Home | History | Annotate | Download | only in isl
      1 /*
      2  * Copyright 2015 Intel Corporation
      3  *
      4  *  Permission is hereby granted, free of charge, to any person obtaining a
      5  *  copy of this software and associated documentation files (the "Software"),
      6  *  to deal in the Software without restriction, including without limitation
      7  *  the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  *  and/or sell copies of the Software, and to permit persons to whom the
      9  *  Software is furnished to do so, subject to the following conditions:
     10  *
     11  *  The above copyright notice and this permission notice (including the next
     12  *  paragraph) shall be included in all copies or substantial portions of the
     13  *  Software.
     14  *
     15  *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  *  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  *  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  *  THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  *  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  *  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  *  IN THE SOFTWARE.
     22  */
     23 
     24 #include <assert.h>
     25 #include <stdarg.h>
     26 #include <stdio.h>
     27 
     28 #include "genxml/genX_bits.h"
     29 
     30 #include "isl.h"
     31 #include "isl_gen4.h"
     32 #include "isl_gen6.h"
     33 #include "isl_gen7.h"
     34 #include "isl_gen8.h"
     35 #include "isl_gen9.h"
     36 #include "isl_priv.h"
     37 
     38 void PRINTFLIKE(3, 4) UNUSED
     39 __isl_finishme(const char *file, int line, const char *fmt, ...)
     40 {
     41    va_list ap;
     42    char buf[512];
     43 
     44    va_start(ap, fmt);
     45    vsnprintf(buf, sizeof(buf), fmt, ap);
     46    va_end(ap);
     47 
     48    fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
     49 }
     50 
     51 void
     52 isl_device_init(struct isl_device *dev,
     53                 const struct gen_device_info *info,
     54                 bool has_bit6_swizzling)
     55 {
     56    dev->info = info;
     57    dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
     58    dev->has_bit6_swizzling = has_bit6_swizzling;
     59 
     60    /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
     61     * device properties at buildtime. Verify that the macros with the device
     62     * properties chosen during runtime.
     63     */
     64    ISL_DEV_GEN_SANITIZE(dev);
     65    ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
     66 
     67    /* Did we break hiz or stencil? */
     68    if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
     69       assert(info->has_hiz_and_separate_stencil);
     70    if (info->must_use_separate_stencil)
     71       assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
     72 
     73    dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
     74    dev->ss.align = isl_align(dev->ss.size, 32);
     75 
     76    dev->ss.clear_value_size =
     77       isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
     78                 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
     79                 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
     80                 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
     81 
     82    dev->ss.clear_value_offset =
     83       RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
     84 
     85    assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
     86    dev->ss.addr_offset =
     87       RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
     88 
     89    /* The "Auxiliary Surface Base Address" field starts a bit higher up
     90     * because the bottom 12 bits are used for other things.  Round down to
     91     * the nearest dword before.
     92     */
     93    dev->ss.aux_addr_offset =
     94       (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
     95 
     96    dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
     97    assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
     98    dev->ds.depth_offset =
     99       _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
    100 
    101    if (dev->use_separate_stencil) {
    102       dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
    103                       _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
    104                       _3DSTATE_CLEAR_PARAMS_length(info) * 4;
    105 
    106       assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
    107       dev->ds.stencil_offset =
    108          _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
    109          _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
    110 
    111       assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
    112       dev->ds.hiz_offset =
    113          _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
    114          _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
    115          _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
    116    } else {
    117       dev->ds.stencil_offset = 0;
    118       dev->ds.hiz_offset = 0;
    119    }
    120 }
    121 
    122 /**
    123  * @brief Query the set of multisamples supported by the device.
    124  *
    125  * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
    126  * supported.
    127  */
    128 isl_sample_count_mask_t ATTRIBUTE_CONST
    129 isl_device_get_sample_counts(struct isl_device *dev)
    130 {
    131    if (ISL_DEV_GEN(dev) >= 9) {
    132       return ISL_SAMPLE_COUNT_1_BIT |
    133              ISL_SAMPLE_COUNT_2_BIT |
    134              ISL_SAMPLE_COUNT_4_BIT |
    135              ISL_SAMPLE_COUNT_8_BIT |
    136              ISL_SAMPLE_COUNT_16_BIT;
    137    } else if (ISL_DEV_GEN(dev) >= 8) {
    138       return ISL_SAMPLE_COUNT_1_BIT |
    139              ISL_SAMPLE_COUNT_2_BIT |
    140              ISL_SAMPLE_COUNT_4_BIT |
    141              ISL_SAMPLE_COUNT_8_BIT;
    142    } else if (ISL_DEV_GEN(dev) >= 7) {
    143       return ISL_SAMPLE_COUNT_1_BIT |
    144              ISL_SAMPLE_COUNT_4_BIT |
    145              ISL_SAMPLE_COUNT_8_BIT;
    146    } else if (ISL_DEV_GEN(dev) >= 6) {
    147       return ISL_SAMPLE_COUNT_1_BIT |
    148              ISL_SAMPLE_COUNT_4_BIT;
    149    } else {
    150       return ISL_SAMPLE_COUNT_1_BIT;
    151    }
    152 }
    153 
    154 /**
    155  * @param[out] info is written only on success
    156  */
    157 static void
    158 isl_tiling_get_info(enum isl_tiling tiling,
    159                     uint32_t format_bpb,
    160                     struct isl_tile_info *tile_info)
    161 {
    162    const uint32_t bs = format_bpb / 8;
    163    struct isl_extent2d logical_el, phys_B;
    164 
    165    if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
    166       /* It is possible to have non-power-of-two formats in a tiled buffer.
    167        * The easiest way to handle this is to treat the tile as if it is three
    168        * times as wide.  This way no pixel will ever cross a tile boundary.
    169        * This really only works on legacy X and Y tiling formats.
    170        */
    171       assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
    172       assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
    173       isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
    174       return;
    175    }
    176 
    177    switch (tiling) {
    178    case ISL_TILING_LINEAR:
    179       assert(bs > 0);
    180       logical_el = isl_extent2d(1, 1);
    181       phys_B = isl_extent2d(bs, 1);
    182       break;
    183 
    184    case ISL_TILING_X:
    185       assert(bs > 0);
    186       logical_el = isl_extent2d(512 / bs, 8);
    187       phys_B = isl_extent2d(512, 8);
    188       break;
    189 
    190    case ISL_TILING_Y0:
    191       assert(bs > 0);
    192       logical_el = isl_extent2d(128 / bs, 32);
    193       phys_B = isl_extent2d(128, 32);
    194       break;
    195 
    196    case ISL_TILING_W:
    197       assert(bs == 1);
    198       logical_el = isl_extent2d(64, 64);
    199       /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
    200        *
    201        *    "If the surface is a stencil buffer (and thus has Tile Mode set
    202        *    to TILEMODE_WMAJOR), the pitch must be set to 2x the value
    203        *    computed based on width, as the stencil buffer is stored with two
    204        *    rows interleaved."
    205        *
    206        * This, together with the fact that stencil buffers are referred to as
    207        * being Y-tiled in the PRMs for older hardware implies that the
    208        * physical size of a W-tile is actually the same as for a Y-tile.
    209        */
    210       phys_B = isl_extent2d(128, 32);
    211       break;
    212 
    213    case ISL_TILING_Yf:
    214    case ISL_TILING_Ys: {
    215       bool is_Ys = tiling == ISL_TILING_Ys;
    216 
    217       assert(bs > 0);
    218       unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
    219       unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
    220 
    221       logical_el = isl_extent2d(width / bs, height);
    222       phys_B = isl_extent2d(width, height);
    223       break;
    224    }
    225 
    226    case ISL_TILING_HIZ:
    227       /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
    228        * 128bpb format.  The tiling has the same physical dimensions as
    229        * Y-tiling but actually has two HiZ columns per Y-tiled column.
    230        */
    231       assert(bs == 16);
    232       logical_el = isl_extent2d(16, 16);
    233       phys_B = isl_extent2d(128, 32);
    234       break;
    235 
    236    case ISL_TILING_CCS:
    237       /* CCS surfaces are required to have one of the GENX_CCS_* formats which
    238        * have a block size of 1 or 2 bits per block and each CCS element
    239        * corresponds to one cache-line pair in the main surface.  From the Sky
    240        * Lake PRM Vol. 12 in the section on planes:
    241        *
    242        *    "The Color Control Surface (CCS) contains the compression status
    243        *    of the cache-line pairs. The compression state of the cache-line
    244        *    pair is specified by 2 bits in the CCS.  Each CCS cache-line
    245        *    represents an area on the main surface of 16x16 sets of 128 byte
    246        *    Y-tiled cache-line-pairs. CCS is always Y tiled."
    247        *
    248        * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
    249        * Since each cache line corresponds to a 16x16 set of cache-line pairs,
    250        * that yields total tile area of 128x128 cache-line pairs or CCS
    251        * elements.  On older hardware, each CCS element is 1 bit and the tile
    252        * is 128x256 elements.
    253        */
    254       assert(format_bpb == 1 || format_bpb == 2);
    255       logical_el = isl_extent2d(128, 256 / format_bpb);
    256       phys_B = isl_extent2d(128, 32);
    257       break;
    258 
    259    default:
    260       unreachable("not reached");
    261    } /* end switch */
    262 
    263    *tile_info = (struct isl_tile_info) {
    264       .tiling = tiling,
    265       .format_bpb = format_bpb,
    266       .logical_extent_el = logical_el,
    267       .phys_extent_B = phys_B,
    268    };
    269 }
    270 
    271 bool
    272 isl_color_value_is_zero(union isl_color_value value,
    273                         enum isl_format format)
    274 {
    275    const struct isl_format_layout *fmtl = isl_format_get_layout(format);
    276 
    277 #define RETURN_FALSE_IF_NOT_0(c, i) \
    278    if (fmtl->channels.c.bits && value.u32[i] != 0) \
    279       return false
    280 
    281    RETURN_FALSE_IF_NOT_0(r, 0);
    282    RETURN_FALSE_IF_NOT_0(g, 1);
    283    RETURN_FALSE_IF_NOT_0(b, 2);
    284    RETURN_FALSE_IF_NOT_0(a, 3);
    285 
    286 #undef RETURN_FALSE_IF_NOT_0
    287 
    288    return true;
    289 }
    290 
    291 bool
    292 isl_color_value_is_zero_one(union isl_color_value value,
    293                             enum isl_format format)
    294 {
    295    const struct isl_format_layout *fmtl = isl_format_get_layout(format);
    296 
    297 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
    298    if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
    299       return false
    300 
    301    if (isl_format_has_int_channel(format)) {
    302       RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
    303       RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
    304       RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
    305       RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
    306    } else {
    307       RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
    308       RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
    309       RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
    310       RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
    311    }
    312 
    313 #undef RETURN_FALSE_IF_NOT_0_1
    314 
    315    return true;
    316 }
    317 
    318 /**
    319  * @param[out] tiling is set only on success
    320  */
    321 static bool
    322 isl_surf_choose_tiling(const struct isl_device *dev,
    323                        const struct isl_surf_init_info *restrict info,
    324                        enum isl_tiling *tiling)
    325 {
    326    isl_tiling_flags_t tiling_flags = info->tiling_flags;
    327 
    328    /* HiZ surfaces always use the HiZ tiling */
    329    if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
    330       assert(info->format == ISL_FORMAT_HIZ);
    331       assert(tiling_flags == ISL_TILING_HIZ_BIT);
    332       *tiling = ISL_TILING_HIZ;
    333       return true;
    334    }
    335 
    336    /* CCS surfaces always use the CCS tiling */
    337    if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
    338       assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
    339       assert(tiling_flags == ISL_TILING_CCS_BIT);
    340       *tiling = ISL_TILING_CCS;
    341       return true;
    342    }
    343 
    344    if (ISL_DEV_GEN(dev) >= 6) {
    345       isl_gen6_filter_tiling(dev, info, &tiling_flags);
    346    } else {
    347       isl_gen4_filter_tiling(dev, info, &tiling_flags);
    348    }
    349 
    350    #define CHOOSE(__tiling) \
    351       do { \
    352          if (tiling_flags & (1u << (__tiling))) { \
    353             *tiling = (__tiling); \
    354             return true; \
    355           } \
    356       } while (0)
    357 
    358    /* Of the tiling modes remaining, choose the one that offers the best
    359     * performance.
