1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "LLVMContextImpl.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/CallSite.h" 24 #include "llvm/Support/ConstantRange.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 //===----------------------------------------------------------------------===// 29 // CallSite Class 30 //===----------------------------------------------------------------------===// 31 32 User::op_iterator CallSite::getCallee() const { 33 Instruction *II(getInstruction()); 34 return isCall() 35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 37 } 38 39 //===----------------------------------------------------------------------===// 40 // TerminatorInst Class 41 //===----------------------------------------------------------------------===// 42 43 // Out of line virtual method, so the vtable, etc has a home. 44 TerminatorInst::~TerminatorInst() { 45 } 46 47 //===----------------------------------------------------------------------===// 48 // UnaryInstruction Class 49 //===----------------------------------------------------------------------===// 50 51 // Out of line virtual method, so the vtable, etc has a home. 52 UnaryInstruction::~UnaryInstruction() { 53 } 54 55 //===----------------------------------------------------------------------===// 56 // SelectInst Class 57 //===----------------------------------------------------------------------===// 58 59 /// areInvalidOperands - Return a string if the specified operands are invalid 60 /// for a select operation, otherwise return null. 61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 62 if (Op1->getType() != Op2->getType()) 63 return "both values to select must have same type"; 64 65 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 66 // Vector select. 67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 68 return "vector select condition element type must be i1"; 69 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 70 if (ET == 0) 71 return "selected values for vector select must be vectors"; 72 if (ET->getNumElements() != VT->getNumElements()) 73 return "vector select requires selected vectors to have " 74 "the same vector length as select condition"; 75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 76 return "select condition must be i1 or <n x i1>"; 77 } 78 return 0; 79 } 80 81 82 //===----------------------------------------------------------------------===// 83 // PHINode Class 84 //===----------------------------------------------------------------------===// 85 86 PHINode::PHINode(const PHINode &PN) 87 : Instruction(PN.getType(), Instruction::PHI, 88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), 89 ReservedSpace(PN.getNumOperands()) { 90 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 91 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 92 SubclassOptionalData = PN.SubclassOptionalData; 93 } 94 95 PHINode::~PHINode() { 96 dropHungoffUses(); 97 } 98 99 Use *PHINode::allocHungoffUses(unsigned N) const { 100 // Allocate the array of Uses of the incoming values, followed by a pointer 101 // (with bottom bit set) to the User, followed by the array of pointers to 102 // the incoming basic blocks. 103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef) 104 + N * sizeof(BasicBlock*); 105 Use *Begin = static_cast<Use*>(::operator new(size)); 106 Use *End = Begin + N; 107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); 108 return Use::initTags(Begin, End); 109 } 110 111 // removeIncomingValue - Remove an incoming value. This is useful if a 112 // predecessor basic block is deleted. 113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 114 Value *Removed = getIncomingValue(Idx); 115 116 // Move everything after this operand down. 117 // 118 // FIXME: we could just swap with the end of the list, then erase. However, 119 // clients might not expect this to happen. The code as it is thrashes the 120 // use/def lists, which is kinda lame. 121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 123 124 // Nuke the last value. 125 Op<-1>().set(0); 126 --NumOperands; 127 128 // If the PHI node is dead, because it has zero entries, nuke it now. 129 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 130 // If anyone is using this PHI, make them use a dummy value instead... 131 replaceAllUsesWith(UndefValue::get(getType())); 132 eraseFromParent(); 133 } 134 return Removed; 135 } 136 137 /// growOperands - grow operands - This grows the operand list in response 138 /// to a push_back style of operation. This grows the number of ops by 1.5 139 /// times. 140 /// 141 void PHINode::growOperands() { 142 unsigned e = getNumOperands(); 143 unsigned NumOps = e + e / 2; 144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 145 146 Use *OldOps = op_begin(); 147 BasicBlock **OldBlocks = block_begin(); 148 149 ReservedSpace = NumOps; 150 OperandList = allocHungoffUses(ReservedSpace); 151 152 std::copy(OldOps, OldOps + e, op_begin()); 153 std::copy(OldBlocks, OldBlocks + e, block_begin()); 154 155 Use::zap(OldOps, OldOps + e, true); 156 } 157 158 /// hasConstantValue - If the specified PHI node always merges together the same 159 /// value, return the value, otherwise return null. 160 Value *PHINode::hasConstantValue() const { 161 // Exploit the fact that phi nodes always have at least one entry. 162 Value *ConstantValue = getIncomingValue(0); 163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 164 if (getIncomingValue(i) != ConstantValue) 165 return 0; // Incoming values not all the same. 166 return ConstantValue; 167 } 168 169 //===----------------------------------------------------------------------===// 170 // LandingPadInst Implementation 171 //===----------------------------------------------------------------------===// 172 173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 174 unsigned NumReservedValues, const Twine &NameStr, 175 Instruction *InsertBefore) 176 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { 177 init(PersonalityFn, 1 + NumReservedValues, NameStr); 178 } 179 180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 181 unsigned NumReservedValues, const Twine &NameStr, 182 BasicBlock *InsertAtEnd) 183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { 184 init(PersonalityFn, 1 + NumReservedValues, NameStr); 185 } 186 187 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 188 : Instruction(LP.getType(), Instruction::LandingPad, 189 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), 190 ReservedSpace(LP.getNumOperands()) { 191 Use *OL = OperandList, *InOL = LP.OperandList; 192 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 193 OL[I] = InOL[I]; 194 195 setCleanup(LP.isCleanup()); 196 } 197 198 LandingPadInst::~LandingPadInst() { 199 dropHungoffUses(); 200 } 201 202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 203 unsigned NumReservedClauses, 204 const Twine &NameStr, 205 Instruction *InsertBefore) { 206 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 207 InsertBefore); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 211 unsigned NumReservedClauses, 212 const Twine &NameStr, 213 BasicBlock *InsertAtEnd) { 214 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 215 InsertAtEnd); 216 } 217 218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, 219 const Twine &NameStr) { 220 ReservedSpace = NumReservedValues; 221 NumOperands = 1; 222 OperandList = allocHungoffUses(ReservedSpace); 223 OperandList[0] = PersFn; 224 setName(NameStr); 225 setCleanup(false); 226 } 227 228 /// growOperands - grow operands - This grows the operand list in response to a 229 /// push_back style of operation. This grows the number of ops by 2 times. 230 void LandingPadInst::growOperands(unsigned Size) { 231 unsigned e = getNumOperands(); 232 if (ReservedSpace >= e + Size) return; 233 ReservedSpace = (e + Size / 2) * 2; 234 235 Use *NewOps = allocHungoffUses(ReservedSpace); 236 Use *OldOps = OperandList; 237 for (unsigned i = 0; i != e; ++i) 238 NewOps[i] = OldOps[i]; 239 240 OperandList = NewOps; 241 Use::zap(OldOps, OldOps + e, true); 242 } 243 244 void LandingPadInst::addClause(Value *Val) { 245 unsigned OpNo = getNumOperands(); 246 growOperands(1); 247 assert(OpNo < ReservedSpace && "Growing didn't work!"); 248 ++NumOperands; 249 OperandList[OpNo] = Val; 250 } 251 252 //===----------------------------------------------------------------------===// 253 // CallInst Implementation 254 //===----------------------------------------------------------------------===// 255 256 CallInst::~CallInst() { 257 } 258 259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { 260 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); 261 Op<-1>() = Func; 262 263 #ifndef NDEBUG 264 FunctionType *FTy = 265 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 266 267 assert((Args.size() == FTy->getNumParams() || 268 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 269 "Calling a function with bad signature!"); 270 271 for (unsigned i = 0; i != Args.size(); ++i) 272 assert((i >= FTy->getNumParams() || 273 FTy->getParamType(i) == Args[i]->getType()) && 274 "Calling a function with a bad signature!"); 275 #endif 276 277 std::copy(Args.begin(), Args.end(), op_begin()); 278 setName(NameStr); 279 } 280 281 void CallInst::init(Value *Func, const Twine &NameStr) { 282 assert(NumOperands == 1 && "NumOperands not set up?"); 283 Op<-1>() = Func; 284 285 #ifndef NDEBUG 286 FunctionType *FTy = 287 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 288 289 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 290 #endif 291 292 setName(NameStr); 293 } 294 295 CallInst::CallInst(Value *Func, const Twine &Name, 296 Instruction *InsertBefore) 297 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 298 ->getElementType())->getReturnType(), 299 Instruction::Call, 300 OperandTraits<CallInst>::op_end(this) - 1, 301 1, InsertBefore) { 302 init(Func, Name); 303 } 304 305 CallInst::CallInst(Value *Func, const Twine &Name, 306 BasicBlock *InsertAtEnd) 307 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 308 ->getElementType())->getReturnType(), 309 Instruction::Call, 310 OperandTraits<CallInst>::op_end(this) - 1, 311 1, InsertAtEnd) { 312 init(Func, Name); 313 } 314 315 CallInst::CallInst(const CallInst &CI) 316 : Instruction(CI.getType(), Instruction::Call, 317 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 318 CI.getNumOperands()) { 319 setAttributes(CI.getAttributes()); 320 setTailCall(CI.isTailCall()); 321 setCallingConv(CI.getCallingConv()); 322 323 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 324 SubclassOptionalData = CI.SubclassOptionalData; 325 } 326 327 void CallInst::addAttribute(unsigned i, Attributes attr) { 328 AttrListPtr PAL = getAttributes(); 329 PAL = PAL.addAttr(i, attr); 330 setAttributes(PAL); 331 } 332 333 void CallInst::removeAttribute(unsigned i, Attributes attr) { 334 AttrListPtr PAL = getAttributes(); 335 PAL = PAL.removeAttr(i, attr); 336 setAttributes(PAL); 337 } 338 339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const { 340 if (AttributeList.paramHasAttr(i, attr)) 341 return true; 342 if (const Function *F = getCalledFunction()) 343 return F->paramHasAttr(i, attr); 344 return false; 345 } 346 347 /// IsConstantOne - Return true only if val is constant int 1 348 static bool IsConstantOne(Value *val) { 349 assert(val && "IsConstantOne does not work with NULL val"); 350 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); 351 } 352 353 static Instruction *createMalloc(Instruction *InsertBefore, 354 BasicBlock *InsertAtEnd, Type *IntPtrTy, 355 Type *AllocTy, Value *AllocSize, 356 Value *ArraySize, Function *MallocF, 357 const Twine &Name) { 358 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 359 "createMalloc needs either InsertBefore or InsertAtEnd"); 360 361 // malloc(type) becomes: 362 // bitcast (i8* malloc(typeSize)) to type* 363 // malloc(type, arraySize) becomes: 364 // bitcast (i8 *malloc(typeSize*arraySize)) to type* 365 if (!ArraySize) 366 ArraySize = ConstantInt::get(IntPtrTy, 1); 367 else if (ArraySize->getType() != IntPtrTy) { 368 if (InsertBefore) 369 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 370 "", InsertBefore); 371 else 372 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 373 "", InsertAtEnd); 374 } 375 376 if (!IsConstantOne(ArraySize)) { 377 if (IsConstantOne(AllocSize)) { 378 AllocSize = ArraySize; // Operand * 1 = Operand 379 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 380 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 381 false /*ZExt*/); 382 // Malloc arg is constant product of type size and array size 383 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 384 } else { 385 // Multiply type size by the array size... 386 if (InsertBefore) 387 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 388 "mallocsize", InsertBefore); 389 else 390 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 391 "mallocsize", InsertAtEnd); 392 } 393 } 394 395 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 396 // Create the call to Malloc. 397 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 398 Module* M = BB->getParent()->getParent(); 399 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 400 Value *MallocFunc = MallocF; 401 if (!MallocFunc) 402 // prototype malloc as "void *malloc(size_t)" 403 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); 404 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 405 CallInst *MCall = NULL; 406 Instruction *Result = NULL; 407 if (InsertBefore) { 408 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); 409 Result = MCall; 410 if (Result->getType() != AllocPtrType) 411 // Create a cast instruction to convert to the right type... 412 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 413 } else { 414 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); 415 Result = MCall; 416 if (Result->getType() != AllocPtrType) { 417 InsertAtEnd->getInstList().push_back(MCall); 418 // Create a cast instruction to convert to the right type... 419 Result = new BitCastInst(MCall, AllocPtrType, Name); 420 } 421 } 422 MCall->setTailCall(); 423 if (Function *F = dyn_cast<Function>(MallocFunc)) { 424 MCall->setCallingConv(F->getCallingConv()); 425 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 426 } 427 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 428 429 return Result; 430 } 431 432 /// CreateMalloc - Generate the IR for a call to malloc: 433 /// 1. Compute the malloc call's argument as the specified type's size, 434 /// possibly multiplied by the array size if the array size is not 435 /// constant 1. 436 /// 2. Call malloc with that argument. 437 /// 3. Bitcast the result of the malloc call to the specified type. 438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 439 Type *IntPtrTy, Type *AllocTy, 440 Value *AllocSize, Value *ArraySize, 441 Function * MallocF, 442 const Twine &Name) { 443 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, 444 ArraySize, MallocF, Name); 445 } 446 447 /// CreateMalloc - Generate the IR for a call to malloc: 448 /// 1. Compute the malloc call's argument as the specified type's size, 449 /// possibly multiplied by the array size if the array size is not 450 /// constant 1. 