Home | History | Annotate | Download | only in softpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /**
     29  * \brief  Primitive rasterization/rendering (points, lines, triangles)
     30  *
     31  * \author  Keith Whitwell <keithw (at) vmware.com>
     32  * \author  Brian Paul
     33  */
     34 
     35 #include "sp_context.h"
     36 #include "sp_quad.h"
     37 #include "sp_quad_pipe.h"
     38 #include "sp_setup.h"
     39 #include "sp_state.h"
     40 #include "draw/draw_context.h"
     41 #include "pipe/p_shader_tokens.h"
     42 #include "util/u_math.h"
     43 #include "util/u_memory.h"
     44 
     45 
     46 #define DEBUG_VERTS 0
     47 #define DEBUG_FRAGS 0
     48 
     49 
     50 /**
     51  * Triangle edge info
     52  */
     53 struct edge {
     54    float dx;		/**< X(v1) - X(v0), used only during setup */
     55    float dy;		/**< Y(v1) - Y(v0), used only during setup */
     56    float dxdy;		/**< dx/dy */
     57    float sx, sy;	/**< first sample point coord */
     58    int lines;		/**< number of lines on this edge */
     59 };
     60 
     61 
     62 /**
     63  * Max number of quads (2x2 pixel blocks) to process per batch.
     64  * This can't be arbitrarily increased since we depend on some 32-bit
     65  * bitmasks (two bits per quad).
     66  */
     67 #define MAX_QUADS 16
     68 
     69 
     70 /**
     71  * Triangle setup info.
     72  * Also used for line drawing (taking some liberties).
     73  */
     74 struct setup_context {
     75    struct softpipe_context *softpipe;
     76 
     77    /* Vertices are just an array of floats making up each attribute in
     78     * turn.  Currently fixed at 4 floats, but should change in time.
     79     * Codegen will help cope with this.
     80     */
     81    const float (*vmax)[4];
     82    const float (*vmid)[4];
     83    const float (*vmin)[4];
     84    const float (*vprovoke)[4];
     85 
     86    struct edge ebot;
     87    struct edge etop;
     88    struct edge emaj;
     89 
     90    float oneoverarea;
     91    int facing;
     92 
     93    float pixel_offset;
     94    unsigned max_layer;
     95 
     96    struct quad_header quad[MAX_QUADS];
     97    struct quad_header *quad_ptrs[MAX_QUADS];
     98    unsigned count;
     99 
    100    struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
    101    struct tgsi_interp_coef posCoef;  /* For Z, W */
    102 
    103    struct {
    104       int left[2];   /**< [0] = row0, [1] = row1 */
    105       int right[2];
    106       int y;
    107    } span;
    108 
    109 #if DEBUG_FRAGS
    110    uint numFragsEmitted;  /**< per primitive */
    111    uint numFragsWritten;  /**< per primitive */
    112 #endif
    113 
    114    unsigned cull_face;		/* which faces cull */
    115    unsigned nr_vertex_attrs;
    116 };
    117 
    118 
    119 
    120 
    121 
    122 
    123 
    124 /**
    125  * Clip setup->quad against the scissor/surface bounds.
    126  */
    127 static inline void
    128 quad_clip(struct setup_context *setup, struct quad_header *quad)
    129 {
    130    unsigned viewport_index = quad[0].input.viewport_index;
    131    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
    132    const int minx = (int) cliprect->minx;
    133    const int maxx = (int) cliprect->maxx;
    134    const int miny = (int) cliprect->miny;
    135    const int maxy = (int) cliprect->maxy;
    136 
    137    if (quad->input.x0 >= maxx ||
    138        quad->input.y0 >= maxy ||
    139        quad->input.x0 + 1 < minx ||
    140        quad->input.y0 + 1 < miny) {
    141       /* totally clipped */
    142       quad->inout.mask = 0x0;
    143       return;
    144    }
    145    if (quad->input.x0 < minx)
    146       quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
    147    if (quad->input.y0 < miny)
    148       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
    149    if (quad->input.x0 == maxx - 1)
    150       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
    151    if (quad->input.y0 == maxy - 1)
    152       quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
    153 }
    154 
    155 
    156 /**
    157  * Emit a quad (pass to next stage) with clipping.
    158  */
    159 static inline void
    160 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
    161 {
    162    quad_clip(setup, quad);
    163 
    164    if (quad->inout.mask) {
    165       struct softpipe_context *sp = setup->softpipe;
    166 
    167 #if DEBUG_FRAGS
    168       setup->numFragsEmitted += util_bitcount(quad->inout.mask);
    169 #endif
    170 
    171       sp->quad.first->run( sp->quad.first, &quad, 1 );
    172    }
    173 }
    174 
    175 
    176 
    177 /**
    178  * Given an X or Y coordinate, return the block/quad coordinate that it
    179  * belongs to.
    180  */
    181 static inline int
    182 block(int x)
    183 {
    184    return x & ~(2-1);
    185 }
    186 
    187 
    188 static inline int
    189 block_x(int x)
    190 {
    191    return x & ~(16-1);
    192 }
    193 
    194 
    195 /**
    196  * Render a horizontal span of quads
    197  */
    198 static void
    199 flush_spans(struct setup_context *setup)
    200 {
    201    const int step = MAX_QUADS;
    202    const int xleft0 = setup->span.left[0];
    203    const int xleft1 = setup->span.left[1];
    204    const int xright0 = setup->span.right[0];
    205    const int xright1 = setup->span.right[1];
    206    struct quad_stage *pipe = setup->softpipe->quad.first;
    207 
    208    const int minleft = block_x(MIN2(xleft0, xleft1));
    209    const int maxright = MAX2(xright0, xright1);
    210    int x;
    211 
    212    /* process quads in horizontal chunks of 16 */
    213    for (x = minleft; x < maxright; x += step) {
    214       unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
    215       unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
    216       unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
    217       unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
    218       unsigned lx = x;
    219       unsigned q = 0;
    220 
    221       unsigned skipmask_left0 = (1U << skip_left0) - 1U;
    222       unsigned skipmask_left1 = (1U << skip_left1) - 1U;
    223 
    224       /* These calculations fail when step == 32 and skip_right == 0.