    360     */
    361 
    362    if (info->dim == ISL_SURF_DIM_1D) {
    363       /* Prefer linear for 1D surfaces because they do not benefit from
    364        * tiling. To the contrary, tiling leads to wasted memory and poor
    365        * memory locality due to the swizzling and alignment restrictions
    366        * required in tiled surfaces.
    367        */
    368       CHOOSE(ISL_TILING_LINEAR);
    369    }
    370 
    371    CHOOSE(ISL_TILING_Ys);
    372    CHOOSE(ISL_TILING_Yf);
    373    CHOOSE(ISL_TILING_Y0);
    374    CHOOSE(ISL_TILING_X);
    375    CHOOSE(ISL_TILING_W);
    376    CHOOSE(ISL_TILING_LINEAR);
    377 
    378    #undef CHOOSE
    379 
    380    /* No tiling mode accomodates the inputs. */
    381    return false;
    382 }
    383 
    384 static bool
    385 isl_choose_msaa_layout(const struct isl_device *dev,
    386                  const struct isl_surf_init_info *info,
    387                  enum isl_tiling tiling,
    388                  enum isl_msaa_layout *msaa_layout)
    389 {
    390    if (ISL_DEV_GEN(dev) >= 8) {
    391       return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
    392    } else if (ISL_DEV_GEN(dev) >= 7) {
    393       return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
    394    } else if (ISL_DEV_GEN(dev) >= 6) {
    395       return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
    396    } else {
    397       return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
    398    }
    399 }
    400 
    401 struct isl_extent2d
    402 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
    403 {
    404    assert(isl_is_pow2(samples));
    405 
    406    /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
    407     * Sizes (p133):
    408     *
    409     *    If the surface is multisampled and it is a depth or stencil surface
    410     *    or Multisampled Surface StorageFormat in SURFACE_STATE is
    411     *    MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
    412     *    proceeding: [...]
    413     */
    414    return (struct isl_extent2d) {
    415       .width = 1 << ((ffs(samples) - 0) / 2),
    416       .height = 1 << ((ffs(samples) - 1) / 2),
    417    };
    418 }
    419 
    420 static void
    421 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
    422                                     uint32_t *width, uint32_t *height)
    423 {
    424    const struct isl_extent2d px_size_sa =
    425       isl_get_interleaved_msaa_px_size_sa(samples);
    426 
    427    if (width)
    428       *width = isl_align(*width, 2) * px_size_sa.width;
    429    if (height)
    430       *height = isl_align(*height, 2) * px_size_sa.height;
    431 }
    432 
    433 static enum isl_array_pitch_span
    434 isl_choose_array_pitch_span(const struct isl_device *dev,
    435                             const struct isl_surf_init_info *restrict info,
    436                             enum isl_dim_layout dim_layout,
    437                             const struct isl_extent4d *phys_level0_sa)
    438 {
    439    switch (dim_layout) {
    440    case ISL_DIM_LAYOUT_GEN9_1D:
    441    case ISL_DIM_LAYOUT_GEN4_2D:
    442       if (ISL_DEV_GEN(dev) >= 8) {
    443          /* QPitch becomes programmable in Broadwell. So choose the
    444           * most compact QPitch possible in order to conserve memory.
    445           *
    446           * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
    447           * >> RENDER_SURFACE_STATE Surface QPitch (p325):
    448           *
    449           *    - Software must ensure that this field is set to a value
    450           *      sufficiently large such that the array slices in the surface
    451           *      do not overlap. Refer to the Memory Data Formats section for
    452           *      information on how surfaces are stored in memory.
    453           *
    454           *    - This field specifies the distance in rows between array
    455           *      slices.  It is used only in the following cases:
    456           *
    457           *          - Surface Array is enabled OR
    458           *          - Number of Mulitsamples is not NUMSAMPLES_1 and
    459           *            Multisampled Surface Storage Format set to MSFMT_MSS OR
    460           *          - Surface Type is SURFTYPE_CUBE
    461           */
    462          return ISL_ARRAY_PITCH_SPAN_COMPACT;
    463       } else if (ISL_DEV_GEN(dev) >= 7) {
    464          /* Note that Ivybridge introduces
    465           * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
    466           * driver more control over the QPitch.
    467           */
    468 
    469          if (phys_level0_sa->array_len == 1) {
    470             /* The hardware will never use the QPitch. So choose the most
    471              * compact QPitch possible in order to conserve memory.
    472              */
    473             return ISL_ARRAY_PITCH_SPAN_COMPACT;
    474          }
    475 
    476          if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
    477              (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
    478             /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
    479              * Section 6.18.4.7: Surface Arrays (p112):
    480              *
    481              *    If Surface Array Spacing is set to ARYSPC_FULL (note that
    482              *    the depth buffer and stencil buffer have an implied value of
    483              *    ARYSPC_FULL):
    484              */
    485             return ISL_ARRAY_PITCH_SPAN_FULL;
    486          }
    487 
    488          if (info->levels == 1) {
    489             /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
    490              * to ARYSPC_LOD0.
    491              */
    492             return ISL_ARRAY_PITCH_SPAN_COMPACT;
    493          }
    494 
    495          return ISL_ARRAY_PITCH_SPAN_FULL;
    496       } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
    497                  ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
    498                  isl_surf_usage_is_stencil(info->usage)) {
    499          /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
    500           * Graphics Core >> Section 7.18.3.7: Surface Arrays:
    501           *
    502           *    The separate stencil buffer does not support mip mapping, thus
    503           *    the storage for LODs other than LOD 0 is not needed.
    504           */
    505          assert(info->levels == 1);
    506          return ISL_ARRAY_PITCH_SPAN_COMPACT;
    507       } else {
    508          if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
    509              ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
    510              isl_surf_usage_is_stencil(info->usage)) {
    511             /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
    512              * Graphics Core >> Section 7.18.3.7: Surface Arrays:
    513              *
    514              *    The separate stencil buffer does not support mip mapping,
    515              *    thus the storage for LODs other than LOD 0 is not needed.
    516              */
    517             assert(info->levels == 1);
    518             assert(phys_level0_sa->array_len == 1);
    519             return ISL_ARRAY_PITCH_SPAN_COMPACT;
    520          }
    521 
    522          if (phys_level0_sa->array_len == 1) {
    523             /* The hardware will never use the QPitch. So choose the most
    524              * compact QPitch possible in order to conserve memory.
    525              */
    526             return ISL_ARRAY_PITCH_SPAN_COMPACT;
    527          }
    528 
    529          return ISL_ARRAY_PITCH_SPAN_FULL;
    530       }
    531 
    532    case ISL_DIM_LAYOUT_GEN4_3D:
    533       /* The hardware will never use the QPitch. So choose the most
    534        * compact QPitch possible in order to conserve memory.
    535        */
    536       return ISL_ARRAY_PITCH_SPAN_COMPACT;
    537 
    538    case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
    539       /* Each array image in the gen6 stencil of HiZ surface is compact in the
    540        * sense that every LOD is a compact array of the same size as LOD0.
    541        */
    542       return ISL_ARRAY_PITCH_SPAN_COMPACT;
    543    }
    544 
    545    unreachable("bad isl_dim_layout");
    546    return ISL_ARRAY_PITCH_SPAN_FULL;
    547 }
    548 
    549 static void
    550 isl_choose_image_alignment_el(const struct isl_device *dev,
    551                               const struct isl_surf_init_info *restrict info,
    552                               enum isl_tiling tiling,
    553                               enum isl_dim_layout dim_layout,
    554                               enum isl_msaa_layout msaa_layout,
    555                               struct isl_extent3d *image_align_el)
    556 {
    557    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
    558    if (fmtl->txc == ISL_TXC_MCS) {
    559       assert(tiling == ISL_TILING_Y0);
    560 
    561       /*
    562        * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
    563        *
    564        * Height, width, and layout of MCS buffer in this case must match with
    565        * Render Target height, width, and layout. MCS buffer is tiledY.
    566        *
    567        * To avoid wasting memory, choose the smallest alignment possible:
    568        * HALIGN_4 and VALIGN_4.
    569        */
    570       *image_align_el = isl_extent3d(4, 4, 1);
    571       return;
    572    } else if (info->format == ISL_FORMAT_HIZ) {
    573       assert(ISL_DEV_GEN(dev) >= 6);
    574       if (ISL_DEV_GEN(dev) == 6) {
    575          /* HiZ surfaces on Sandy Bridge are packed tightly. */
    576          *image_align_el = isl_extent3d(1, 1, 1);
    577       } else {
    578          /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
    579           * primary surface which works out to 2x2 HiZ elments.
    580           */
    581          *image_align_el = isl_extent3d(2, 2, 1);
    582       }
    583       return;
    584    }
    585 
    586    if (ISL_DEV_GEN(dev) >= 9) {
    587       isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
    588                                          msaa_layout, image_align_el);
    589    } else if (ISL_DEV_GEN(dev) >= 8) {
    590       isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
    591                                          msaa_layout, image_align_el);
    592    } else if (ISL_DEV_GEN(dev) >= 7) {
    593       isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
    594                                           msaa_layout, image_align_el);
    595    } else if (ISL_DEV_GEN(dev) >= 6) {
    596       isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
    597                                          msaa_layout, image_align_el);
    598    } else {
    599       isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
    600                                          msaa_layout, image_align_el);
    601    }
    602 }
    603 
    604 static enum isl_dim_layout
    605 isl_surf_choose_dim_layout(const struct isl_device *dev,
    606                            enum isl_surf_dim logical_dim,
    607                            enum isl_tiling tiling,
    608                            isl_surf_usage_flags_t usage)
    609 {
    610    /* Sandy bridge needs a special layout for HiZ and stencil. */
    611    if (ISL_DEV_GEN(dev) == 6 &&
    612        (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
    613       return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
    614 
    615    if (ISL_DEV_GEN(dev) >= 9) {
    616       switch (logical_dim) {
    617       case ISL_SURF_DIM_1D:
    618          /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
    619           *
    620           *    One-dimensional surfaces use a tiling mode of linear.
