Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jmemmgr.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2016, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains the JPEG system-independent memory management
     12  * routines.  This code is usable across a wide variety of machines; most
     13  * of the system dependencies have been isolated in a separate file.
     14  * The major functions provided here are:
     15  *   * pool-based allocation and freeing of memory;
     16  *   * policy decisions about how to divide available memory among the
     17  *     virtual arrays;
     18  *   * control logic for swapping virtual arrays between main memory and
     19  *     backing storage.
     20  * The separate system-dependent file provides the actual backing-storage
     21  * access code, and it contains the policy decision about how much total
     22  * main memory to use.
     23  * This file is system-dependent in the sense that some of its functions
     24  * are unnecessary in some systems.  For example, if there is enough virtual
     25  * memory so that backing storage will never be used, much of the virtual
     26  * array control logic could be removed.  (Of course, if you have that much
     27  * memory then you shouldn't care about a little bit of unused code...)
     28  */
     29 
     30 #define JPEG_INTERNALS
     31 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
     32 #include "jinclude.h"
     33 #include "jpeglib.h"
     34 #include "jmemsys.h"            /* import the system-dependent declarations */
     35 #if !defined(_MSC_VER) || _MSC_VER > 1600
     36 #include <stdint.h>
     37 #endif
     38 #include <limits.h>
     39 
     40 #ifndef NO_GETENV
     41 #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
     42 extern char *getenv(const char *name);
     43 #endif
     44 #endif
     45 
     46 
     47 LOCAL(size_t)
     48 round_up_pow2(size_t a, size_t b)
     49 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
     50 /* Assumes a >= 0, b > 0, and b is a power of 2 */
     51 {
     52   return ((a + b - 1) & (~(b - 1)));
     53 }
     54 
     55 
     56 /*
     57  * Some important notes:
     58  *   The allocation routines provided here must never return NULL.
     59  *   They should exit to error_exit if unsuccessful.
     60  *
     61  *   It's not a good idea to try to merge the sarray and barray routines,
     62  *   even though they are textually almost the same, because samples are
     63  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     64  *   in machines where byte pointers have a different representation from
     65  *   word pointers, the resulting machine code could not be the same.
     66  */
     67 
     68 
     69 /*
     70  * Many machines require storage alignment: longs must start on 4-byte
     71  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     72  * always returns pointers that are multiples of the worst-case alignment
     73  * requirement, and we had better do so too.
     74  * There isn't any really portable way to determine the worst-case alignment
     75  * requirement.  This module assumes that the alignment requirement is
     76  * multiples of ALIGN_SIZE.
     77  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
     78  * some workstations (where doubles really do need 8-byte alignment) and will
     79  * work fine on nearly everything.  If your machine has lesser alignment needs,
     80  * you can save a few bytes by making ALIGN_SIZE smaller.
     81  * The only place I know of where this will NOT work is certain Macintosh
     82  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     83  * Doing 10-byte alignment is counterproductive because longwords won't be
     84  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
     85  * such a compiler.
     86  */
     87 
     88 #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
     89 #ifndef WITH_SIMD
     90 #define ALIGN_SIZE  sizeof(double)
     91 #else
     92 #define ALIGN_SIZE  32 /* Most of the SIMD instructions we support require
     93                           16-byte (128-bit) alignment, but AVX2 requires
     94                           32-byte alignment. */
     95 #endif
     96 #endif
     97 
     98 /*
     99  * We allocate objects from "pools", where each pool is gotten with a single
    100  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
    101  * overhead within a pool, except for alignment padding.  Each pool has a
    102  * header with a link to the next pool of the same class.
    103  * Small and large pool headers are identical.
    104  */
    105 
    106 typedef struct small_pool_struct *small_pool_ptr;
    107 
    108 typedef struct small_pool_struct {
    109   small_pool_ptr next;          /* next in list of pools */
    110   size_t bytes_used;            /* how many bytes already used within pool */
    111   size_t bytes_left;            /* bytes still available in this pool */
    112 } small_pool_hdr;
    113 
    114 typedef struct large_pool_struct *large_pool_ptr;
    115 
    116 typedef struct large_pool_struct {
    117   large_pool_ptr next;          /* next in list of pools */
    118   size_t bytes_used;            /* how many bytes already used within pool */
    119   size_t bytes_left;            /* bytes still available in this pool */
    120 } large_pool_hdr;
    121 
    122 /*
    123  * Here is the full definition of a memory manager object.
    124  */
    125 
    126 typedef struct {
    127   struct jpeg_memory_mgr pub;   /* public fields */
    128 
    129   /* Each pool identifier (lifetime class) names a linked list of pools. */
    130   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    131   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    132 
    133   /* Since we only have one lifetime class of virtual arrays, only one
    134    * linked list is necessary (for each datatype).  Note that the virtual
    135    * array control blocks being linked together are actually stored somewhere
    136    * in the small-pool list.
    137    */
    138   jvirt_sarray_ptr virt_sarray_list;
    139   jvirt_barray_ptr virt_barray_list;
    140 
    141   /* This counts total space obtained from jpeg_get_small/large */
    142   size_t total_space_allocated;
    143 
    144   /* alloc_sarray and alloc_barray set this value for use by virtual
    145    * array routines.