    225        */
    226       unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
    227       unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
    228 
    229       unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
    230       unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
    231 
    232       if (mask0 | mask1) {
    233          do {
    234             unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
    235             if (quadmask) {
    236                setup->quad[q].input.x0 = lx;
    237                setup->quad[q].input.y0 = setup->span.y;
    238                setup->quad[q].input.facing = setup->facing;
    239                setup->quad[q].inout.mask = quadmask;
    240                setup->quad_ptrs[q] = &setup->quad[q];
    241                q++;
    242 #if DEBUG_FRAGS
    243                setup->numFragsEmitted += util_bitcount(quadmask);
    244 #endif
    245             }
    246             mask0 >>= 2;
    247             mask1 >>= 2;
    248             lx += 2;
    249          } while (mask0 | mask1);
    250 
    251          pipe->run( pipe, setup->quad_ptrs, q );
    252       }
    253    }
    254 
    255 
    256    setup->span.y = 0;
    257    setup->span.right[0] = 0;
    258    setup->span.right[1] = 0;
    259    setup->span.left[0] = 1000000;     /* greater than right[0] */
    260    setup->span.left[1] = 1000000;     /* greater than right[1] */
    261 }
    262 
    263 
    264 #if DEBUG_VERTS
    265 static void
    266 print_vertex(const struct setup_context *setup,
    267              const float (*v)[4])
    268 {
    269    int i;
    270    debug_printf("   Vertex: (%p)\n", (void *) v);
    271    for (i = 0; i < setup->nr_vertex_attrs; i++) {
    272       debug_printf("     %d: %f %f %f %f\n",  i,
    273               v[i][0], v[i][1], v[i][2], v[i][3]);
    274       if (util_is_inf_or_nan(v[i][0])) {
    275          debug_printf("   NaN!\n");
    276       }
    277    }
    278 }
    279 #endif
    280 
    281 
    282 /**
    283  * Sort the vertices from top to bottom order, setting up the triangle
    284  * edge fields (ebot, emaj, etop).
    285  * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
    286  */
    287 static boolean
    288 setup_sort_vertices(struct setup_context *setup,
    289                     float det,
    290                     const float (*v0)[4],
    291                     const float (*v1)[4],
    292                     const float (*v2)[4])
    293 {
    294    if (setup->softpipe->rasterizer->flatshade_first)
    295       setup->vprovoke = v0;
    296    else
    297       setup->vprovoke = v2;
    298 
    299    /* determine bottom to top order of vertices */
    300    {
    301       float y0 = v0[0][1];
    302       float y1 = v1[0][1];
    303       float y2 = v2[0][1];
    304       if (y0 <= y1) {
    305 	 if (y1 <= y2) {
    306 	    /* y0<=y1<=y2 */
    307 	    setup->vmin = v0;
    308 	    setup->vmid = v1;
    309 	    setup->vmax = v2;
    310 	 }
    311 	 else if (y2 <= y0) {
    312 	    /* y2<=y0<=y1 */
    313 	    setup->vmin = v2;
    314 	    setup->vmid = v0;
    315 	    setup->vmax = v1;
    316 	 }
    317 	 else {
    318 	    /* y0<=y2<=y1 */
    319 	    setup->vmin = v0;
    320 	    setup->vmid = v2;
    321 	    setup->vmax = v1;
    322 	 }
    323       }
    324       else {
    325 	 if (y0 <= y2) {
    326 	    /* y1<=y0<=y2 */
    327 	    setup->vmin = v1;
    328 	    setup->vmid = v0;
    329 	    setup->vmax = v2;
    330 	 }
    331 	 else if (y2 <= y1) {
    332 	    /* y2<=y1<=y0 */
    333 	    setup->vmin = v2;
    334 	    setup->vmid = v1;
    335 	    setup->vmax = v0;
    336 	 }
    337 	 else {
    338 	    /* y1<=y2<=y0 */
    339 	    setup->vmin = v1;
    340 	    setup->vmid = v2;
    341 	    setup->vmax = v0;
    342 	 }
    343       }
    344    }
    345 
    346    setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
    347    setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
    348    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
    349    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
    350    setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
    351    setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
    352 
    353    /*
    354     * Compute triangle's area.  Use 1/area to compute partial
    355     * derivatives of attributes later.
    356     *
    357     * The area will be the same as prim->det, but the sign may be
    358     * different depending on how the vertices get sorted above.
    359     *
    360     * To determine whether the primitive is front or back facing we
    361     * use the prim->det value because its sign is correct.
    362     */
    363    {
    364       const float area = (setup->emaj.dx * setup->ebot.dy -
    365 			    setup->ebot.dx * setup->emaj.dy);
    366 
    367       setup->oneoverarea = 1.0f / area;
    368 
    369       /*
    370       debug_printf("%s one-over-area %f  area %f  det %f\n",
    371                    __FUNCTION__, setup->oneoverarea, area, det );
    372       */
    373       if (util_is_inf_or_nan(setup->oneoverarea))
    374          return FALSE;
    375    }
    376 
    377    /* We need to know if this is a front or back-facing triangle for:
    378     *  - the GLSL gl_FrontFacing fragment attribute (bool)
    379     *  - two-sided stencil test
    380     * 0 = front-facing, 1 = back-facing
    381     */
    382    setup->facing =
    383       ((det < 0.0) ^
    384        (setup->softpipe->rasterizer->front_ccw));
    385 
    386    {
    387       unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
    388 
    389       if (face & setup->cull_face)
    390 	 return FALSE;
    391    }
    392 
    393 
    394    /* Prepare pixel offset for rasterisation:
    395     *  - pixel center (0.5, 0.5) for GL, or
    396     *  - assume (0.0, 0.0) for other APIs.
    397     */
    398    if (setup->softpipe->rasterizer->half_pixel_center) {
    399       setup->pixel_offset = 0.5f;
    400    } else {
    401       setup->pixel_offset = 0.0f;
    402    }
    403 
    404    return TRUE;
    405 }
    406 
    407 
    408 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
    409  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
    410  * Some combinations of coordinates produce invalid results,
    411  * but this behaviour is acceptable.