    621           *    Technically, they are not tiled resources, but the Tiled
    622           *    Resource Mode field in RENDER_SURFACE_STATE is still used to
    623           *    indicate the alignment requirements for this linear surface
    624           *    (See 1D Alignment requirements for how 4K and 64KB Tiled
    625           *    Resource Modes impact alignment). Alternatively, a 1D surface
    626           *    can be defined as a 2D tiled surface (e.g. TileY or TileX) with
    627           *    a height of 0.
    628           *
    629           * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
    630           * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
    631           */
    632          if (tiling == ISL_TILING_LINEAR)
    633             return ISL_DIM_LAYOUT_GEN9_1D;
    634          else
    635             return ISL_DIM_LAYOUT_GEN4_2D;
    636       case ISL_SURF_DIM_2D:
    637       case ISL_SURF_DIM_3D:
    638          return ISL_DIM_LAYOUT_GEN4_2D;
    639       }
    640    } else {
    641       switch (logical_dim) {
    642       case ISL_SURF_DIM_1D:
    643       case ISL_SURF_DIM_2D:
    644          /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
    645           *
    646           * The cube face textures are stored in the same way as 3D surfaces
    647           * are stored (see section 6.17.5 for details).  For cube surfaces,
    648           * however, the depth is equal to the number of faces (always 6) and
    649           * is not reduced for each MIP.
    650           */
    651          if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
    652             return ISL_DIM_LAYOUT_GEN4_3D;
    653 
    654          return ISL_DIM_LAYOUT_GEN4_2D;
    655       case ISL_SURF_DIM_3D:
    656          return ISL_DIM_LAYOUT_GEN4_3D;
    657       }
    658    }
    659 
    660    unreachable("bad isl_surf_dim");
    661    return ISL_DIM_LAYOUT_GEN4_2D;
    662 }
    663 
    664 /**
    665  * Calculate the physical extent of the surface's first level, in units of
    666  * surface samples. The result is aligned to the format's compression block.
    667  */
    668 static void
    669 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
    670                                const struct isl_surf_init_info *restrict info,
    671                                enum isl_dim_layout dim_layout,
    672                                enum isl_tiling tiling,
    673                                enum isl_msaa_layout msaa_layout,
    674                                struct isl_extent4d *phys_level0_sa)
    675 {
    676    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
    677 
    678    if (isl_format_is_yuv(info->format))
    679       isl_finishme("%s:%s: YUV format", __FILE__, __func__);
    680 
    681    switch (info->dim) {
    682    case ISL_SURF_DIM_1D:
    683       assert(info->height == 1);
    684       assert(info->depth == 1);
    685       assert(info->samples == 1);
    686 
    687       switch (dim_layout) {
    688       case ISL_DIM_LAYOUT_GEN4_3D:
    689          unreachable("bad isl_dim_layout");
    690 
    691       case ISL_DIM_LAYOUT_GEN9_1D:
    692       case ISL_DIM_LAYOUT_GEN4_2D:
    693       case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
    694          *phys_level0_sa = (struct isl_extent4d) {
    695             .w = isl_align_npot(info->width, fmtl->bw),
    696             .h = fmtl->bh,
    697             .d = 1,
    698             .a = info->array_len,
    699          };
    700          break;
    701       }
    702       break;
    703 
    704    case ISL_SURF_DIM_2D:
    705       if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
    706          assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
    707       else
    708          assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
    709                 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
    710 
    711       if (tiling == ISL_TILING_Ys && info->samples > 1)
    712          isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
    713 
    714       switch (msaa_layout) {
    715       case ISL_MSAA_LAYOUT_NONE:
    716          assert(info->depth == 1);
    717          assert(info->samples == 1);
    718 
    719          *phys_level0_sa = (struct isl_extent4d) {
    720             .w = isl_align_npot(info->width, fmtl->bw),
    721             .h = isl_align_npot(info->height, fmtl->bh),
    722             .d = 1,
    723             .a = info->array_len,
    724          };
    725          break;
    726 
    727       case ISL_MSAA_LAYOUT_ARRAY:
    728          assert(info->depth == 1);
    729          assert(info->levels == 1);
    730          assert(isl_format_supports_multisampling(dev->info, info->format));
    731          assert(fmtl->bw == 1 && fmtl->bh == 1);
    732 
    733          *phys_level0_sa = (struct isl_extent4d) {
    734             .w = info->width,
    735             .h = info->height,
    736             .d = 1,
    737             .a = info->array_len * info->samples,
    738          };
    739          break;
    740 
    741       case ISL_MSAA_LAYOUT_INTERLEAVED:
    742          assert(info->depth == 1);
    743          assert(info->levels == 1);
    744          assert(isl_format_supports_multisampling(dev->info, info->format));
    745 
    746          *phys_level0_sa = (struct isl_extent4d) {
    747             .w = info->width,
    748             .h = info->height,
    749             .d = 1,
    750             .a = info->array_len,
    751          };
    752 
    753          isl_msaa_interleaved_scale_px_to_sa(info->samples,
    754                                              &phys_level0_sa->w,
    755                                              &phys_level0_sa->h);
    756 
    757          phys_level0_sa->w = isl_align(phys_level0_sa->w, fmtl->bw);
    758          phys_level0_sa->h = isl_align(phys_level0_sa->h, fmtl->bh);
    759          break;
    760       }
    761       break;
    762 
    763    case ISL_SURF_DIM_3D:
    764       assert(info->array_len == 1);
    765       assert(info->samples == 1);
    766 
    767       if (fmtl->bd > 1) {
    768          isl_finishme("%s:%s: compression block with depth > 1",
    769                       __FILE__, __func__);
    770       }
    771 
    772       switch (dim_layout) {
    773       case ISL_DIM_LAYOUT_GEN9_1D:
    774       case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
    775          unreachable("bad isl_dim_layout");
    776 
    777       case ISL_DIM_LAYOUT_GEN4_2D:
    778          assert(ISL_DEV_GEN(dev) >= 9);
    779 
    780          *phys_level0_sa = (struct isl_extent4d) {
    781             .w = isl_align_npot(info->width, fmtl->bw),
    782             .h = isl_align_npot(info->height, fmtl->bh),
    783             .d = 1,
    784             .a = info->depth,
    785          };
    786          break;
    787 
    788       case ISL_DIM_LAYOUT_GEN4_3D:
    789          assert(ISL_DEV_GEN(dev) < 9);
    790          *phys_level0_sa = (struct isl_extent4d) {
    791             .w = isl_align(info->width, fmtl->bw),
    792             .h = isl_align(info->height, fmtl->bh),
    793             .d = info->depth,
    794             .a = 1,
    795          };
    796          break;
    797       }
    798       break;
    799    }
    800 }
    801 
    802 /**
    803  * Calculate the pitch between physical array slices, in units of rows of
    804  * surface elements.
    805  */
    806 static uint32_t
    807 isl_calc_array_pitch_el_rows_gen4_2d(
    808       const struct isl_device *dev,
    809       const struct isl_surf_init_info *restrict info,
    810       const struct isl_tile_info *tile_info,
    811       const struct isl_extent3d *image_align_sa,
    812       const struct isl_extent4d *phys_level0_sa,
    813       enum isl_array_pitch_span array_pitch_span,
    814       const struct isl_extent2d *phys_slice0_sa)
    815 {
    816    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
    817    uint32_t pitch_sa_rows = 0;
    818 
    819    switch (array_pitch_span) {
    820    case ISL_ARRAY_PITCH_SPAN_COMPACT:
    821       pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
    822       break;
    823    case ISL_ARRAY_PITCH_SPAN_FULL: {
    824       /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
    825        * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
    826        * Surfaces >> Surface Arrays.
    827        */
    828       uint32_t H0_sa = phys_level0_sa->h;
    829       uint32_t H1_sa = isl_minify(H0_sa, 1);
    830 
    831       uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
    832       uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
    833 
    834       uint32_t m;
    835       if (ISL_DEV_GEN(dev) >= 7) {
    836          /* The QPitch equation changed slightly in Ivybridge. */
    837          m = 12;
    838       } else {
    839          m = 11;
    840       }
    841 
    842       pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
    843 
    844       if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
    845           (info->height % 4 == 1)) {
    846          /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
    847           * Graphics Core >> Section 7.18.3.7: Surface Arrays:
    848           *
    849           *    [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
    850           *    the value calculated in the equation above , for every
    851           *    other odd Surface Height starting from 1 i.e. 1,5,9,13.
    852           *
    853           * XXX(chadv): Is the errata natural corollary of the physical
    854           * layout of interleaved samples?
    855           */
    856          pitch_sa_rows += 4;
    857       }
    858 
    859       pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
    860       } /* end case */
    861       break;
    862    }
    863 
    864    assert(pitch_sa_rows % fmtl->bh == 0);
    865    uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
    866 
    867    if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
    868       /*
    869        * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
    870        *
    871        *    "Mip-mapped and arrayed surfaces are supported with MCS buffer
    872        *    layout with these alignments in the RT space: Horizontal
    873        *    Alignment = 128 and Vertical Alignment = 64."
    874        *
    875        * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
    876        *
    877        *    "For non-multisampled render target's CCS auxiliary surface,
    878        *    QPitch must be computed with Horizontal Alignment = 128 and
    879        *    Surface Vertical Alignment = 256. These alignments are only for
    880        *    CCS buffer and not for associated render target."
    881        *
    882        * The first restriction is already handled by isl_choose_image_alignment_el
    883        * but the second restriction, which is an extension of the first, only
    884        * applies to qpitch and must be applied here.
    885        */
    886       assert(fmtl->bh == 4);
    887       pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
    888    }
    889 
    890    if (ISL_DEV_GEN(dev) >= 9 &&
    891        info->dim == ISL_SURF_DIM_3D &&
    892        tile_info->tiling != ISL_TILING_LINEAR) {
    893       /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
    894        *
    895        *    Tile Mode != Linear: This field must be set to an integer multiple
    896        *    of the tile height
    897        */
    898       pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
    899    }
    900 
    901    return pitch_el_rows;
    902 }
    903 
    904 /**
    905  * A variant of isl_calc_phys_slice0_extent_sa() specific to
    906  * ISL_DIM_LAYOUT_GEN4_2D.