    146    */
    147   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
    148 } my_memory_mgr;
    149 
    150 typedef my_memory_mgr *my_mem_ptr;
    151 
    152 
    153 /*
    154  * The control blocks for virtual arrays.
    155  * Note that these blocks are allocated in the "small" pool area.
    156  * System-dependent info for the associated backing store (if any) is hidden
    157  * inside the backing_store_info struct.
    158  */
    159 
    160 struct jvirt_sarray_control {
    161   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
    162   JDIMENSION rows_in_array;     /* total virtual array height */
    163   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
    164   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
    165   JDIMENSION rows_in_mem;       /* height of memory buffer */
    166   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
    167   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
    168   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
    169   boolean pre_zero;             /* pre-zero mode requested? */
    170   boolean dirty;                /* do current buffer contents need written? */
    171   boolean b_s_open;             /* is backing-store data valid? */
    172   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
    173   backing_store_info b_s_info;  /* System-dependent control info */
    174 };
    175 
    176 struct jvirt_barray_control {
    177   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
    178   JDIMENSION rows_in_array;     /* total virtual array height */
    179   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
    180   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
    181   JDIMENSION rows_in_mem;       /* height of memory buffer */
    182   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
    183   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
    184   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
    185   boolean pre_zero;             /* pre-zero mode requested? */
    186   boolean dirty;                /* do current buffer contents need written? */
    187   boolean b_s_open;             /* is backing-store data valid? */
    188   jvirt_barray_ptr next;        /* link to next virtual barray control block */
    189   backing_store_info b_s_info;  /* System-dependent control info */
    190 };
    191 
    192 
    193 #ifdef MEM_STATS                /* optional extra stuff for statistics */
    194 
    195 LOCAL(void)
    196 print_mem_stats(j_common_ptr cinfo, int pool_id)
    197 {
    198   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    199   small_pool_ptr shdr_ptr;
    200   large_pool_ptr lhdr_ptr;
    201 
    202   /* Since this is only a debugging stub, we can cheat a little by using
    203    * fprintf directly rather than going through the trace message code.
    204    * This is helpful because message parm array can't handle longs.
    205    */
    206   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    207           pool_id, mem->total_space_allocated);
    208 
    209   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    210        lhdr_ptr = lhdr_ptr->next) {
    211     fprintf(stderr, "  Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
    212   }
    213 
    214   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    215        shdr_ptr = shdr_ptr->next) {
    216     fprintf(stderr, "  Small chunk used %ld free %ld\n",
    217             (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
    218   }
    219 }
    220 
    221 #endif /* MEM_STATS */
    222 
    223 
    224 LOCAL(void)
    225 out_of_memory(j_common_ptr cinfo, int which)
    226 /* Report an out-of-memory error and stop execution */
    227 /* If we compiled MEM_STATS support, report alloc requests before dying */
    228 {
    229 #ifdef MEM_STATS
    230   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
    231 #endif
    232   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    233 }
    234 
    235 
    236 /*
    237  * Allocation of "small" objects.
    238  *
    239  * For these, we use pooled storage.  When a new pool must be created,
    240  * we try to get enough space for the current request plus a "slop" factor,
    241  * where the slop will be the amount of leftover space in the new pool.
    242  * The speed vs. space tradeoff is largely determined by the slop values.
    243  * A different slop value is provided for each pool class (lifetime),
    244  * and we also distinguish the first pool of a class from later ones.
    245  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    246  * machines, but may be too small if longs are 64 bits or more.
    247  *
    248  * Since we do not know what alignment malloc() gives us, we have to
    249  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
    250  * adjustment.
    251  */
    252 
    253 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
    254   1600,                         /* first PERMANENT pool */
    255   16000                         /* first IMAGE pool */
    256 };
    257 
    258 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
    259   0,                            /* additional PERMANENT pools */
    260   5000                          /* additional IMAGE pools */
    261 };
    262 
    263 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
    264 
    265 
    266 METHODDEF(void *)
    267 alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    268 /* Allocate a "small" object */
    269 {
    270   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    271   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    272   char *data_ptr;
    273   size_t min_request, slop;
    274 
    275   /*
    276    * Round up the requested size to a multiple of ALIGN_SIZE in order
    277    * to assure alignment for the next object allocated in the same pool
    278    * and so that algorithms can straddle outside the proper area up
    279    * to the next alignment.