451 /// 2. Call malloc with that argument. 452 /// 3. Bitcast the result of the malloc call to the specified type. 453 /// Note: This function does not add the bitcast to the basic block, that is the 454 /// responsibility of the caller. 455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 456 Type *IntPtrTy, Type *AllocTy, 457 Value *AllocSize, Value *ArraySize, 458 Function *MallocF, const Twine &Name) { 459 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 460 ArraySize, MallocF, Name); 461 } 462 463 static Instruction* createFree(Value* Source, Instruction *InsertBefore, 464 BasicBlock *InsertAtEnd) { 465 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 466 "createFree needs either InsertBefore or InsertAtEnd"); 467 assert(Source->getType()->isPointerTy() && 468 "Can not free something of nonpointer type!"); 469 470 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 471 Module* M = BB->getParent()->getParent(); 472 473 Type *VoidTy = Type::getVoidTy(M->getContext()); 474 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 475 // prototype free as "void free(void*)" 476 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); 477 CallInst* Result = NULL; 478 Value *PtrCast = Source; 479 if (InsertBefore) { 480 if (Source->getType() != IntPtrTy) 481 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 482 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); 483 } else { 484 if (Source->getType() != IntPtrTy) 485 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 486 Result = CallInst::Create(FreeFunc, PtrCast, ""); 487 } 488 Result->setTailCall(); 489 if (Function *F = dyn_cast<Function>(FreeFunc)) 490 Result->setCallingConv(F->getCallingConv()); 491 492 return Result; 493 } 494 495 /// CreateFree - Generate the IR for a call to the builtin free function. 496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { 497 return createFree(Source, InsertBefore, NULL); 498 } 499 500 /// CreateFree - Generate the IR for a call to the builtin free function. 501 /// Note: This function does not add the call to the basic block, that is the 502 /// responsibility of the caller. 503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { 504 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); 505 assert(FreeCall && "CreateFree did not create a CallInst"); 506 return FreeCall; 507 } 508 509 //===----------------------------------------------------------------------===// 510 // InvokeInst Implementation 511 //===----------------------------------------------------------------------===// 512 513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, 514 ArrayRef<Value *> Args, const Twine &NameStr) { 515 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); 516 Op<-3>() = Fn; 517 Op<-2>() = IfNormal; 518 Op<-1>() = IfException; 519 520 #ifndef NDEBUG 521 FunctionType *FTy = 522 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); 523 524 assert(((Args.size() == FTy->getNumParams()) || 525 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 526 "Invoking a function with bad signature"); 527 528 for (unsigned i = 0, e = Args.size(); i != e; i++) 529 assert((i >= FTy->getNumParams() || 530 FTy->getParamType(i) == Args[i]->getType()) && 531 "Invoking a function with a bad signature!"); 532 #endif 533 534 std::copy(Args.begin(), Args.end(), op_begin()); 535 setName(NameStr); 536 } 537 538 InvokeInst::InvokeInst(const InvokeInst &II) 539 : TerminatorInst(II.getType(), Instruction::Invoke, 540 OperandTraits<InvokeInst>::op_end(this) 541 - II.getNumOperands(), 542 II.getNumOperands()) { 543 setAttributes(II.getAttributes()); 544 setCallingConv(II.getCallingConv()); 545 std::copy(II.op_begin(), II.op_end(), op_begin()); 546 SubclassOptionalData = II.SubclassOptionalData; 547 } 548 549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 550 return getSuccessor(idx); 551 } 552 unsigned InvokeInst::getNumSuccessorsV() const { 553 return getNumSuccessors(); 554 } 555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 556 return setSuccessor(idx, B); 557 } 558 559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const { 560 if (AttributeList.paramHasAttr(i, attr)) 561 return true; 562 if (const Function *F = getCalledFunction()) 563 return F->paramHasAttr(i, attr); 564 return false; 565 } 566 567 void InvokeInst::addAttribute(unsigned i, Attributes attr) { 568 AttrListPtr PAL = getAttributes(); 569 PAL = PAL.addAttr(i, attr); 570 setAttributes(PAL); 571 } 572 573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) { 574 AttrListPtr PAL = getAttributes(); 575 PAL = PAL.removeAttr(i, attr); 576 setAttributes(PAL); 577 } 578 579 LandingPadInst *InvokeInst::getLandingPadInst() const { 580 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // ReturnInst Implementation 585 //===----------------------------------------------------------------------===// 586 587 ReturnInst::ReturnInst(const ReturnInst &RI) 588 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 589 OperandTraits<ReturnInst>::op_end(this) - 590 RI.getNumOperands(), 591 RI.getNumOperands()) { 592 if (RI.getNumOperands()) 593 Op<0>() = RI.Op<0>(); 594 SubclassOptionalData = RI.SubclassOptionalData; 595 } 596 597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 598 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 599 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 600 InsertBefore) { 601 if (retVal) 602 Op<0>() = retVal; 603 } 604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 605 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 606 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 607 InsertAtEnd) { 608 if (retVal) 609 Op<0>() = retVal; 610 } 611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 612 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 613 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 614 } 615 616 unsigned ReturnInst::getNumSuccessorsV() const { 617 return getNumSuccessors(); 618 } 619 620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 621 /// emit the vtable for the class in this translation unit. 622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 623 llvm_unreachable("ReturnInst has no successors!"); 624 } 625 626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 627 llvm_unreachable("ReturnInst has no successors!"); 628 return 0; 629 } 630 631 ReturnInst::~ReturnInst() { 632 } 633 634 //===----------------------------------------------------------------------===// 635 // UnwindInst Implementation 636 //===----------------------------------------------------------------------===// 637 638 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore) 639 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind, 640 0, 0, InsertBefore) { 641 } 642 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 643 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind, 644 0, 0, InsertAtEnd) { 645 } 646 647 648 unsigned UnwindInst::getNumSuccessorsV() const { 649 return getNumSuccessors(); 650 } 651 652 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 653 llvm_unreachable("UnwindInst has no successors!"); 654 } 655 656 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const { 657 llvm_unreachable("UnwindInst has no successors!"); 658 return 0; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // ResumeInst Implementation 663 //===----------------------------------------------------------------------===// 664 665 ResumeInst::ResumeInst(const ResumeInst &RI) 666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 667 OperandTraits<ResumeInst>::op_begin(this), 1) { 668 Op<0>() = RI.Op<0>(); 669 } 670 671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 674 Op<0>() = Exn; 675 } 676 677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 680 Op<0>() = Exn; 681 } 682 683 unsigned ResumeInst::getNumSuccessorsV() const { 684 return getNumSuccessors(); 685 } 686 687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 688 llvm_unreachable("ResumeInst has no successors!"); 689 } 690 691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 692 llvm_unreachable("ResumeInst has no successors!"); 693 return 0; 694 } 695 696 //===----------------------------------------------------------------------===// 697 // UnreachableInst Implementation 698 //===----------------------------------------------------------------------===// 699 700 UnreachableInst::UnreachableInst(LLVMContext &Context, 701 Instruction *InsertBefore) 702 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 703 0, 0, InsertBefore) { 704 } 705 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 706 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 707 0, 0, InsertAtEnd) { 708 } 709 710 unsigned UnreachableInst::getNumSuccessorsV() const { 711 return getNumSuccessors(); 712 } 713 714 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 715 llvm_unreachable("UnwindInst has no successors!"); 716 } 717 718 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 719 llvm_unreachable("UnwindInst has no successors!"); 720 return 0; 721 } 722 723 //===----------------------------------------------------------------------===// 724 // BranchInst Implementation 725 //===----------------------------------------------------------------------===// 726 727 void BranchInst::AssertOK() { 728 if (isConditional()) 729 assert(getCondition()->getType()->isIntegerTy(1) && 730 "May only branch on boolean predicates!"); 731 } 732 733 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 734 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 735 OperandTraits<BranchInst>::op_end(this) - 1, 736 1, InsertBefore) { 737 assert(IfTrue != 0 && "Branch destination may not be null!"); 738 Op<-1>() = IfTrue; 739 } 740 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 741 Instruction *InsertBefore) 742 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 743 OperandTraits<BranchInst>::op_end(this) - 3, 744 3, InsertBefore) { 745 Op<-1>() = IfTrue; 746 Op<-2>() = IfFalse; 747 Op<-3>() = Cond; 748 #ifndef NDEBUG 749 AssertOK(); 750 #endif 751 } 752 753 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 754 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 755 OperandTraits<BranchInst>::op_end(this) - 1, 756 1, InsertAtEnd) { 757 assert(IfTrue != 0 && "Branch destination may not be null!"); 758 Op<-1>() = IfTrue; 759 } 760 761 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 762 BasicBlock *InsertAtEnd) 763 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 764 OperandTraits<BranchInst>::op_end(this) - 3, 765 3, InsertAtEnd) { 766 Op<-1>() = IfTrue; 767 Op<-2>() = IfFalse; 768 Op<-3>() = Cond; 769 #ifndef NDEBUG 770 AssertOK(); 771 #endif 772 } 773 774 775 BranchInst::BranchInst(const BranchInst &BI) : 776 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 777 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 778 BI.getNumOperands()) { 779 Op<-1>() = BI.Op<-1>(); 780 if (BI.getNumOperands() != 1) { 781 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 782 Op<-3>() = BI.Op<-3>(); 783 Op<-2>() = BI.Op<-2>(); 784 } 785 SubclassOptionalData = BI.SubclassOptionalData; 786 } 787 788 void BranchInst::swapSuccessors() { 789 assert(isConditional() && 790 "Cannot swap successors of an unconditional branch"); 791 Op<-1>().swap(Op<-2>()); 792 793 // Update profile metadata if present and it matches our structural 794 // expectations. 795 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 796 if (!ProfileData || ProfileData->getNumOperands() != 3) 797 return; 798 799 // The first operand is the name. Fetch them backwards and build a new one. 800 Value *Ops[] = { 801 ProfileData->getOperand(0), 802 ProfileData->getOperand(2), 803 ProfileData->getOperand(1) 804 }; 805 setMetadata(LLVMContext::MD_prof, 806 MDNode::get(ProfileData->getContext(), Ops)); 807 } 808 809 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 810 return getSuccessor(idx); 811 } 812 unsigned BranchInst::getNumSuccessorsV() const { 813 return getNumSuccessors(); 814 } 815 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 816 setSuccessor(idx, B); 817 } 818 819 820 //===----------------------------------------------------------------------===// 821 // AllocaInst Implementation 822 //===----------------------------------------------------------------------===// 823 824 static Value *getAISize(LLVMContext &Context, Value *Amt) { 825 if (!Amt) 826 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 827 else { 828 assert(!isa<BasicBlock>(Amt) && 829 "Passed basic block into allocation size parameter! Use other ctor"); 830 assert(Amt->getType()->isIntegerTy() && 831 "Allocation array size is not an integer!"); 832 } 833 return Amt; 834 } 835 836 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 837 const Twine &Name, Instruction *InsertBefore) 838 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 839 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 840 setAlignment(0); 841 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 842 setName(Name); 843 } 844 845 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 846 const Twine &Name, BasicBlock *InsertAtEnd) 847 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 848 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 849 setAlignment(0); 850 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 851 setName(Name); 852 } 853 854 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 855 Instruction *InsertBefore) 856 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 857 getAISize(Ty->getContext(), 0), InsertBefore) { 858 setAlignment(0); 859 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 860 setName(Name); 861 } 862 863 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 864 BasicBlock *InsertAtEnd) 865 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 866 getAISize(Ty->getContext(), 0), InsertAtEnd) { 867 setAlignment(0); 868 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 869 setName(Name); 870 } 871 872 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 873 const Twine &Name, Instruction *InsertBefore) 874 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 875 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 876 setAlignment(Align); 877 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 878 setName(Name); 879 } 880 881 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 882 const Twine &Name, BasicBlock *InsertAtEnd) 883 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 884 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 885 setAlignment(Align); 886 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 887 setName(Name); 888 } 889 890 // Out of line virtual method, so the vtable, etc has a home. 891 AllocaInst::~AllocaInst() { 892 } 893 894 void AllocaInst::setAlignment(unsigned Align) { 895 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 896 assert(Align <= MaximumAlignment && 897 "Alignment is greater than MaximumAlignment!"); 898 setInstructionSubclassData(Log2_32(Align) + 1); 899 assert(getAlignment() == Align && "Alignment representation error!"); 900 } 901 902 bool AllocaInst::isArrayAllocation() const { 903 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 904 return !CI->isOne(); 905 return true; 906 } 907 908 Type *AllocaInst::getAllocatedType() const { 909 return getType()->getElementType(); 910 } 911 912 /// isStaticAlloca - Return true if this alloca is in the entry block of the 913 /// function and is a constant size. If so, the code generator will fold it 914 /// into the prolog/epilog code, so it is basically free. 915 bool AllocaInst::isStaticAlloca() const { 916 // Must be constant size. 917 if (!isa<ConstantInt>(getArraySize())) return false; 918 919 // Must be in the entry block. 