    412  */
    413 static void
    414 tri_apply_cylindrical_wrap(float v0,
    415                            float v1,
    416                            float v2,
    417                            uint cylindrical_wrap,
    418                            float output[3])
    419 {
    420    if (cylindrical_wrap) {
    421       float delta;
    422 
    423       delta = v1 - v0;
    424       if (delta > 0.5f) {
    425          v0 += 1.0f;
    426       }
    427       else if (delta < -0.5f) {
    428          v1 += 1.0f;
    429       }
    430 
    431       delta = v2 - v1;
    432       if (delta > 0.5f) {
    433          v1 += 1.0f;
    434       }
    435       else if (delta < -0.5f) {
    436          v2 += 1.0f;
    437       }
    438 
    439       delta = v0 - v2;
    440       if (delta > 0.5f) {
    441          v2 += 1.0f;
    442       }
    443       else if (delta < -0.5f) {
    444          v0 += 1.0f;
    445       }
    446    }
    447 
    448    output[0] = v0;
    449    output[1] = v1;
    450    output[2] = v2;
    451 }
    452 
    453 
    454 /**
    455  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
    456  * The value value comes from vertex[slot][i].
    457  * The result will be put into setup->coef[slot].a0[i].
    458  * \param slot  which attribute slot
    459  * \param i  which component of the slot (0..3)
    460  */
    461 static void
    462 const_coeff(struct setup_context *setup,
    463             struct tgsi_interp_coef *coef,
    464             uint vertSlot, uint i)
    465 {
    466    assert(i <= 3);
    467 
    468    coef->dadx[i] = 0;
    469    coef->dady[i] = 0;
    470 
    471    /* need provoking vertex info!
    472     */
    473    coef->a0[i] = setup->vprovoke[vertSlot][i];
    474 }
    475 
    476 
    477 /**
    478  * Compute a0, dadx and dady for a linearly interpolated coefficient,
    479  * for a triangle.
    480  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
    481  */
    482 static void
    483 tri_linear_coeff(struct setup_context *setup,
    484                  struct tgsi_interp_coef *coef,
    485                  uint i,
    486                  const float v[3])
    487 {
    488    float botda = v[1] - v[0];
    489    float majda = v[2] - v[0];
    490    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
    491    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
    492    float dadx = a * setup->oneoverarea;
    493    float dady = b * setup->oneoverarea;
    494 
    495    assert(i <= 3);
    496 
    497    coef->dadx[i] = dadx;
    498    coef->dady[i] = dady;
    499 
    500    /* calculate a0 as the value which would be sampled for the
    501     * fragment at (0,0), taking into account that we want to sample at
    502     * pixel centers, in other words (pixel_offset, pixel_offset).
    503     *
    504     * this is neat but unfortunately not a good way to do things for
    505     * triangles with very large values of dadx or dady as it will
    506     * result in the subtraction and re-addition from a0 of a very
    507     * large number, which means we'll end up loosing a lot of the
    508     * fractional bits and precision from a0.  the way to fix this is
    509     * to define a0 as the sample at a pixel center somewhere near vmin
    510     * instead - i'll switch to this later.
    511     */
    512    coef->a0[i] = (v[0] -
    513                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    514                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    515 }
    516 
    517 
    518 /**
    519  * Compute a0, dadx and dady for a perspective-corrected interpolant,
    520  * for a triangle.
    521  * We basically multiply the vertex value by 1/w before computing
    522  * the plane coefficients (a0, dadx, dady).
    523  * Later, when we compute the value at a particular fragment position we'll
    524  * divide the interpolated value by the interpolated W at that fragment.
    525  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
    526  */
    527 static void
    528 tri_persp_coeff(struct setup_context *setup,
    529                 struct tgsi_interp_coef *coef,
    530                 uint i,
    531                 const float v[3])
    532 {
    533    /* premultiply by 1/w  (v[0][3] is always W):
    534     */
    535    float mina = v[0] * setup->vmin[0][3];
    536    float mida = v[1] * setup->vmid[0][3];
    537    float maxa = v[2] * setup->vmax[0][3];
    538    float botda = mida - mina;
    539    float majda = maxa - mina;
    540    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
    541    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
    542    float dadx = a * setup->oneoverarea;
    543    float dady = b * setup->oneoverarea;
    544 
    545    assert(i <= 3);
    546 
    547    coef->dadx[i] = dadx;
    548    coef->dady[i] = dady;
    549    coef->a0[i] = (mina -
    550                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    551                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    552 }
    553 
    554 
    555 /**
    556  * Special coefficient setup for gl_FragCoord.
    557  * X and Y are trivial, though Y may have to be inverted for OpenGL.
    558  * Z and W are copied from posCoef which should have already been computed.
    559  * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
    560  */
    561 static void
    562 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
    563 {
    564    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    565    boolean origin_lower_left =
    566          fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
    567    boolean pixel_center_integer =
    568          fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
    569 
    570    /*X*/
    571    setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
    572    setup->coef[slot].dadx[0] = 1.0f;
    573    setup->coef[slot].dady[0] = 0.0f;
    574    /*Y*/
    575    setup->coef[slot].a0[1] =
    576 		   (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
    577 		   + (pixel_center_integer ? 0.0f : 0.5f);
    578    setup->coef[slot].dadx[1] = 0.0f;
    579    setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
    580    /*Z*/
    581    setup->coef[slot].a0[2] = setup->posCoef.a0[2];
    582    setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
    583    setup->coef[slot].dady[2] = setup->posCoef.dady[2];
    584    /*W*/
    585    setup->coef[slot].a0[3] = setup->posCoef.a0[3];
    586    setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
    587    setup->coef[slot].dady[3] = setup->posCoef.dady[3];
    588 }
    589 
    590 
    591 
    592 /**
    593  * Compute the setup->coef[] array dadx, dady, a0 values.
