #include "llvm/Support/CodeGen.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/TargetParser.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "arm-subtarget"
     45 
     46 #define GET_SUBTARGETINFO_TARGET_DESC
     47 #define GET_SUBTARGETINFO_CTOR
     48 #include "ARMGenSubtargetInfo.inc"
     49 
     50 static cl::opt<bool>
     51 UseFusedMulOps("arm-use-mulops",
     52                cl::init(true), cl::Hidden);
     53 
     54 enum ITMode {
     55   DefaultIT,
     56   RestrictedIT,
     57   NoRestrictedIT
     58 };
     59 
     60 static cl::opt<ITMode>
     61 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
     62    cl::ZeroOrMore,
     63    cl::values(clEnumValN(DefaultIT, "arm-default-it",
     64                          "Generate IT block based on arch"),
     65               clEnumValN(RestrictedIT, "arm-restrict-it",
     66                          "Disallow deprecated IT based on ARMv8"),
     67               clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
     68                          "Allow IT blocks based on ARMv7")));
     69 
     70 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
     71 /// currently supported (for testing only).
     72 static cl::opt<bool>
     73 ForceFastISel("arm-force-fast-isel",
     74                cl::init(false), cl::Hidden);
     75 
     76 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
     77 /// so that we can use initializer lists for subtarget initialization.
     78 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
     79                                                             StringRef FS) {
     80   initializeEnvironment();
     81   initSubtargetFeatures(CPU, FS);
     82   return *this;
     83 }
     84 
     85 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
     86                                                         StringRef FS) {
     87   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
     88   if (STI.isThumb1Only())
     89     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
     90 
     91   return new ARMFrameLowering(STI);
     92 }
     93 
     94 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
     95                            const std::string &FS,
     96                            const ARMBaseTargetMachine &TM, bool IsLittle)
     97     : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
     98       CPUString(CPU), IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options),
     99       TM(TM), FrameLowering(initializeFrameLowering(CPU, FS)),
    100       // At this point initializeSubtargetDependencies has been called so
    101       // we can query directly.
    102       InstrInfo(isThumb1Only()
    103                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
    104                     : !isThumb()
    105                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
    106                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
    107       TLInfo(TM, *this) {
    108 
    109   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
    110   Legalizer.reset(new ARMLegalizerInfo(*this));
    111 
    112   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
    113 
    114   // FIXME: At this point, we can't rely on Subtarget having RBI.
    115   // It's awkward to mix passing RBI and the Subtarget; should we pass
    116   // TII/TRI as well?
    117   InstSelector.reset(createARMInstructionSelector(
    118       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
    119 
    120   RegBankInfo.reset(RBI);
    121 }
    122 
    123 const CallLowering *ARMSubtarget::getCallLowering() const {
    124   return CallLoweringInfo.get();
    125 }
    126 
    127 const InstructionSelector *ARMSubtarget::getInstructionSelector() const {
    128   return InstSelector.get();
    129 }
    130 
    131 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
    132   return Legalizer.get();
    133 }
    134 
    135 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
    136   return RegBankInfo.get();
    137 }
    138 
    139 bool ARMSubtarget::isXRaySupported() const {
    140   // We don't currently suppport Thumb, but Windows requires Thumb.
    141   return hasV6Ops() && hasARMOps() && !isTargetWindows();
    142 }
    143 
    144 void ARMSubtarget::initializeEnvironment() {
    145   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
    146   // directly from it, but we can try to make sure they're consistent when both
    147   // available.
    148   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
    149                Options.ExceptionModel == ExceptionHandling::None) ||
    150               Options.ExceptionModel == ExceptionHandling::SjLj;
    151   assert((!TM.getMCAsmInfo() ||
    152           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
    153            ExceptionHandling::SjLj) == UseSjLjEH) &&
    154          "inconsistent sjlj choice between CodeGen and MC");
    155 }
    156 
    157 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
    158   if (CPUString.empty()) {
    159     CPUString = "generic";
    160 
    161     if (isTargetDarwin()) {
    162       StringRef ArchName = TargetTriple.getArchName();
    163       ARM::ArchKind AK = ARM::parseArch(ArchName);
    164       if (AK == ARM::ArchKind::ARMV7S)
    165         // Default to the Swift CPU when targeting armv7s/thumbv7s.