920 const BasicBlock *Parent = getParent(); 921 return Parent == &Parent->getParent()->front(); 922 } 923 924 //===----------------------------------------------------------------------===// 925 // LoadInst Implementation 926 //===----------------------------------------------------------------------===// 927 928 void LoadInst::AssertOK() { 929 assert(getOperand(0)->getType()->isPointerTy() && 930 "Ptr must have pointer type."); 931 assert(!(isAtomic() && getAlignment() == 0) && 932 "Alignment required for atomic load"); 933 } 934 935 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 936 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 937 Load, Ptr, InsertBef) { 938 setVolatile(false); 939 setAlignment(0); 940 setAtomic(NotAtomic); 941 AssertOK(); 942 setName(Name); 943 } 944 945 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 946 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 947 Load, Ptr, InsertAE) { 948 setVolatile(false); 949 setAlignment(0); 950 setAtomic(NotAtomic); 951 AssertOK(); 952 setName(Name); 953 } 954 955 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 956 Instruction *InsertBef) 957 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 958 Load, Ptr, InsertBef) { 959 setVolatile(isVolatile); 960 setAlignment(0); 961 setAtomic(NotAtomic); 962 AssertOK(); 963 setName(Name); 964 } 965 966 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 967 BasicBlock *InsertAE) 968 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 969 Load, Ptr, InsertAE) { 970 setVolatile(isVolatile); 971 setAlignment(0); 972 setAtomic(NotAtomic); 973 AssertOK(); 974 setName(Name); 975 } 976 977 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 978 unsigned Align, Instruction *InsertBef) 979 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 980 Load, Ptr, InsertBef) { 981 setVolatile(isVolatile); 982 setAlignment(Align); 983 setAtomic(NotAtomic); 984 AssertOK(); 985 setName(Name); 986 } 987 988 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 989 unsigned Align, BasicBlock *InsertAE) 990 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 991 Load, Ptr, InsertAE) { 992 setVolatile(isVolatile); 993 setAlignment(Align); 994 setAtomic(NotAtomic); 995 AssertOK(); 996 setName(Name); 997 } 998 999 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1000 unsigned Align, AtomicOrdering Order, 1001 SynchronizationScope SynchScope, 1002 Instruction *InsertBef) 1003 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1004 Load, Ptr, InsertBef) { 1005 setVolatile(isVolatile); 1006 setAlignment(Align); 1007 setAtomic(Order, SynchScope); 1008 AssertOK(); 1009 setName(Name); 1010 } 1011 1012 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1013 unsigned Align, AtomicOrdering Order, 1014 SynchronizationScope SynchScope, 1015 BasicBlock *InsertAE) 1016 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1017 Load, Ptr, InsertAE) { 1018 setVolatile(isVolatile); 1019 setAlignment(Align); 1020 setAtomic(Order, SynchScope); 1021 AssertOK(); 1022 setName(Name); 1023 } 1024 1025 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1026 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1027 Load, Ptr, InsertBef) { 1028 setVolatile(false); 1029 setAlignment(0); 1030 setAtomic(NotAtomic); 1031 AssertOK(); 1032 if (Name && Name[0]) setName(Name); 1033 } 1034 1035 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1036 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1037 Load, Ptr, InsertAE) { 1038 setVolatile(false); 1039 setAlignment(0); 1040 setAtomic(NotAtomic); 1041 AssertOK(); 1042 if (Name && Name[0]) setName(Name); 1043 } 1044 1045 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1046 Instruction *InsertBef) 1047 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1048 Load, Ptr, InsertBef) { 1049 setVolatile(isVolatile); 1050 setAlignment(0); 1051 setAtomic(NotAtomic); 1052 AssertOK(); 1053 if (Name && Name[0]) setName(Name); 1054 } 1055 1056 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1057 BasicBlock *InsertAE) 1058 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1059 Load, Ptr, InsertAE) { 1060 setVolatile(isVolatile); 1061 setAlignment(0); 1062 setAtomic(NotAtomic); 1063 AssertOK(); 1064 if (Name && Name[0]) setName(Name); 1065 } 1066 1067 void LoadInst::setAlignment(unsigned Align) { 1068 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1069 assert(Align <= MaximumAlignment && 1070 "Alignment is greater than MaximumAlignment!"); 1071 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1072 ((Log2_32(Align)+1)<<1)); 1073 assert(getAlignment() == Align && "Alignment representation error!"); 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // StoreInst Implementation 1078 //===----------------------------------------------------------------------===// 1079 1080 void StoreInst::AssertOK() { 1081 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1082 assert(getOperand(1)->getType()->isPointerTy() && 1083 "Ptr must have pointer type!"); 1084 assert(getOperand(0)->getType() == 1085 cast<PointerType>(getOperand(1)->getType())->getElementType() 1086 && "Ptr must be a pointer to Val type!"); 1087 assert(!(isAtomic() && getAlignment() == 0) && 1088 "Alignment required for atomic load"); 1089 } 1090 1091 1092 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1093 : Instruction(Type::getVoidTy(val->getContext()), Store, 1094 OperandTraits<StoreInst>::op_begin(this), 1095 OperandTraits<StoreInst>::operands(this), 1096 InsertBefore) { 1097 Op<0>() = val; 1098 Op<1>() = addr; 1099 setVolatile(false); 1100 setAlignment(0); 1101 setAtomic(NotAtomic); 1102 AssertOK(); 1103 } 1104 1105 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1106 : Instruction(Type::getVoidTy(val->getContext()), Store, 1107 OperandTraits<StoreInst>::op_begin(this), 1108 OperandTraits<StoreInst>::operands(this), 1109 InsertAtEnd) { 1110 Op<0>() = val; 1111 Op<1>() = addr; 1112 setVolatile(false); 1113 setAlignment(0); 1114 setAtomic(NotAtomic); 1115 AssertOK(); 1116 } 1117 1118 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1119 Instruction *InsertBefore) 1120 : Instruction(Type::getVoidTy(val->getContext()), Store, 1121 OperandTraits<StoreInst>::op_begin(this), 1122 OperandTraits<StoreInst>::operands(this), 1123 InsertBefore) { 1124 Op<0>() = val; 1125 Op<1>() = addr; 1126 setVolatile(isVolatile); 1127 setAlignment(0); 1128 setAtomic(NotAtomic); 1129 AssertOK(); 1130 } 1131 1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1133 unsigned Align, Instruction *InsertBefore) 1134 : Instruction(Type::getVoidTy(val->getContext()), Store, 1135 OperandTraits<StoreInst>::op_begin(this), 1136 OperandTraits<StoreInst>::operands(this), 1137 InsertBefore) { 1138 Op<0>() = val; 1139 Op<1>() = addr; 1140 setVolatile(isVolatile); 1141 setAlignment(Align); 1142 setAtomic(NotAtomic); 1143 AssertOK(); 1144 } 1145 1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1147 unsigned Align, AtomicOrdering Order, 1148 SynchronizationScope SynchScope, 1149 Instruction *InsertBefore) 1150 : Instruction(Type::getVoidTy(val->getContext()), Store, 1151 OperandTraits<StoreInst>::op_begin(this), 1152 OperandTraits<StoreInst>::operands(this), 1153 InsertBefore) { 1154 Op<0>() = val; 1155 Op<1>() = addr; 1156 setVolatile(isVolatile); 1157 setAlignment(Align); 1158 setAtomic(Order, SynchScope); 1159 AssertOK(); 1160 } 1161 1162 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1163 BasicBlock *InsertAtEnd) 1164 : Instruction(Type::getVoidTy(val->getContext()), Store, 1165 OperandTraits<StoreInst>::op_begin(this), 1166 OperandTraits<StoreInst>::operands(this), 1167 InsertAtEnd) { 1168 Op<0>() = val; 1169 Op<1>() = addr; 1170 setVolatile(isVolatile); 1171 setAlignment(0); 1172 setAtomic(NotAtomic); 1173 AssertOK(); 1174 } 1175 1176 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1177 unsigned Align, BasicBlock *InsertAtEnd) 1178 : Instruction(Type::getVoidTy(val->getContext()), Store, 1179 OperandTraits<StoreInst>::op_begin(this), 1180 OperandTraits<StoreInst>::operands(this), 1181 InsertAtEnd) { 1182 Op<0>() = val; 1183 Op<1>() = addr; 1184 setVolatile(isVolatile); 1185 setAlignment(Align); 1186 setAtomic(NotAtomic); 1187 AssertOK(); 1188 } 1189 1190 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1191 unsigned Align, AtomicOrdering Order, 1192 SynchronizationScope SynchScope, 1193 BasicBlock *InsertAtEnd) 1194 : Instruction(Type::getVoidTy(val->getContext()), Store, 1195 OperandTraits<StoreInst>::op_begin(this), 1196 OperandTraits<StoreInst>::operands(this), 1197 InsertAtEnd) { 1198 Op<0>() = val; 1199 Op<1>() = addr; 1200 setVolatile(isVolatile); 1201 setAlignment(Align); 1202 setAtomic(Order, SynchScope); 1203 AssertOK(); 1204 } 1205 1206 void StoreInst::setAlignment(unsigned Align) { 1207 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1208 assert(Align <= MaximumAlignment && 1209 "Alignment is greater than MaximumAlignment!"); 1210 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1211 ((Log2_32(Align)+1) << 1)); 1212 assert(getAlignment() == Align && "Alignment representation error!"); 1213 } 1214 1215 //===----------------------------------------------------------------------===// 1216 // AtomicCmpXchgInst Implementation 1217 //===----------------------------------------------------------------------===// 1218 1219 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1220 AtomicOrdering Ordering, 1221 SynchronizationScope SynchScope) { 1222 Op<0>() = Ptr; 1223 Op<1>() = Cmp; 1224 Op<2>() = NewVal; 1225 setOrdering(Ordering); 1226 setSynchScope(SynchScope); 1227 1228 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1229 "All operands must be non-null!"); 1230 assert(getOperand(0)->getType()->isPointerTy() && 1231 "Ptr must have pointer type!"); 1232 assert(getOperand(1)->getType() == 1233 cast<PointerType>(getOperand(0)->getType())->getElementType() 1234 && "Ptr must be a pointer to Cmp type!"); 1235 assert(getOperand(2)->getType() == 1236 cast<PointerType>(getOperand(0)->getType())->getElementType() 1237 && "Ptr must be a pointer to NewVal type!"); 1238 assert(Ordering != NotAtomic && 1239 "AtomicCmpXchg instructions must be atomic!"); 1240 } 1241 1242 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1243 AtomicOrdering Ordering, 1244 SynchronizationScope SynchScope, 1245 Instruction *InsertBefore) 1246 : Instruction(Cmp->getType(), AtomicCmpXchg, 1247 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1248 OperandTraits<AtomicCmpXchgInst>::operands(this), 1249 InsertBefore) { 1250 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1251 } 1252 1253 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1254 AtomicOrdering Ordering, 1255 SynchronizationScope SynchScope, 1256 BasicBlock *InsertAtEnd) 1257 : Instruction(Cmp->getType(), AtomicCmpXchg, 1258 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1259 OperandTraits<AtomicCmpXchgInst>::operands(this), 1260 InsertAtEnd) { 1261 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1262 } 1263 1264 //===----------------------------------------------------------------------===// 1265 // AtomicRMWInst Implementation 1266 //===----------------------------------------------------------------------===// 1267 1268 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1269 AtomicOrdering Ordering, 1270 SynchronizationScope SynchScope) { 1271 Op<0>() = Ptr; 1272 Op<1>() = Val; 1273 setOperation(Operation); 1274 setOrdering(Ordering); 1275 setSynchScope(SynchScope); 1276 1277 assert(getOperand(0) && getOperand(1) && 1278 "All operands must be non-null!"); 1279 assert(getOperand(0)->getType()->isPointerTy() && 1280 "Ptr must have pointer type!"); 1281 assert(getOperand(1)->getType() == 1282 cast<PointerType>(getOperand(0)->getType())->getElementType() 1283 && "Ptr must be a pointer to Val type!"); 1284 assert(Ordering != NotAtomic && 1285 "AtomicRMW instructions must be atomic!"); 1286 } 1287 1288 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1289 AtomicOrdering Ordering, 1290 SynchronizationScope SynchScope, 1291 Instruction *InsertBefore) 1292 : Instruction(Val->getType(), AtomicRMW, 1293 OperandTraits<AtomicRMWInst>::op_begin(this), 1294 OperandTraits<AtomicRMWInst>::operands(this), 1295 InsertBefore) { 1296 Init(Operation, Ptr, Val, Ordering, SynchScope); 1297 } 1298 1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1300 AtomicOrdering Ordering, 1301 SynchronizationScope SynchScope, 1302 BasicBlock *InsertAtEnd) 1303 : Instruction(Val->getType(), AtomicRMW, 1304 OperandTraits<AtomicRMWInst>::op_begin(this), 1305 OperandTraits<AtomicRMWInst>::operands(this), 1306 InsertAtEnd) { 1307 Init(Operation, Ptr, Val, Ordering, SynchScope); 1308 } 1309 1310 //===----------------------------------------------------------------------===// 1311 // FenceInst Implementation 1312 //===----------------------------------------------------------------------===// 1313 1314 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1315 SynchronizationScope SynchScope, 1316 Instruction *InsertBefore) 1317 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { 1318 setOrdering(Ordering); 1319 setSynchScope(SynchScope); 1320 } 1321 1322 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1323 SynchronizationScope SynchScope, 1324 BasicBlock *InsertAtEnd) 1325 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { 1326 setOrdering(Ordering); 1327 setSynchScope(SynchScope); 1328 } 1329 1330 //===----------------------------------------------------------------------===// 1331 // GetElementPtrInst Implementation 1332 //===----------------------------------------------------------------------===// 1333 1334 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1335 const Twine &Name) { 1336 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); 1337 OperandList[0] = Ptr; 1338 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1339 setName(Name); 1340 } 1341 1342 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1343 : Instruction(GEPI.getType(), GetElementPtr, 1344 OperandTraits<GetElementPtrInst>::op_end(this) 1345 - GEPI.getNumOperands(), 1346 GEPI.getNumOperands()) { 1347 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1348 SubclassOptionalData = GEPI.SubclassOptionalData; 1349 } 1350 1351 /// getIndexedType - Returns the type of the element that would be accessed with 1352 /// a gep instruction with the specified parameters. 