    594  * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
    595  */
    596 static void
    597 setup_tri_coefficients(struct setup_context *setup)
    598 {
    599    struct softpipe_context *softpipe = setup->softpipe;
    600    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    601    const struct sp_setup_info *sinfo = &softpipe->setup_info;
    602    uint fragSlot;
    603    float v[3];
    604 
    605    assert(sinfo->valid);
    606 
    607    /* z and w are done by linear interpolation:
    608     */
    609    v[0] = setup->vmin[0][2];
    610    v[1] = setup->vmid[0][2];
    611    v[2] = setup->vmax[0][2];
    612    tri_linear_coeff(setup, &setup->posCoef, 2, v);
    613 
    614    v[0] = setup->vmin[0][3];
    615    v[1] = setup->vmid[0][3];
    616    v[2] = setup->vmax[0][3];
    617    tri_linear_coeff(setup, &setup->posCoef, 3, v);
    618 
    619    /* setup interpolation for all the remaining attributes:
    620     */
    621    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
    622       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
    623       uint j;
    624 
    625       switch (sinfo->attrib[fragSlot].interp) {
    626       case SP_INTERP_CONSTANT:
    627          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    628             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
    629          }
    630          break;
    631       case SP_INTERP_LINEAR:
    632          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    633             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
    634                                        setup->vmid[vertSlot][j],
    635                                        setup->vmax[vertSlot][j],
    636                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
    637                                        v);
    638             tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
    639          }
    640          break;
    641       case SP_INTERP_PERSPECTIVE:
    642          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    643             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
    644                                        setup->vmid[vertSlot][j],
    645                                        setup->vmax[vertSlot][j],
    646                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
    647                                        v);
    648             tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
    649          }
    650          break;
    651       case SP_INTERP_POS:
    652          setup_fragcoord_coeff(setup, fragSlot);
    653          break;
    654       default:
    655          assert(0);
    656       }
    657 
    658       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
    659          /* convert 0 to 1.0 and 1 to -1.0 */
    660          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
    661          setup->coef[fragSlot].dadx[0] = 0.0;
    662          setup->coef[fragSlot].dady[0] = 0.0;
    663       }
    664 
    665       if (0) {
    666          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    667             debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
    668                          fragSlot, "xyzw"[j],
    669                          setup->coef[fragSlot].a0[j],
    670                          setup->coef[fragSlot].dadx[j],
    671                          setup->coef[fragSlot].dady[j]);
    672          }
    673       }
    674    }
    675 }
    676 
    677 
    678 static void
    679 setup_tri_edges(struct setup_context *setup)
    680 {
    681    float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
    682    float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
    683 
    684    float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
    685    float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
    686    float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
    687 
    688    setup->emaj.sy = ceilf(vmin_y);
    689    setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
    690    setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
    691    setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
    692 
    693    setup->etop.sy = ceilf(vmid_y);
    694    setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
    695    setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
    696    setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
    697 
    698    setup->ebot.sy = ceilf(vmin_y);
    699    setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
    700    setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
    701    setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
    702 }
    703 
    704 
    705 /**
    706  * Render the upper or lower half of a triangle.
    707  * Scissoring/cliprect is applied here too.
    708  */
    709 static void
    710 subtriangle(struct setup_context *setup,
    711             struct edge *eleft,
    712             struct edge *eright,
    713             int lines,
    714             unsigned viewport_index)
    715 {
    716    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
    717    const int minx = (int) cliprect->minx;
    718    const int maxx = (int) cliprect->maxx;
    719    const int miny = (int) cliprect->miny;
    720    const int maxy = (int) cliprect->maxy;
    721    int y, start_y, finish_y;
    722    int sy = (int)eleft->sy;
    723 
    724    assert((int)eleft->sy == (int) eright->sy);
    725    assert(lines >= 0);
    726 
    727    /* clip top/bottom */
    728    start_y = sy;
    729    if (start_y < miny)
    730       start_y = miny;
    731 
    732    finish_y = sy + lines;
    733    if (finish_y > maxy)
    734       finish_y = maxy;
    735 
    736    start_y -= sy;
    737    finish_y -= sy;
    738 
    739    /*
    740    debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
    741    */
    742 
    743    for (y = start_y; y < finish_y; y++) {
    744 
    745       /* avoid accumulating adds as floats don't have the precision to
    746        * accurately iterate large triangle edges that way.  luckily we
    747        * can just multiply these days.
    748        *
    749        * this is all drowned out by the attribute interpolation anyway.
    750        */
    751       int left = (int)(eleft->sx + y * eleft->dxdy);
    752       int right = (int)(eright->sx + y * eright->dxdy);
    753 
    754       /* clip left/right */
    755       if (left < minx)
    756          left = minx;
    757       if (right > maxx)
    758          right = maxx;
    759 
    760       if (left < right) {
    761          int _y = sy + y;
    762          if (block(_y) != setup->span.y) {
    763             flush_spans(setup);
    764             setup->span.y = block(_y);
    765          }
    766 
    767          setup->span.left[_y&1] = left;
    768          setup->span.right[_y&1] = right;
    769       }
    770    }
    771 
    772 
    773    /* save the values so that emaj can be restarted:
    774     */
    775    eleft->sx += lines * eleft->dxdy;
    776    eright->sx += lines * eright->dxdy;
    777    eleft->sy += lines;
    778    eright->sy += lines;
    779 }
    780 
    781 
    782 /**
    783  * Recalculate prim's determinant.  This is needed as we don't have
    784  * get this information through the vbuf_render interface & we must
    785  * calculate it here.
    786  */
    787 static float
    788 calc_det(const float (*v0)[4],
    789          const float (*v1)[4],
    790          const float (*v2)[4])
    791 {
    792    /* edge vectors e = v0 - v2, f = v1 - v2 */
    793    const float ex = v0[0][0] - v2[0][0];
    794    const float ey = v0[0][1] - v2[0][1];
    795    const float fx = v1[0][0] - v2[0][0];
    796    const float fy = v1[0][1] - v2[0][1];
    797 
    798    /* det = cross(e,f).z */
    799    return ex * fy - ey * fx;
    800 }
    801 
    802 
    803 /**
    804  * Do setup for triangle rasterization, then render the triangle.
