Home | History | Annotate | Download | only in cpuset_lib
      1 /*
      2  * cpuset user library implementation.
      3  *
      4  * Copyright (c) 2006-2007 Silicon Graphics, Inc. All rights reserved.
      5  *
      6  * Paul Jackson <pj (at) sgi.com>
      7  */
      8 
      9 /*
     10  *  This program is free software; you can redistribute it and/or modify
     11  *  it under the terms of the GNU Lesser General Public License as published by
     12  *  the Free Software Foundation; either version 2.1 of the License, or
     13  *  (at your option) any later version.
     14  *
     15  *  This program is distributed in the hope that it will be useful,
     16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     18  *  GNU Lesser General Public License for more details.
     19  *
     20  *  You should have received a copy of the GNU Lesser General Public License
     21  *  along with this program; if not, write to the Free Software
     22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
     23  */
     24 
     25 #define _GNU_SOURCE	/* need to see pread() and syscall() */
     26 #include <unistd.h>
     27 
     28 #include <ctype.h>
     29 #include <dirent.h>
     30 #include <errno.h>
     31 #include <fcntl.h>
     32 #include <fts.h>
     33 #include <limits.h>
     34 #include <signal.h>
     35 #include <stdint.h>
     36 #include <stdio.h>
     37 #include <stdlib.h>
     38 #include <string.h>
     39 #include <sys/stat.h>
     40 #include <sys/syscall.h>
     41 #include <sys/types.h>
     42 #include <time.h>
     43 #include <utime.h>
     44 #include <sys/utsname.h>	/* for cpuset_would_crash_kernel() */
     45 
     46 #include "bitmask.h"
     47 #include "cpuset.h"
     48 #include "common.h"
     49 #include "test.h"
     50 #include "lapi/syscalls.h"
     51 #include "config.h"
     52 
     53 #if HAVE_LINUX_MEMPOLICY_H
     54 #include <linux/mempolicy.h>
     55 
     56 /* Bump version, and update Change History, when libcpuset API changes */
     57 #define CPUSET_VERSION 3
     58 
     59 /*
     60  * For a history of what changed in each version, see the "Change
     61  * History" section, at the end of the libcpuset master document.
     62  */
     63 
     64 int cpuset_version(void)
     65 {
     66 	return CPUSET_VERSION;
     67 }
     68 
     69 struct cpuset {
     70 	struct bitmask *cpus;
     71 	struct bitmask *mems;
     72 	char cpu_exclusive;
     73 	char mem_exclusive;
     74 	char mem_hardwall;
     75 	char notify_on_release;
     76 	char memory_migrate;
     77 	char memory_pressure_enabled;
     78 	char memory_spread_page;
     79 	char memory_spread_slab;
     80 	char sched_load_balance;
     81 	int sched_relax_domain_level;
     82 
     83 	/*
     84 	 * Each field 'x' above gets an 'x_valid' field below.
     85 	 * The apply_cpuset_settings() will only set those fields whose
     86 	 * corresponding *_valid flags are set.  The cpuset_alloc()
     87 	 * routine clears these flags as part of the clear in calloc(),
     88 	 * and the various cpuset_set*() routines set these flags when
     89 	 * setting the corresponding value.
     90 	 *
     91 	 * The purpose of these valid fields is to ensure that when
     92 	 * we create a new cpuset, we don't accidentally overwrite
     93 	 * some non-zero kernel default, such as an inherited
     94 	 * memory_spread_* flag, just because the user application
     95 	 * code didn't override the default zero settings resulting
     96 	 * from the calloc() call in cpuset_alloc().
     97 	 *
     98 	 * The choice of 'char' for the type of the flags above,
     99 	 * but a bitfield for the flags below, is somewhat capricious.
    100 	 */
    101 	unsigned cpus_valid:1;
    102 	unsigned mems_valid:1;
    103 	unsigned cpu_exclusive_valid:1;
    104 	unsigned mem_exclusive_valid:1;
    105 	unsigned mem_hardwall_valid:1;
    106 	unsigned notify_on_release_valid:1;
    107 	unsigned memory_migrate_valid:1;
    108 	unsigned memory_pressure_enabled_valid:1;
    109 	unsigned memory_spread_page_valid:1;
    110 	unsigned memory_spread_slab_valid:1;
    111 	unsigned sched_load_balance_valid:1;
    112 	unsigned sched_relax_domain_level_valid:1;
    113 
    114 	/*
    115 	 * if the relative variable was modified, use following flags
    116 	 * to put a mark
    117 	 */
    118 	unsigned cpus_dirty:1;
    119 	unsigned mems_dirty:1;
    120 	unsigned cpu_exclusive_dirty:1;
    121 	unsigned mem_exclusive_dirty:1;
    122 	unsigned mem_hardwall_dirty:1;
    123 	unsigned notify_on_release_dirty:1;
    124 	unsigned memory_migrate_dirty:1;
    125 	unsigned memory_pressure_enabled_dirty:1;
    126 	unsigned memory_spread_page_dirty:1;
    127 	unsigned memory_spread_slab_dirty:1;
    128 	unsigned sched_load_balance_dirty:1;
    129 	unsigned sched_relax_domain_level_dirty:1;
    130 };
    131 
    132 /* Presumed cpuset file system mount point */
    133 static const char *cpusetmnt = "/dev/cpuset";
    134 
    135 /* Stashed copy of cpunodemap[], mapping each cpu to its node. */
    136 static const char *mapfile = "/var/run/cpunodemap";
    137 
    138 /* The primary source for the cpunodemap[] is available below here. */
    139 static const char *sysdevices = "/sys/devices/system";
    140 
    141 /* small buffer size - for reading boolean flags or map file (1 or 2 ints) */
    142 #define SMALL_BUFSZ 16
    143 
    144 /*
    145  * The 'mask_size_file' is used to ferrit out the kernel cpumask_t
    146  * and nodemask_t sizes.  The lines in this file that begin with the
    147  * strings 'cpumask_prefix' and 'nodemask_prefix' display a cpumask
    148  * and nodemask string, respectively.  The lengths of these strings
    149  * reflect the kernel's internal cpumask_t and nodemask_t sizes,
    150  * which sizes are needed to correctly call the sched_setaffinity
    151  * and set_mempolicy system calls, and to size user level
    152  * bitmasks to match the kernels.