1353 /// 1354 /// The Idxs pointer should point to a continuous piece of memory containing the 1355 /// indices, either as Value* or uint64_t. 1356 /// 1357 /// A null type is returned if the indices are invalid for the specified 1358 /// pointer type. 1359 /// 1360 template <typename IndexTy> 1361 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { 1362 PointerType *PTy = dyn_cast<PointerType>(Ptr); 1363 if (!PTy) return 0; // Type isn't a pointer type! 1364 Type *Agg = PTy->getElementType(); 1365 1366 // Handle the special case of the empty set index set, which is always valid. 1367 if (IdxList.empty()) 1368 return Agg; 1369 1370 // If there is at least one index, the top level type must be sized, otherwise 1371 // it cannot be 'stepped over'. 1372 if (!Agg->isSized()) 1373 return 0; 1374 1375 unsigned CurIdx = 1; 1376 for (; CurIdx != IdxList.size(); ++CurIdx) { 1377 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1378 if (!CT || CT->isPointerTy()) return 0; 1379 IndexTy Index = IdxList[CurIdx]; 1380 if (!CT->indexValid(Index)) return 0; 1381 Agg = CT->getTypeAtIndex(Index); 1382 } 1383 return CurIdx == IdxList.size() ? Agg : 0; 1384 } 1385 1386 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { 1387 return getIndexedTypeInternal(Ptr, IdxList); 1388 } 1389 1390 Type *GetElementPtrInst::getIndexedType(Type *Ptr, 1391 ArrayRef<Constant *> IdxList) { 1392 return getIndexedTypeInternal(Ptr, IdxList); 1393 } 1394 1395 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { 1396 return getIndexedTypeInternal(Ptr, IdxList); 1397 } 1398 1399 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1400 /// zeros. If so, the result pointer and the first operand have the same 1401 /// value, just potentially different types. 1402 bool GetElementPtrInst::hasAllZeroIndices() const { 1403 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1404 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1405 if (!CI->isZero()) return false; 1406 } else { 1407 return false; 1408 } 1409 } 1410 return true; 1411 } 1412 1413 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1414 /// constant integers. If so, the result pointer and the first operand have 1415 /// a constant offset between them. 1416 bool GetElementPtrInst::hasAllConstantIndices() const { 1417 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1418 if (!isa<ConstantInt>(getOperand(i))) 1419 return false; 1420 } 1421 return true; 1422 } 1423 1424 void GetElementPtrInst::setIsInBounds(bool B) { 1425 cast<GEPOperator>(this)->setIsInBounds(B); 1426 } 1427 1428 bool GetElementPtrInst::isInBounds() const { 1429 return cast<GEPOperator>(this)->isInBounds(); 1430 } 1431 1432 //===----------------------------------------------------------------------===// 1433 // ExtractElementInst Implementation 1434 //===----------------------------------------------------------------------===// 1435 1436 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1437 const Twine &Name, 1438 Instruction *InsertBef) 1439 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1440 ExtractElement, 1441 OperandTraits<ExtractElementInst>::op_begin(this), 1442 2, InsertBef) { 1443 assert(isValidOperands(Val, Index) && 1444 "Invalid extractelement instruction operands!"); 1445 Op<0>() = Val; 1446 Op<1>() = Index; 1447 setName(Name); 1448 } 1449 1450 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1451 const Twine &Name, 1452 BasicBlock *InsertAE) 1453 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1454 ExtractElement, 1455 OperandTraits<ExtractElementInst>::op_begin(this), 1456 2, InsertAE) { 1457 assert(isValidOperands(Val, Index) && 1458 "Invalid extractelement instruction operands!"); 1459 1460 Op<0>() = Val; 1461 Op<1>() = Index; 1462 setName(Name); 1463 } 1464 1465 1466 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1467 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) 1468 return false; 1469 return true; 1470 } 1471 1472 1473 //===----------------------------------------------------------------------===// 1474 // InsertElementInst Implementation 1475 //===----------------------------------------------------------------------===// 1476 1477 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1478 const Twine &Name, 1479 Instruction *InsertBef) 1480 : Instruction(Vec->getType(), InsertElement, 1481 OperandTraits<InsertElementInst>::op_begin(this), 1482 3, InsertBef) { 1483 assert(isValidOperands(Vec, Elt, Index) && 1484 "Invalid insertelement instruction operands!"); 1485 Op<0>() = Vec; 1486 Op<1>() = Elt; 1487 Op<2>() = Index; 1488 setName(Name); 1489 } 1490 1491 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1492 const Twine &Name, 1493 BasicBlock *InsertAE) 1494 : Instruction(Vec->getType(), InsertElement, 1495 OperandTraits<InsertElementInst>::op_begin(this), 1496 3, InsertAE) { 1497 assert(isValidOperands(Vec, Elt, Index) && 1498 "Invalid insertelement instruction operands!"); 1499 1500 Op<0>() = Vec; 1501 Op<1>() = Elt; 1502 Op<2>() = Index; 1503 setName(Name); 1504 } 1505 1506 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1507 const Value *Index) { 1508 if (!Vec->getType()->isVectorTy()) 1509 return false; // First operand of insertelement must be vector type. 1510 1511 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1512 return false;// Second operand of insertelement must be vector element type. 1513 1514 if (!Index->getType()->isIntegerTy(32)) 1515 return false; // Third operand of insertelement must be i32. 1516 return true; 1517 } 1518 1519 1520 //===----------------------------------------------------------------------===// 1521 // ShuffleVectorInst Implementation 1522 //===----------------------------------------------------------------------===// 1523 1524 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1525 const Twine &Name, 1526 Instruction *InsertBefore) 1527 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1528 cast<VectorType>(Mask->getType())->getNumElements()), 1529 ShuffleVector, 1530 OperandTraits<ShuffleVectorInst>::op_begin(this), 1531 OperandTraits<ShuffleVectorInst>::operands(this), 1532 InsertBefore) { 1533 assert(isValidOperands(V1, V2, Mask) && 1534 "Invalid shuffle vector instruction operands!"); 1535 Op<0>() = V1; 1536 Op<1>() = V2; 1537 Op<2>() = Mask; 1538 setName(Name); 1539 } 1540 1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1542 const Twine &Name, 1543 BasicBlock *InsertAtEnd) 1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1545 cast<VectorType>(Mask->getType())->getNumElements()), 1546 ShuffleVector, 1547 OperandTraits<ShuffleVectorInst>::op_begin(this), 1548 OperandTraits<ShuffleVectorInst>::operands(this), 1549 InsertAtEnd) { 1550 assert(isValidOperands(V1, V2, Mask) && 1551 "Invalid shuffle vector instruction operands!"); 1552 1553 Op<0>() = V1; 1554 Op<1>() = V2; 1555 Op<2>() = Mask; 1556 setName(Name); 1557 } 1558 1559 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1560 const Value *Mask) { 1561 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1562 return false; 1563 1564 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1565 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) 1566 return false; 1567 1568 // Check to see if Mask is valid. 1569 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1570 VectorType *VTy = cast<VectorType>(V1->getType()); 1571 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { 1572 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { 1573 if (CI->uge(VTy->getNumElements()*2)) 1574 return false; 1575 } else if (!isa<UndefValue>(MV->getOperand(i))) { 1576 return false; 1577 } 1578 } 1579 } 1580 else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask)) 1581 return false; 1582 1583 return true; 1584 } 1585 1586 /// getMaskValue - Return the index from the shuffle mask for the specified 1587 /// output result. This is either -1 if the element is undef or a number less 1588 /// than 2*numelements. 1589 int ShuffleVectorInst::getMaskValue(unsigned i) const { 1590 const Constant *Mask = cast<Constant>(getOperand(2)); 1591 if (isa<UndefValue>(Mask)) return -1; 1592 if (isa<ConstantAggregateZero>(Mask)) return 0; 1593 const ConstantVector *MaskCV = cast<ConstantVector>(Mask); 1594 assert(i < MaskCV->getNumOperands() && "Index out of range"); 1595 1596 if (isa<UndefValue>(MaskCV->getOperand(i))) 1597 return -1; 1598 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue(); 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // InsertValueInst Class 1603 //===----------------------------------------------------------------------===// 1604 1605 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1606 const Twine &Name) { 1607 assert(NumOperands == 2 && "NumOperands not initialized?"); 1608 1609 // There's no fundamental reason why we require at least one index 1610 // (other than weirdness with &*IdxBegin being invalid; see 1611 // getelementptr's init routine for example). But there's no 1612 // present need to support it. 1613 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1614 1615 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1616 Val->getType() && "Inserted value must match indexed type!"); 1617 Op<0>() = Agg; 1618 Op<1>() = Val; 1619 1620 Indices.append(Idxs.begin(), Idxs.end()); 1621 setName(Name); 1622 } 1623 1624 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1625 : Instruction(IVI.getType(), InsertValue, 1626 OperandTraits<InsertValueInst>::op_begin(this), 2), 1627 Indices(IVI.Indices) { 1628 Op<0>() = IVI.getOperand(0); 1629 Op<1>() = IVI.getOperand(1); 1630 SubclassOptionalData = IVI.SubclassOptionalData; 1631 } 1632 1633 //===----------------------------------------------------------------------===// 1634 // ExtractValueInst Class 1635 //===----------------------------------------------------------------------===// 1636 1637 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1638 assert(NumOperands == 1 && "NumOperands not initialized?"); 1639 1640 // There's no fundamental reason why we require at least one index. 1641 // But there's no present need to support it. 1642 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1643 1644 Indices.append(Idxs.begin(), Idxs.end()); 1645 setName(Name); 1646 } 1647 1648 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1649 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1650 Indices(EVI.Indices) { 1651 SubclassOptionalData = EVI.SubclassOptionalData; 1652 } 1653 1654 // getIndexedType - Returns the type of the element that would be extracted 1655 // with an extractvalue instruction with the specified parameters. 1656 // 1657 // A null type is returned if the indices are invalid for the specified 1658 // pointer type. 1659 // 1660 Type *ExtractValueInst::getIndexedType(Type *Agg, 1661 ArrayRef<unsigned> Idxs) { 1662 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { 1663 unsigned Index = Idxs[CurIdx]; 1664 // We can't use CompositeType::indexValid(Index) here. 1665 // indexValid() always returns true for arrays because getelementptr allows 1666 // out-of-bounds indices. Since we don't allow those for extractvalue and 1667 // insertvalue we need to check array indexing manually. 1668 // Since the only other types we can index into are struct types it's just 1669 // as easy to check those manually as well. 1670 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1671 if (Index >= AT->getNumElements()) 1672 return 0; 1673 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1674 if (Index >= ST->getNumElements()) 1675 return 0; 1676 } else { 1677 // Not a valid type to index into. 1678 return 0; 1679 } 1680 1681 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1682 } 1683 return const_cast<Type*>(Agg); 1684 } 1685 1686 //===----------------------------------------------------------------------===// 1687 // BinaryOperator Class 1688 //===----------------------------------------------------------------------===// 1689 1690 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1691 Type *Ty, const Twine &Name, 1692 Instruction *InsertBefore) 1693 : Instruction(Ty, iType, 1694 OperandTraits<BinaryOperator>::op_begin(this), 1695 OperandTraits<BinaryOperator>::operands(this), 1696 InsertBefore) { 1697 Op<0>() = S1; 1698 Op<1>() = S2; 1699 init(iType); 1700 setName(Name); 1701 } 1702 1703 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1704 Type *Ty, const Twine &Name, 1705 BasicBlock *InsertAtEnd) 1706 : Instruction(Ty, iType, 1707 OperandTraits<BinaryOperator>::op_begin(this), 1708 OperandTraits<BinaryOperator>::operands(this), 1709 InsertAtEnd) { 1710 Op<0>() = S1; 1711 Op<1>() = S2; 1712 init(iType); 1713 setName(Name); 1714 } 1715 1716 1717 void BinaryOperator::init(BinaryOps iType) { 1718 Value *LHS = getOperand(0), *RHS = getOperand(1); 1719 (void)LHS; (void)RHS; // Silence warnings. 1720 assert(LHS->getType() == RHS->getType() && 1721 "Binary operator operand types must match!"); 1722 #ifndef NDEBUG 1723 switch (iType) { 1724 case Add: case Sub: 1725 case Mul: 1726 assert(getType() == LHS->getType() && 1727 "Arithmetic operation should return same type as operands!"); 1728 assert(getType()->isIntOrIntVectorTy() && 1729 "Tried to create an integer operation on a non-integer type!"); 1730 break; 1731 case FAdd: case FSub: 1732 case FMul: 1733 assert(getType() == LHS->getType() && 1734 "Arithmetic operation should return same type as operands!"); 1735 assert(getType()->isFPOrFPVectorTy() && 1736 "Tried to create a floating-point operation on a " 1737 "non-floating-point type!"); 1738 break; 1739 case UDiv: 1740 case SDiv: 1741 assert(getType() == LHS->getType() && 1742 "Arithmetic operation should return same type as operands!"); 1743 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1744 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1745 "Incorrect operand type (not integer) for S/UDIV"); 1746 break; 1747 case FDiv: 1748 assert(getType() == LHS->getType() && 1749 "Arithmetic operation should return same type as operands!"); 1750 assert(getType()->isFPOrFPVectorTy() && 1751 "Incorrect operand type (not floating point) for FDIV"); 1752 break; 1753 case URem: 1754 case SRem: 1755 assert(getType() == LHS->getType() && 1756 "Arithmetic operation should return same type as operands!"); 1757 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1758 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1759 "Incorrect operand type (not integer) for S/UREM"); 1760 break; 1761 case FRem: 1762 assert(getType() == LHS->getType() && 1763 "Arithmetic operation should return same type as operands!"); 1764 assert(getType()->isFPOrFPVectorTy() && 1765 "Incorrect operand type (not floating point) for FREM"); 1766 break; 1767 case Shl: 1768 case LShr: 1769 case AShr: 1770 assert(getType() == LHS->getType() && 1771 "Shift operation should return same type as operands!"); 1772 assert((getType()->isIntegerTy() || 1773 (getType()->isVectorTy() && 1774 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1775 "Tried to create a shift operation on a non-integral type!"); 1776 break; 1777 case And: case Or: 1778 case Xor: 1779 assert(getType() == LHS->getType() && 1780 "Logical operation should return same type as operands!"); 1781 assert((getType()->isIntegerTy() || 1782 (getType()->isVectorTy() && 1783 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1784 "Tried to create a logical operation on a non-integral type!"); 1785 break; 1786 