Home | History | Annotate | Download | only in fpga
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * (C) Copyright 2010
      4  * Stefano Babic, DENX Software Engineering, sbabic (at) denx.de.
      5  *
      6  * (C) Copyright 2002
      7  * Rich Ireland, Enterasys Networks, rireland (at) enterasys.com.
      8  *
      9  * ispVM functions adapted from Lattice's ispmVMEmbedded code:
     10  * Copyright 2009 Lattice Semiconductor Corp.
     11  */
     12 
     13 #include <common.h>
     14 #include <malloc.h>
     15 #include <fpga.h>
     16 #include <lattice.h>
     17 
     18 static lattice_board_specific_func *pfns;
     19 static const char *fpga_image;
     20 static unsigned long read_bytes;
     21 static unsigned long bufsize;
     22 static unsigned short expectedCRC;
     23 
     24 /*
     25  * External variables and functions declared in ivm_core.c module.
     26  */
     27 extern unsigned short g_usCalculatedCRC;
     28 extern unsigned short g_usDataType;
     29 extern unsigned char *g_pucIntelBuffer;
     30 extern unsigned char *g_pucHeapMemory;
     31 extern unsigned short g_iHeapCounter;
     32 extern unsigned short g_iHEAPSize;
     33 extern unsigned short g_usIntelDataIndex;
     34 extern unsigned short g_usIntelBufferSize;
     35 extern char *const g_szSupportedVersions[];
     36 
     37 
     38 /*
     39  * ispVMDelay
     40  *
     41  * Users must implement a delay to observe a_usTimeDelay, where
     42  * bit 15 of the a_usTimeDelay defines the unit.
     43  *      1 = milliseconds
     44  *      0 = microseconds
     45  * Example:
     46  *      a_usTimeDelay = 0x0001 = 1 microsecond delay.
     47  *      a_usTimeDelay = 0x8001 = 1 millisecond delay.
     48  *
     49  * This subroutine is called upon to provide a delay from 1 millisecond to a few
     50  * hundreds milliseconds each time.
     51  * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
     52  * bits integer, this function is restricted to produce a delay to 64000
     53  * micro-seconds or 32000 milli-second maximum. The VME file will never pass on
     54  * to this function a delay time > those maximum number. If it needs more than
     55  * those maximum, the VME file will launch the delay function several times to
     56  * realize a larger delay time cummulatively.
     57  * It is perfectly alright to provide a longer delay than required. It is not
     58  * acceptable if the delay is shorter.
     59  */
     60 void ispVMDelay(unsigned short delay)
     61 {
     62 	if (delay & 0x8000)
     63 		delay = (delay & ~0x8000) * 1000;
     64 	udelay(delay);
     65 }
     66 
     67 void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
     68 {
     69 	a_ucValue = a_ucValue ? 1 : 0;
     70 
     71 	switch (a_ucPins) {
     72 	case g_ucPinTDI:
     73 		pfns->jtag_set_tdi(a_ucValue);
     74 		break;
     75 	case g_ucPinTCK:
     76 		pfns->jtag_set_tck(a_ucValue);
     77 		break;
     78 	case g_ucPinTMS:
     79 		pfns->jtag_set_tms(a_ucValue);
     80 		break;
     81 	default:
     82 		printf("%s: requested unknown pin\n", __func__);
     83 	}
     84 }
     85 
     86 unsigned char readPort(void)
     87 {
     88 	return pfns->jtag_get_tdo();
     89 }
     90 
     91 void sclock(void)
     92 {
     93 	writePort(g_ucPinTCK, 0x01);
     94 	writePort(g_ucPinTCK, 0x00);
     95 }
     96 
     97 void calibration(void)
     98 {
     99 	/* Apply 2 pulses to TCK. */
    100 	writePort(g_ucPinTCK, 0x00);
    101 	writePort(g_ucPinTCK, 0x01);
    102 	writePort(g_ucPinTCK, 0x00);
    103 	writePort(g_ucPinTCK, 0x01);
    104 	writePort(g_ucPinTCK, 0x00);
    105 
    106 	ispVMDelay(0x8001);
    107 
    108 	/* Apply 2 pulses to TCK. */
    109 	writePort(g_ucPinTCK, 0x01);
    110 	writePort(g_ucPinTCK, 0x00);
    111 	writePort(g_ucPinTCK, 0x01);
    112 	writePort(g_ucPinTCK, 0x00);
    113 }
    114 
    115 /*
    116  * GetByte
    117  *
    118  * Returns a byte to the caller. The returned byte depends on the
    119  * g_usDataType register. If the HEAP_IN bit is set, then the byte
    120  * is returned from the HEAP. If the LHEAP_IN bit is set, then
    121  * the byte is returned from the intelligent buffer. Otherwise,
    122  * the byte is returned directly from the VME file.