    153  */
    154 
    155 static const char *mask_size_file = "/proc/self/status";
    156 static const char *cpumask_prefix = "Cpus_allowed:\t";
    157 static const char *nodemask_prefix = "Mems_allowed:\t";
    158 
    159 /*
    160  * Sizes of kernel cpumask_t and nodemask_t bitmaps, in bits.
    161  *
    162  * The first time we need these, we parse the Cpus_allowed and
    163  * Mems_allowed lines from mask_size_file ("/proc/self/status").
    164  */
    165 
    166 static int cpumask_sz;
    167 static int nodemask_sz;
    168 
    169 /*
    170  * These defaults only kick in if we fail to size the kernel
    171  * cpumask and nodemask by reading the Cpus_allowed and
    172  * Mems_allowed fields from the /proc/self/status file.
    173  */
    174 
    175 #define DEFCPUBITS (512)
    176 #define DEFNODEBITS (DEFCPUBITS/2)
    177 
    178 /*
    179  * Arch-neutral API for obtaining NUMA distances between CPUs
    180  * and Memory Nodes, via the files:
    181  *	/sys/devices/system/node/nodeN/distance
    182  * which have lines such as:
    183  *	46 66 10 20
    184  * which say that for cpu on node N (from the path above), the
    185  * distance to nodes 0, 1, 2, and 3 are 44, 66, 10, and 20,
    186  * respectively.
    187  */
    188 
    189 static const char *distance_directory = "/sys/devices/system/node";
    190 
    191 /*
    192  * Someday, we should disable, then later discard, the SN code
    193  * marked ALTERNATE_SN_DISTMAP.
    194  */
    195 
    196 #define ALTERNATE_SN_DISTMAP 1
    197 #ifdef ALTERNATE_SN_DISTMAP
    198 
    199 /*
    200  * Alternative SN (SGI ia64) architecture specific API for obtaining
    201  * NUMA distances between CPUs and Memory Nodes is via the file
    202  * /proc/sgi_sn/sn_topology, which has lines such as:
    203  *
    204  *   node 2 001c14#0 local asic SHub_1.1, nasid 0x4, dist 46:66:10:20
    205  *
    206  * which says that for each CPU on node 2, the distance to nodes
    207  * 0, 1, 2 and 3 are 46, 66, 10 and 20, respectively.
    208  *
    209  * This file has other lines as well, which start with other
    210  * keywords than "node".  Ignore these other lines.
    211  */
    212 
    213 static const char *sn_topology = "/proc/sgi_sn/sn_topology";
    214 static const char *sn_top_node_prefix = "node ";
    215 
    216 #endif
    217 
    218 /*
    219  * Check that cpusets supported, /dev/cpuset mounted.
    220  * If ok, return 0.
    221  * If not, return -1 and set errno:
    222  *	ENOSYS - kernel doesn't support cpusets
    223  *	ENODEV - /dev/cpuset not mounted
    224  */
    225 
    226 static enum {
    227 	check_notdone,
    228 	check_enosys,
    229 	check_enodev,
    230 	check_ok
    231 } check_state = check_notdone;
    232 
    233 static int check(void)
    234 {
    235 	if (check_state == check_notdone) {
    236 		struct stat statbuf;
    237 
    238 		if (stat("/proc/self/cpuset", &statbuf) < 0) {
    239 			check_state = check_enosys;
    240 			goto done;
    241 		}
    242 
    243 		if (stat("/dev/cpuset/tasks", &statbuf) < 0) {
    244 			check_state = check_enodev;
    245 			goto done;
    246 		}
    247 
    248 		check_state = check_ok;
    249 	}
    250 done:
    251 	switch (check_state) {
    252 	case check_enosys:
    253 		errno = ENOSYS;
    254 		return -1;
    255 	case check_enodev:
    256 		errno = ENODEV;
    257 		return -1;
    258 	default:
    259 		break;
    260 	}
    261 	return 0;
    262 }
    263 
    264 static void chomp(char *s)
    265 {
    266 	char *t;
    267 
    268 	for (t = s + strlen(s) - 1; t >= s; t--) {
    269 		if (*t == '\n' || *t == '\r')
    270 			*t = '\0';
    271 		else
    272 			break;
    273 	}
    274 }
    275 
    276 /*
    277  * Determine number of bytes in a seekable open file, without
    278  * assuming that stat(2) on that file has a useful size.