default: 1787 break; 1788 } 1789 #endif 1790 } 1791 1792 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1793 const Twine &Name, 1794 Instruction *InsertBefore) { 1795 assert(S1->getType() == S2->getType() && 1796 "Cannot create binary operator with two operands of differing type!"); 1797 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 1798 } 1799 1800 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1801 const Twine &Name, 1802 BasicBlock *InsertAtEnd) { 1803 BinaryOperator *Res = Create(Op, S1, S2, Name); 1804 InsertAtEnd->getInstList().push_back(Res); 1805 return Res; 1806 } 1807 1808 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1809 Instruction *InsertBefore) { 1810 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1811 return new BinaryOperator(Instruction::Sub, 1812 zero, Op, 1813 Op->getType(), Name, InsertBefore); 1814 } 1815 1816 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1817 BasicBlock *InsertAtEnd) { 1818 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1819 return new BinaryOperator(Instruction::Sub, 1820 zero, Op, 1821 Op->getType(), Name, InsertAtEnd); 1822 } 1823 1824 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1825 Instruction *InsertBefore) { 1826 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1827 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 1828 } 1829 1830 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1831 BasicBlock *InsertAtEnd) { 1832 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1833 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 1834 } 1835 1836 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1837 Instruction *InsertBefore) { 1838 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1839 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 1840 } 1841 1842 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1843 BasicBlock *InsertAtEnd) { 1844 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1845 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 1846 } 1847 1848 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1849 Instruction *InsertBefore) { 1850 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1851 return new BinaryOperator(Instruction::FSub, 1852 zero, Op, 1853 Op->getType(), Name, InsertBefore); 1854 } 1855 1856 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1857 BasicBlock *InsertAtEnd) { 1858 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1859 return new BinaryOperator(Instruction::FSub, 1860 zero, Op, 1861 Op->getType(), Name, InsertAtEnd); 1862 } 1863 1864 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1865 Instruction *InsertBefore) { 1866 Constant *C; 1867 if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) { 1868 C = Constant::getAllOnesValue(PTy->getElementType()); 1869 C = ConstantVector::get( 1870 std::vector<Constant*>(PTy->getNumElements(), C)); 1871 } else { 1872 C = Constant::getAllOnesValue(Op->getType()); 1873 } 1874 1875 return new BinaryOperator(Instruction::Xor, Op, C, 1876 Op->getType(), Name, InsertBefore); 1877 } 1878 1879 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1880 BasicBlock *InsertAtEnd) { 1881 Constant *AllOnes; 1882 if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) { 1883 // Create a vector of all ones values. 1884 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType()); 1885 AllOnes = ConstantVector::get( 1886 std::vector<Constant*>(PTy->getNumElements(), Elt)); 1887 } else { 1888 AllOnes = Constant::getAllOnesValue(Op->getType()); 1889 } 1890 1891 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 1892 Op->getType(), Name, InsertAtEnd); 1893 } 1894 1895 1896 // isConstantAllOnes - Helper function for several functions below 1897 static inline bool isConstantAllOnes(const Value *V) { 1898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1899 return CI->isAllOnesValue(); 1900 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) 1901 return CV->isAllOnesValue(); 1902 return false; 1903 } 1904 1905 bool BinaryOperator::isNeg(const Value *V) { 1906 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1907 if (Bop->getOpcode() == Instruction::Sub) 1908 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1909 return C->isNegativeZeroValue(); 1910 return false; 1911 } 1912 1913 bool BinaryOperator::isFNeg(const Value *V) { 1914 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1915 if (Bop->getOpcode() == Instruction::FSub) 1916 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1917 return C->isNegativeZeroValue(); 1918 return false; 1919 } 1920 1921 bool BinaryOperator::isNot(const Value *V) { 1922 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1923 return (Bop->getOpcode() == Instruction::Xor && 1924 (isConstantAllOnes(Bop->getOperand(1)) || 1925 isConstantAllOnes(Bop->getOperand(0)))); 1926 return false; 1927 } 1928 1929 Value *BinaryOperator::getNegArgument(Value *BinOp) { 1930 return cast<BinaryOperator>(BinOp)->getOperand(1); 1931 } 1932 1933 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 1934 return getNegArgument(const_cast<Value*>(BinOp)); 1935 } 1936 1937 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 1938 return cast<BinaryOperator>(BinOp)->getOperand(1); 1939 } 1940 1941 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 1942 return getFNegArgument(const_cast<Value*>(BinOp)); 1943 } 1944 1945 Value *BinaryOperator::getNotArgument(Value *BinOp) { 1946 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 1947 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 1948 Value *Op0 = BO->getOperand(0); 1949 Value *Op1 = BO->getOperand(1); 1950 if (isConstantAllOnes(Op0)) return Op1; 1951 1952 assert(isConstantAllOnes(Op1)); 1953 return Op0; 1954 } 1955 1956 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 1957 return getNotArgument(const_cast<Value*>(BinOp)); 1958 } 1959 1960 1961 // swapOperands - Exchange the two operands to this instruction. This 1962 // instruction is safe to use on any binary instruction and does not 1963 // modify the semantics of the instruction. If the instruction is 1964 // order dependent (SetLT f.e.) the opcode is changed. 1965 // 1966 bool BinaryOperator::swapOperands() { 1967 if (!isCommutative()) 1968 return true; // Can't commute operands 1969 Op<0>().swap(Op<1>()); 1970 return false; 1971 } 1972 1973 void BinaryOperator::setHasNoUnsignedWrap(bool b) { 1974 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); 1975 } 1976 1977 void BinaryOperator::setHasNoSignedWrap(bool b) { 1978 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); 1979 } 1980 1981 void BinaryOperator::setIsExact(bool b) { 1982 cast<PossiblyExactOperator>(this)->setIsExact(b); 1983 } 1984 1985 bool BinaryOperator::hasNoUnsignedWrap() const { 1986 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); 1987 } 1988 1989 bool BinaryOperator::hasNoSignedWrap() const { 1990 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); 1991 } 1992 1993 bool BinaryOperator::isExact() const { 1994 return cast<PossiblyExactOperator>(this)->isExact(); 1995 } 1996 1997 //===----------------------------------------------------------------------===// 1998 // CastInst Class 1999 //===----------------------------------------------------------------------===// 2000 2001 // Just determine if this cast only deals with integral->integral conversion. 2002 bool CastInst::isIntegerCast() const { 2003 switch (getOpcode()) { 2004 default: return false; 2005 case Instruction::ZExt: 2006 case Instruction::SExt: 2007 case Instruction::Trunc: 2008 return true; 2009 case Instruction::BitCast: 2010 return getOperand(0)->getType()->isIntegerTy() && 2011 getType()->isIntegerTy(); 2012 } 2013 } 2014 2015 bool CastInst::isLosslessCast() const { 2016 // Only BitCast can be lossless, exit fast if we're not BitCast 2017 if (getOpcode() != Instruction::BitCast) 2018 return false; 2019 2020 // Identity cast is always lossless 2021 Type* SrcTy = getOperand(0)->getType(); 2022 Type* DstTy = getType(); 2023 if (SrcTy == DstTy) 2024 return true; 2025 2026 // Pointer to pointer is always lossless. 2027 if (SrcTy->isPointerTy()) 2028 return DstTy->isPointerTy(); 2029 return false; // Other types have no identity values 2030 } 2031 2032 /// This function determines if the CastInst does not require any bits to be 2033 /// changed in order to effect the cast. Essentially, it identifies cases where 2034 /// no code gen is necessary for the cast, hence the name no-op cast. For 2035 /// example, the following are all no-op casts: 2036 /// # bitcast i32* %x to i8* 2037 /// # bitcast <2 x i32> %x to <4 x i16> 2038 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2039 /// @brief Determine if the described cast is a no-op. 2040 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2041 Type *SrcTy, 2042 Type *DestTy, 2043 Type *IntPtrTy) { 2044 switch (Opcode) { 2045 default: 2046 assert(0 && "Invalid CastOp"); 2047 case Instruction::Trunc: 2048 case Instruction::ZExt: 2049 case Instruction::SExt: 2050 case Instruction::FPTrunc: 2051 case Instruction::FPExt: 2052 case Instruction::UIToFP: 2053 case Instruction::SIToFP: 2054 case Instruction::FPToUI: 2055 case Instruction::FPToSI: 2056 return false; // These always modify bits 2057 case Instruction::BitCast: 2058 return true; // BitCast never modifies bits. 2059 case Instruction::PtrToInt: 2060 return IntPtrTy->getScalarSizeInBits() == 2061 DestTy->getScalarSizeInBits(); 2062 case Instruction::IntToPtr: 2063 return IntPtrTy->getScalarSizeInBits() == 2064 SrcTy->getScalarSizeInBits(); 2065 } 2066 } 2067 2068 /// @brief Determine if a cast is a no-op. 2069 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2070 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2071 } 2072 2073 /// This function determines if a pair of casts can be eliminated and what 2074 /// opcode should be used in the elimination. This assumes that there are two 2075 /// instructions like this: 2076 /// * %F = firstOpcode SrcTy %x to MidTy 2077 /// * %S = secondOpcode MidTy %F to DstTy 2078 /// The function returns a resultOpcode so these two casts can be replaced with: 2079 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2080 /// If no such cast is permited, the function returns 0. 2081 unsigned CastInst::isEliminableCastPair( 2082 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2083 Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) { 2084 // Define the 144 possibilities for these two cast instructions. The values 2085 // in this matrix determine what to do in a given situation and select the 2086 // case in the switch below. The rows correspond to firstOp, the columns 2087 // correspond to secondOp. In looking at the table below, keep in mind 2088 // the following cast properties: 2089 // 2090 // Size Compare Source Destination 2091 // Operator Src ? Size Type Sign Type Sign 2092 // -------- ------------ ------------------- --------------------- 2093 // TRUNC > Integer Any Integral Any 2094 // ZEXT < Integral Unsigned Integer Any 2095 // SEXT < Integral Signed Integer Any 2096 // FPTOUI n/a FloatPt n/a Integral Unsigned 2097 // FPTOSI n/a FloatPt n/a Integral Signed 2098 // UITOFP n/a Integral Unsigned FloatPt n/a 2099 // SITOFP n/a Integral Signed FloatPt n/a 2100 // FPTRUNC > FloatPt n/a FloatPt n/a 2101 // FPEXT < FloatPt n/a FloatPt n/a 2102 // PTRTOINT n/a Pointer n/a Integral Unsigned 2103 // INTTOPTR n/a Integral Unsigned Pointer n/a 2104 // BITCAST = FirstClass n/a FirstClass n/a 2105 // 2106 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2107 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2108 // into "fptoui double to i64", but this loses information about the range 2109 // of the produced value (we no longer know the top-part is all zeros). 2110 // Further this conversion is often much more expensive for typical hardware, 2111 // and causes issues when building libgcc. We disallow fptosi+sext for the 2112 // same reason. 2113 const unsigned numCastOps = 2114 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2115 static const uint8_t CastResults[numCastOps][numCastOps] = { 2116 // T F F U S F F P I B -+ 2117 // R Z S P P I I T P 2 N T | 2118 // U E E 2 2 2 2 R E I T C +- secondOp 2119 // N X X U S F F N X N 2 V | 2120 // C T T I I P P C T T P T -+ 2121 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ 2122 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | 2123 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | 2124 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | 2125 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | 2126 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp 2127 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | 2128 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | 2129 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | 2130 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | 2131 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | 2132 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ 2133 }; 2134 2135 // If either of the casts are a bitcast from scalar to vector, disallow the 2136 // merging. However, bitcast of A->B->A are allowed. 2137 bool isFirstBitcast = (firstOp == Instruction::BitCast); 2138 bool isSecondBitcast = (secondOp == Instruction::BitCast); 2139 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); 2140 2141 // Check if any of the bitcasts convert scalars<->vectors. 2142 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2143 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2144 // Unless we are bitcasing to the original type, disallow optimizations. 2145 if (!chainedBitcast) return 0; 2146 2147 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2148 [secondOp-Instruction::CastOpsBegin]; 2149 switch (ElimCase) { 2150 case 0: 2151 // categorically disallowed 2152 return 0; 2153 case 1: 2154 // allowed, use first cast's opcode 2155 return firstOp; 2156 case 2: 2157 // allowed, use second cast's opcode 2158 return secondOp; 2159 case 3: 2160 // no-op cast in second op implies firstOp as long as the DestTy 2161 // is integer and we are not converting between a vector and a 2162 // non vector type. 2163 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2164 return firstOp; 2165 return 0; 2166 case 4: 2167 // no-op cast in second op implies firstOp as long as the DestTy 2168 // is floating point. 2169 if (DstTy->isFloatingPointTy()) 2170 return firstOp; 2171 return 0; 2172 case 5: 2173 // no-op cast in first op implies secondOp as long as the SrcTy 2174 // is an integer. 2175 if (SrcTy->isIntegerTy()) 2176 return secondOp; 2177 return 0; 2178 case 6: 2179 // no-op cast in first op implies secondOp as long as the SrcTy 2180 // is a floating point. 