    907  */
    908 static void
    909 isl_calc_phys_slice0_extent_sa_gen4_2d(
    910       const struct isl_device *dev,
    911       const struct isl_surf_init_info *restrict info,
    912       enum isl_msaa_layout msaa_layout,
    913       const struct isl_extent3d *image_align_sa,
    914       const struct isl_extent4d *phys_level0_sa,
    915       struct isl_extent2d *phys_slice0_sa)
    916 {
    917    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
    918 
    919    assert(phys_level0_sa->depth == 1);
    920 
    921    if (info->levels == 1) {
    922       /* Do not pad the surface to the image alignment. Instead, pad it only
    923        * to the pixel format's block alignment.
    924        *
    925        * For tiled surfaces, using a reduced alignment here avoids wasting CPU
    926        * cycles on the below mipmap layout caluclations. Reducing the
    927        * alignment here is safe because we later align the row pitch and array
    928        * pitch to the tile boundary. It is safe even for
    929        * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
    930        * to accomodate the interleaved samples.
    931        *
    932        * For linear surfaces, reducing the alignment here permits us to later
    933        * choose an arbitrary, non-aligned row pitch. If the surface backs
    934        * a VkBuffer, then an arbitrary pitch may be needed to accomodate
    935        * VkBufferImageCopy::bufferRowLength.
    936        */
    937       *phys_slice0_sa = (struct isl_extent2d) {
    938          .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
    939          .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
    940       };
    941       return;
    942    }
    943 
    944    uint32_t slice_top_w = 0;
    945    uint32_t slice_bottom_w = 0;
    946    uint32_t slice_left_h = 0;
    947    uint32_t slice_right_h = 0;
    948 
    949    uint32_t W0 = phys_level0_sa->w;
    950    uint32_t H0 = phys_level0_sa->h;
    951 
    952    for (uint32_t l = 0; l < info->levels; ++l) {
    953       uint32_t W = isl_minify(W0, l);
    954       uint32_t H = isl_minify(H0, l);
    955 
    956       uint32_t w = isl_align_npot(W, image_align_sa->w);
    957       uint32_t h = isl_align_npot(H, image_align_sa->h);
    958 
    959       if (l == 0) {
    960          slice_top_w = w;
    961          slice_left_h = h;
    962          slice_right_h = h;
    963       } else if (l == 1) {
    964          slice_bottom_w = w;
    965          slice_left_h += h;
    966       } else if (l == 2) {
    967          slice_bottom_w += w;
    968          slice_right_h += h;
    969       } else {
    970          slice_right_h += h;
    971       }
    972    }
    973 
    974    *phys_slice0_sa = (struct isl_extent2d) {
    975       .w = MAX(slice_top_w, slice_bottom_w),
    976       .h = MAX(slice_left_h, slice_right_h),
    977    };
    978 }
    979 
    980 static void
    981 isl_calc_phys_total_extent_el_gen4_2d(
    982       const struct isl_device *dev,
    983       const struct isl_surf_init_info *restrict info,
    984       const struct isl_tile_info *tile_info,
    985       enum isl_msaa_layout msaa_layout,
    986       const struct isl_extent3d *image_align_sa,
    987       const struct isl_extent4d *phys_level0_sa,
    988       enum isl_array_pitch_span array_pitch_span,
    989       uint32_t *array_pitch_el_rows,
    990       struct isl_extent2d *total_extent_el)
    991 {
    992    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
    993 
    994    struct isl_extent2d phys_slice0_sa;
    995    isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
    996                                           image_align_sa, phys_level0_sa,
    997                                           &phys_slice0_sa);
    998    *array_pitch_el_rows =
    999       isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
   1000                                            image_align_sa, phys_level0_sa,
   1001                                            array_pitch_span,
   1002                                            &phys_slice0_sa);
   1003    *total_extent_el = (struct isl_extent2d) {
   1004       .w = isl_assert_div(phys_slice0_sa.w, fmtl->bw),
   1005       .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
   1006            isl_assert_div(phys_slice0_sa.h, fmtl->bh),
   1007    };
   1008 }
   1009 
   1010 /**
   1011  * A variant of isl_calc_phys_slice0_extent_sa() specific to
   1012  * ISL_DIM_LAYOUT_GEN4_3D.
   1013  */
   1014 static void
   1015 isl_calc_phys_total_extent_el_gen4_3d(
   1016       const struct isl_device *dev,
   1017       const struct isl_surf_init_info *restrict info,
   1018       const struct isl_extent3d *image_align_sa,
   1019       const struct isl_extent4d *phys_level0_sa,
   1020       uint32_t *array_pitch_el_rows,
   1021       struct isl_extent2d *phys_total_el)
   1022 {
   1023    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
   1024 
   1025    assert(info->samples == 1);
   1026 
   1027    if (info->dim != ISL_SURF_DIM_3D) {
   1028       /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
   1029        *
   1030        * The cube face textures are stored in the same way as 3D surfaces
   1031        * are stored (see section 6.17.5 for details).  For cube surfaces,
   1032        * however, the depth is equal to the number of faces (always 6) and
   1033        * is not reduced for each MIP.
   1034        */
   1035       assert(ISL_DEV_GEN(dev) == 4);
   1036       assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
   1037       assert(phys_level0_sa->array_len == 6);
   1038    } else {
   1039       assert(phys_level0_sa->array_len == 1);
   1040    }
   1041 
   1042    uint32_t total_w = 0;
   1043    uint32_t total_h = 0;
   1044 
   1045    uint32_t W0 = phys_level0_sa->w;
   1046    uint32_t H0 = phys_level0_sa->h;
   1047    uint32_t D0 = phys_level0_sa->d;
   1048    uint32_t A0 = phys_level0_sa->a;
   1049 
   1050    for (uint32_t l = 0; l < info->levels; ++l) {
   1051       uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
   1052       uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
   1053       uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
   1054 
   1055       uint32_t max_layers_horiz = MIN(level_d, 1u << l);
   1056       uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
   1057 
   1058       total_w = MAX(total_w, level_w * max_layers_horiz);
   1059       total_h += level_h * max_layers_vert;
   1060    }
   1061 
   1062    /* GEN4_3D layouts don't really have an array pitch since each LOD has a
   1063     * different number of horizontal and vertical layers.  We have to set it
   1064     * to something, so at least make it true for LOD0.
   1065     */
   1066    *array_pitch_el_rows =
   1067       isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
   1068    *phys_total_el = (struct isl_extent2d) {
   1069       .w = isl_assert_div(total_w, fmtl->bw),
   1070       .h = isl_assert_div(total_h, fmtl->bh),
   1071    };
   1072 }
   1073 
   1074 /**
   1075  * A variant of isl_calc_phys_slice0_extent_sa() specific to
   1076  * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
   1077  */
   1078 static void
   1079 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
   1080       const struct isl_device *dev,
   1081       const struct isl_surf_init_info *restrict info,
   1082       const struct isl_tile_info *tile_info,
   1083       const struct isl_extent3d *image_align_sa,
   1084       const struct isl_extent4d *phys_level0_sa,
   1085       uint32_t *array_pitch_el_rows,
   1086       struct isl_extent2d *phys_total_el)
   1087 {
   1088    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
   1089 
   1090    const struct isl_extent2d tile_extent_sa = {
   1091       .w = tile_info->logical_extent_el.w * fmtl->bw,
   1092       .h = tile_info->logical_extent_el.h * fmtl->bh,
   1093    };
   1094    /* Tile size is a multiple of image alignment */
   1095    assert(tile_extent_sa.w % image_align_sa->w == 0);
   1096    assert(tile_extent_sa.h % image_align_sa->h == 0);
   1097 
   1098    const uint32_t W0 = phys_level0_sa->w;
   1099    const uint32_t H0 = phys_level0_sa->h;
   1100 
   1101    /* Each image has the same height as LOD0 because the hardware thinks
   1102     * everything is LOD0
   1103     */
   1104    const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
   1105 
   1106    uint32_t total_top_w = 0;
   1107    uint32_t total_bottom_w = 0;
   1108    uint32_t total_h = 0;
   1109 
   1110    for (uint32_t l = 0; l < info->levels; ++l) {
   1111       const uint32_t W = isl_minify(W0, l);
   1112 
   1113       const uint32_t w = isl_align(W, tile_extent_sa.w);
   1114       const uint32_t h = isl_align(H, tile_extent_sa.h);
   1115 
   1116       if (l == 0) {
   1117          total_top_w = w;
   1118          total_h = h;
   1119       } else if (l == 1) {
   1120          total_bottom_w = w;
   1121          total_h += h;
   1122       } else {
   1123          total_bottom_w += w;
   1124       }
   1125    }
   1126 
   1127    *array_pitch_el_rows =
   1128       isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
   1129    *phys_total_el = (struct isl_extent2d) {
   1130       .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
   1131       .h = isl_assert_div(total_h, fmtl->bh),
   1132    };
   1133 }
   1134 
   1135 /**
   1136  * A variant of isl_calc_phys_slice0_extent_sa() specific to
   1137  * ISL_DIM_LAYOUT_GEN9_1D.
   1138  */
   1139 static void
   1140 isl_calc_phys_total_extent_el_gen9_1d(
   1141       const struct isl_device *dev,
   1142       const struct isl_surf_init_info *restrict info,
   1143       const struct isl_extent3d *image_align_sa,
   1144       const struct isl_extent4d *phys_level0_sa,
   1145       uint32_t *array_pitch_el_rows,
   1146       struct isl_extent2d *phys_total_el)
   1147 {
   1148    MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
   1149 
   1150    assert(phys_level0_sa->height / fmtl->bh == 1);
   1151    assert(phys_level0_sa->depth == 1);
   1152    assert(info->samples == 1);
   1153    assert(image_align_sa->w >= fmtl->bw);
   1154 
   1155    uint32_t slice_w = 0;
   1156    const uint32_t W0 = phys_level0_sa->w;
   1157 
   1158    for (uint32_t l = 0; l < info->levels; ++l) {
   1159       uint32_t W = isl_minify(W0, l);
   1160       uint32_t w = isl_align_npot(W, image_align_sa->w);
   1161 
   1162       slice_w += w;
   1163    }
   1164 
   1165    *array_pitch_el_rows = 1;
   1166    *phys_total_el = (struct isl_extent2d) {
   1167       .w = isl_assert_div(slice_w, fmtl->bw),
   1168       .h = phys_level0_sa->array_len,
   1169    };
   1170 }
   1171 
   1172 /**
   1173  * Calculate the two-dimensional total physical extent of the surface, in
   1174  * units of surface elements.