    279  * Has side affect of leaving the file rewound to the beginnning.
    280  */
    281 static int filesize(FILE * fp)
    282 {
    283 	int sz = 0;
    284 	rewind(fp);
    285 	while (fgetc(fp) != EOF)
    286 		sz++;
    287 	rewind(fp);
    288 	return sz;
    289 }
    290 
    291 /* Are strings s1 and s2 equal? */
    292 static int streq(const char *s1, const char *s2)
    293 {
    294 	return strcmp(s1, s2) == 0;
    295 }
    296 
    297 /* Is string 'pre' a prefix of string 's'? */
    298 static int strprefix(const char *s, const char *pre)
    299 {
    300 	return strncmp(s, pre, strlen(pre)) == 0;
    301 }
    302 
    303 /*
    304  * char *flgets(char *buf, int buflen, FILE *fp)
    305  *
    306  * Obtain one line from input file fp.  Copy up to first
    307  * buflen-1 chars of line into buffer buf, discarding any remainder
    308  * of line.  Stop reading at newline, discarding newline.
    309  * Nul terminate result and return pointer to buffer buf
    310  * on success, or NULL if nothing more to read or failure.
    311  */
    312 
    313 static char *flgets(char *buf, int buflen, FILE * fp)
    314 {
    315 	int c = -1;
    316 	char *bp;
    317 
    318 	bp = buf;
    319 	while ((--buflen > 0) && ((c = getc(fp)) >= 0)) {
    320 		if (c == '\n')
    321 			goto newline;
    322 		*bp++ = c;
    323 	}
    324 	if ((c < 0) && (bp == buf))
    325 		return NULL;
    326 
    327 	if (c > 0) {
    328 		while ((c = getc(fp)) >= 0) {
    329 			if (c == '\n')
    330 				break;
    331 		}
    332 	}
    333 
    334 newline:
    335 	*bp++ = '\0';
    336 	return buf;
    337 }
    338 
    339 /*
    340  * sgetc(const char *inputbuf, int *offsetptr)
    341  *
    342  * Return next char from nul-terminated input buffer inputbuf,
    343  * starting at offset *offsetptr.  Increment *offsetptr.
    344  * If next char would be nul ('\0'), return EOF and don't
    345  * increment *offsetptr.
    346  */
    347 
    348 static int sgetc(const char *inputbuf, int *offsetptr)
    349 {
    350 	char c;
    351 
    352 	if ((c = inputbuf[*offsetptr]) != 0) {
    353 		*offsetptr = *offsetptr + 1;
    354 		return c;
    355 	} else {
    356 		return EOF;
    357 	}
    358 }
    359 
    360 /*
    361  * char *slgets(char *buf, int buflen, const char *inputbuf, int *offsetptr)
    362  *
    363  * Obtain next line from nul-terminated input buffer 'inputbuf',
    364  * starting at offset *offsetptr.  Copy up to first buflen-1
    365  * chars of line into output buffer buf, discarding any remainder
    366  * of line.  Stop reading at newline, discarding newline.
    367  * Nul terminate result and return pointer to output buffer
    368  * buf on success, or NULL if nothing more to read.
    369  */
    370 
    371 static char *slgets(char *buf, int buflen, const char *inputbuf, int *offsetptr)
    372 {
    373 	int c = -1;
    374 	char *bp;
    375 
    376 	bp = buf;
    377 	while ((--buflen > 0) && ((c = sgetc(inputbuf, offsetptr)) >= 0)) {
    378 		if (c == '\n')
    379 			goto newline;
    380 		*bp++ = c;
    381 	}
    382 	if ((c < 0) && (bp == buf))
    383 		return NULL;
    384 
    385 	if (c > 0) {
    386 		while ((c = sgetc(inputbuf, offsetptr)) >= 0) {
    387 			if (c == '\n')
    388 				break;
    389 		}
    390 	}
    391 
    392 newline:
    393 	*bp++ = '\0';
    394 	return buf;
    395 }
    396 
    397 /*
    398  * time_t get_mtime(char *path)
    399  *
    400  * Return modtime of file at location path, else return 0.
    401  */
    402 
    403 static time_t get_mtime(const char *path)
    404 {
    405 	struct stat statbuf;
    406 
    407 	if (stat(path, &statbuf) != 0)
    408 		return 0;
    409 	return statbuf.st_mtime;
    410 }
    411 
    412 /*
    413  * int set_mtime(const char *path, time_t mtime)
    414  *
    415  * Set modtime of file 'path' to 'mtime'.  Return 0 on success,
    416  * or -1 on error, setting errno.
    417  */
    418 
    419 static int set_mtime(const char *path, time_t mtime)
    420 {
    421 	struct utimbuf times;
    422 
    423 	times.actime = mtime;
    424 	times.modtime = mtime;
    425 	return utime(path, &times);
    426 }
    427 
    428 /*
    429  * True if two pathnames resolve to same file.