    280    */
    281   if (sizeofobject > MAX_ALLOC_CHUNK) {
    282     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    283        is close to SIZE_MAX. */
    284     out_of_memory(cinfo, 7);
    285   }
    286   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    287 
    288   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    289   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
    290       MAX_ALLOC_CHUNK)
    291     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
    292 
    293   /* See if space is available in any existing pool */
    294   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    295     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    296   prev_hdr_ptr = NULL;
    297   hdr_ptr = mem->small_list[pool_id];
    298   while (hdr_ptr != NULL) {
    299     if (hdr_ptr->bytes_left >= sizeofobject)
    300       break;                    /* found pool with enough space */
    301     prev_hdr_ptr = hdr_ptr;
    302     hdr_ptr = hdr_ptr->next;
    303   }
    304 
    305   /* Time to make a new pool? */
    306   if (hdr_ptr == NULL) {
    307     /* min_request is what we need now, slop is what will be leftover */
    308     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
    309     if (prev_hdr_ptr == NULL)   /* first pool in class? */
    310       slop = first_pool_slop[pool_id];
    311     else
    312       slop = extra_pool_slop[pool_id];
    313     /* Don't ask for more than MAX_ALLOC_CHUNK */
    314     if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
    315       slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
    316     /* Try to get space, if fail reduce slop and try again */
    317     for (;;) {
    318       hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
    319       if (hdr_ptr != NULL)
    320         break;
    321       slop /= 2;
    322       if (slop < MIN_SLOP)      /* give up when it gets real small */
    323         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    324     }
    325     mem->total_space_allocated += min_request + slop;
    326     /* Success, initialize the new pool header and add to end of list */
    327     hdr_ptr->next = NULL;
    328     hdr_ptr->bytes_used = 0;
    329     hdr_ptr->bytes_left = sizeofobject + slop;
    330     if (prev_hdr_ptr == NULL)   /* first pool in class? */
    331       mem->small_list[pool_id] = hdr_ptr;
    332     else
    333       prev_hdr_ptr->next = hdr_ptr;
    334   }
    335 
    336   /* OK, allocate the object from the current pool */
    337   data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
    338   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
    339   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    340     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    341   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
    342   hdr_ptr->bytes_used += sizeofobject;
    343   hdr_ptr->bytes_left -= sizeofobject;
    344 
    345   return (void *)data_ptr;
    346 }
    347 
    348 
    349 /*
    350  * Allocation of "large" objects.
    351  *
    352  * The external semantics of these are the same as "small" objects.  However,
    353  * the pool management heuristics are quite different.  We assume that each
    354  * request is large enough that it may as well be passed directly to
    355  * jpeg_get_large; the pool management just links everything together
    356  * so that we can free it all on demand.
    357  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    358  * structures.  The routines that create these structures (see below)
    359  * deliberately bunch rows together to ensure a large request size.
    360  */
    361 
    362 METHODDEF(void *)
    363 alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    364 /* Allocate a "large" object */
    365 {
    366   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    367   large_pool_ptr hdr_ptr;
    368   char *data_ptr;
    369 
    370   /*
    371    * Round up the requested size to a multiple of ALIGN_SIZE so that
    372    * algorithms can straddle outside the proper area up to the next
    373    * alignment.
    374    */
    375   if (sizeofobject > MAX_ALLOC_CHUNK) {
    376     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    377        is close to SIZE_MAX. */
    378     out_of_memory(cinfo, 8);
    379   }
    380   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    381 
    382   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    383   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
    384       MAX_ALLOC_CHUNK)
    385     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
    386 
    387   /* Always make a new pool */
    388   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    389     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    390 
    391   hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
    392                                            sizeof(large_pool_hdr) +
    393                                            ALIGN_SIZE - 1);
    394   if (hdr_ptr == NULL)
    395     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
    396   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
    397                                 ALIGN_SIZE - 1;
    398 
    399   /* Success, initialize the new pool header and add to list */
    400   hdr_ptr->next = mem->large_list[pool_id];
    401   /* We maintain space counts in each pool header for statistical purposes,
    402    * even though they are not needed for allocation.
    403    */
    404   hdr_ptr->bytes_used = sizeofobject;
    405   hdr_ptr->bytes_left = 0;
    406   mem->large_list[pool_id] = hdr_ptr;
    407 
    408   data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
    409   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
    410   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    411     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    412 
    413   return (void *)data_ptr;
    414 }
    415 
    416 
    417 /*
    418  * Creation of 2-D sample arrays.
    419  *
    420  * To minimize allocation overhead and to allow I/O of large contiguous
    421  * blocks, we allocate the sample rows in groups of as many rows as possible
    422  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    423  * NB: the virtual array control routines, later in this file, know about
    424  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    425  * object so that it can be saved away if this sarray is the workspace for
    426  * a virtual array.
    427  *
    428  * Since we are often upsampling with a factor 2, we align the size (not
    429  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
    430  * to be as careful about size.