   1175  */
   1176 static void
   1177 isl_calc_phys_total_extent_el(const struct isl_device *dev,
   1178                               const struct isl_surf_init_info *restrict info,
   1179                               const struct isl_tile_info *tile_info,
   1180                               enum isl_dim_layout dim_layout,
   1181                               enum isl_msaa_layout msaa_layout,
   1182                               const struct isl_extent3d *image_align_sa,
   1183                               const struct isl_extent4d *phys_level0_sa,
   1184                               enum isl_array_pitch_span array_pitch_span,
   1185                               uint32_t *array_pitch_el_rows,
   1186                               struct isl_extent2d *total_extent_el)
   1187 {
   1188    switch (dim_layout) {
   1189    case ISL_DIM_LAYOUT_GEN9_1D:
   1190       assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
   1191       isl_calc_phys_total_extent_el_gen9_1d(dev, info,
   1192                                             image_align_sa, phys_level0_sa,
   1193                                             array_pitch_el_rows,
   1194                                             total_extent_el);
   1195       return;
   1196    case ISL_DIM_LAYOUT_GEN4_2D:
   1197       isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
   1198                                             image_align_sa, phys_level0_sa,
   1199                                             array_pitch_span,
   1200                                             array_pitch_el_rows,
   1201                                             total_extent_el);
   1202       return;
   1203    case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
   1204       assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
   1205       isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
   1206                                                      image_align_sa,
   1207                                                      phys_level0_sa,
   1208                                                      array_pitch_el_rows,
   1209                                                      total_extent_el);
   1210       return;
   1211    case ISL_DIM_LAYOUT_GEN4_3D:
   1212       assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
   1213       isl_calc_phys_total_extent_el_gen4_3d(dev, info,
   1214                                             image_align_sa, phys_level0_sa,
   1215                                             array_pitch_el_rows,
   1216                                             total_extent_el);
   1217       return;
   1218    }
   1219 }
   1220 
   1221 static uint32_t
   1222 isl_calc_row_pitch_alignment(const struct isl_surf_init_info *surf_info,
   1223                              const struct isl_tile_info *tile_info)
   1224 {
   1225    if (tile_info->tiling != ISL_TILING_LINEAR)
   1226       return tile_info->phys_extent_B.width;
   1227 
   1228    /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
   1229     * RENDER_SURFACE_STATE Surface Pitch (p349):
   1230     *
   1231     *    - For linear render target surfaces and surfaces accessed with the
   1232     *      typed data port messages, the pitch must be a multiple of the
   1233     *      element size for non-YUV surface formats.  Pitch must be
   1234     *      a multiple of 2 * element size for YUV surface formats.
   1235     *
   1236     *    - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
   1237     *      ignore because isl doesn't do buffers.]
   1238     *
   1239     *    - For other linear surfaces, the pitch can be any multiple of
   1240     *      bytes.
   1241     */
   1242    const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
   1243    const uint32_t bs = fmtl->bpb / 8;
   1244 
   1245    if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
   1246       if (isl_format_is_yuv(surf_info->format)) {
   1247          return 2 * bs;
   1248       } else  {
   1249          return bs;
   1250       }
   1251    }
   1252 
   1253    return 1;
   1254 }
   1255 
   1256 static uint32_t
   1257 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
   1258                               const struct isl_surf_init_info *info,
   1259                               const struct isl_extent2d *phys_total_el,
   1260                               uint32_t alignment)
   1261 {
   1262    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
   1263    const uint32_t bs = fmtl->bpb / 8;
   1264 
   1265    return isl_align_npot(bs * phys_total_el->w, alignment);
   1266 }
   1267 
   1268 static uint32_t
   1269 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
   1270                              const struct isl_surf_init_info *surf_info,
   1271                              const struct isl_tile_info *tile_info,
   1272                              const struct isl_extent2d *phys_total_el,
   1273                              uint32_t alignment)
   1274 {
   1275    const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
   1276 
   1277    assert(fmtl->bpb % tile_info->format_bpb == 0);
   1278 
   1279    const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
   1280    const uint32_t total_w_tl =
   1281       isl_align_div(phys_total_el->w * tile_el_scale,
   1282                     tile_info->logical_extent_el.width);
   1283 
   1284    assert(alignment == tile_info->phys_extent_B.width);
   1285    return total_w_tl * tile_info->phys_extent_B.width;
   1286 }
   1287 
   1288 static uint32_t
   1289 isl_calc_min_row_pitch(const struct isl_device *dev,
   1290                        const struct isl_surf_init_info *surf_info,
   1291                        const struct isl_tile_info *tile_info,
   1292                        const struct isl_extent2d *phys_total_el,
   1293                        uint32_t alignment)
   1294 {
   1295    if (tile_info->tiling == ISL_TILING_LINEAR) {
   1296       return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
   1297                                            alignment);
   1298    } else {
   1299       return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
   1300                                           phys_total_el, alignment);
   1301    }
   1302 }
   1303 
   1304 /**
   1305  * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
   1306  * size is `bits` bits?
   1307  *
   1308  * Hardware pitch fields are offset by 1. For example, if the size of
   1309  * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
   1310  * pitches is [1, 2^b] inclusive.  If the surface pitch is N, then
   1311  * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
   1312  */
   1313 static bool
   1314 pitch_in_range(uint32_t n, uint32_t bits)
   1315 {
   1316    assert(n != 0);
   1317    return likely(bits != 0 && 1 <= n && n <= (1 << bits));
   1318 }
   1319 
   1320 static bool
   1321 isl_calc_row_pitch(const struct isl_device *dev,
   1322                    const struct isl_surf_init_info *surf_info,
   1323                    const struct isl_tile_info *tile_info,
   1324                    enum isl_dim_layout dim_layout,
   1325                    const struct isl_extent2d *phys_total_el,
   1326                    uint32_t *out_row_pitch)
   1327 {
   1328    uint32_t alignment =
   1329       isl_calc_row_pitch_alignment(surf_info, tile_info);
   1330 
   1331    /* If pitch isn't given and it can be chosen freely, align it by cache line
   1332     * allowing one to use blit engine on the surface.
   1333     */
   1334    if (surf_info->row_pitch == 0 && tile_info->tiling == ISL_TILING_LINEAR) {
   1335       /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
   1336        *
   1337        *    "Base address of the destination surface: X=0, Y=0. Lower 32bits
   1338        *    of the 48bit addressing. When Src Tiling is enabled (Bit_15
   1339        *    enabled), this address must be 4KB-aligned. When Tiling is not
   1340        *    enabled, this address should be CL (64byte) aligned."
   1341        */
   1342       alignment = MAX2(alignment, 64);
   1343    }
   1344 
   1345    const uint32_t min_row_pitch =
   1346       isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
   1347                              alignment);
   1348 
   1349    uint32_t row_pitch = min_row_pitch;
   1350 
   1351    if (surf_info->row_pitch != 0) {
   1352       row_pitch = surf_info->row_pitch;
   1353 
   1354       if (row_pitch < min_row_pitch)
   1355          return false;
   1356 
   1357       if (row_pitch % alignment != 0)
   1358          return false;
   1359    }
   1360 
   1361    const uint32_t row_pitch_tiles = row_pitch / tile_info->phys_extent_B.width;
   1362 
   1363    if (row_pitch == 0)
   1364       return false;
   1365 
   1366    if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
   1367       /* SurfacePitch is ignored for this layout. */
   1368       goto done;
   1369    }
   1370 
   1371    if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
   1372                             ISL_SURF_USAGE_TEXTURE_BIT |
   1373                             ISL_SURF_USAGE_STORAGE_BIT)) &&
   1374        !pitch_in_range(row_pitch, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
   1375       return false;
   1376 
   1377    if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
   1378                             ISL_SURF_USAGE_MCS_BIT)) &&
   1379        !pitch_in_range(row_pitch_tiles, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
   1380       return false;
   1381 
   1382    if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
   1383        !pitch_in_range(row_pitch, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
   1384       return false;
   1385 
   1386    if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
   1387        !pitch_in_range(row_pitch, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
   1388       return false;
   1389 
   1390    const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
   1391       _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
   1392       _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
   1393 
   1394    if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
   1395        !pitch_in_range(row_pitch, stencil_pitch_bits))
   1396       return false;
   1397 
   1398  done:
   1399    *out_row_pitch = row_pitch;
   1400    return true;
   1401 }
   1402 
   1403 bool
   1404 isl_surf_init_s(const struct isl_device *dev,
   1405                 struct isl_surf *surf,
   1406                 const struct isl_surf_init_info *restrict info)
   1407 {
   1408    const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
   1409 
   1410    const struct isl_extent4d logical_level0_px = {
   1411       .w = info->width,
   1412       .h = info->height,
   1413       .d = info->depth,
   1414       .a = info->array_len,
   1415    };
   1416 
   1417    enum isl_tiling tiling;
   1418    if (!isl_surf_choose_tiling(dev, info, &tiling))
   1419       return false;
   1420 
   1421    struct isl_tile_info tile_info;
   1422    isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
   1423 
   1424    const enum isl_dim_layout dim_layout =
   1425       isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
   1426 
   1427    enum isl_msaa_layout msaa_layout;
   1428    if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
   1429        return false;
   1430 
   1431    struct isl_extent3d image_align_el;
   1432    isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
   1433                                  &image_align_el);
   1434 
   1435    struct isl_extent3d image_align_sa =
   1436       isl_extent3d_el_to_sa(info->format, image_align_el);
   1437 
   1438    struct isl_extent4d phys_level0_sa;
   1439    isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
   1440                                   &phys_level0_sa);
   1441    assert(phys_level0_sa.w % fmtl->bw == 0);
   1442    assert(phys_level0_sa.h % fmtl->bh == 0);
   1443 
   1444    enum isl_array_pitch_span array_pitch_span =
   1445       isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
   1446 
   1447    uint32_t array_pitch_el_rows;
   1448    struct isl_extent2d phys_total_el;
   1449    isl_calc_phys_total_extent_el(dev, info, &tile_info,
   1450                                  dim_layout, msaa_layout,
   1451                                  &image_align_sa, &phys_level0_sa,
   1452                                  array_pitch_span, &array_pitch_el_rows,
   1453                                  &phys_total_el);
   1454 
   1455    uint32_t row_pitch;
   1456    if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
   1457                            &phys_total_el, &row_pitch))
   1458       return false;
   1459 
   1460    uint32_t base_alignment;
   1461    uint64_t size;
   1462    if (tiling == ISL_TILING_LINEAR) {
   1463       size = (uint64_t) row_pitch * phys_total_el.h;
   1464 
   1465       /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
   1466        *
   1467        *    "The Base Address for linear render target surfaces and surfaces
   1468        *    accessed with the typed surface read/write data port messages must
   1469        *    be element-size aligned, for non-YUV surface formats, or a
   1470        *    multiple of 2 element-sizes for YUV surface formats. Other linear
   1471        *    surfaces have no alignment requirements (byte alignment is
   1472        *    sufficient.)"