2181 if (SrcTy->isFloatingPointTy()) 2182 return secondOp; 2183 return 0; 2184 case 7: { 2185 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size 2186 if (!IntPtrTy) 2187 return 0; 2188 unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); 2189 unsigned MidSize = MidTy->getScalarSizeInBits(); 2190 if (MidSize >= PtrSize) 2191 return Instruction::BitCast; 2192 return 0; 2193 } 2194 case 8: { 2195 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2196 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2197 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2198 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2199 unsigned DstSize = DstTy->getScalarSizeInBits(); 2200 if (SrcSize == DstSize) 2201 return Instruction::BitCast; 2202 else if (SrcSize < DstSize) 2203 return firstOp; 2204 return secondOp; 2205 } 2206 case 9: // zext, sext -> zext, because sext can't sign extend after zext 2207 return Instruction::ZExt; 2208 case 10: 2209 // fpext followed by ftrunc is allowed if the bit size returned to is 2210 // the same as the original, in which case its just a bitcast 2211 if (SrcTy == DstTy) 2212 return Instruction::BitCast; 2213 return 0; // If the types are not the same we can't eliminate it. 2214 case 11: 2215 // bitcast followed by ptrtoint is allowed as long as the bitcast 2216 // is a pointer to pointer cast. 2217 if (SrcTy->isPointerTy() && MidTy->isPointerTy()) 2218 return secondOp; 2219 return 0; 2220 case 12: 2221 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast 2222 if (MidTy->isPointerTy() && DstTy->isPointerTy()) 2223 return firstOp; 2224 return 0; 2225 case 13: { 2226 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2227 if (!IntPtrTy) 2228 return 0; 2229 unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); 2230 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2231 unsigned DstSize = DstTy->getScalarSizeInBits(); 2232 if (SrcSize <= PtrSize && SrcSize == DstSize) 2233 return Instruction::BitCast; 2234 return 0; 2235 } 2236 case 99: 2237 // cast combination can't happen (error in input). This is for all cases 2238 // where the MidTy is not the same for the two cast instructions. 2239 assert(0 && "Invalid Cast Combination"); 2240 return 0; 2241 default: 2242 assert(0 && "Error in CastResults table!!!"); 2243 return 0; 2244 } 2245 return 0; 2246 } 2247 2248 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2249 const Twine &Name, Instruction *InsertBefore) { 2250 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2251 // Construct and return the appropriate CastInst subclass 2252 switch (op) { 2253 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2254 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2255 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2256 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2257 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2258 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2259 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2260 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2261 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2262 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2263 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2264 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2265 default: 2266 assert(0 && "Invalid opcode provided"); 2267 } 2268 return 0; 2269 } 2270 2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2272 const Twine &Name, BasicBlock *InsertAtEnd) { 2273 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2274 // Construct and return the appropriate CastInst subclass 2275 switch (op) { 2276 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2277 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2278 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2279 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2280 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2281 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2282 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2283 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2284 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2285 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2286 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2287 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2288 default: 2289 assert(0 && "Invalid opcode provided"); 2290 } 2291 return 0; 2292 } 2293 2294 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2295 const Twine &Name, 2296 Instruction *InsertBefore) { 2297 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2298 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2299 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2300 } 2301 2302 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2303 const Twine &Name, 2304 BasicBlock *InsertAtEnd) { 2305 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2306 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2307 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2308 } 2309 2310 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2311 const Twine &Name, 2312 Instruction *InsertBefore) { 2313 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2314 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2315 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2316 } 2317 2318 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2319 const Twine &Name, 2320 BasicBlock *InsertAtEnd) { 2321 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2322 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2323 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2324 } 2325 2326 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2327 const Twine &Name, 2328 Instruction *InsertBefore) { 2329 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2330 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2331 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2332 } 2333 2334 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2335 const Twine &Name, 2336 BasicBlock *InsertAtEnd) { 2337 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2338 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2339 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2340 } 2341 2342 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2343 const Twine &Name, 2344 BasicBlock *InsertAtEnd) { 2345 assert(S->getType()->isPointerTy() && "Invalid cast"); 2346 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && 2347 "Invalid cast"); 2348 2349 if (Ty->isIntegerTy()) 2350 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2351 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2352 } 2353 2354 /// @brief Create a BitCast or a PtrToInt cast instruction 2355 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2356 const Twine &Name, 2357 Instruction *InsertBefore) { 2358 assert(S->getType()->isPointerTy() && "Invalid cast"); 2359 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && 2360 "Invalid cast"); 2361 2362 if (Ty->isIntegerTy()) 2363 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2364 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2365 } 2366 2367 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2368 bool isSigned, const Twine &Name, 2369 Instruction *InsertBefore) { 2370 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2371 "Invalid integer cast"); 2372 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2373 unsigned DstBits = Ty->getScalarSizeInBits(); 2374 Instruction::CastOps opcode = 2375 (SrcBits == DstBits ? Instruction::BitCast : 2376 (SrcBits > DstBits ? Instruction::Trunc : 2377 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2378 return Create(opcode, C, Ty, Name, InsertBefore); 2379 } 2380 2381 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2382 bool isSigned, const Twine &Name, 2383 BasicBlock *InsertAtEnd) { 2384 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2385 "Invalid cast"); 2386 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2387 unsigned DstBits = Ty->getScalarSizeInBits(); 2388 Instruction::CastOps opcode = 2389 (SrcBits == DstBits ? Instruction::BitCast : 2390 (SrcBits > DstBits ? Instruction::Trunc : 2391 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2392 return Create(opcode, C, Ty, Name, InsertAtEnd); 2393 } 2394 2395 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2396 const Twine &Name, 2397 Instruction *InsertBefore) { 2398 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2399 "Invalid cast"); 2400 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2401 unsigned DstBits = Ty->getScalarSizeInBits(); 2402 Instruction::CastOps opcode = 2403 (SrcBits == DstBits ? Instruction::BitCast : 2404 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2405 return Create(opcode, C, Ty, Name, InsertBefore); 2406 } 2407 2408 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2409 const Twine &Name, 2410 BasicBlock *InsertAtEnd) { 2411 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2412 "Invalid cast"); 2413 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2414 unsigned DstBits = Ty->getScalarSizeInBits(); 2415 Instruction::CastOps opcode = 2416 (SrcBits == DstBits ? Instruction::BitCast : 2417 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2418 return Create(opcode, C, Ty, Name, InsertAtEnd); 2419 } 2420 2421 // Check whether it is valid to call getCastOpcode for these types. 2422 // This routine must be kept in sync with getCastOpcode. 2423 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2424 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2425 return false; 2426 2427 if (SrcTy == DestTy) 2428 return true; 2429 2430 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2431 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2432 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2433 // An element by element cast. Valid if casting the elements is valid. 2434 SrcTy = SrcVecTy->getElementType(); 2435 DestTy = DestVecTy->getElementType(); 2436 } 2437 2438 // Get the bit sizes, we'll need these 2439 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2440 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2441 2442 // Run through the possibilities ... 2443 if (DestTy->isIntegerTy()) { // Casting to integral 2444 if (SrcTy->isIntegerTy()) { // Casting from integral 2445 return true; 2446 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2447 return true; 2448 } else if (SrcTy->isVectorTy()) { // Casting from vector 2449 return DestBits == SrcBits; 2450 } else { // Casting from something else 2451 return SrcTy->isPointerTy(); 2452 } 2453 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2454 if (SrcTy->isIntegerTy()) { // Casting from integral 2455 return true; 2456 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2457 return true; 2458 } else if (SrcTy->isVectorTy()) { // Casting from vector 2459 return DestBits == SrcBits; 2460 } else { // Casting from something else 2461 return false; 2462 } 2463 } else if (DestTy->isVectorTy()) { // Casting to vector 2464 return DestBits == SrcBits; 2465 } else if (DestTy->isPointerTy()) { // Casting to pointer 2466 if (SrcTy->isPointerTy()) { // Casting from pointer 2467 return true; 2468 } else if (SrcTy->isIntegerTy()) { // Casting from integral 2469 return true; 2470 } else { // Casting from something else 2471 return false; 2472 } 2473 } else if (DestTy->isX86_MMXTy()) { 2474 if (SrcTy->isVectorTy()) { 2475 return DestBits == SrcBits; // 64-bit vector to MMX 2476 } else { 2477 return false; 2478 } 2479 } else { // Casting to something else 2480 return false; 2481 } 2482 } 2483 2484 // Provide a way to get a "cast" where the cast opcode is inferred from the 2485 // types and size of the operand. This, basically, is a parallel of the 2486 // logic in the castIsValid function below. This axiom should hold: 2487 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2488 // should not assert in castIsValid. In other words, this produces a "correct" 2489 // casting opcode for the arguments passed to it. 2490 // This routine must be kept in sync with isCastable. 2491 Instruction::CastOps 2492 CastInst::getCastOpcode( 2493 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2494 Type *SrcTy = Src->getType(); 2495 2496 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2497 "Only first class types are castable!"); 2498 2499 if (SrcTy == DestTy) 2500 return BitCast; 2501 2502 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2503 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2504 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2505 // An element by element cast. Find the appropriate opcode based on the 2506 // element types. 2507 SrcTy = SrcVecTy->getElementType(); 2508 DestTy = DestVecTy->getElementType(); 2509 } 2510 2511 // Get the bit sizes, we'll need these 2512 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2513 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2514 2515 // Run through the possibilities ... 2516 if (DestTy->isIntegerTy()) { // Casting to integral 2517 if (SrcTy->isIntegerTy()) { // Casting from integral 2518 if (DestBits < SrcBits) 2519 return Trunc; // int -> smaller int 2520 else if (DestBits > SrcBits) { // its an extension 2521 if (SrcIsSigned) 2522 return SExt; // signed -> SEXT 2523 else 2524 return ZExt; // unsigned -> ZEXT 2525 } else { 2526 return BitCast; // Same size, No-op cast 2527 } 2528 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2529 if (DestIsSigned) 2530 return FPToSI; // FP -> sint 2531 else 2532 return FPToUI; // FP -> uint 2533 } else if (SrcTy->isVectorTy()) { 2534 assert(DestBits == SrcBits && 2535 "Casting vector to integer of different width"); 2536 return BitCast; // Same size, no-op cast 2537 } else { 2538 assert(SrcTy->isPointerTy() && 2539 "Casting from a value that is not first-class type"); 2540 return PtrToInt; // ptr -> int 2541 } 2542 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2543 if (SrcTy->isIntegerTy()) { // Casting from integral 2544 if (SrcIsSigned) 2545 return SIToFP; // sint -> FP 2546 else 2547 return UIToFP; // uint -> FP 2548 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2549 if (DestBits < SrcBits) { 2550 return FPTrunc; // FP -> smaller FP 2551 } else if (DestBits > SrcBits) { 2552 return FPExt; // FP -> larger FP 2553 } else { 2554 return BitCast; // same size, no-op cast 2555 } 2556 } else if (SrcTy->isVectorTy()) { 2557 assert(DestBits == SrcBits && 2558 "Casting vector to floating point of different width"); 2559 return BitCast; // same size, no-op cast 2560 } else { 2561 llvm_unreachable("Casting pointer or non-first class to float"); 2562 } 2563 } else if (DestTy->isVectorTy()) { 2564 assert(DestBits == SrcBits && 2565 "Illegal cast to vector (wrong type or size)"); 2566 return BitCast; 2567 } else if (DestTy->isPointerTy()) { 2568 if (SrcTy->isPointerTy()) { 2569 return BitCast; // ptr -> ptr 2570 } else if (SrcTy->isIntegerTy()) { 2571 return IntToPtr; // int -> ptr 2572 } else { 2573 assert(0 && "Casting pointer to other than pointer or int"); 2574 } 2575 } else if (DestTy->isX86_MMXTy()) { 2576 if (SrcTy->isVectorTy()) { 2577 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 2578 return BitCast; // 64-bit vector to MMX 2579 } else { 2580 assert(0 && "Illegal cast to X86_MMX"); 2581 } 2582 } else { 2583 assert(0 && "Casting to type that is not first-class"); 2584 } 2585 2586 // If we fall through to here we probably hit an assertion cast above 2587 // and assertions are not turned on. Anything we return is an error, so 2588 // BitCast is as good a choice as any. 2589 return BitCast; 2590 } 2591 2592 //===----------------------------------------------------------------------===// 2593 // CastInst SubClass Constructors 2594 //===----------------------------------------------------------------------===// 2595 2596 /// Check that the construction parameters for a CastInst are correct. This 2597 /// could be broken out into the separate constructors but it is useful to have 2598 /// it in one place and to eliminate the redundant code for getting the sizes 2599 /// of the types involved. 