    430  * False if either path can not be stat'd,
    431  * or if the two paths resolve to a different file.
    432  */
    433 
    434 static int samefile(const char *path1, const char *path2)
    435 {
    436 	struct stat sb1, sb2;
    437 
    438 	if (stat(path1, &sb1) != 0)
    439 		return 0;
    440 	if (stat(path2, &sb2) != 0)
    441 		return 0;
    442 	return sb1.st_ino == sb2.st_ino && sb1.st_dev == sb2.st_dev;
    443 }
    444 
    445 #define slash(c) (*(c) == '/')
    446 #define eocomp(c) (slash(c) || !*(c))
    447 #define dot1(c) (*(c) == '.' && eocomp(c+1))
    448 
    449 /* In place path compression.  Remove extra dots and slashes. */
    450 static char *pathcomp(char *p)
    451 {
    452 	char *a = p;
    453 	char *b = p;
    454 
    455 	if (!p || !*p)
    456 		return p;
    457 	if (slash(p))
    458 		*b++ = *a++;
    459 	for (;;) {
    460 		if (slash(a))
    461 			while (slash(++a))
    462 				continue;
    463 		if (!*a) {
    464 			if (b == p)
    465 				*b++ = '.';
    466 			*b = '\0';
    467 			return (p);
    468 		} else if (dot1(a)) {
    469 			a++;
    470 		} else {
    471 			if ((b != p) && !slash(b - 1))
    472 				*b++ = '/';
    473 			while (!eocomp(a))
    474 				*b++ = *a++;
    475 		}
    476 	}
    477 }
    478 
    479 #undef slash
    480 #undef eocomp
    481 #undef dot1
    482 
    483 /*
    484  * pathcat2(buf, buflen, name1, name2)
    485  *
    486  * Return buf, of length buflen, with name1/name2 stored in it.
    487  */
    488 
    489 static char *pathcat2(char *buf, int buflen, const char *name1,
    490 		      const char *name2)
    491 {
    492 	(void)snprintf(buf, buflen, "%s/%s", name1, name2);
    493 	return pathcomp(buf);
    494 }
    495 
    496 /*
    497  * pathcat3(buf, buflen, name1, name2, name3)
    498  *
    499  * Return buf, of length buflen, with name1/name2/name3 stored in it.
    500  */
    501 
    502 static char *pathcat3(char *buf, int buflen, const char *name1,
    503 		      const char *name2, const char *name3)
    504 {
    505 	(void)snprintf(buf, buflen, "%s/%s/%s", name1, name2, name3);
    506 	return pathcomp(buf);
    507 }
    508 
    509 /*
    510  * fullpath(buf, buflen, name)
    511  *
    512  * Put full path of cpuset 'name' in buffer 'buf'.  If name
    513  * starts with a slash (``/``) character, then this a path
    514  * relative to ``/dev/cpuset``, otherwise it is relative to
    515  * the current tasks cpuset.  Return 0 on success, else
    516  * -1 on error, setting errno.
    517  */
    518 
    519 static int fullpath(char *buf, int buflen, const char *name)
    520 {
    521 	int len;
    522 
    523 	/* easy case */
    524 	if (*name == '/') {
    525 		pathcat2(buf, buflen, cpusetmnt, name);
    526 		pathcomp(buf);
    527 		return 0;
    528 	}
    529 
    530 	/* hard case */
    531 	snprintf(buf, buflen, "%s/", cpusetmnt);
    532 	len = strlen(buf);
    533 	if (cpuset_getcpusetpath(0, buf + len, buflen - len) == NULL)
    534 		return -1;
    535 	if (strlen(buf) >= buflen - 1 - strlen(name)) {
    536 		errno = E2BIG;
    537 		return -1;
    538 	}
    539 	strcat(buf, "/");
    540 	strcat(buf, name);
    541 	pathcomp(buf);
    542 	return 0;
    543 }
    544 
    545 /*
    546  * fullpath2(buf, buflen, name1, name2)
    547  *
    548  * Like fullpath(), only concatenate two pathname components on end.
    549  */
    550 
    551 static int fullpath2(char *buf, int buflen, const char *name1,
    552 		     const char *name2)
    553 {
    554 	if (fullpath(buf, buflen, name1) < 0)
    555 		return -1;
    556 	if (strlen(buf) >= buflen - 1 - strlen(name2)) {
    557 		errno = E2BIG;
    558 		return -1;
    559 	}
    560 	strcat(buf, "/");
    561 	strcat(buf, name2);
    562 	pathcomp(buf);
    563 	return 0;
    564 }
    565 
    566 /*
    567  * Convert the string length of an ascii hex mask to the number
    568  * of bits represented by that mask.
    569  *
    570  * The cpumask and nodemask values in /proc/self/status are in an
    571  * ascii format that uses 9 characters for each 32 bits of mask.