   1473        */
   1474       base_alignment = MAX(1, info->min_alignment);
   1475       if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
   1476          if (isl_format_is_yuv(info->format)) {
   1477             base_alignment = MAX(base_alignment, fmtl->bpb / 4);
   1478          } else {
   1479             base_alignment = MAX(base_alignment, fmtl->bpb / 8);
   1480          }
   1481       }
   1482       base_alignment = isl_round_up_to_power_of_two(base_alignment);
   1483    } else {
   1484       const uint32_t total_h_tl =
   1485          isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
   1486 
   1487       size = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch;
   1488 
   1489       const uint32_t tile_size = tile_info.phys_extent_B.width *
   1490                                  tile_info.phys_extent_B.height;
   1491       assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
   1492       base_alignment = MAX(info->min_alignment, tile_size);
   1493    }
   1494 
   1495    if (ISL_DEV_GEN(dev) < 9) {
   1496       /* From the Broadwell PRM Vol 5, Surface Layout:
   1497        *
   1498        *    "In addition to restrictions on maximum height, width, and depth,
   1499        *     surfaces are also restricted to a maximum size in bytes. This
   1500        *     maximum is 2 GB for all products and all surface types."
   1501        *
   1502        * This comment is applicable to all Pre-gen9 platforms.
   1503        */
   1504       if (size > (uint64_t) 1 << 31)
   1505          return false;
   1506    } else {
   1507       /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
   1508        *    "In addition to restrictions on maximum height, width, and depth,
   1509        *     surfaces are also restricted to a maximum size of 2^38 bytes.
   1510        *     All pixels within the surface must be contained within 2^38 bytes
   1511        *     of the base address."
   1512        */
   1513       if (size > (uint64_t) 1 << 38)
   1514          return false;
   1515    }
   1516 
   1517    *surf = (struct isl_surf) {
   1518       .dim = info->dim,
   1519       .dim_layout = dim_layout,
   1520       .msaa_layout = msaa_layout,
   1521       .tiling = tiling,
   1522       .format = info->format,
   1523 
   1524       .levels = info->levels,
   1525       .samples = info->samples,
   1526 
   1527       .image_alignment_el = image_align_el,
   1528       .logical_level0_px = logical_level0_px,
   1529       .phys_level0_sa = phys_level0_sa,
   1530 
   1531       .size = size,
   1532       .alignment = base_alignment,
   1533       .row_pitch = row_pitch,
   1534       .array_pitch_el_rows = array_pitch_el_rows,
   1535       .array_pitch_span = array_pitch_span,
   1536 
   1537       .usage = info->usage,
   1538    };
   1539 
   1540    return true;
   1541 }
   1542 
   1543 void
   1544 isl_surf_get_tile_info(const struct isl_surf *surf,
   1545                        struct isl_tile_info *tile_info)
   1546 {
   1547    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
   1548    isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
   1549 }
   1550 
   1551 bool
   1552 isl_surf_get_hiz_surf(const struct isl_device *dev,
   1553                       const struct isl_surf *surf,
   1554                       struct isl_surf *hiz_surf)
   1555 {
   1556    assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
   1557 
   1558    /* Multisampled depth is always interleaved */
   1559    assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
   1560           surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
   1561 
   1562    /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
   1563     *
   1564     *    "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
   1565     *    Target View Extent, and Depth Coordinate Offset X/Y of the
   1566     *    hierarchical depth buffer are inherited from the depth buffer. The
   1567     *    height and width of the hierarchical depth buffer that must be
   1568     *    allocated are computed by the following formulas, where HZ is the
   1569     *    hierarchical depth buffer and Z is the depth buffer. The Z_Height,
   1570     *    Z_Width, and Z_Depth values given in these formulas are those present
   1571     *    in 3DSTATE_DEPTH_BUFFER incremented by one.
   1572     *
   1573     *    "The value of Z_Height and Z_Width must each be multiplied by 2 before
   1574     *    being applied to the table below if Number of Multisamples is set to
   1575     *    NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
   1576     *    Z_Width must be multiplied by 4 before being applied to the table
   1577     *    below if Number of Multisamples is set to NUMSAMPLES_8."
   1578     *
   1579     * In the Sky Lake PRM, the second paragraph is replaced with this:
   1580     *
   1581     *    "The Z_Height and Z_Width values must equal those present in
   1582     *    3DSTATE_DEPTH_BUFFER incremented by one."
   1583     *
   1584     * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
   1585     * block corresponds to a region of 8x4 samples in the primary depth
   1586     * surface.  On Sky Lake, on the other hand, each HiZ block corresponds to
   1587     * a region of 8x4 pixels in the primary depth surface regardless of the
   1588     * number of samples.  The dimensions of a HiZ block in both pixels and
   1589     * samples are given in the table below:
   1590     *
   1591     *                    | SNB - BDW |     SKL+
   1592     *              ------+-----------+-------------
   1593     *                1x  |  8 x 4 sa |   8 x 4 sa
   1594     *               MSAA |  8 x 4 px |   8 x 4 px
   1595     *              ------+-----------+-------------
   1596     *                2x  |  8 x 4 sa |  16 x 4 sa
   1597     *               MSAA |  4 x 4 px |   8 x 4 px
   1598     *              ------+-----------+-------------
   1599     *                4x  |  8 x 4 sa |  16 x 8 sa
   1600     *               MSAA |  4 x 2 px |   8 x 4 px
   1601     *              ------+-----------+-------------
   1602     *                8x  |  8 x 4 sa |  32 x 8 sa
   1603     *               MSAA |  2 x 2 px |   8 x 4 px
   1604     *              ------+-----------+-------------
   1605     *               16x  |    N/A    | 32 x 16 sa
   1606     *               MSAA |    N/A    |  8 x  4 px
   1607     *              ------+-----------+-------------
   1608     *
   1609     * There are a number of different ways that this discrepency could be
   1610     * handled.  The way we have chosen is to simply make MSAA HiZ have the
   1611     * same number of samples as the parent surface pre-Sky Lake and always be
   1612     * single-sampled on Sky Lake and above.  Since the block sizes of
   1613     * compressed formats are given in samples, this neatly handles everything
   1614     * without the need for additional HiZ formats with different block sizes
   1615     * on SKL+.
   1616     */
   1617    const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
   1618 
   1619    return isl_surf_init(dev, hiz_surf,
   1620                         .dim = surf->dim,
   1621                         .format = ISL_FORMAT_HIZ,
   1622                         .width = surf->logical_level0_px.width,
   1623                         .height = surf->logical_level0_px.height,
   1624                         .depth = surf->logical_level0_px.depth,
   1625                         .levels = surf->levels,
   1626                         .array_len = surf->logical_level0_px.array_len,
   1627                         .samples = samples,
   1628                         .usage = ISL_SURF_USAGE_HIZ_BIT,
   1629                         .tiling_flags = ISL_TILING_HIZ_BIT);
   1630 }
   1631 
   1632 bool
   1633 isl_surf_get_mcs_surf(const struct isl_device *dev,
   1634                       const struct isl_surf *surf,
   1635                       struct isl_surf *mcs_surf)
   1636 {
   1637    /* It must be multisampled with an array layout */
   1638    assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
   1639 
   1640    /* The following are true of all multisampled surfaces */
   1641    assert(surf->dim == ISL_SURF_DIM_2D);
   1642    assert(surf->levels == 1);
   1643    assert(surf->logical_level0_px.depth == 1);
   1644 
   1645    /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
   1646     * bits which means the maximum pitch of a compression surface is 512
   1647     * tiles or 64KB (since MCS is always Y-tiled).  Since a 16x MCS buffer is
   1648     * 64bpp, this gives us a maximum width of 8192 pixels.  We can create
   1649     * larger multisampled surfaces, we just can't compress them.   For 2x, 4x,
   1650     * and 8x, we have enough room for the full 16k supported by the hardware.
   1651     */
   1652    if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
   1653       return false;
   1654 
   1655    enum isl_format mcs_format;
   1656    switch (surf->samples) {
   1657    case 2:  mcs_format = ISL_FORMAT_MCS_2X;  break;
   1658    case 4:  mcs_format = ISL_FORMAT_MCS_4X;  break;
   1659    case 8:  mcs_format = ISL_FORMAT_MCS_8X;  break;
   1660    case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
   1661    default:
   1662       unreachable("Invalid sample count");
   1663    }
   1664 
   1665    return isl_surf_init(dev, mcs_surf,
   1666                         .dim = ISL_SURF_DIM_2D,
   1667                         .format = mcs_format,
   1668                         .width = surf->logical_level0_px.width,
   1669                         .height = surf->logical_level0_px.height,
   1670                         .depth = 1,
   1671                         .levels = 1,
   1672                         .array_len = surf->logical_level0_px.array_len,
   1673                         .samples = 1, /* MCS surfaces are really single-sampled */
   1674                         .usage = ISL_SURF_USAGE_MCS_BIT,
   1675                         .tiling_flags = ISL_TILING_Y0_BIT);
   1676 }
   1677 
   1678 bool
   1679 isl_surf_get_ccs_surf(const struct isl_device *dev,
   1680                       const struct isl_surf *surf,
   1681                       struct isl_surf *ccs_surf,
   1682                       uint32_t row_pitch)
   1683 {
   1684    assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
   1685    assert(ISL_DEV_GEN(dev) >= 7);
   1686 
   1687    if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
   1688       return false;
   1689 
   1690    /* The PRM doesn't say this explicitly, but fast-clears don't appear to
   1691     * work for 3D textures until gen9 where the layout of 3D textures changes
   1692     * to match 2D array textures.
   1693     */
   1694    if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
   1695       return false;
   1696 
   1697    /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
   1698     * Non-MultiSampler Render Target Restrictions):
   1699     *
   1700     *    "Support is for non-mip-mapped and non-array surface types only."