    123  */
    124 unsigned char GetByte(void)
    125 {
    126 	unsigned char ucData;
    127 	unsigned int block_size = 4 * 1024;
    128 
    129 	if (g_usDataType & HEAP_IN) {
    130 
    131 		/*
    132 		 * Get data from repeat buffer.
    133 		 */
    134 
    135 		if (g_iHeapCounter > g_iHEAPSize) {
    136 
    137 			/*
    138 			 * Data over-run.
    139 			 */
    140 
    141 			return 0xFF;
    142 		}
    143 
    144 		ucData = g_pucHeapMemory[g_iHeapCounter++];
    145 	} else if (g_usDataType & LHEAP_IN) {
    146 
    147 		/*
    148 		 * Get data from intel buffer.
    149 		 */
    150 
    151 		if (g_usIntelDataIndex >= g_usIntelBufferSize) {
    152 			return 0xFF;
    153 		}
    154 
    155 		ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
    156 	} else {
    157 		if (read_bytes == bufsize) {
    158 			return 0xFF;
    159 		}
    160 		ucData = *fpga_image++;
    161 		read_bytes++;
    162 
    163 		if (!(read_bytes % block_size)) {
    164 			printf("Downloading FPGA %ld/%ld completed\r",
    165 				read_bytes,
    166 				bufsize);
    167 		}
    168 
    169 		if (expectedCRC != 0) {
    170 			ispVMCalculateCRC32(ucData);
    171 		}
    172 	}
    173 
    174 	return ucData;
    175 }
    176 
    177 signed char ispVM(void)
    178 {
    179 	char szFileVersion[9]      = { 0 };
    180 	signed char cRetCode         = 0;
    181 	signed char cIndex           = 0;
    182 	signed char cVersionIndex    = 0;
    183 	unsigned char ucReadByte     = 0;
    184 	unsigned short crc;
    185 
    186 	g_pucHeapMemory		= NULL;
    187 	g_iHeapCounter		= 0;
    188 	g_iHEAPSize		= 0;
    189 	g_usIntelDataIndex	= 0;
    190 	g_usIntelBufferSize	= 0;
    191 	g_usCalculatedCRC = 0;
    192 	expectedCRC   = 0;
    193 	ucReadByte = GetByte();
    194 	switch (ucReadByte) {
    195 	case FILE_CRC:
    196 		crc = (unsigned char)GetByte();
    197 		crc <<= 8;
    198 		crc |= GetByte();
    199 		expectedCRC = crc;
    200 
    201 		for (cIndex = 0; cIndex < 8; cIndex++)
    202 			szFileVersion[cIndex] = GetByte();
    203 
    204 		break;
    205 	default:
    206 		szFileVersion[0] = (signed char) ucReadByte;
    207 		for (cIndex = 1; cIndex < 8; cIndex++)
    208 			szFileVersion[cIndex] = GetByte();
    209 
    210 		break;
    211 	}
    212 
    213 	/*
    214 	 *
    215 	 * Compare the VME file version against the supported version.