    431  */
    432 
    433 METHODDEF(JSAMPARRAY)
    434 alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
    435              JDIMENSION numrows)
    436 /* Allocate a 2-D sample array */
    437 {
    438   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    439   JSAMPARRAY result;
    440   JSAMPROW workspace;
    441   JDIMENSION rowsperchunk, currow, i;
    442   long ltemp;
    443 
    444   /* Make sure each row is properly aligned */
    445   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
    446     out_of_memory(cinfo, 5);    /* safety check */
    447 
    448   if (samplesperrow > MAX_ALLOC_CHUNK) {
    449     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    450        is close to SIZE_MAX. */
    451     out_of_memory(cinfo, 9);
    452   }
    453   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
    454                                                            sizeof(JSAMPLE));
    455 
    456   /* Calculate max # of rows allowed in one allocation chunk */
    457   ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
    458           ((long)samplesperrow * sizeof(JSAMPLE));
    459   if (ltemp <= 0)
    460     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    461   if (ltemp < (long)numrows)
    462     rowsperchunk = (JDIMENSION)ltemp;
    463   else
    464     rowsperchunk = numrows;
    465   mem->last_rowsperchunk = rowsperchunk;
    466 
    467   /* Get space for row pointers (small object) */
    468   result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
    469                                    (size_t)(numrows * sizeof(JSAMPROW)));
    470 
    471   /* Get the rows themselves (large objects) */
    472   currow = 0;
    473   while (currow < numrows) {
    474     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    475     workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
    476       (size_t)((size_t)rowsperchunk * (size_t)samplesperrow *
    477                sizeof(JSAMPLE)));
    478     for (i = rowsperchunk; i > 0; i--) {
    479       result[currow++] = workspace;
    480       workspace += samplesperrow;
    481     }
    482   }
    483 
    484   return result;
    485 }
    486 
    487 
    488 /*
    489  * Creation of 2-D coefficient-block arrays.
    490  * This is essentially the same as the code for sample arrays, above.
    491  */
    492 
    493 METHODDEF(JBLOCKARRAY)
    494 alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
    495              JDIMENSION numrows)
    496 /* Allocate a 2-D coefficient-block array */
    497 {
    498   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    499   JBLOCKARRAY result;
    500   JBLOCKROW workspace;
    501   JDIMENSION rowsperchunk, currow, i;
    502   long ltemp;
    503 
    504   /* Make sure each row is properly aligned */
    505   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
    506     out_of_memory(cinfo, 6);    /* safety check */
    507 
    508   /* Calculate max # of rows allowed in one allocation chunk */
    509   ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
    510           ((long)blocksperrow * sizeof(JBLOCK));
    511   if (ltemp <= 0)
    512     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    513   if (ltemp < (long)numrows)
    514     rowsperchunk = (JDIMENSION)ltemp;
    515   else
    516     rowsperchunk = numrows;
    517   mem->last_rowsperchunk = rowsperchunk;
    518 
    519   /* Get space for row pointers (small object) */
    520   result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
    521                                     (size_t)(numrows * sizeof(JBLOCKROW)));
    522 
    523   /* Get the rows themselves (large objects) */
    524   currow = 0;
    525   while (currow < numrows) {
    526     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    527     workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
    528         (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
    529                   sizeof(JBLOCK)));
    530     for (i = rowsperchunk; i > 0; i--) {
    531       result[currow++] = workspace;
    532       workspace += blocksperrow;
    533     }
    534   }
    535 
    536   return result;
    537 }
    538 
    539 
    540 /*
    541  * About virtual array management:
    542  *
    543  * The above "normal" array routines are only used to allocate strip buffers
    544  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    545  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    546  * time, but the memory manager must save the whole array for repeated
    547  * accesses.  The intended implementation is that there is a strip buffer in
    548  * memory (as high as is possible given the desired memory limit), plus a
    549  * backing file that holds the rest of the array.
    550  *
    551  * The request_virt_array routines are told the total size of the image and
    552  * the maximum number of rows that will be accessed at once.  The in-memory
    553  * buffer must be at least as large as the maxaccess value.
    554  *
    555  * The request routines create control blocks but not the in-memory buffers.
    556  * That is postponed until realize_virt_arrays is called.  At that time the
    557  * total amount of space needed is known (approximately, anyway), so free
    558  * memory can be divided up fairly.
    559  *
    560  * The access_virt_array routines are responsible for making a specific strip
    561  * area accessible (after reading or writing the backing file, if necessary).
    562  * Note that the access routines are told whether the caller intends to modify
    563  * the accessed strip; during a read-only pass this saves having to rewrite
    564  * data to disk.  The access routines are also responsible for pre-zeroing
    565  * any newly accessed rows, if pre-zeroing was requested.
    566  *
    567  * In current usage, the access requests are usually for nonoverlapping
    568  * strips; that is, successive access start_row numbers differ by exactly
    569  * num_rows = maxaccess.  This means we can get good performance with simple
    570  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    571  * of the access height; then there will never be accesses across bufferload
    572  * boundaries.  The code will still work with overlapping access requests,
    573  * but it doesn't handle bufferload overlaps very efficiently.