    572  */
    573 static int s2nbits(const char *s)
    574 {
    575 	return strlen(s) * 32 / 9;
    576 }
    577 
    578 static void update_mask_sizes(void)
    579 {
    580 	FILE *fp = NULL;
    581 	char *buf = NULL;
    582 	int fsize;
    583 
    584 	if ((fp = fopen(mask_size_file, "r")) == NULL)
    585 		goto done;
    586 	fsize = filesize(fp);
    587 	if ((buf = malloc(fsize)) == NULL)
    588 		goto done;
    589 
    590 	/*
    591 	 * Beware: mask sizing arithmetic is fussy.
    592 	 * The trailing newline left by fgets() is required.
    593 	 */
    594 	while (fgets(buf, fsize, fp)) {
    595 		if (strprefix(buf, cpumask_prefix))
    596 			cpumask_sz = s2nbits(buf + strlen(cpumask_prefix));
    597 		if (strprefix(buf, nodemask_prefix))
    598 			nodemask_sz = s2nbits(buf + strlen(nodemask_prefix));
    599 	}
    600 done:
    601 	free(buf);
    602 	if (fp != NULL)
    603 		fclose(fp);
    604 	if (cpumask_sz == 0)
    605 		cpumask_sz = DEFCPUBITS;
    606 	if (nodemask_sz == 0)
    607 		nodemask_sz = DEFNODEBITS;
    608 }
    609 
    610 /* Allocate a new struct cpuset */
    611 struct cpuset *cpuset_alloc(void)
    612 {
    613 	struct cpuset *cp = NULL;
    614 	int nbits;
    615 
    616 	if ((cp = calloc(1, sizeof(struct cpuset))) == NULL)
    617 		goto err;
    618 
    619 	nbits = cpuset_cpus_nbits();
    620 	if ((cp->cpus = bitmask_alloc(nbits)) == NULL)
    621 		goto err;
    622 
    623 	nbits = cpuset_mems_nbits();
    624 	if ((cp->mems = bitmask_alloc(nbits)) == NULL)
    625 		goto err;
    626 
    627 	return cp;
    628 err:
    629 	if (cp && cp->cpus)
    630 		bitmask_free(cp->cpus);
    631 	if (cp && cp->mems)
    632 		bitmask_free(cp->mems);
    633 	free(cp);
    634 	return NULL;
    635 }
    636 
    637 /* Free struct cpuset *cp */
    638 void cpuset_free(struct cpuset *cp)
    639 {
    640 	if (!cp)
    641 		return;
    642 	if (cp->cpus)
    643 		bitmask_free(cp->cpus);
    644 	if (cp->mems)
    645 		bitmask_free(cp->mems);
    646 	free(cp);
    647 }
    648 
    649 /* Number of bits in a CPU bitmask on current system */
    650 int cpuset_cpus_nbits(void)
    651 {
    652 	if (cpumask_sz == 0)
    653 		update_mask_sizes();
    654 	return cpumask_sz;
    655 }
    656 
    657 /* Number of bits in a Memory bitmask on current system */
    658 int cpuset_mems_nbits(void)
    659 {
    660 	if (nodemask_sz == 0)
    661 		update_mask_sizes();
    662 	return nodemask_sz;
    663 }
    664 
    665 /* Set CPUs in cpuset cp to bitmask cpus */
    666 int cpuset_setcpus(struct cpuset *cp, const struct bitmask *cpus)
    667 {
    668 	if (cp->cpus)
    669 		bitmask_free(cp->cpus);
    670 	cp->cpus = bitmask_alloc(bitmask_nbits(cpus));
    671 	if (cp->cpus == NULL)
    672 		return -1;
    673 	bitmask_copy(cp->cpus, cpus);
    674 	cp->cpus_valid = 1;
    675 	cp->cpus_dirty = 1;
    676 	return 0;
    677 }
    678 
    679 /* Set Memory Nodes in cpuset cp to bitmask mems */
    680 int cpuset_setmems(struct cpuset *cp, const struct bitmask *mems)
    681 {
    682 	if (cp->mems)
    683 		bitmask_free(cp->mems);
    684 	cp->mems = bitmask_alloc(bitmask_nbits(mems));
    685 	if (cp->mems == NULL)
    686 		return -1;
    687 	bitmask_copy(cp->mems, mems);
    688 	cp->mems_valid = 1;
    689 	cp->mems_dirty = 1;
    690 	return 0;
    691 }
    692 
    693 /* Set integer value optname of cpuset cp */
    694 int cpuset_set_iopt(struct cpuset *cp, const char *optionname, int value)
    695 {
    696 	if (streq(optionname, "cpu_exclusive")) {
    697 		cp->cpu_exclusive = ! !value;
    698 		cp->cpu_exclusive_valid = 1;
    699 		cp->cpu_exclusive_dirty = 1;
    700 	} else if (streq(optionname, "mem_exclusive")) {
    701 		cp->mem_exclusive = ! !value;
    702 		cp->mem_exclusive_valid = 1;
    703 		cp->mem_exclusive_dirty = 1;
    704 	} else if (streq(optionname, "mem_hardwall")) {
    705 		cp->mem_hardwall = ! !value;
    706 		cp->mem_hardwall_valid = 1;
    707 		cp->mem_hardwall_dirty = 1;
    708 	} else if (streq(optionname, "notify_on_release")) {
    709 		cp->notify_on_release = ! !value;
    710 		cp->notify_on_release_valid = 1;
    711 		cp->notify_on_release_dirty = 1;