    166         CPUString = "swift";
    167       else if (AK == ARM::ArchKind::ARMV7K)
    168         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
    169         // ARMv7k does not use SjLj exception handling.
    170         CPUString = "cortex-a7";
    171     }
    172   }
    173 
    174   // Insert the architecture feature derived from the target triple into the
    175   // feature string. This is important for setting features that are implied
    176   // based on the architecture version.
    177   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
    178   if (!FS.empty()) {
    179     if (!ArchFS.empty())
    180       ArchFS = (Twine(ArchFS) + "," + FS).str();
    181     else
    182       ArchFS = FS;
    183   }
    184   ParseSubtargetFeatures(CPUString, ArchFS);
    185 
    186   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
    187   // Assert this for now to make the change obvious.
    188   assert(hasV6T2Ops() || !hasThumb2());
    189 
    190   // Execute only support requires movt support
    191   if (genExecuteOnly())
    192     assert(hasV8MBaselineOps() && !NoMovt && "Cannot generate execute-only code for this target");
    193 
    194   // Keep a pointer to static instruction cost data for the specified CPU.
    195   SchedModel = getSchedModelForCPU(CPUString);
    196 
    197   // Initialize scheduling itinerary for the specified CPU.
    198   InstrItins = getInstrItineraryForCPU(CPUString);
    199 
    200   // FIXME: this is invalid for WindowsCE
    201   if (isTargetWindows())
    202     NoARM = true;
    203 
    204   if (isAAPCS_ABI())
    205     stackAlignment = 8;
    206   if (isTargetNaCl() || isAAPCS16_ABI())
    207     stackAlignment = 16;
    208 
    209   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
    210   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
    211   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
    212   // support in the assembler and linker to be used. This would need to be
    213   // fixed to fully support tail calls in Thumb1.
    214   //
    215   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
    216   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
    217   // means if we need to reload LR, it takes extra instructions, which outweighs
    218   // the value of the tail call; but here we don't know yet whether LR is going
    219   // to be used. We take the optimistic approach of generating the tail call and
    220   // perhaps taking a hit if we need to restore the LR.
    221 
    222   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
    223   // but we need to make sure there are enough registers; the only valid
    224   // registers are the 4 used for parameters.  We don't currently do this
    225   // case.
    226 
    227   SupportsTailCall = !isThumb() || hasV8MBaselineOps();
    228 
    229   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
    230     SupportsTailCall = false;
    231 
    232   switch (IT) {
    233   case DefaultIT:
    234     RestrictIT = hasV8Ops();
    235     break;
    236   case RestrictedIT:
    237     RestrictIT = true;
    238     break;
    239   case NoRestrictedIT:
    240     RestrictIT = false;
    241     break;
    242   }
    243 
    244   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
    245   const FeatureBitset &Bits = getFeatureBits();
    246   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
    247       (Options.UnsafeFPMath || isTargetDarwin()))
    248     UseNEONForSinglePrecisionFP = true;
    249 
    250   if (isRWPI())
    251     ReserveR9 = true;
    252 
    253   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
    254   switch (ARMProcFamily) {
    255   case Others:
    256   case CortexA5:
    257     break;
    258   case CortexA7:
    259     LdStMultipleTiming = DoubleIssue;
    260     break;
    261   case CortexA8:
    262     LdStMultipleTiming = DoubleIssue;
    263     break;
    264   case CortexA9:
    265     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
    266     PreISelOperandLatencyAdjustment = 1;
    267     break;
    268   case CortexA12:
    269     break;
    270   case CortexA15:
    271     MaxInterleaveFactor = 2;
    272     PreISelOperandLatencyAdjustment = 1;
    273     PartialUpdateClearance = 12;
    274     break;
    275   case CortexA17:
    276   case CortexA32:
    277   case CortexA35:
    278   case CortexA53:
    279   case CortexA55:
    280   case CortexA57:
    281   case CortexA72:
    282   case CortexA73:
    283   case CortexA75:
    284   case CortexR4:
    285   case CortexR4F:
    286   case CortexR5:
    287   case CortexR7:
    288   case CortexM3:
    289   case CortexR52:
    290   case ExynosM1:
    291   case Kryo:
    292     break;
    293   case Krait:
    294     PreISelOperandLatencyAdjustment = 1;
    295     break;
    296   case Swift:
    297     MaxInterleaveFactor = 2;
    298     LdStMultipleTiming = SingleIssuePlusExtras;
    299     PreISelOperandLatencyAdjustment = 1;
    300     PartialUpdateClearance = 12;
    301     break;
    302   }
    303 }
    304 
    305 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
    306 
    307 bool ARMSubtarget::isAPCS_ABI() const {
    308   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
    309   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
    310 }
    311 bool ARMSubtarget::isAAPCS_ABI() const {
    312   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
    313   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
    314          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
    315 }
    316 bool ARMSubtarget::isAAPCS16_ABI() const {
    317   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
    318   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
    319 }
    320 
    321 bool ARMSubtarget::isROPI() const {
    322   return TM.getRelocationModel() == Reloc::ROPI ||
    323          TM.getRelocationModel() == Reloc::ROPI_RWPI;
    324 }
    325 bool ARMSubtarget::isRWPI() const {
    326   return TM.getRelocationModel() == Reloc::RWPI ||
    327          TM.getRelocationModel() == Reloc::ROPI_RWPI;
    328 }
    329 
    330 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
    331   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
    332     return true;
    333 
    334   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
    335   // the section that is being relocated. This means we have to use o load even
    336   // for GVs that are known to be local to the dso.
    337   if (isTargetMachO() && TM.isPositionIndependent() &&
    338       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
    339     return true;
    340 
    341   return false;
    342 }
    343 
    344 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
    345   return isTargetELF() && TM.isPositionIndependent() &&
    346          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
    347 }
    348 
    349 unsigned ARMSubtarget::getMispredictionPenalty() const {
    350   return SchedModel.MispredictPenalty;
    351 }
    352 
    353 bool ARMSubtarget::enableMachineScheduler() const {
    354   // Enable the MachineScheduler before register allocation for subtargets
    355   // with the use-misched feature.
    356   return useMachineScheduler();
    357 }
    358 
    359 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
    360 bool ARMSubtarget::enablePostRAScheduler() const {
    361   if (disablePostRAScheduler())
    362     return false;
    363   // Don't reschedule potential IT blocks.
    364   return !isThumb1Only();
    365 }
    366 
    367 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
    368 
    369 bool ARMSubtarget::useStride4VFPs(const MachineFunction &MF) const {
    370   // For general targets, the prologue can grow when VFPs are allocated with
    371   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
    372   // format which it's more important to get right.
    373   return isTargetWatchABI() || (isSwift() && !MF.getFunction().optForMinSize());
    374 }
    375 
    376 bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
    377   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
    378   // immediates as it is inherently position independent, and may be out of
    379   // range otherwise.
    380   return !NoMovt && hasV8MBaselineOps() &&
    381          (isTargetWindows() || !MF.getFunction().optForMinSize() || genExecuteOnly());
    382 }
    383 
    384 bool ARMSubtarget::useFastISel() const {
    385   // Enable fast-isel for any target, for testing only.
    386   if (ForceFastISel)
    387     return true;
    388 
    389   // Limit fast-isel to the targets that are or have been tested.
    390   if (!hasV6Ops())
    391     return false;
    392 
    393   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
    394   return TM.Options.EnableFastISel &&
    395          ((isTargetMachO() && !isThumb1Only()) ||
    396           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
    397 }
    398