    574  */
    575 
    576 
    577 METHODDEF(jvirt_sarray_ptr)
    578 request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
    579                     JDIMENSION samplesperrow, JDIMENSION numrows,
    580                     JDIMENSION maxaccess)
    581 /* Request a virtual 2-D sample array */
    582 {
    583   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    584   jvirt_sarray_ptr result;
    585 
    586   /* Only IMAGE-lifetime virtual arrays are currently supported */
    587   if (pool_id != JPOOL_IMAGE)
    588     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    589 
    590   /* get control block */
    591   result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
    592                                          sizeof(struct jvirt_sarray_control));
    593 
    594   result->mem_buffer = NULL;    /* marks array not yet realized */
    595   result->rows_in_array = numrows;
    596   result->samplesperrow = samplesperrow;
    597   result->maxaccess = maxaccess;
    598   result->pre_zero = pre_zero;
    599   result->b_s_open = FALSE;     /* no associated backing-store object */
    600   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    601   mem->virt_sarray_list = result;
    602 
    603   return result;
    604 }
    605 
    606 
    607 METHODDEF(jvirt_barray_ptr)
    608 request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
    609                     JDIMENSION blocksperrow, JDIMENSION numrows,
    610                     JDIMENSION maxaccess)
    611 /* Request a virtual 2-D coefficient-block array */
    612 {
    613   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    614   jvirt_barray_ptr result;
    615 
    616   /* Only IMAGE-lifetime virtual arrays are currently supported */
    617   if (pool_id != JPOOL_IMAGE)
    618     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    619 
    620   /* get control block */
    621   result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
    622                                          sizeof(struct jvirt_barray_control));
    623 
    624   result->mem_buffer = NULL;    /* marks array not yet realized */
    625   result->rows_in_array = numrows;
    626   result->blocksperrow = blocksperrow;
    627   result->maxaccess = maxaccess;
    628   result->pre_zero = pre_zero;
    629   result->b_s_open = FALSE;     /* no associated backing-store object */
    630   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    631   mem->virt_barray_list = result;
    632 
    633   return result;
    634 }
    635 
    636 
    637 METHODDEF(void)
    638 realize_virt_arrays(j_common_ptr cinfo)
    639 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    640 {
    641   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    642   size_t space_per_minheight, maximum_space, avail_mem;
    643   size_t minheights, max_minheights;
    644   jvirt_sarray_ptr sptr;
    645   jvirt_barray_ptr bptr;
    646 
    647   /* Compute the minimum space needed (maxaccess rows in each buffer)
    648    * and the maximum space needed (full image height in each buffer).
    649    * These may be of use to the system-dependent jpeg_mem_available routine.
    650    */
    651   space_per_minheight = 0;
    652   maximum_space = 0;
    653   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    654     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    655       size_t new_space = (long)sptr->rows_in_array *
    656                          (long)sptr->samplesperrow * sizeof(JSAMPLE);
    657 
    658       space_per_minheight += (long)sptr->maxaccess *
    659                              (long)sptr->samplesperrow * sizeof(JSAMPLE);
    660       if (SIZE_MAX - maximum_space < new_space)
    661         out_of_memory(cinfo, 10);
    662       maximum_space += new_space;
    663     }
    664   }
    665   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    666     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    667       size_t new_space = (long)bptr->rows_in_array *
    668                          (long)bptr->blocksperrow * sizeof(JBLOCK);
    669 
    670       space_per_minheight += (long)bptr->maxaccess *
    671                              (long)bptr->blocksperrow * sizeof(JBLOCK);
    672       if (SIZE_MAX - maximum_space < new_space)
    673         out_of_memory(cinfo, 11);
    674       maximum_space += new_space;
    675     }
    676   }
    677 
    678   if (space_per_minheight <= 0)
    679     return;                     /* no unrealized arrays, no work */
    680 
    681   /* Determine amount of memory to actually use; this is system-dependent. */
    682   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    683                                  mem->total_space_allocated);
    684 
    685   /* If the maximum space needed is available, make all the buffers full
    686    * height; otherwise parcel it out with the same number of minheights
    687    * in each buffer.
    688    */
    689   if (avail_mem >= maximum_space)
    690     max_minheights = 1000000000L;
    691   else {
    692     max_minheights = avail_mem / space_per_minheight;
    693     /* If there doesn't seem to be enough space, try to get the minimum
    694      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    695      */
    696     if (max_minheights <= 0)
    697       max_minheights = 1;
    698   }
    699 
    700   /* Allocate the in-memory buffers and initialize backing store as needed. */
    701 
    702   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    703     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    704       minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    705       if (minheights <= max_minheights) {
    706         /* This buffer fits in memory */
    707         sptr->rows_in_mem = sptr->rows_in_array;
    708       } else {
    709         /* It doesn't fit in memory, create backing store. */
    710         sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
    711         jpeg_open_backing_store(cinfo, &sptr->b_s_info,
    712                                 (long)sptr->rows_in_array *
    713                                 (long)sptr->samplesperrow *
    714                                 (long)sizeof(JSAMPLE));
    715         sptr->b_s_open = TRUE;
    716       }
    717       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    718                                       sptr->samplesperrow, sptr->rows_in_mem);
    719       sptr->rowsperchunk = mem->last_rowsperchunk;
    720       sptr->cur_start_row = 0;
    721       sptr->first_undef_row = 0;
    722       sptr->dirty = FALSE;
    723     }
    724   }
    725 
    726   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    727     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    728       minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    729       if (minheights <= max_minheights) {