    805  */
    806 void
    807 sp_setup_tri(struct setup_context *setup,
    808              const float (*v0)[4],
    809              const float (*v1)[4],
    810              const float (*v2)[4])
    811 {
    812    float det;
    813    uint layer = 0;
    814    unsigned viewport_index = 0;
    815 #if DEBUG_VERTS
    816    debug_printf("Setup triangle:\n");
    817    print_vertex(setup, v0);
    818    print_vertex(setup, v1);
    819    print_vertex(setup, v2);
    820 #endif
    821 
    822    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
    823       return;
    824 
    825    det = calc_det(v0, v1, v2);
    826    /*
    827    debug_printf("%s\n", __FUNCTION__ );
    828    */
    829 
    830 #if DEBUG_FRAGS
    831    setup->numFragsEmitted = 0;
    832    setup->numFragsWritten = 0;
    833 #endif
    834 
    835    if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
    836       return;
    837 
    838    setup_tri_coefficients( setup );
    839    setup_tri_edges( setup );
    840 
    841    assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
    842 
    843    setup->span.y = 0;
    844    setup->span.right[0] = 0;
    845    setup->span.right[1] = 0;
    846    /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
    847    if (setup->softpipe->layer_slot > 0) {
    848       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
    849       layer = MIN2(layer, setup->max_layer);
    850    }
    851    setup->quad[0].input.layer = layer;
    852 
    853    if (setup->softpipe->viewport_index_slot > 0) {
    854       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
    855       viewport_index = sp_clamp_viewport_idx(*udata);
    856    }
    857    setup->quad[0].input.viewport_index = viewport_index;
    858 
    859    /*   init_constant_attribs( setup ); */
    860 
    861    if (setup->oneoverarea < 0.0) {
    862       /* emaj on left:
    863        */
    864       subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
    865       subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
    866    }
    867    else {
    868       /* emaj on right:
    869        */
    870       subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
    871       subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
    872    }
    873 
    874    flush_spans( setup );
    875 
    876    if (setup->softpipe->active_statistics_queries) {
    877       setup->softpipe->pipeline_statistics.c_primitives++;
    878    }
    879 
    880 #if DEBUG_FRAGS
    881    printf("Tri: %u frags emitted, %u written\n",
    882           setup->numFragsEmitted,
    883           setup->numFragsWritten);
    884 #endif
    885 }
    886 
    887 
    888 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
    889  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
    890  */
    891 static void
    892 line_apply_cylindrical_wrap(float v0,
    893                             float v1,
    894                             uint cylindrical_wrap,
    895                             float output[2])
    896 {
    897    if (cylindrical_wrap) {
    898       float delta;
    899 
    900       delta = v1 - v0;
    901       if (delta > 0.5f) {
    902          v0 += 1.0f;
    903       }
    904       else if (delta < -0.5f) {
    905          v1 += 1.0f;
    906       }
    907    }
    908 
    909    output[0] = v0;
    910    output[1] = v1;
    911 }
    912 
    913 
    914 /**
    915  * Compute a0, dadx and dady for a linearly interpolated coefficient,
    916  * for a line.
    917  * v[0] and v[1] are vmin and vmax, respectively.
    918  */
    919 static void
    920 line_linear_coeff(const struct setup_context *setup,
    921                   struct tgsi_interp_coef *coef,
    922                   uint i,
    923                   const float v[2])
    924 {
    925    const float da = v[1] - v[0];
    926    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
    927    const float dady = da * setup->emaj.dy * setup->oneoverarea;
    928    coef->dadx[i] = dadx;
    929    coef->dady[i] = dady;
    930    coef->a0[i] = (v[0] -
    931                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    932                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    933 }
    934 
    935 
    936 /**
    937  * Compute a0, dadx and dady for a perspective-corrected interpolant,
    938  * for a line.
    939  * v[0] and v[1] are vmin and vmax, respectively.
    940  */
    941 static void
    942 line_persp_coeff(const struct setup_context *setup,
    943                  struct tgsi_interp_coef *coef,
    944                  uint i,
    945                  const float v[2])
    946 {
    947    const float a0 = v[0] * setup->vmin[0][3];
    948    const float a1 = v[1] * setup->vmax[0][3];
    949    const float da = a1 - a0;
    950    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
    951    const float dady = da * setup->emaj.dy * setup->oneoverarea;
    952    coef->dadx[i] = dadx;
    953    coef->dady[i] = dady;
    954    coef->a0[i] = (a0 -
    955                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    956                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    957 }
    958 
    959 
    960 /**
    961  * Compute the setup->coef[] array dadx, dady, a0 values.
    962  * Must be called after setup->vmin,vmax are initialized.