   1701     *
   1702     * This restriction is lifted on gen8+.  Technically, it may be possible to
   1703     * create a CCS for an arrayed or mipmapped image and only enable CCS_D
   1704     * when rendering to the base slice.  However, there is no documentation
   1705     * tell us what the hardware would do in that case or what it does if you
   1706     * walk off the bases slice.  (Does it ignore CCS or does it start
   1707     * scribbling over random memory?)  We play it safe and just follow the
   1708     * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
   1709     */
   1710    if (ISL_DEV_GEN(dev) <= 7 &&
   1711        (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
   1712       return false;
   1713 
   1714    if (isl_format_is_compressed(surf->format))
   1715       return false;
   1716 
   1717    /* TODO: More conditions where it can fail. */
   1718 
   1719    enum isl_format ccs_format;
   1720    if (ISL_DEV_GEN(dev) >= 9) {
   1721       if (!isl_tiling_is_any_y(surf->tiling))
   1722          return false;
   1723 
   1724       switch (isl_format_get_layout(surf->format)->bpb) {
   1725       case 32:    ccs_format = ISL_FORMAT_GEN9_CCS_32BPP;   break;
   1726       case 64:    ccs_format = ISL_FORMAT_GEN9_CCS_64BPP;   break;
   1727       case 128:   ccs_format = ISL_FORMAT_GEN9_CCS_128BPP;  break;
   1728       default:
   1729          return false;
   1730       }
   1731    } else if (surf->tiling == ISL_TILING_Y0) {
   1732       switch (isl_format_get_layout(surf->format)->bpb) {
   1733       case 32:    ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y;    break;
   1734       case 64:    ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y;    break;
   1735       case 128:   ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y;   break;
   1736       default:
   1737          return false;
   1738       }
   1739    } else if (surf->tiling == ISL_TILING_X) {
   1740       switch (isl_format_get_layout(surf->format)->bpb) {
   1741       case 32:    ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X;    break;
   1742       case 64:    ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X;    break;
   1743       case 128:   ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X;   break;
   1744       default:
   1745          return false;
   1746       }
   1747    } else {
   1748       return false;
   1749    }
   1750 
   1751    return isl_surf_init(dev, ccs_surf,
   1752                         .dim = surf->dim,
   1753                         .format = ccs_format,
   1754                         .width = surf->logical_level0_px.width,
   1755                         .height = surf->logical_level0_px.height,
   1756                         .depth = surf->logical_level0_px.depth,
   1757                         .levels = surf->levels,
   1758                         .array_len = surf->logical_level0_px.array_len,
   1759                         .samples = 1,
   1760                         .row_pitch = row_pitch,
   1761                         .usage = ISL_SURF_USAGE_CCS_BIT,
   1762                         .tiling_flags = ISL_TILING_CCS_BIT);
   1763 }
   1764 
   1765 #define isl_genX_call(dev, func, ...)              \
   1766    switch (ISL_DEV_GEN(dev)) {                     \
   1767    case 4:                                         \
   1768       /* G45 surface state is the same as gen5 */  \
   1769       if (ISL_DEV_IS_G4X(dev)) {                   \
   1770          isl_gen5_##func(__VA_ARGS__);             \
   1771       } else {                                     \
   1772          isl_gen4_##func(__VA_ARGS__);             \
   1773       }                                            \
   1774       break;                                       \
   1775    case 5:                                         \
   1776       isl_gen5_##func(__VA_ARGS__);                \
   1777       break;                                       \
   1778    case 6:                                         \
   1779       isl_gen6_##func(__VA_ARGS__);                \
   1780       break;                                       \
   1781    case 7:                                         \
   1782       if (ISL_DEV_IS_HASWELL(dev)) {               \
   1783          isl_gen75_##func(__VA_ARGS__);            \
   1784       } else {                                     \
   1785          isl_gen7_##func(__VA_ARGS__);             \
   1786       }                                            \
   1787       break;                                       \
   1788    case 8:                                         \
   1789       isl_gen8_##func(__VA_ARGS__);                \
   1790       break;                                       \
   1791    case 9:                                         \
   1792       isl_gen9_##func(__VA_ARGS__);                \
   1793       break;                                       \
   1794    case 10:                                        \
   1795       isl_gen10_##func(__VA_ARGS__);               \
   1796       break;                                       \
   1797    default:                                        \
   1798       assert(!"Unknown hardware generation");      \
   1799    }
   1800 
   1801 void
   1802 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
   1803                       const struct isl_surf_fill_state_info *restrict info)
   1804 {
   1805 #ifndef NDEBUG
   1806    isl_surf_usage_flags_t _base_usage =
   1807       info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
   1808                            ISL_SURF_USAGE_TEXTURE_BIT |
   1809                            ISL_SURF_USAGE_STORAGE_BIT);
   1810    /* They may only specify one of the above bits at a time */
   1811    assert(__builtin_popcount(_base_usage) == 1);
   1812    /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
   1813    assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
   1814 #endif
   1815 
   1816    if (info->surf->dim == ISL_SURF_DIM_3D) {
   1817       assert(info->view->base_array_layer + info->view->array_len <=
   1818              info->surf->logical_level0_px.depth);
   1819    } else {
   1820       assert(info->view->base_array_layer + info->view->array_len <=
   1821              info->surf->logical_level0_px.array_len);
   1822    }
   1823 
   1824    isl_genX_call(dev, surf_fill_state_s, dev, state, info);
   1825 }
   1826 
   1827 void
   1828 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
   1829                         const struct isl_buffer_fill_state_info *restrict info)
   1830 {
   1831    isl_genX_call(dev, buffer_fill_state_s, state, info);
   1832 }
   1833 
   1834 void
   1835 isl_null_fill_state(const struct isl_device *dev, void *state,
   1836                     struct isl_extent3d size)
   1837 {
   1838    isl_genX_call(dev, null_fill_state, state, size);
   1839 }
   1840 
   1841 void
   1842 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
   1843                              const struct isl_depth_stencil_hiz_emit_info *restrict info)
   1844 {
   1845    if (info->depth_surf && info->stencil_surf) {
   1846       if (!dev->info->has_hiz_and_separate_stencil) {
   1847          assert(info->depth_surf == info->stencil_surf);
   1848          assert(info->depth_address == info->stencil_address);
   1849       }
   1850       assert(info->depth_surf->dim == info->stencil_surf->dim);
   1851    }
   1852 
   1853    if (info->depth_surf) {
   1854       assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
   1855       if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
   1856          assert(info->view->base_array_layer + info->view->array_len <=
   1857                 info->depth_surf->logical_level0_px.depth);
   1858       } else {
   1859          assert(info->view->base_array_layer + info->view->array_len <=
   1860                 info->depth_surf->logical_level0_px.array_len);
   1861       }
   1862    }
   1863 
   1864    if (info->stencil_surf) {
   1865       assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
   1866       if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
   1867          assert(info->view->base_array_layer + info->view->array_len <=
   1868                 info->stencil_surf->logical_level0_px.depth);
   1869       } else {
   1870          assert(info->view->base_array_layer + info->view->array_len <=
   1871                 info->stencil_surf->logical_level0_px.array_len);
   1872       }
   1873    }
   1874 
   1875    isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
   1876 }
   1877 
   1878 /**
   1879  * A variant of isl_surf_get_image_offset_sa() specific to
   1880  * ISL_DIM_LAYOUT_GEN4_2D.
   1881  */
   1882 static void
   1883 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
   1884                             uint32_t level, uint32_t logical_array_layer,
   1885                             uint32_t *x_offset_sa,
   1886                             uint32_t *y_offset_sa)
   1887 {
   1888    assert(level < surf->levels);
   1889    if (surf->dim == ISL_SURF_DIM_3D)
   1890       assert(logical_array_layer < surf->logical_level0_px.depth);
   1891    else
   1892       assert(logical_array_layer < surf->logical_level0_px.array_len);
   1893 
   1894    const struct isl_extent3d image_align_sa =
   1895       isl_surf_get_image_alignment_sa(surf);
   1896 
   1897    const uint32_t W0 = surf->phys_level0_sa.width;
   1898    const uint32_t H0 = surf->phys_level0_sa.height;
   1899 
   1900    const uint32_t phys_layer = logical_array_layer *
   1901       (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
   1902 
   1903    uint32_t x = 0;
   1904    uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
   1905 
   1906    for (uint32_t l = 0; l < level; ++l) {
   1907       if (l == 1) {
   1908          uint32_t W = isl_minify(W0, l);
   1909          x += isl_align_npot(W, image_align_sa.w);
   1910       } else {
   1911          uint32_t H = isl_minify(H0, l);
   1912          y += isl_align_npot(H, image_align_sa.h);
   1913       }
   1914    }
   1915 
   1916    *x_offset_sa = x;
   1917    *y_offset_sa = y;
   1918 }
   1919 
   1920 /**
   1921  * A variant of isl_surf_get_image_offset_sa() specific to
   1922  * ISL_DIM_LAYOUT_GEN4_3D.
   1923  */
   1924 static void
   1925 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
   1926                             uint32_t level, uint32_t logical_z_offset_px,
   1927                             uint32_t *x_offset_sa,
   1928                             uint32_t *y_offset_sa)
   1929 {
   1930    assert(level < surf->levels);
   1931    if (surf->dim == ISL_SURF_DIM_3D) {
   1932       assert(surf->phys_level0_sa.array_len == 1);
   1933       assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
   1934    } else {
   1935       assert(surf->dim == ISL_SURF_DIM_2D);
   1936       assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
   1937       assert(surf->phys_level0_sa.array_len == 6);
   1938       assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
   1939    }
   1940 
   1941    const struct isl_extent3d image_align_sa =
   1942       isl_surf_get_image_alignment_sa(surf);
   1943 
   1944    const uint32_t W0 = surf->phys_level0_sa.width;
   1945    const uint32_t H0 = surf->phys_level0_sa.height;
   1946    const uint32_t D0 = surf->phys_level0_sa.depth;
   1947    const uint32_t AL = surf->phys_level0_sa.array_len;
   1948 
   1949    uint32_t x = 0;
   1950    uint32_t y = 0;
   1951 
   1952    for (uint32_t l = 0; l < level; ++l) {
   1953       const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
   1954       const uint32_t level_d =
   1955          isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
   1956                         image_align_sa.d);
   1957       const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
   1958 
   1959       y += level_h * max_layers_vert;
   1960    }
   1961 
   1962    const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
   1963    const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
   1964    const uint32_t level_d =
   1965       isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
   1966                      image_align_sa.d);
   1967 
   1968    const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
   1969 
   1970    x += level_w * (logical_z_offset_px % max_layers_horiz);
   1971    y += level_h * (logical_z_offset_px / max_layers_horiz);
   1972 
   1973    *x_offset_sa = x;
   1974    *y_offset_sa = y;
   1975 }
   1976 
   1977 static void
   1978 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
   1979                                      uint32_t level,
   1980                                      uint32_t logical_array_layer,
   1981                                      uint32_t *x_offset_sa,
   1982                                      uint32_t *y_offset_sa)
   1983 {
   1984    assert(level < surf->levels);
   1985    assert(surf->logical_level0_px.depth == 1);
   1986    assert(logical_array_layer < surf->logical_level0_px.array_len);
   1987 
   1988    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
   1989 
   1990    const struct isl_extent3d image_align_sa =
   1991       isl_surf_get_image_alignment_sa(surf);
   1992 
   1993    struct isl_tile_info tile_info;
   1994    isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
   1995    const struct isl_extent2d tile_extent_sa = {
   1996       .w = tile_info.logical_extent_el.w * fmtl->bw,
   1997       .h = tile_info.logical_extent_el.h * fmtl->bh,
   1998    };
   1999    /* Tile size is a multiple of image alignment */
   2000    assert(tile_extent_sa.w % image_align_sa.w == 0);
   2001    assert(tile_extent_sa.h % image_align_sa.h == 0);
   2002 
   2003    const uint32_t W0 = surf->phys_level0_sa.w;
   2004    const uint32_t H0 = surf->phys_level0_sa.h;
   2005 
   2006    /* Each image has the same height as LOD0 because the hardware thinks
   2007     * everything is LOD0
   2008     */
   2009    const uint32_t H = isl_align(H0, image_align_sa.h);
   2010 
   2011    /* Quick sanity check for consistency */
   2012    if (surf->phys_level0_sa.array_len > 1)
   2013       assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
   2014 
   2015    uint32_t x = 0, y = 0;
   2016    for (uint32_t l = 0; l < level; ++l) {
   2017       const uint32_t W = isl_minify(W0, l);
   2018 
   2019       const uint32_t w = isl_align(W, tile_extent_sa.w);
   2020       const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
   2021                                    tile_extent_sa.h);
   2022 
   2023       if (l == 0) {
   2024          y += h;
   2025       } else {
   2026          x += w;
   2027       }
   2028    }
   2029 
   2030    y += H * logical_array_layer;
   2031 
   2032    *x_offset_sa = x;
   2033    *y_offset_sa = y;
   2034 }
   2035 
   2036 /**
   2037  * A variant of isl_surf_get_image_offset_sa() specific to
   2038  * ISL_DIM_LAYOUT_GEN9_1D.