    730         /* This buffer fits in memory */
    731         bptr->rows_in_mem = bptr->rows_in_array;
    732       } else {
    733         /* It doesn't fit in memory, create backing store. */
    734         bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
    735         jpeg_open_backing_store(cinfo, &bptr->b_s_info,
    736                                 (long)bptr->rows_in_array *
    737                                 (long)bptr->blocksperrow *
    738                                 (long)sizeof(JBLOCK));
    739         bptr->b_s_open = TRUE;
    740       }
    741       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    742                                       bptr->blocksperrow, bptr->rows_in_mem);
    743       bptr->rowsperchunk = mem->last_rowsperchunk;
    744       bptr->cur_start_row = 0;
    745       bptr->first_undef_row = 0;
    746       bptr->dirty = FALSE;
    747     }
    748   }
    749 }
    750 
    751 
    752 LOCAL(void)
    753 do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    754 /* Do backing store read or write of a virtual sample array */
    755 {
    756   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    757 
    758   bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE);
    759   file_offset = ptr->cur_start_row * bytesperrow;
    760   /* Loop to read or write each allocation chunk in mem_buffer */
    761   for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
    762     /* One chunk, but check for short chunk at end of buffer */
    763     rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
    764     /* Transfer no more than is currently defined */
    765     thisrow = (long)ptr->cur_start_row + i;
    766     rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
    767     /* Transfer no more than fits in file */
    768     rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
    769     if (rows <= 0)              /* this chunk might be past end of file! */
    770       break;
    771     byte_count = rows * bytesperrow;
    772     if (writing)
    773       (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
    774                                             (void *)ptr->mem_buffer[i],
    775                                             file_offset, byte_count);
    776     else
    777       (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
    778                                            (void *)ptr->mem_buffer[i],
    779                                            file_offset, byte_count);
    780     file_offset += byte_count;
    781   }
    782 }
    783 
    784 
    785 LOCAL(void)
    786 do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    787 /* Do backing store read or write of a virtual coefficient-block array */
    788 {
    789   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    790 
    791   bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
    792   file_offset = ptr->cur_start_row * bytesperrow;
    793   /* Loop to read or write each allocation chunk in mem_buffer */
    794   for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
    795     /* One chunk, but check for short chunk at end of buffer */
    796     rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
    797     /* Transfer no more than is currently defined */
    798     thisrow = (long)ptr->cur_start_row + i;
    799     rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
    800     /* Transfer no more than fits in file */
    801     rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
    802     if (rows <= 0)              /* this chunk might be past end of file! */
    803       break;
    804     byte_count = rows * bytesperrow;
    805     if (writing)
    806       (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
    807                                             (void *)ptr->mem_buffer[i],
    808                                             file_offset, byte_count);
    809     else
    810       (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
    811                                            (void *)ptr->mem_buffer[i],
    812                                            file_offset, byte_count);
    813     file_offset += byte_count;
    814   }
    815 }
    816 
    817 
    818 METHODDEF(JSAMPARRAY)
    819 access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    820                    JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
    821 /* Access the part of a virtual sample array starting at start_row */
    822 /* and extending for num_rows rows.  writable is true if  */
    823 /* caller intends to modify the accessed area. */
    824 {
    825   JDIMENSION end_row = start_row + num_rows;
    826   JDIMENSION undef_row;
    827 
    828   /* debugging check */
    829   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    830       ptr->mem_buffer == NULL)
    831     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    832 
    833   /* Make the desired part of the virtual array accessible */
    834   if (start_row < ptr->cur_start_row ||
    835       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
    836     if (!ptr->b_s_open)
    837       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    838     /* Flush old buffer contents if necessary */
    839     if (ptr->dirty) {
    840       do_sarray_io(cinfo, ptr, TRUE);
    841       ptr->dirty = FALSE;
    842     }
    843     /* Decide what part of virtual array to access.
    844      * Algorithm: if target address > current window, assume forward scan,
    845      * load starting at target address.  If target address < current window,
    846      * assume backward scan, load so that target area is top of window.
    847      * Note that when switching from forward write to forward read, will have
    848      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    849      */
    850     if (start_row > ptr->cur_start_row) {
    851       ptr->cur_start_row = start_row;
    852     } else {
    853       /* use long arithmetic here to avoid overflow & unsigned problems */
    854       long ltemp;
    855 
    856       ltemp = (long)end_row - (long)ptr->rows_in_mem;
    857       if (ltemp < 0)
    858         ltemp = 0;              /* don't fall off front end of file */
    859       ptr->cur_start_row = (JDIMENSION)ltemp;
    860     }
    861     /* Read in the selected part of the array.
    862      * During the initial write pass, we will do no actual read
    863      * because the selected part is all undefined.
    864      */
    865     do_sarray_io(cinfo, ptr, FALSE);
    866   }
    867   /* Ensure the accessed part of the array is defined; prezero if needed.
    868    * To improve locality of access, we only prezero the part of the array
    869    * that the caller is about to access, not the entire in-memory array.