    963  */
    964 static boolean
    965 setup_line_coefficients(struct setup_context *setup,
    966                         const float (*v0)[4],
    967                         const float (*v1)[4])
    968 {
    969    struct softpipe_context *softpipe = setup->softpipe;
    970    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    971    const struct sp_setup_info *sinfo = &softpipe->setup_info;
    972    uint fragSlot;
    973    float area;
    974    float v[2];
    975 
    976    assert(sinfo->valid);
    977 
    978    /* use setup->vmin, vmax to point to vertices */
    979    if (softpipe->rasterizer->flatshade_first)
    980       setup->vprovoke = v0;
    981    else
    982       setup->vprovoke = v1;
    983    setup->vmin = v0;
    984    setup->vmax = v1;
    985 
    986    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
    987    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
    988 
    989    /* NOTE: this is not really area but something proportional to it */
    990    area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
    991    if (area == 0.0f || util_is_inf_or_nan(area))
    992       return FALSE;
    993    setup->oneoverarea = 1.0f / area;
    994 
    995    /* z and w are done by linear interpolation:
    996     */
    997    v[0] = setup->vmin[0][2];
    998    v[1] = setup->vmax[0][2];
    999    line_linear_coeff(setup, &setup->posCoef, 2, v);
   1000 
   1001    v[0] = setup->vmin[0][3];
   1002    v[1] = setup->vmax[0][3];
   1003    line_linear_coeff(setup, &setup->posCoef, 3, v);
   1004 
   1005    /* setup interpolation for all the remaining attributes:
   1006     */
   1007    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
   1008       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
   1009       uint j;
   1010 
   1011       switch (sinfo->attrib[fragSlot].interp) {
   1012       case SP_INTERP_CONSTANT:
   1013          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
   1014             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
   1015          break;
   1016       case SP_INTERP_LINEAR:
   1017          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
   1018             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
   1019                                         setup->vmax[vertSlot][j],
   1020                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
   1021                                         v);
   1022             line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
   1023          }
   1024          break;
   1025       case SP_INTERP_PERSPECTIVE:
   1026          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
   1027             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
   1028                                         setup->vmax[vertSlot][j],
   1029                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
   1030                                         v);
   1031             line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
   1032          }
   1033          break;
   1034       case SP_INTERP_POS:
   1035          setup_fragcoord_coeff(setup, fragSlot);
   1036          break;
   1037       default:
   1038          assert(0);
   1039       }
   1040 
   1041       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
   1042          /* convert 0 to 1.0 and 1 to -1.0 */
   1043          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
   1044          setup->coef[fragSlot].dadx[0] = 0.0;
   1045          setup->coef[fragSlot].dady[0] = 0.0;
   1046       }
   1047    }
   1048    return TRUE;
   1049 }
   1050 
   1051 
   1052 /**
   1053  * Plot a pixel in a line segment.
   1054  */
   1055 static inline void
   1056 plot(struct setup_context *setup, int x, int y)
   1057 {
   1058    const int iy = y & 1;
   1059    const int ix = x & 1;
   1060    const int quadX = x - ix;
   1061    const int quadY = y - iy;
   1062    const int mask = (1 << ix) << (2 * iy);
   1063 
   1064    if (quadX != setup->quad[0].input.x0 ||
   1065        quadY != setup->quad[0].input.y0)
   1066    {
   1067       /* flush prev quad, start new quad */
   1068 
   1069       if (setup->quad[0].input.x0 != -1)
   1070          clip_emit_quad(setup, &setup->quad[0]);
   1071 
   1072       setup->quad[0].input.x0 = quadX;
   1073       setup->quad[0].input.y0 = quadY;
   1074       setup->quad[0].inout.mask = 0x0;
   1075    }
   1076 
   1077    setup->quad[0].inout.mask |= mask;
   1078 }
   1079 
   1080 
   1081 /**
   1082  * Do setup for line rasterization, then render the line.
   1083  * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
   1084  * to handle stippling and wide lines.
   1085  */
   1086 void
   1087 sp_setup_line(struct setup_context *setup,
   1088               const float (*v0)[4],
   1089               const float (*v1)[4])
   1090 {
   1091    int x0 = (int) v0[0][0];
   1092    int x1 = (int) v1[0][0];
   1093    int y0 = (int) v0[0][1];
   1094    int y1 = (int) v1[0][1];
   1095    int dx = x1 - x0;
   1096    int dy = y1 - y0;
   1097    int xstep, ystep;
   1098    uint layer = 0;
   1099    unsigned viewport_index = 0;
   1100 
   1101 #if DEBUG_VERTS
   1102    debug_printf("Setup line:\n");
   1103    print_vertex(setup, v0);
   1104    print_vertex(setup, v1);
   1105 #endif
   1106 
   1107    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
   1108       return;
   1109 
   1110    if (dx == 0 && dy == 0)
   1111       return;
   1112 
   1113    if (!setup_line_coefficients(setup, v0, v1))
   1114       return;
   1115 
   1116    assert(v0[0][0] < 1.0e9);
   1117    assert(v0[0][1] < 1.0e9);
   1118    assert(v1[0][0] < 1.0e9);
   1119    assert(v1[0][1] < 1.0e9);
   1120 
   1121    if (dx < 0) {
   1122       dx = -dx;   /* make positive */
   1123       xstep = -1;
   1124    }
   1125    else {
   1126       xstep = 1;
   1127    }
   1128 
   1129    if (dy < 0) {
   1130       dy = -dy;   /* make positive */
   1131       ystep = -1;
   1132    }
   1133    else {
   1134       ystep = 1;
   1135    }
   1136 
   1137    assert(dx >= 0);
   1138    assert(dy >= 0);
   1139    assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
   1140 
   1141    setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
   1142    setup->quad[0].inout.mask = 0x0;
   1143    if (setup->softpipe->layer_slot > 0) {
   1144       layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
   1145       layer = MIN2(layer, setup->max_layer);
   1146    }
   1147    setup->quad[0].input.layer = layer;
   1148 
   1149    if (setup->softpipe->viewport_index_slot > 0) {
   1150       unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
   1151       viewport_index = sp_clamp_viewport_idx(*udata);
   1152    }
   1153    setup->quad[0].input.viewport_index = viewport_index;
   1154 
   1155    /* XXX temporary: set coverage to 1.0 so the line appears
   1156     * if AA mode happens to be enabled.