   2039  */
   2040 static void
   2041 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
   2042                             uint32_t level, uint32_t layer,
   2043                             uint32_t *x_offset_sa,
   2044                             uint32_t *y_offset_sa)
   2045 {
   2046    assert(level < surf->levels);
   2047    assert(layer < surf->phys_level0_sa.array_len);
   2048    assert(surf->phys_level0_sa.height == 1);
   2049    assert(surf->phys_level0_sa.depth == 1);
   2050    assert(surf->samples == 1);
   2051 
   2052    const uint32_t W0 = surf->phys_level0_sa.width;
   2053    const struct isl_extent3d image_align_sa =
   2054       isl_surf_get_image_alignment_sa(surf);
   2055 
   2056    uint32_t x = 0;
   2057 
   2058    for (uint32_t l = 0; l < level; ++l) {
   2059       uint32_t W = isl_minify(W0, l);
   2060       uint32_t w = isl_align_npot(W, image_align_sa.w);
   2061 
   2062       x += w;
   2063    }
   2064 
   2065    *x_offset_sa = x;
   2066    *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
   2067 }
   2068 
   2069 /**
   2070  * Calculate the offset, in units of surface samples, to a subimage in the
   2071  * surface.
   2072  *
   2073  * @invariant level < surface levels
   2074  * @invariant logical_array_layer < logical array length of surface
   2075  * @invariant logical_z_offset_px < logical depth of surface at level
   2076  */
   2077 void
   2078 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
   2079                              uint32_t level,
   2080                              uint32_t logical_array_layer,
   2081                              uint32_t logical_z_offset_px,
   2082                              uint32_t *x_offset_sa,
   2083                              uint32_t *y_offset_sa)
   2084 {
   2085    assert(level < surf->levels);
   2086    assert(logical_array_layer < surf->logical_level0_px.array_len);
   2087    assert(logical_z_offset_px
   2088           < isl_minify(surf->logical_level0_px.depth, level));
   2089 
   2090    switch (surf->dim_layout) {
   2091    case ISL_DIM_LAYOUT_GEN9_1D:
   2092       get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
   2093                                   x_offset_sa, y_offset_sa);
   2094       break;
   2095    case ISL_DIM_LAYOUT_GEN4_2D:
   2096       get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
   2097                                   + logical_z_offset_px,
   2098                                   x_offset_sa, y_offset_sa);
   2099       break;
   2100    case ISL_DIM_LAYOUT_GEN4_3D:
   2101       get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
   2102                                   logical_z_offset_px,
   2103                                   x_offset_sa, y_offset_sa);
   2104       break;
   2105    case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
   2106       get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
   2107                                            logical_z_offset_px,
   2108                                            x_offset_sa, y_offset_sa);
   2109       break;
   2110 
   2111    default:
   2112       unreachable("not reached");
   2113    }
   2114 }
   2115 
   2116 void
   2117 isl_surf_get_image_offset_el(const struct isl_surf *surf,
   2118                              uint32_t level,
   2119                              uint32_t logical_array_layer,
   2120                              uint32_t logical_z_offset_px,
   2121                              uint32_t *x_offset_el,
   2122                              uint32_t *y_offset_el)
   2123 {
   2124    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
   2125 
   2126    assert(level < surf->levels);
   2127    assert(logical_array_layer < surf->logical_level0_px.array_len);
   2128    assert(logical_z_offset_px
   2129           < isl_minify(surf->logical_level0_px.depth, level));
   2130 
   2131    uint32_t x_offset_sa, y_offset_sa;
   2132    isl_surf_get_image_offset_sa(surf, level,
   2133                                 logical_array_layer,
   2134                                 logical_z_offset_px,
   2135                                 &x_offset_sa,
   2136                                 &y_offset_sa);
   2137 
   2138    *x_offset_el = x_offset_sa / fmtl->bw;
   2139    *y_offset_el = y_offset_sa / fmtl->bh;
   2140 }
   2141 
   2142 void
   2143 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
   2144                                     uint32_t level,
   2145                                     uint32_t logical_array_layer,
   2146                                     uint32_t logical_z_offset_px,
   2147                                     uint32_t *offset_B,
   2148                                     uint32_t *x_offset_sa,
   2149                                     uint32_t *y_offset_sa)
   2150 {
   2151    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
   2152 
   2153    uint32_t total_x_offset_el, total_y_offset_el;
   2154    isl_surf_get_image_offset_el(surf, level, logical_array_layer,
   2155                                 logical_z_offset_px,
   2156                                 &total_x_offset_el,
   2157                                 &total_y_offset_el);
   2158 
   2159    uint32_t x_offset_el, y_offset_el;
   2160    isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
   2161                                       surf->row_pitch,
   2162                                       total_x_offset_el,
   2163                                       total_y_offset_el,
   2164                                       offset_B,
   2165                                       &x_offset_el,
   2166                                       &y_offset_el);
   2167 
   2168    if (x_offset_sa) {
   2169       *x_offset_sa = x_offset_el * fmtl->bw;
   2170    } else {
   2171       assert(x_offset_el == 0);
   2172    }
   2173 
   2174    if (y_offset_sa) {
   2175       *y_offset_sa = y_offset_el * fmtl->bh;
   2176    } else {
   2177       assert(y_offset_el == 0);
   2178    }
   2179 }
   2180 
   2181 void
   2182 isl_surf_get_image_surf(const struct isl_device *dev,
   2183                         const struct isl_surf *surf,
   2184                         uint32_t level,
   2185                         uint32_t logical_array_layer,
   2186                         uint32_t logical_z_offset_px,
   2187                         struct isl_surf *image_surf,
   2188                         uint32_t *offset_B,
   2189                         uint32_t *x_offset_sa,
   2190                         uint32_t *y_offset_sa)
   2191 {
   2192    isl_surf_get_image_offset_B_tile_sa(surf,
   2193                                        level,
   2194                                        logical_array_layer,
   2195                                        logical_z_offset_px,
   2196                                        offset_B,
   2197                                        x_offset_sa,
   2198                                        y_offset_sa);
   2199 
   2200    /* Even for cube maps there will be only single face, therefore drop the
   2201     * corresponding flag if present.
   2202     */
   2203    const isl_surf_usage_flags_t usage =
   2204       surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
   2205 
   2206    bool ok UNUSED;
   2207    ok = isl_surf_init(dev, image_surf,
   2208                       .dim = ISL_SURF_DIM_2D,
   2209                       .format = surf->format,
   2210                       .width = isl_minify(surf->logical_level0_px.w, level),
   2211                       .height = isl_minify(surf->logical_level0_px.h, level),
   2212                       .depth = 1,
   2213                       .levels = 1,
   2214                       .array_len = 1,
   2215                       .samples = surf->samples,
   2216                       .row_pitch = surf->row_pitch,
   2217                       .usage = usage,
   2218                       .tiling_flags = (1 << surf->tiling));
   2219    assert(ok);
   2220 }
   2221 
   2222 void
   2223 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
   2224                                    uint32_t bpb,
   2225                                    uint32_t row_pitch,
   2226                                    uint32_t total_x_offset_el,
   2227                                    uint32_t total_y_offset_el,
   2228                                    uint32_t *base_address_offset,
   2229                                    uint32_t *x_offset_el,
   2230                                    uint32_t *y_offset_el)
   2231 {
   2232    if (tiling == ISL_TILING_LINEAR) {
   2233       assert(bpb % 8 == 0);
   2234       *base_address_offset = total_y_offset_el * row_pitch +
   2235                              total_x_offset_el * (bpb / 8);
   2236       *x_offset_el = 0;
   2237       *y_offset_el = 0;
   2238       return;
   2239    }
   2240 
   2241    struct isl_tile_info tile_info;
   2242    isl_tiling_get_info(tiling, bpb, &tile_info);
   2243 
   2244    assert(row_pitch % tile_info.phys_extent_B.width == 0);
   2245 
   2246    /* For non-power-of-two formats, we need the address to be both tile and
   2247     * element-aligned.  The easiest way to achieve this is to work with a tile
   2248     * that is three times as wide as the regular tile.
   2249     *
   2250     * The tile info returned by get_tile_info has a logical size that is an
   2251     * integer number of tile_info.format_bpb size elements.  To scale the
   2252     * tile, we scale up the physical width and then treat the logical tile
   2253     * size as if it has bpb size elements.
   2254     */
   2255    const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
   2256    tile_info.phys_extent_B.width *= tile_el_scale;
   2257 
   2258    /* Compute the offset into the tile */
   2259    *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
   2260    *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
   2261 
   2262    /* Compute the offset of the tile in units of whole tiles */
   2263    uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
   2264    uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
   2265 
   2266    *base_address_offset =
   2267       y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
   2268       x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
   2269 }
   2270 
   2271 uint32_t
   2272 isl_surf_get_depth_format(const struct isl_device *dev,
   2273                           const struct isl_surf *surf)
   2274 {
   2275    /* Support for separate stencil buffers began in gen5. Support for
   2276     * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
   2277     * those that supported separate and interleaved stencil, were gen5 and
   2278     * gen6.
   2279     *
   2280     * For a list of all available formats, see the Sandybridge PRM >> Volume
   2281     * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
   2282     * Format (p321).
   2283     */
   2284 
   2285    bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
   2286 
   2287    assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
   2288 
   2289    if (has_stencil)
   2290       assert(ISL_DEV_GEN(dev) < 7);
   2291 
   2292    switch (surf->format) {
   2293    default:
   2294       unreachable("bad isl depth format");
   2295    case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
   2296       assert(ISL_DEV_GEN(dev) < 7);
   2297       return 0; /* D32_FLOAT_S8X24_UINT */
   2298    case ISL_FORMAT_R32_FLOAT:
   2299       assert(!has_stencil);
   2300       return 1; /* D32_FLOAT */
   2301    case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
   2302       if (has_stencil) {
   2303          assert(ISL_DEV_GEN(dev) < 7);
   2304          return 2; /* D24_UNORM_S8_UINT */
   2305       } else {
   2306          assert(ISL_DEV_GEN(dev) >= 5);
   2307          return 3; /* D24_UNORM_X8_UINT */
   2308       }
   2309    case ISL_FORMAT_R16_UNORM:
   2310       assert(!has_stencil);
   2311       return 5; /* D16_UNORM */
   2312    }
   2313 }
   2314