    870    */
    871   if (ptr->first_undef_row < end_row) {
    872     if (ptr->first_undef_row < start_row) {
    873       if (writable)             /* writer skipped over a section of array */
    874         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    875       undef_row = start_row;    /* but reader is allowed to read ahead */
    876     } else {
    877       undef_row = ptr->first_undef_row;
    878     }
    879     if (writable)
    880       ptr->first_undef_row = end_row;
    881     if (ptr->pre_zero) {
    882       size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE);
    883       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    884       end_row -= ptr->cur_start_row;
    885       while (undef_row < end_row) {
    886         jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
    887         undef_row++;
    888       }
    889     } else {
    890       if (!writable)            /* reader looking at undefined data */
    891         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    892     }
    893   }
    894   /* Flag the buffer dirty if caller will write in it */
    895   if (writable)
    896     ptr->dirty = TRUE;
    897   /* Return address of proper part of the buffer */
    898   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    899 }
    900 
    901 
    902 METHODDEF(JBLOCKARRAY)
    903 access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
    904                    JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
    905 /* Access the part of a virtual block array starting at start_row */
    906 /* and extending for num_rows rows.  writable is true if  */
    907 /* caller intends to modify the accessed area. */
    908 {
    909   JDIMENSION end_row = start_row + num_rows;
    910   JDIMENSION undef_row;
    911 
    912   /* debugging check */
    913   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    914       ptr->mem_buffer == NULL)
    915     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    916 
    917   /* Make the desired part of the virtual array accessible */
    918   if (start_row < ptr->cur_start_row ||
    919       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
    920     if (!ptr->b_s_open)
    921       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    922     /* Flush old buffer contents if necessary */
    923     if (ptr->dirty) {
    924       do_barray_io(cinfo, ptr, TRUE);
    925       ptr->dirty = FALSE;
    926     }
    927     /* Decide what part of virtual array to access.
    928      * Algorithm: if target address > current window, assume forward scan,
    929      * load starting at target address.  If target address < current window,
    930      * assume backward scan, load so that target area is top of window.
    931      * Note that when switching from forward write to forward read, will have
    932      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    933      */
    934     if (start_row > ptr->cur_start_row) {
    935       ptr->cur_start_row = start_row;
    936     } else {
    937       /* use long arithmetic here to avoid overflow & unsigned problems */
    938       long ltemp;
    939 
    940       ltemp = (long)end_row - (long)ptr->rows_in_mem;
    941       if (ltemp < 0)
    942         ltemp = 0;              /* don't fall off front end of file */
    943       ptr->cur_start_row = (JDIMENSION)ltemp;
    944     }
    945     /* Read in the selected part of the array.
    946      * During the initial write pass, we will do no actual read
    947      * because the selected part is all undefined.
    948      */
    949     do_barray_io(cinfo, ptr, FALSE);
    950   }
    951   /* Ensure the accessed part of the array is defined; prezero if needed.
    952    * To improve locality of access, we only prezero the part of the array
    953    * that the caller is about to access, not the entire in-memory array.
    954    */
    955   if (ptr->first_undef_row < end_row) {
    956     if (ptr->first_undef_row < start_row) {
    957       if (writable)             /* writer skipped over a section of array */
    958         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    959       undef_row = start_row;    /* but reader is allowed to read ahead */
    960     } else {
    961       undef_row = ptr->first_undef_row;
    962     }
    963     if (writable)
    964       ptr->first_undef_row = end_row;
    965     if (ptr->pre_zero) {
    966       size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
    967       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    968       end_row -= ptr->cur_start_row;
    969       while (undef_row < end_row) {
    970         jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
    971         undef_row++;
    972       }
    973     } else {
    974       if (!writable)            /* reader looking at undefined data */
    975         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    976     }
    977   }
    978   /* Flag the buffer dirty if caller will write in it */
    979   if (writable)
    980     ptr->dirty = TRUE;
    981   /* Return address of proper part of the buffer */
    982   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    983 }
    984 
    985 
    986 /*
    987  * Release all objects belonging to a specified pool.
    988  */
    989 
    990 METHODDEF(void)
    991 free_pool(j_common_ptr cinfo, int pool_id)
    992 {
    993   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
    994   small_pool_ptr shdr_ptr;
    995   large_pool_ptr lhdr_ptr;
    996   size_t space_freed;
    997 
    998   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    999     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
   1000 
   1001 #ifdef MEM_STATS
   1002   if (cinfo->err->trace_level > 1)
   1003     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
   1004 #endif
   1005 
   1006   /* If freeing IMAGE pool, close any virtual arrays first */
   1007   if (pool_id == JPOOL_IMAGE) {
   1008     jvirt_sarray_ptr sptr;
   1009     jvirt_barray_ptr bptr;
   1010 
   1011     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
   1012       if (sptr->b_s_open) {     /* there may be no backing store */
   1013         sptr->b_s_open = FALSE; /* prevent recursive close if error */
   1014         (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
   1015       }
   1016     }
   1017     mem->virt_sarray_list = NULL;
   1018     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
   1019       if (bptr->b_s_open) {     /* there may be no backing store */
   1020         bptr->b_s_open = FALSE; /* prevent recursive close if error */
   1021         (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
   1022       }
   1023     }
   1024     mem->virt_barray_list = NULL;
   1025   }
   1026 
   1027   /* Release large objects */
   1028   lhdr_ptr = mem->large_list[pool_id];
   1029   mem->large_list[pool_id] = NULL;
   1030 
   1031   while (lhdr_ptr != NULL) {
   1032     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
   1033     space_freed = lhdr_ptr->bytes_used +
   1034                   lhdr_ptr->bytes_left +
   1035                   sizeof(large_pool_hdr);
   1036     jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
   1037     mem->total_space_allocated -= space_freed;
   1038     lhdr_ptr = next_lhdr_ptr;
   1039   }
   1040 
   1041   /* Release small objects */
   1042   shdr_ptr = mem->small_list[pool_id];
   1043   mem->small_list[pool_id] = NULL;
   1044 
   1045   while (shdr_ptr != NULL) {
   1046     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
   1047     space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
   1048                   sizeof(small_pool_hdr);
   1049     jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
   1050     mem->total_space_allocated -= space_freed;
   1051     shdr_ptr = next_shdr_ptr;
   1052   }
   1053 }
   1054 
   1055 
   1056 /*
   1057  * Close up shop entirely.