   1157     */
   1158    setup->quad[0].input.coverage[0] =
   1159    setup->quad[0].input.coverage[1] =
   1160    setup->quad[0].input.coverage[2] =
   1161    setup->quad[0].input.coverage[3] = 1.0;
   1162 
   1163    if (dx > dy) {
   1164       /*** X-major line ***/
   1165       int i;
   1166       const int errorInc = dy + dy;
   1167       int error = errorInc - dx;
   1168       const int errorDec = error - dx;
   1169 
   1170       for (i = 0; i < dx; i++) {
   1171          plot(setup, x0, y0);
   1172 
   1173          x0 += xstep;
   1174          if (error < 0) {
   1175             error += errorInc;
   1176          }
   1177          else {
   1178             error += errorDec;
   1179             y0 += ystep;
   1180          }
   1181       }
   1182    }
   1183    else {
   1184       /*** Y-major line ***/
   1185       int i;
   1186       const int errorInc = dx + dx;
   1187       int error = errorInc - dy;
   1188       const int errorDec = error - dy;
   1189 
   1190       for (i = 0; i < dy; i++) {
   1191          plot(setup, x0, y0);
   1192 
   1193          y0 += ystep;
   1194          if (error < 0) {
   1195             error += errorInc;
   1196          }
   1197          else {
   1198             error += errorDec;
   1199             x0 += xstep;
   1200          }
   1201       }
   1202    }
   1203 
   1204    /* draw final quad */
   1205    if (setup->quad[0].inout.mask) {
   1206       clip_emit_quad(setup, &setup->quad[0]);
   1207    }
   1208 }
   1209 
   1210 
   1211 static void
   1212 point_persp_coeff(const struct setup_context *setup,
   1213                   const float (*vert)[4],
   1214                   struct tgsi_interp_coef *coef,
   1215                   uint vertSlot, uint i)
   1216 {
   1217    assert(i <= 3);
   1218    coef->dadx[i] = 0.0F;
   1219    coef->dady[i] = 0.0F;
   1220    coef->a0[i] = vert[vertSlot][i] * vert[0][3];
   1221 }
   1222 
   1223 
   1224 /**
   1225  * Do setup for point rasterization, then render the point.
   1226  * Round or square points...
   1227  * XXX could optimize a lot for 1-pixel points.
   1228  */
   1229 void
   1230 sp_setup_point(struct setup_context *setup,
   1231                const float (*v0)[4])
   1232 {
   1233    struct softpipe_context *softpipe = setup->softpipe;
   1234    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
   1235    const int sizeAttr = setup->softpipe->psize_slot;
   1236    const float size
   1237       = sizeAttr > 0 ? v0[sizeAttr][0]
   1238       : setup->softpipe->rasterizer->point_size;
   1239    const float halfSize = 0.5F * size;
   1240    const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
   1241    const float x = v0[0][0];  /* Note: data[0] is always position */
   1242    const float y = v0[0][1];
   1243    const struct sp_setup_info *sinfo = &softpipe->setup_info;
   1244    uint fragSlot;
   1245    uint layer = 0;
   1246    unsigned viewport_index = 0;
   1247 #if DEBUG_VERTS
   1248    debug_printf("Setup point:\n");
   1249    print_vertex(setup, v0);
   1250 #endif
   1251 
   1252    assert(sinfo->valid);
   1253 
   1254    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
   1255       return;
   1256 
   1257    assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
   1258 
   1259    if (setup->softpipe->layer_slot > 0) {
   1260       layer = *(unsigned *)v0[setup->softpipe->layer_slot];
   1261       layer = MIN2(layer, setup->max_layer);
   1262    }
   1263    setup->quad[0].input.layer = layer;
   1264 
   1265    if (setup->softpipe->viewport_index_slot > 0) {
   1266       unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
   1267       viewport_index = sp_clamp_viewport_idx(*udata);
   1268    }
   1269    setup->quad[0].input.viewport_index = viewport_index;
   1270 
   1271    /* For points, all interpolants are constant-valued.
   1272     * However, for point sprites, we'll need to setup texcoords appropriately.
   1273     * XXX: which coefficients are the texcoords???
   1274     * We may do point sprites as textured quads...
   1275     *
   1276     * KW: We don't know which coefficients are texcoords - ultimately
   1277     * the choice of what interpolation mode to use for each attribute
   1278     * should be determined by the fragment program, using
   1279     * per-attribute declaration statements that include interpolation
   1280     * mode as a parameter.  So either the fragment program will have
   1281     * to be adjusted for pointsprite vs normal point behaviour, or
   1282     * otherwise a special interpolation mode will have to be defined
   1283     * which matches the required behaviour for point sprites.  But -
   1284     * the latter is not a feature of normal hardware, and as such
   1285     * probably should be ruled out on that basis.
   1286     */
   1287    setup->vprovoke = v0;
   1288 
   1289    /* setup Z, W */
   1290    const_coeff(setup, &setup->posCoef, 0, 2);
   1291    const_coeff(setup, &setup->posCoef, 0, 3);
   1292 
   1293    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
   1294       const uint vertSlot = sinfo->attrib[fragSlot].src_index;
   1295       uint j;
   1296 
   1297       switch (sinfo->attrib[fragSlot].interp) {
   1298       case SP_INTERP_CONSTANT:
   1299          /* fall-through */
   1300       case SP_INTERP_LINEAR:
   1301          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
   1302             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
   1303          break;
   1304       case SP_INTERP_PERSPECTIVE:
   1305          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
   1306             point_persp_coeff(setup, setup->vprovoke,
   1307                               &setup->coef[fragSlot], vertSlot, j);
   1308          break;
   1309       case SP_INTERP_POS:
   1310          setup_fragcoord_coeff(setup, fragSlot);
   1311          break;
   1312       default:
   1313          assert(0);
   1314       }
   1315 
   1316       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
   1317          /* convert 0 to 1.0 and 1 to -1.0 */
   1318          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
   1319          setup->coef[fragSlot].dadx[0] = 0.0;
   1320          setup->coef[fragSlot].dady[0] = 0.0;
   1321       }
   1322    }
   1323 
   1324 
   1325    if (halfSize <= 0.5 && !round) {
   1326       /* special case for 1-pixel points */
   1327       const int ix = ((int) x) & 1;
   1328       const int iy = ((int) y) & 1;
   1329       setup->quad[0].input.x0 = (int) x - ix;
   1330       setup->quad[0].input.y0 = (int) y - iy;
   1331       setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
   1332       clip_emit_quad(setup, &setup->quad[0]);
   1333    }
   1334    else {
   1335       if (round) {
   1336          /* rounded points */
   1337          const int ixmin = block((int) (x - halfSize));
   1338          const int ixmax = block((int) (x + halfSize));
   1339          const int iymin = block((int) (y - halfSize));
   1340          const int iymax = block((int) (y + halfSize));
   1341          const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
   1342          const float rmax = halfSize + 0.7071F;
   1343          const float rmin2 = MAX2(0.0F, rmin * rmin);