    712 	} else if (streq(optionname, "memory_pressure_enabled")) {
    713 		cp->memory_pressure_enabled = ! !value;
    714 		cp->memory_pressure_enabled_valid = 1;
    715 		cp->memory_pressure_enabled_dirty = 1;
    716 	} else if (streq(optionname, "memory_migrate")) {
    717 		cp->memory_migrate = ! !value;
    718 		cp->memory_migrate_valid = 1;
    719 		cp->memory_migrate_dirty = 1;
    720 	} else if (streq(optionname, "memory_spread_page")) {
    721 		cp->memory_spread_page = ! !value;
    722 		cp->memory_spread_page_valid = 1;
    723 		cp->memory_spread_page_dirty = 1;
    724 	} else if (streq(optionname, "memory_spread_slab")) {
    725 		cp->memory_spread_slab = ! !value;
    726 		cp->memory_spread_slab_valid = 1;
    727 		cp->memory_spread_slab_dirty = 1;
    728 	} else if (streq(optionname, "sched_load_balance")) {
    729 		cp->sched_load_balance = ! !value;
    730 		cp->sched_load_balance_valid = 1;
    731 		cp->sched_load_balance_dirty = 1;
    732 	} else if (streq(optionname, "sched_relax_domain_level")) {
    733 		cp->sched_relax_domain_level = value;
    734 		cp->sched_relax_domain_level_valid = 1;
    735 		cp->sched_relax_domain_level_dirty = 1;
    736 	} else
    737 		return -2;	/* optionname not recognized */
    738 	return 0;
    739 }
    740 
    741 /* [optional] Set string value optname */
    742 int cpuset_set_sopt(UNUSED struct cpuset *cp, UNUSED const char *optionname,
    743 		    UNUSED const char *value)
    744 {
    745 	return -2;		/* For now, all string options unrecognized */
    746 }
    747 
    748 /* Return handle for reading memory_pressure. */
    749 int cpuset_open_memory_pressure(const char *cpusetpath)
    750 {
    751 	char buf[PATH_MAX];
    752 
    753 	fullpath2(buf, sizeof(buf), cpusetpath, "memory_pressure");
    754 	return open(buf, O_RDONLY);
    755 }
    756 
    757 /* Return current memory_pressure of cpuset. */
    758 int cpuset_read_memory_pressure(int han)
    759 {
    760 	char buf[SMALL_BUFSZ];
    761 
    762 	if (pread(han, buf, sizeof(buf), 0L) < 0)
    763 		return -1;
    764 	return atoi(buf);
    765 }
    766 
    767 /* Close handle for reading memory pressure. */
    768 void cpuset_close_memory_pressure(int han)
    769 {
    770 	close(han);
    771 }
    772 
    773 /*
    774  * Resolve cpuset pointer (to that of current task if cp == NULL).
    775  *
    776  * If cp not NULL, just return it.  If cp is NULL, return pointer
    777  * to temporary cpuset for current task, and set *cp_tofree to
    778  * pointer to that same temporary cpuset, to be freed later.
    779  *
    780  * Return NULL and set errno on error.  Errors can occur when
    781  * resolving the current tasks cpuset.
    782  */
    783 static const struct cpuset *resolve_cp(const struct cpuset *cp,
    784 				       struct cpuset **cp_tofree)
    785 {
    786 	const struct cpuset *rcp;
    787 
    788 	if (cp) {
    789 		rcp = cp;
    790 	} else {
    791 		struct cpuset *cp1 = cpuset_alloc();
    792 		if (cp1 == NULL)
    793 			goto err;
    794 		if (cpuset_cpusetofpid(cp1, 0) < 0) {
    795 			cpuset_free(cp1);
    796 			goto err;
    797 		}
    798 		*cp_tofree = cp1;
    799 		rcp = cp1;
    800 	}
    801 	return rcp;
    802 err:
    803 	return NULL;
    804 }
    805 
    806 /* Write CPUs in cpuset cp (current task if cp == NULL) to bitmask cpus */
    807 int cpuset_getcpus(const struct cpuset *cp, struct bitmask *cpus)
    808 {
    809 	struct cpuset *cp_tofree = NULL;
    810 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    811 
    812 	if (!cp1)
    813 		goto err;
    814 	if (cp1->cpus == NULL) {
    815 		errno = EINVAL;
    816 		goto err;
    817 	}
    818 	bitmask_copy(cpus, cp1->cpus);
    819 	cpuset_free(cp_tofree);
    820 	return 0;
    821 err:
    822 	cpuset_free(cp_tofree);
    823 	return -1;
    824 }
    825 
    826 /* Write Memory Nodes in cp (current task if cp == NULL) to bitmask mems */
    827 int cpuset_getmems(const struct cpuset *cp, struct bitmask *mems)
    828 {
    829 	struct cpuset *cp_tofree = NULL;
    830 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    831 
    832 	if (!cp1)
    833 		goto err;
    834 	if (cp1->mems == NULL) {
    835 		errno = EINVAL;