2600 bool 2601 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 2602 2603 // Check for type sanity on the arguments 2604 Type *SrcTy = S->getType(); 2605 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 2606 SrcTy->isAggregateType() || DstTy->isAggregateType()) 2607 return false; 2608 2609 // Get the size of the types in bits, we'll need this later 2610 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2611 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 2612 2613 // If these are vector types, get the lengths of the vectors (using zero for 2614 // scalar types means that checking that vector lengths match also checks that 2615 // scalars are not being converted to vectors or vectors to scalars). 2616 unsigned SrcLength = SrcTy->isVectorTy() ? 2617 cast<VectorType>(SrcTy)->getNumElements() : 0; 2618 unsigned DstLength = DstTy->isVectorTy() ? 2619 cast<VectorType>(DstTy)->getNumElements() : 0; 2620 2621 // Switch on the opcode provided 2622 switch (op) { 2623 default: return false; // This is an input error 2624 case Instruction::Trunc: 2625 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2626 SrcLength == DstLength && SrcBitSize > DstBitSize; 2627 case Instruction::ZExt: 2628 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2629 SrcLength == DstLength && SrcBitSize < DstBitSize; 2630 case Instruction::SExt: 2631 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2632 SrcLength == DstLength && SrcBitSize < DstBitSize; 2633 case Instruction::FPTrunc: 2634 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2635 SrcLength == DstLength && SrcBitSize > DstBitSize; 2636 case Instruction::FPExt: 2637 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2638 SrcLength == DstLength && SrcBitSize < DstBitSize; 2639 case Instruction::UIToFP: 2640 case Instruction::SIToFP: 2641 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 2642 SrcLength == DstLength; 2643 case Instruction::FPToUI: 2644 case Instruction::FPToSI: 2645 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 2646 SrcLength == DstLength; 2647 case Instruction::PtrToInt: 2648 return SrcTy->isPointerTy() && DstTy->isIntegerTy(); 2649 case Instruction::IntToPtr: 2650 return SrcTy->isIntegerTy() && DstTy->isPointerTy(); 2651 case Instruction::BitCast: 2652 // BitCast implies a no-op cast of type only. No bits change. 2653 // However, you can't cast pointers to anything but pointers. 2654 if (SrcTy->isPointerTy() != DstTy->isPointerTy()) 2655 return false; 2656 2657 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all 2658 // these cases, the cast is okay if the source and destination bit widths 2659 // are identical. 2660 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 2661 } 2662 } 2663 2664 TruncInst::TruncInst( 2665 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2666 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 2667 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2668 } 2669 2670 TruncInst::TruncInst( 2671 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2672 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 2673 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2674 } 2675 2676 ZExtInst::ZExtInst( 2677 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2678 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 2679 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2680 } 2681 2682 ZExtInst::ZExtInst( 2683 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2684 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 2685 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2686 } 2687 SExtInst::SExtInst( 2688 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2689 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 2690 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2691 } 2692 2693 SExtInst::SExtInst( 2694 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2695 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 2696 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2697 } 2698 2699 FPTruncInst::FPTruncInst( 2700 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2701 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 2702 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2703 } 2704 2705 FPTruncInst::FPTruncInst( 2706 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2707 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 2708 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2709 } 2710 2711 FPExtInst::FPExtInst( 2712 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2713 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 2714 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2715 } 2716 2717 FPExtInst::FPExtInst( 2718 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2719 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 2720 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2721 } 2722 2723 UIToFPInst::UIToFPInst( 2724 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2725 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 2726 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2727 } 2728 2729 UIToFPInst::UIToFPInst( 2730 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2731 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 2732 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2733 } 2734 2735 SIToFPInst::SIToFPInst( 2736 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2737 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 2738 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2739 } 2740 2741 SIToFPInst::SIToFPInst( 2742 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2743 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 2744 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2745 } 2746 2747 FPToUIInst::FPToUIInst( 2748 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2749 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 2750 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2751 } 2752 2753 FPToUIInst::FPToUIInst( 2754 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2755 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 2756 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2757 } 2758 2759 FPToSIInst::FPToSIInst( 2760 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2761 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 2762 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2763 } 2764 2765 FPToSIInst::FPToSIInst( 2766 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2767 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 2768 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2769 } 2770 2771 PtrToIntInst::PtrToIntInst( 2772 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2773 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 2774 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2775 } 2776 2777 PtrToIntInst::PtrToIntInst( 2778 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2779 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 2780 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2781 } 2782 2783 IntToPtrInst::IntToPtrInst( 2784 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2785 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 2786 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2787 } 2788 2789 IntToPtrInst::IntToPtrInst( 2790 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2791 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 2792 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2793 } 2794 2795 BitCastInst::BitCastInst( 2796 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2797 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 2798 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2799 } 2800 2801 BitCastInst::BitCastInst( 2802 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2803 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 2804 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2805 } 2806 2807 //===----------------------------------------------------------------------===// 2808 // CmpInst Classes 2809 //===----------------------------------------------------------------------===// 2810 2811 void CmpInst::Anchor() const {} 2812 2813 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2814 Value *LHS, Value *RHS, const Twine &Name, 2815 Instruction *InsertBefore) 2816 : Instruction(ty, op, 2817 OperandTraits<CmpInst>::op_begin(this), 2818 OperandTraits<CmpInst>::operands(this), 2819 InsertBefore) { 2820 Op<0>() = LHS; 2821 Op<1>() = RHS; 2822 setPredicate((Predicate)predicate); 2823 setName(Name); 2824 } 2825 2826 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2827 Value *LHS, Value *RHS, const Twine &Name, 2828 BasicBlock *InsertAtEnd) 2829 : Instruction(ty, op, 2830 OperandTraits<CmpInst>::op_begin(this), 2831 OperandTraits<CmpInst>::operands(this), 2832 InsertAtEnd) { 2833 Op<0>() = LHS; 2834 Op<1>() = RHS; 2835 setPredicate((Predicate)predicate); 2836 setName(Name); 2837 } 2838 2839 CmpInst * 2840 CmpInst::Create(OtherOps Op, unsigned short predicate, 2841 Value *S1, Value *S2, 2842 const Twine &Name, Instruction *InsertBefore) { 2843 if (Op == Instruction::ICmp) { 2844 if (InsertBefore) 2845 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 2846 S1, S2, Name); 2847 else 2848 return new ICmpInst(CmpInst::Predicate(predicate), 2849 S1, S2, Name); 2850 } 2851 2852 if (InsertBefore) 2853 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 2854 S1, S2, Name); 2855 else 2856 return new FCmpInst(CmpInst::Predicate(predicate), 2857 S1, S2, Name); 2858 } 2859 2860 CmpInst * 2861 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 2862 const Twine &Name, BasicBlock *InsertAtEnd) { 2863 if (Op == Instruction::ICmp) { 2864 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2865 S1, S2, Name); 2866 } 2867 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2868 S1, S2, Name); 2869 } 2870 2871 void CmpInst::swapOperands() { 2872 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2873 IC->swapOperands(); 2874 else 2875 cast<FCmpInst>(this)->swapOperands(); 2876 } 2877 2878 bool CmpInst::isCommutative() const { 2879 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2880 return IC->isCommutative(); 2881 return cast<FCmpInst>(this)->isCommutative(); 2882 } 2883 2884 bool CmpInst::isEquality() const { 2885 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2886 return IC->isEquality(); 2887 return cast<FCmpInst>(this)->isEquality(); 2888 } 2889 2890 2891 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 2892 switch (pred) { 2893 default: assert(0 && "Unknown cmp predicate!"); 2894 case ICMP_EQ: return ICMP_NE; 2895 case ICMP_NE: return ICMP_EQ; 2896 case ICMP_UGT: return ICMP_ULE; 2897 case ICMP_ULT: return ICMP_UGE; 2898 case ICMP_UGE: return ICMP_ULT; 2899 case ICMP_ULE: return ICMP_UGT; 2900 case ICMP_SGT: return ICMP_SLE; 2901 case ICMP_SLT: return ICMP_SGE; 2902 case ICMP_SGE: return ICMP_SLT; 2903 case ICMP_SLE: return ICMP_SGT; 2904 2905 case FCMP_OEQ: return FCMP_UNE; 2906 case FCMP_ONE: return FCMP_UEQ; 2907 case FCMP_OGT: return FCMP_ULE; 2908 case FCMP_OLT: return FCMP_UGE; 2909 case FCMP_OGE: return FCMP_ULT; 2910 case FCMP_OLE: return FCMP_UGT; 2911 case FCMP_UEQ: return FCMP_ONE; 2912 case FCMP_UNE: return FCMP_OEQ; 2913 case FCMP_UGT: return FCMP_OLE; 2914 case FCMP_ULT: return FCMP_OGE; 2915 case FCMP_UGE: return FCMP_OLT; 2916 case FCMP_ULE: return FCMP_OGT; 2917 case FCMP_ORD: return FCMP_UNO; 2918 case FCMP_UNO: return FCMP_ORD; 2919 case FCMP_TRUE: return FCMP_FALSE; 2920 case FCMP_FALSE: return FCMP_TRUE; 2921 } 2922 } 2923 2924 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 2925 switch (pred) { 2926 default: assert(0 && "Unknown icmp predicate!"); 2927 case ICMP_EQ: case ICMP_NE: 2928 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 2929 return pred; 2930 case ICMP_UGT: return ICMP_SGT; 2931 case ICMP_ULT: return ICMP_SLT; 2932 case ICMP_UGE: return ICMP_SGE; 2933 case ICMP_ULE: return ICMP_SLE; 2934 } 2935 } 2936 2937 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 2938 switch (pred) { 2939 default: assert(0 && "Unknown icmp predicate!"); 2940 case ICMP_EQ: case ICMP_NE: 2941 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 2942 return pred; 2943 case ICMP_SGT: return ICMP_UGT; 2944 case ICMP_SLT: return ICMP_ULT; 2945 case ICMP_SGE: return ICMP_UGE; 2946 case ICMP_SLE: return ICMP_ULE; 2947 } 2948 } 2949 2950 /// Initialize a set of values that all satisfy the condition with C. 2951 /// 2952 ConstantRange 2953 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 2954 APInt Lower(C); 2955 APInt Upper(C); 2956 uint32_t BitWidth = C.getBitWidth(); 2957 switch (pred) { 2958 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 2959 case ICmpInst::ICMP_EQ: Upper++; break; 2960 case ICmpInst::ICMP_NE: Lower++; break; 2961 case ICmpInst::ICMP_ULT: 2962 Lower = APInt::getMinValue(BitWidth); 2963 // Check for an empty-set condition. 2964 if (Lower == Upper) 2965 return ConstantRange(BitWidth, /*isFullSet=*/false); 2966 break; 2967 case ICmpInst::ICMP_SLT: 2968 Lower = APInt::getSignedMinValue(BitWidth); 2969 // Check for an empty-set condition. 2970 if (Lower == Upper) 2971 return ConstantRange(BitWidth, /*isFullSet=*/false); 2972 break; 2973 case ICmpInst::ICMP_UGT: 2974 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 2975 // Check for an empty-set condition. 2976 if (Lower == Upper) 2977 return ConstantRange(BitWidth, /*isFullSet=*/false); 2978 break; 2979 case ICmpInst::ICMP_SGT: 2980 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 2981 // Check for an empty-set condition. 2982 if (Lower == Upper) 2983 return ConstantRange(BitWidth, /*isFullSet=*/false); 2984 break; 2985 case ICmpInst::ICMP_ULE: 2986 Lower = APInt::getMinValue(BitWidth); Upper++; 2987 // Check for a full-set condition. 2988 if (Lower == Upper) 2989 return ConstantRange(BitWidth, /*isFullSet=*/true); 2990 break; 2991 case ICmpInst::ICMP_SLE: 2992 Lower = APInt::getSignedMinValue(BitWidth); Upper++; 2993 // Check for a full-set condition. 2994 if (Lower == Upper) 2995 return ConstantRange(BitWidth, /*isFullSet=*/true); 2996 break; 2997 case ICmpInst::ICMP_UGE: 2998 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 2999 // Check for a full-set condition. 3000 if (Lower == Upper) 3001 return ConstantRange(BitWidth, /*isFullSet=*/true); 3002 break; 3003 case ICmpInst::ICMP_SGE: 3004 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3005 // Check for a full-set condition. 