   1344          const float rmax2 = rmax * rmax;
   1345          const float cscale = 1.0F / (rmax2 - rmin2);
   1346          int ix, iy;
   1347 
   1348          for (iy = iymin; iy <= iymax; iy += 2) {
   1349             for (ix = ixmin; ix <= ixmax; ix += 2) {
   1350                float dx, dy, dist2, cover;
   1351 
   1352                setup->quad[0].inout.mask = 0x0;
   1353 
   1354                dx = (ix + 0.5f) - x;
   1355                dy = (iy + 0.5f) - y;
   1356                dist2 = dx * dx + dy * dy;
   1357                if (dist2 <= rmax2) {
   1358                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1359                   setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
   1360                   setup->quad[0].inout.mask |= MASK_TOP_LEFT;
   1361                }
   1362 
   1363                dx = (ix + 1.5f) - x;
   1364                dy = (iy + 0.5f) - y;
   1365                dist2 = dx * dx + dy * dy;
   1366                if (dist2 <= rmax2) {
   1367                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1368                   setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
   1369                   setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
   1370                }
   1371 
   1372                dx = (ix + 0.5f) - x;
   1373                dy = (iy + 1.5f) - y;
   1374                dist2 = dx * dx + dy * dy;
   1375                if (dist2 <= rmax2) {
   1376                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1377                   setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
   1378                   setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
   1379                }
   1380 
   1381                dx = (ix + 1.5f) - x;
   1382                dy = (iy + 1.5f) - y;
   1383                dist2 = dx * dx + dy * dy;
   1384                if (dist2 <= rmax2) {
   1385                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1386                   setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
   1387                   setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
   1388                }
   1389 
   1390                if (setup->quad[0].inout.mask) {
   1391                   setup->quad[0].input.x0 = ix;
   1392                   setup->quad[0].input.y0 = iy;
   1393                   clip_emit_quad(setup, &setup->quad[0]);
   1394                }
   1395             }
   1396          }
   1397       }
   1398       else {
   1399          /* square points */
   1400          const int xmin = (int) (x + 0.75 - halfSize);
   1401          const int ymin = (int) (y + 0.25 - halfSize);
   1402          const int xmax = xmin + (int) size;
   1403          const int ymax = ymin + (int) size;
   1404          /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
   1405          const int ixmin = block(xmin);
   1406          const int ixmax = block(xmax - 1);
   1407          const int iymin = block(ymin);
   1408          const int iymax = block(ymax - 1);
   1409          int ix, iy;
   1410 
   1411          /*
   1412          debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
   1413          */
   1414          for (iy = iymin; iy <= iymax; iy += 2) {
   1415             uint rowMask = 0xf;
   1416             if (iy < ymin) {
   1417                /* above the top edge */
   1418                rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
   1419             }
   1420             if (iy + 1 >= ymax) {
   1421                /* below the bottom edge */
   1422                rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
   1423             }
   1424 
   1425             for (ix = ixmin; ix <= ixmax; ix += 2) {
   1426                uint mask = rowMask;
   1427 
   1428                if (ix < xmin) {
   1429                   /* fragment is past left edge of point, turn off left bits */
   1430                   mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
   1431                }
   1432                if (ix + 1 >= xmax) {
   1433                   /* past the right edge */
   1434                   mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
   1435                }
   1436 
   1437                setup->quad[0].inout.mask = mask;
   1438                setup->quad[0].input.x0 = ix;
   1439                setup->quad[0].input.y0 = iy;
   1440                clip_emit_quad(setup, &setup->quad[0]);
   1441             }
   1442          }
   1443       }
   1444    }
   1445 }
   1446 
   1447 
   1448 /**
   1449  * Called by vbuf code just before we start buffering primitives.
   1450  */
   1451 void
   1452 sp_setup_prepare(struct setup_context *setup)
   1453 {
   1454    struct softpipe_context *sp = setup->softpipe;
   1455    int i;
   1456    unsigned max_layer = ~0;
   1457    if (sp->dirty) {
   1458       softpipe_update_derived(sp, sp->reduced_api_prim);
   1459    }
   1460 
   1461    /* Note: nr_attrs is only used for debugging (vertex printing) */
   1462    setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
   1463 
   1464    /*
   1465     * Determine how many layers the fb has (used for clamping layer value).
   1466     * OpenGL (but not d3d10) permits different amount of layers per rt, however
   1467     * results are undefined if layer exceeds the amount of layers of ANY
   1468     * attachment hence don't need separate per cbuf and zsbuf max.
   1469     */
   1470    for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
   1471       struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
   1472       if (cbuf) {
   1473          max_layer = MIN2(max_layer,
   1474                           cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
   1475 
   1476       }
   1477    }
   1478 
   1479    setup->max_layer = max_layer;
   1480 
   1481    sp->quad.first->begin( sp->quad.first );
   1482 
   1483    if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
   1484        sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
   1485        sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
   1486       /* we'll do culling */
   1487       setup->cull_face = sp->rasterizer->cull_face;
   1488    }
   1489    else {
   1490       /* 'draw' will do culling */
   1491       setup->cull_face = PIPE_FACE_NONE;
   1492    }
   1493 }
   1494 
   1495 
   1496 void
   1497 sp_setup_destroy_context(struct setup_context *setup)
   1498 {
   1499    FREE( setup );
   1500 }
   1501 
   1502 
   1503 /**
   1504  * Create a new primitive setup/render stage.
   1505  */
   1506 struct setup_context *
   1507 sp_setup_create_context(struct softpipe_context *softpipe)
   1508 {
   1509    struct setup_context *setup = CALLOC_STRUCT(setup_context);
   1510    unsigned i;
   1511 
   1512    setup->softpipe = softpipe;
   1513 
   1514    for (i = 0; i < MAX_QUADS; i++) {
   1515       setup->quad[i].coef = setup->coef;
   1516       setup->quad[i].posCoef = &setup->posCoef;
   1517    }
   1518 
   1519    setup->span.left[0] = 1000000;     /* greater than right[0] */
   1520    setup->span.left[1] = 1000000;     /* greater than right[1] */
   1521 
   1522    return setup;
   1523 }
   1524