    836 		goto err;
    837 	}
    838 	bitmask_copy(mems, cp1->mems);
    839 	cpuset_free(cp_tofree);
    840 	return 0;
    841 err:
    842 	cpuset_free(cp_tofree);
    843 	return -1;
    844 }
    845 
    846 /* Return number of CPUs in cpuset cp (current task if cp == NULL) */
    847 int cpuset_cpus_weight(const struct cpuset *cp)
    848 {
    849 	struct cpuset *cp_tofree = NULL;
    850 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    851 	int w = -1;
    852 
    853 	if (!cp1)
    854 		goto err;
    855 	if (cp1->cpus == NULL) {
    856 		errno = EINVAL;
    857 		goto err;
    858 	}
    859 	w = bitmask_weight(cp1->cpus);
    860 	/* fall into ... */
    861 err:
    862 	cpuset_free(cp_tofree);
    863 	return w;
    864 }
    865 
    866 /* Return number of Memory Nodes in cpuset cp (current task if cp == NULL) */
    867 int cpuset_mems_weight(const struct cpuset *cp)
    868 {
    869 	struct cpuset *cp_tofree = NULL;
    870 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    871 	int w = -1;
    872 
    873 	if (!cp1)
    874 		goto err;
    875 	if (cp1->mems == NULL) {
    876 		errno = EINVAL;
    877 		goto err;
    878 	}
    879 	w = bitmask_weight(cp1->mems);
    880 	/* fall into ... */
    881 err:
    882 	cpuset_free(cp_tofree);
    883 	return w;
    884 }
    885 
    886 /* Return integer value of option optname in cp */
    887 int cpuset_get_iopt(const struct cpuset *cp, const char *optionname)
    888 {
    889 	if (streq(optionname, "cpu_exclusive"))
    890 		return cp->cpu_exclusive;
    891 	else if (streq(optionname, "mem_exclusive"))
    892 		return cp->mem_exclusive;
    893 	else if (streq(optionname, "mem_hardwall"))
    894 		return cp->mem_hardwall;
    895 	else if (streq(optionname, "notify_on_release"))
    896 		return cp->notify_on_release;
    897 	else if (streq(optionname, "memory_pressure_enabled"))
    898 		return cp->memory_pressure_enabled;
    899 	else if (streq(optionname, "memory_migrate"))
    900 		return cp->memory_migrate;
    901 	else if (streq(optionname, "memory_spread_page"))
    902 		return cp->memory_spread_page;
    903 	else if (streq(optionname, "memory_spread_slab"))
    904 		return cp->memory_spread_slab;
    905 	else if (streq(optionname, "sched_load_balance"))
    906 		return cp->sched_load_balance;
    907 	else if (streq(optionname, "sched_relax_domain_level"))
    908 		return cp->sched_relax_domain_level;
    909 	else
    910 		return -2;	/* optionname not recognized */
    911 }
    912 
    913 /* [optional] Return string value of optname */
    914 const char *cpuset_get_sopt(UNUSED const struct cpuset *cp,
    915 			    UNUSED const char *optionname)
    916 {
    917 	return NULL;		/* For now, all string options unrecognized */
    918 }
    919 
    920 static int read_flag(const char *filepath, char *flagp)
    921 {
    922 	char buf[SMALL_BUFSZ];	/* buffer a "0" or "1" flag line */
    923 	int fd = -1;
    924 
    925 	if ((fd = open(filepath, O_RDONLY)) < 0)
    926 		goto err;
    927 	if (read(fd, buf, sizeof(buf)) < 1)
    928 		goto err;
    929 	if (atoi(buf))
    930 		*flagp = 1;
    931 	else
    932 		*flagp = 0;
    933 	close(fd);
    934 	return 0;
    935 err:
    936 	if (fd >= 0)
    937 		close(fd);
    938 	return -1;
    939 }
    940 
    941 static int load_flag(const char *path, char *flagp, const char *flag)
    942 {
    943 	char buf[PATH_MAX];
    944 
    945 	pathcat2(buf, sizeof(buf), path, flag);
    946 	return read_flag(buf, flagp);
    947 }
    948 
    949 static int read_number(const char *filepath, int *numberp)
    950 {
    951 	char buf[SMALL_BUFSZ];
    952 	int fd = -1;
    953 
    954 	if ((fd = open(filepath, O_RDONLY)) < 0)
    955 		goto err;
    956 	if (read(fd, buf, sizeof(buf)) < 1)
    957 		goto err;
    958 	*numberp = atoi(buf);
    959 	close(fd);
    960 	return 0;
    961 err:
    962 	if (fd >= 0)
    963 		close(fd);
    964 	return -1;
    965 }
    966 
    967 static int load_number(const char *path, int *numberp, const char *file)
    968 {
    969 	char buf[PATH_MAX];
    970 
    971 	pathcat2(buf, sizeof(buf), path, file);
    972 	return read_number(buf, numberp);
    973 }
    974 