    216 	 *
    217 	 */
    218 
    219 	for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
    220 		cVersionIndex++) {
    221 		for (cIndex = 0; cIndex < 8; cIndex++) {
    222 			if (szFileVersion[cIndex] !=
    223 				g_szSupportedVersions[cVersionIndex][cIndex]) {
    224 				cRetCode = VME_VERSION_FAILURE;
    225 				break;
    226 			}
    227 			cRetCode = 0;
    228 		}
    229 
    230 		if (cRetCode == 0) {
    231 			break;
    232 		}
    233 	}
    234 
    235 	if (cRetCode < 0) {
    236 		return VME_VERSION_FAILURE;
    237 	}
    238 
    239 	printf("VME file checked: starting downloading to FPGA\n");
    240 
    241 	ispVMStart();
    242 
    243 	cRetCode = ispVMCode();
    244 
    245 	ispVMEnd();
    246 	ispVMFreeMem();
    247 	puts("\n");
    248 
    249 	if (cRetCode == 0 && expectedCRC != 0 &&
    250 			(expectedCRC != g_usCalculatedCRC)) {
    251 		printf("Expected CRC:   0x%.4X\n", expectedCRC);
    252 		printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
    253 		return VME_CRC_FAILURE;
    254 	}
    255 	return cRetCode;
    256 }
    257 
    258 static int lattice_validate(Lattice_desc *desc, const char *fn)
    259 {
    260 	int ret_val = false;
    261 
    262 	if (desc) {
    263 		if ((desc->family > min_lattice_type) &&
    264 			(desc->family < max_lattice_type)) {
    265 			if ((desc->iface > min_lattice_iface_type) &&
    266 				(desc->iface < max_lattice_iface_type)) {
    267 				if (desc->size) {
    268 					ret_val = true;
    269 				} else {
    270 					printf("%s: NULL part size\n", fn);
    271 				}
    272 			} else {
    273 				printf("%s: Invalid Interface type, %d\n",
    274 					fn, desc->iface);
    275 			}
    276 		} else {
    277 			printf("%s: Invalid family type, %d\n",
    278 				fn, desc->family);
    279 		}
    280 	} else {
    281 		printf("%s: NULL descriptor!\n", fn);
    282 	}
    283 
    284 	return ret_val;
    285 }
    286 
    287 int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize)
    288 {
    289 	int ret_val = FPGA_FAIL;
    290 
    291 	if (!lattice_validate(desc, (char *)__func__)) {
    292 		printf("%s: Invalid device descriptor\n", __func__);
    293 	} else {
    294 		pfns = desc->iface_fns;
    295 
    296 		switch (desc->family) {
    297 		case Lattice_XP2:
    298 			fpga_image = buf;
    299 			read_bytes = 0;
    300 			bufsize = bsize;
    301 			debug("%s: Launching the Lattice ISPVME Loader:"
    302 				" addr %p size 0x%lx...\n",
    303 				__func__, fpga_image, bufsize);
    304 			ret_val = ispVM();
    305 			if (ret_val)
    306 				printf("%s: error %d downloading FPGA image\n",
    307 					__func__, ret_val);
    308 			else
    309 				puts("FPGA downloaded successfully\n");
    310 			break;
    311 		default:
    312 			printf("%s: Unsupported family type, %d\n",
    313 					__func__, desc->family);
    314 		}
    315 	}
    316 
    317 	return ret_val;
    318 }
    319 
    320 int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize)
    321 {
    322 	puts("Dump not supported for Lattice FPGA\n");
    323 
    324 	return FPGA_FAIL;
    325 
    326 }
    327 
    328 int lattice_info(Lattice_desc *desc)
    329 {
    330 	int ret_val = FPGA_FAIL;
    331 
    332 	if (lattice_validate(desc, (char *)__func__)) {
    333 		printf("Family:        \t");
    334 		switch (desc->family) {
    335 		case Lattice_XP2:
    336 			puts("XP2\n");
    337 			break;
    338 			/* Add new family types here */
    339 		default:
    340 			printf("Unknown family type, %d\n", desc->family);
    341 		}
    342 
    343 		puts("Interface type:\t");
    344 		switch (desc->iface) {
    345 		case lattice_jtag_mode:
    346 			puts("JTAG Mode\n");
    347 			break;
    348 			/* Add new interface types here */
    349 		default:
    350 			printf("Unsupported interface type, %d\n", desc->iface);
    351 		}
    352 
    353 		printf("Device Size:   \t%d bytes\n",
    354 				desc->size);
    355 
    356 		if (desc->iface_fns) {
    357 			printf("Device Function Table @ 0x%p\n",
    358 				desc->iface_fns);
    359 			switch (desc->family) {
    360 			case Lattice_XP2:
    361 				break;
    362 				/* Add new family types here */
    363 			default:
    364 				break;
    365 			}
    366 		} else {
    367 			puts("No Device Function Table.\n");
    368 		}
    369 
    370 		if (desc->desc)
    371 			printf("Model:         \t%s\n", desc->desc);
    372 
    373 		ret_val = FPGA_SUCCESS;
    374 	} else {
    375 		printf("%s: Invalid device descriptor\n", __func__);
    376 	}
    377 
    378 	return ret_val;
    379 }
    380