3006 if (Lower == Upper) 3007 return ConstantRange(BitWidth, /*isFullSet=*/true); 3008 break; 3009 } 3010 return ConstantRange(Lower, Upper); 3011 } 3012 3013 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3014 switch (pred) { 3015 default: assert(0 && "Unknown cmp predicate!"); 3016 case ICMP_EQ: case ICMP_NE: 3017 return pred; 3018 case ICMP_SGT: return ICMP_SLT; 3019 case ICMP_SLT: return ICMP_SGT; 3020 case ICMP_SGE: return ICMP_SLE; 3021 case ICMP_SLE: return ICMP_SGE; 3022 case ICMP_UGT: return ICMP_ULT; 3023 case ICMP_ULT: return ICMP_UGT; 3024 case ICMP_UGE: return ICMP_ULE; 3025 case ICMP_ULE: return ICMP_UGE; 3026 3027 case FCMP_FALSE: case FCMP_TRUE: 3028 case FCMP_OEQ: case FCMP_ONE: 3029 case FCMP_UEQ: case FCMP_UNE: 3030 case FCMP_ORD: case FCMP_UNO: 3031 return pred; 3032 case FCMP_OGT: return FCMP_OLT; 3033 case FCMP_OLT: return FCMP_OGT; 3034 case FCMP_OGE: return FCMP_OLE; 3035 case FCMP_OLE: return FCMP_OGE; 3036 case FCMP_UGT: return FCMP_ULT; 3037 case FCMP_ULT: return FCMP_UGT; 3038 case FCMP_UGE: return FCMP_ULE; 3039 case FCMP_ULE: return FCMP_UGE; 3040 } 3041 } 3042 3043 bool CmpInst::isUnsigned(unsigned short predicate) { 3044 switch (predicate) { 3045 default: return false; 3046 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3047 case ICmpInst::ICMP_UGE: return true; 3048 } 3049 } 3050 3051 bool CmpInst::isSigned(unsigned short predicate) { 3052 switch (predicate) { 3053 default: return false; 3054 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3055 case ICmpInst::ICMP_SGE: return true; 3056 } 3057 } 3058 3059 bool CmpInst::isOrdered(unsigned short predicate) { 3060 switch (predicate) { 3061 default: return false; 3062 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3063 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3064 case FCmpInst::FCMP_ORD: return true; 3065 } 3066 } 3067 3068 bool CmpInst::isUnordered(unsigned short predicate) { 3069 switch (predicate) { 3070 default: return false; 3071 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3072 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3073 case FCmpInst::FCMP_UNO: return true; 3074 } 3075 } 3076 3077 bool CmpInst::isTrueWhenEqual(unsigned short predicate) { 3078 switch(predicate) { 3079 default: return false; 3080 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3081 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3082 } 3083 } 3084 3085 bool CmpInst::isFalseWhenEqual(unsigned short predicate) { 3086 switch(predicate) { 3087 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3088 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3089 default: return false; 3090 } 3091 } 3092 3093 3094 //===----------------------------------------------------------------------===// 3095 // SwitchInst Implementation 3096 //===----------------------------------------------------------------------===// 3097 3098 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3099 assert(Value && Default && NumReserved); 3100 ReservedSpace = NumReserved; 3101 NumOperands = 2; 3102 OperandList = allocHungoffUses(ReservedSpace); 3103 3104 OperandList[0] = Value; 3105 OperandList[1] = Default; 3106 } 3107 3108 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3109 /// switch on and a default destination. The number of additional cases can 3110 /// be specified here to make memory allocation more efficient. This 3111 /// constructor can also autoinsert before another instruction. 3112 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3113 Instruction *InsertBefore) 3114 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3115 0, 0, InsertBefore) { 3116 init(Value, Default, 2+NumCases*2); 3117 } 3118 3119 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3120 /// switch on and a default destination. The number of additional cases can 3121 /// be specified here to make memory allocation more efficient. This 3122 /// constructor also autoinserts at the end of the specified BasicBlock. 3123 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3124 BasicBlock *InsertAtEnd) 3125 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3126 0, 0, InsertAtEnd) { 3127 init(Value, Default, 2+NumCases*2); 3128 } 3129 3130 SwitchInst::SwitchInst(const SwitchInst &SI) 3131 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { 3132 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3133 NumOperands = SI.getNumOperands(); 3134 Use *OL = OperandList, *InOL = SI.OperandList; 3135 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3136 OL[i] = InOL[i]; 3137 OL[i+1] = InOL[i+1]; 3138 } 3139 SubclassOptionalData = SI.SubclassOptionalData; 3140 } 3141 3142 SwitchInst::~SwitchInst() { 3143 dropHungoffUses(); 3144 } 3145 3146 3147 /// addCase - Add an entry to the switch instruction... 3148 /// 3149 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3150 unsigned OpNo = NumOperands; 3151 if (OpNo+2 > ReservedSpace) 3152 growOperands(); // Get more space! 3153 // Initialize some new operands. 3154 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3155 NumOperands = OpNo+2; 3156 OperandList[OpNo] = OnVal; 3157 OperandList[OpNo+1] = Dest; 3158 } 3159 3160 /// removeCase - This method removes the specified successor from the switch 3161 /// instruction. Note that this cannot be used to remove the default 3162 /// destination (successor #0). 3163 /// 3164 void SwitchInst::removeCase(unsigned idx) { 3165 assert(idx != 0 && "Cannot remove the default case!"); 3166 assert(idx*2 < getNumOperands() && "Successor index out of range!!!"); 3167 3168 unsigned NumOps = getNumOperands(); 3169 Use *OL = OperandList; 3170 3171 // Overwrite this case with the end of the list. 3172 if ((idx + 1) * 2 != NumOps) { 3173 OL[idx * 2] = OL[NumOps - 2]; 3174 OL[idx * 2 + 1] = OL[NumOps - 1]; 3175 } 3176 3177 // Nuke the last value. 3178 OL[NumOps-2].set(0); 3179 OL[NumOps-2+1].set(0); 3180 NumOperands = NumOps-2; 3181 } 3182 3183 /// growOperands - grow operands - This grows the operand list in response 3184 /// to a push_back style of operation. This grows the number of ops by 3 times. 3185 /// 3186 void SwitchInst::growOperands() { 3187 unsigned e = getNumOperands(); 3188 unsigned NumOps = e*3; 3189 3190 ReservedSpace = NumOps; 3191 Use *NewOps = allocHungoffUses(NumOps); 3192 Use *OldOps = OperandList; 3193 for (unsigned i = 0; i != e; ++i) { 3194 NewOps[i] = OldOps[i]; 3195 } 3196 OperandList = NewOps; 3197 Use::zap(OldOps, OldOps + e, true); 3198 } 3199 3200 3201 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3202 return getSuccessor(idx); 3203 } 3204 unsigned SwitchInst::getNumSuccessorsV() const { 3205 return getNumSuccessors(); 3206 } 3207 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3208 setSuccessor(idx, B); 3209 } 3210 3211 //===----------------------------------------------------------------------===// 3212 // IndirectBrInst Implementation 3213 //===----------------------------------------------------------------------===// 3214 3215 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3216 assert(Address && Address->getType()->isPointerTy() && 3217 "Address of indirectbr must be a pointer"); 3218 ReservedSpace = 1+NumDests; 3219 NumOperands = 1; 3220 OperandList = allocHungoffUses(ReservedSpace); 3221 3222 OperandList[0] = Address; 3223 } 3224 3225 3226 /// growOperands - grow operands - This grows the operand list in response 3227 /// to a push_back style of operation. This grows the number of ops by 2 times. 3228 /// 3229 void IndirectBrInst::growOperands() { 3230 unsigned e = getNumOperands(); 3231 unsigned NumOps = e*2; 3232 3233 ReservedSpace = NumOps; 3234 Use *NewOps = allocHungoffUses(NumOps); 3235 Use *OldOps = OperandList; 3236 for (unsigned i = 0; i != e; ++i) 3237 NewOps[i] = OldOps[i]; 3238 OperandList = NewOps; 3239 Use::zap(OldOps, OldOps + e, true); 3240 } 3241 3242 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3243 Instruction *InsertBefore) 3244 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3245 0, 0, InsertBefore) { 3246 init(Address, NumCases); 3247 } 3248 3249 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3250 BasicBlock *InsertAtEnd) 3251 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3252 0, 0, InsertAtEnd) { 3253 init(Address, NumCases); 3254 } 3255 3256 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3257 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3258 allocHungoffUses(IBI.getNumOperands()), 3259 IBI.getNumOperands()) { 3260 Use *OL = OperandList, *InOL = IBI.OperandList; 3261 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3262 OL[i] = InOL[i]; 3263 SubclassOptionalData = IBI.SubclassOptionalData; 3264 } 3265 3266 IndirectBrInst::~IndirectBrInst() { 3267 dropHungoffUses(); 3268 } 3269 3270 /// addDestination - Add a destination. 3271 /// 3272 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3273 unsigned OpNo = NumOperands; 3274 if (OpNo+1 > ReservedSpace) 3275 growOperands(); // Get more space! 3276 // Initialize some new operands. 3277 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3278 NumOperands = OpNo+1; 3279 OperandList[OpNo] = DestBB; 3280 } 3281 3282 /// removeDestination - This method removes the specified successor from the 3283 /// indirectbr instruction. 3284 void IndirectBrInst::removeDestination(unsigned idx) { 3285 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3286 3287 unsigned NumOps = getNumOperands(); 3288 Use *OL = OperandList; 3289 3290 // Replace this value with the last one. 3291 OL[idx+1] = OL[NumOps-1]; 3292 3293 // Nuke the last value. 3294 OL[NumOps-1].set(0); 3295 NumOperands = NumOps-1; 3296 } 3297 3298 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3299 return getSuccessor(idx); 3300 } 3301 unsigned IndirectBrInst::getNumSuccessorsV() const { 3302 return getNumSuccessors(); 3303 } 3304 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3305 setSuccessor(idx, B); 3306 } 3307 3308 //===----------------------------------------------------------------------===// 3309 // clone_impl() implementations 3310 //===----------------------------------------------------------------------===// 3311 3312 // Define these methods here so vtables don't get emitted into every translation 3313 // unit that uses these classes. 3314 3315 GetElementPtrInst *GetElementPtrInst::clone_impl() const { 3316 return new (getNumOperands()) GetElementPtrInst(*this); 3317 } 3318 3319 BinaryOperator *BinaryOperator::clone_impl() const { 3320 return Create(getOpcode(), Op<0>(), Op<1>()); 3321 } 3322 3323 FCmpInst* FCmpInst::clone_impl() const { 3324 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3325 } 3326 3327 ICmpInst* ICmpInst::clone_impl() const { 3328 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3329 } 3330 3331 ExtractValueInst *ExtractValueInst::clone_impl() const { 3332 return new ExtractValueInst(*this); 3333 } 3334 3335 InsertValueInst *InsertValueInst::clone_impl() const { 3336 return new InsertValueInst(*this); 3337 } 3338 3339 AllocaInst *AllocaInst::clone_impl() const { 3340 return new AllocaInst(getAllocatedType(), 3341 (Value*)getOperand(0), 3342 getAlignment()); 3343 } 3344 3345 LoadInst *LoadInst::clone_impl() const { 3346 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3347 getAlignment(), getOrdering(), getSynchScope()); 3348 } 3349 3350 StoreInst *StoreInst::clone_impl() const { 3351 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3352 getAlignment(), getOrdering(), getSynchScope()); 3353 3354 } 3355 3356 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { 3357 AtomicCmpXchgInst *Result = 3358 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3359 getOrdering(), getSynchScope()); 3360 Result->setVolatile(isVolatile()); 3361 return Result; 3362 } 3363 3364 AtomicRMWInst *AtomicRMWInst::clone_impl() const { 3365 AtomicRMWInst *Result = 3366 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3367 getOrdering(), getSynchScope()); 3368 Result->setVolatile(isVolatile()); 3369 return Result; 3370 } 3371 3372 FenceInst *FenceInst::clone_impl() const { 3373 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3374 } 3375 3376 TruncInst *TruncInst::clone_impl() const { 3377 return new TruncInst(getOperand(0), getType()); 3378 } 3379 3380 ZExtInst *ZExtInst::clone_impl() const { 3381 return new ZExtInst(getOperand(0), getType()); 3382 } 3383 3384 SExtInst *SExtInst::clone_impl() const { 3385 return new SExtInst(getOperand(0), getType()); 3386 } 3387 3388 FPTruncInst *FPTruncInst::clone_impl() const { 3389 return new FPTruncInst(getOperand(0), getType()); 3390 } 3391 3392 FPExtInst *FPExtInst::clone_impl() const { 3393 return new FPExtInst(getOperand(0), getType()); 3394 } 3395 3396 UIToFPInst *UIToFPInst::clone_impl() const { 3397 return new UIToFPInst(getOperand(0), getType()); 3398 } 3399 3400 SIToFPInst *SIToFPInst::clone_impl() const { 3401 return new SIToFPInst(getOperand(0), getType()); 3402 } 3403 3404 FPToUIInst *FPToUIInst::clone_impl() const { 3405 return new FPToUIInst(getOperand(0), getType()); 3406 } 3407 3408 FPToSIInst *FPToSIInst::clone_impl() const { 3409 return new FPToSIInst(getOperand(0), getType()); 3410 } 3411 3412 PtrToIntInst *PtrToIntInst::clone_impl() const { 3413 return new PtrToIntInst(getOperand(0), getType()); 3414 } 3415 3416 IntToPtrInst *IntToPtrInst::clone_impl() const { 3417 return new IntToPtrInst(getOperand(0), getType()); 3418 } 3419 3420 BitCastInst *BitCastInst::clone_impl() const { 3421 return new BitCastInst(getOperand(0), getType()); 3422 } 3423 3424 CallInst *CallInst::clone_impl() const { 3425 return new(getNumOperands()) CallInst(*this); 3426 } 3427 3428 SelectInst *SelectInst::clone_impl() const { 3429 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3430 } 3431 3432 VAArgInst *VAArgInst::clone_impl() const { 3433 return new VAArgInst(getOperand(0), getType()); 3434 } 3435 3436 ExtractElementInst *ExtractElementInst::clone_impl() const { 3437 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3438 } 3439 3440 InsertElementInst *InsertElementInst::clone_impl() const { 3441 return InsertElementInst::Create(getOperand(0), 3442 getOperand(1), 3443 getOperand(2)); 3444 } 3445 3446 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { 3447 return new ShuffleVectorInst(getOperand(0), 3448 getOperand(1), 3449 getOperand(2)); 3450 } 3451 3452 PHINode *PHINode::clone_impl() const { 3453 return new PHINode(*this); 3454 } 3455 3456 LandingPadInst *LandingPadInst::clone_impl() const { 3457 return new LandingPadInst(*this); 3458 } 3459 3460 ReturnInst *ReturnInst::clone_impl() const { 3461 return new(getNumOperands()) ReturnInst(*this); 3462 } 3463 3464 BranchInst *BranchInst::clone_impl() const { 3465 return new(getNumOperands()) BranchInst(*this); 3466 } 3467 3468 SwitchInst *SwitchInst::clone_impl() const { 3469 return new SwitchInst(*this); 3470 } 3471 3472 IndirectBrInst *IndirectBrInst::clone_impl() const { 3473 return new IndirectBrInst(*this); 3474 } 3475 3476 3477 InvokeInst *InvokeInst::clone_impl() const { 3478 return new(getNumOperands()) InvokeInst(*this); 3479 } 3480 3481 ResumeInst *ResumeInst::clone_impl() const { 3482 return new(1) ResumeInst(*this); 3483 } 3484 3485 UnwindInst *UnwindInst::clone_impl() const { 3486 LLVMContext &Context = getContext(); 3487 return new UnwindInst(Context); 3488 } 3489 3490 UnreachableInst *UnreachableInst::clone_impl() const { 3491 LLVMContext &Context = getContext(); 3492 return new UnreachableInst(Context); 3493 } 3494