   1058  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1059  */
   1060 
   1061 METHODDEF(void)
   1062 self_destruct(j_common_ptr cinfo)
   1063 {
   1064   int pool;
   1065 
   1066   /* Close all backing store, release all memory.
   1067    * Releasing pools in reverse order might help avoid fragmentation
   1068    * with some (brain-damaged) malloc libraries.
   1069    */
   1070   for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
   1071     free_pool(cinfo, pool);
   1072   }
   1073 
   1074   /* Release the memory manager control block too. */
   1075   jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
   1076   cinfo->mem = NULL;            /* ensures I will be called only once */
   1077 
   1078   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
   1079 }
   1080 
   1081 
   1082 /*
   1083  * Memory manager initialization.
   1084  * When this is called, only the error manager pointer is valid in cinfo!
   1085  */
   1086 
   1087 GLOBAL(void)
   1088 jinit_memory_mgr(j_common_ptr cinfo)
   1089 {
   1090   my_mem_ptr mem;
   1091   long max_to_use;
   1092   int pool;
   1093   size_t test_mac;
   1094 
   1095   cinfo->mem = NULL;            /* for safety if init fails */
   1096 
   1097   /* Check for configuration errors.
   1098    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1099    * doesn't reflect any real hardware alignment requirement.
   1100    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1101    * in common if and only if X is a power of 2, ie has only one one-bit.
   1102    * Some compilers may give an "unreachable code" warning here; ignore it.
   1103    */
   1104   if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
   1105     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1106   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1107    * a multiple of ALIGN_SIZE.
   1108    * Again, an "unreachable code" warning may be ignored here.
   1109    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1110    */
   1111   test_mac = (size_t)MAX_ALLOC_CHUNK;
   1112   if ((long)test_mac != MAX_ALLOC_CHUNK ||
   1113       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
   1114     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1115 
   1116   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1117 
   1118   /* Attempt to allocate memory manager's control block */
   1119   mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
   1120 
   1121   if (mem == NULL) {
   1122     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
   1123     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1124   }
   1125 
   1126   /* OK, fill in the method pointers */
   1127   mem->pub.alloc_small = alloc_small;
   1128   mem->pub.alloc_large = alloc_large;
   1129   mem->pub.alloc_sarray = alloc_sarray;
   1130   mem->pub.alloc_barray = alloc_barray;
   1131   mem->pub.request_virt_sarray = request_virt_sarray;
   1132   mem->pub.request_virt_barray = request_virt_barray;
   1133   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1134   mem->pub.access_virt_sarray = access_virt_sarray;
   1135   mem->pub.access_virt_barray = access_virt_barray;
   1136   mem->pub.free_pool = free_pool;
   1137   mem->pub.self_destruct = self_destruct;
   1138 
   1139   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1140   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1141 
   1142   /* Initialize working state */
   1143   mem->pub.max_memory_to_use = max_to_use;
   1144 
   1145   for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
   1146     mem->small_list[pool] = NULL;
   1147     mem->large_list[pool] = NULL;
   1148   }
   1149   mem->virt_sarray_list = NULL;
   1150   mem->virt_barray_list = NULL;
   1151 
   1152   mem->total_space_allocated = sizeof(my_memory_mgr);
   1153 
   1154   /* Declare ourselves open for business */
   1155   cinfo->mem = &mem->pub;
   1156 
   1157   /* Check for an environment variable JPEGMEM; if found, override the
   1158    * default max_memory setting from jpeg_mem_init.  Note that the
   1159    * surrounding application may again override this value.
   1160    * If your system doesn't support getenv(), define NO_GETENV to disable
   1161    * this feature.
   1162    */
   1163 #ifndef NO_GETENV
   1164   {
   1165     char *memenv;
   1166 
   1167     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1168       char ch = 'x';
   1169 
   1170       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1171         if (ch == 'm' || ch == 'M')
   1172           max_to_use *= 1000L;
   1173         mem->pub.max_memory_to_use = max_to_use * 1000L;
   1174       }
   1175     }
   1176   }
   1177 #endif
   1178 
   1179 }
   1180