    975 static int read_mask(const char *filepath, struct bitmask **bmpp, int nbits)
    976 {
    977 	FILE *fp = NULL;
    978 	char *buf = NULL;
    979 	int buflen;
    980 	struct bitmask *bmp = NULL;
    981 
    982 	if ((fp = fopen(filepath, "r")) == NULL)
    983 		goto err;
    984 	buflen = filesize(fp) + 1;	/* + 1 for nul term */
    985 	if ((buf = malloc(buflen)) == NULL)
    986 		goto err;
    987 	if (flgets(buf, buflen, fp) == NULL)
    988 		goto err;
    989 	fclose(fp);
    990 	fp = NULL;
    991 
    992 	if ((bmp = bitmask_alloc(nbits)) == NULL)
    993 		goto err;
    994 	if (*buf && bitmask_parselist(buf, bmp) < 0)
    995 		goto err;
    996 	if (*bmpp)
    997 		bitmask_free(*bmpp);
    998 	*bmpp = bmp;
    999 	free(buf);
   1000 	buf = NULL;
   1001 	return 0;
   1002 err:
   1003 	if (buf != NULL)
   1004 		free(buf);
   1005 	if (fp != NULL)
   1006 		fclose(fp);
   1007 	if (bmp != NULL)
   1008 		bitmask_free(bmp);
   1009 	return -1;
   1010 }
   1011 
   1012 static int load_mask(const char *path, struct bitmask **bmpp,
   1013 		     int nbits, const char *mask)
   1014 {
   1015 	char buf[PATH_MAX];
   1016 
   1017 	pathcat2(buf, sizeof(buf), path, mask);
   1018 	return read_mask(buf, bmpp, nbits);
   1019 }
   1020 
   1021 /* Write string to file at given filepath.  Create or truncate file. */
   1022 static int write_string_file(const char *filepath, const char *str)
   1023 {
   1024 	int fd = -1;
   1025 
   1026 	if ((fd = open(filepath, O_WRONLY | O_CREAT, 0644)) < 0)
   1027 		goto err;
   1028 	if (write(fd, str, strlen(str)) < 0)
   1029 		goto err;
   1030 	close(fd);
   1031 	return 0;
   1032 err:
   1033 	if (fd >= 0)
   1034 		close(fd);
   1035 	return -1;
   1036 }
   1037 
   1038 /* Size and allocate buffer.  Write bitmask into it.  Caller must free */
   1039 static char *sprint_mask_buf(const struct bitmask *bmp)
   1040 {
   1041 	char *buf = NULL;
   1042 	int buflen;
   1043 	char c;
   1044 
   1045 	/* First bitmask_displaylist() call just to get the length */
   1046 	buflen = bitmask_displaylist(&c, 1, bmp) + 1;	/* "+ 1" for nul */
   1047 	if ((buf = malloc(buflen)) == NULL)
   1048 		return NULL;
   1049 	bitmask_displaylist(buf, buflen, bmp);
   1050 	return buf;
   1051 }
   1052 
   1053 static int exists_flag(const char *path, const char *flag)
   1054 {
   1055 	char buf[PATH_MAX];
   1056 	struct stat statbuf;
   1057 	int rc;
   1058 
   1059 	pathcat2(buf, sizeof(buf), path, flag);
   1060 	rc = (stat(buf, &statbuf) == 0);
   1061 	errno = 0;
   1062 	return rc;
   1063 }
   1064 
   1065 static int store_flag(const char *path, const char *flag, int val)
   1066 {
   1067 	char buf[PATH_MAX];
   1068 
   1069 	pathcat2(buf, sizeof(buf), path, flag);
   1070 	return write_string_file(buf, val ? "1" : "0");
   1071 }
   1072 
   1073 static int store_number(const char *path, const char *file, int val)
   1074 {
   1075 	char buf[PATH_MAX];
   1076 	char data[SMALL_BUFSZ];
   1077 
   1078 	memset(data, 0, sizeof(data));
   1079 	pathcat2(buf, sizeof(buf), path, file);
   1080 	snprintf(data, sizeof(data), "%d", val);
   1081 	return write_string_file(buf, data);
   1082 }
   1083 
   1084 static int store_mask(const char *path, const char *mask,
   1085 		      const struct bitmask *bmp)
   1086 {
   1087 	char maskpath[PATH_MAX];
   1088 	char *bp = NULL;
   1089 	int rc;
   1090 
   1091 	if (bmp == NULL)
   1092 		return 0;
   1093 	pathcat2(maskpath, sizeof(maskpath), path, mask);
   1094 	if ((bp = sprint_mask_buf(bmp)) == NULL)
   1095 		return -1;
   1096 	rc = write_string_file(maskpath, bp);
   1097 	free(bp);
   1098 	return rc;
   1099 }
   1100 
   1101 /*
   1102  * Return 1 if 'cpu' is online, else 0 if offline.  Tests the file
   1103  * /sys/devices/system/cpu/cpuN/online file for 0 or 1 contents
   1104  * were N == cpu number.
   1105  */
   1106 
   1107 char cpu_online(unsigned int cpu)
   1108 {
   1109 	char online;
   1110 	char cpupath[PATH_MAX];
   1111 
   1112 	(void)snprintf(cpupath, sizeof(cpupath),
   1113 		       "/sys/devices/system/cpu/cpu%d/online", cpu);
   1114 	if (read_flag(cpupath, &online) < 0)
   1115 		return 0;	/* oops - guess that cpu's not there */
   1116 	return online;
   1117 }
   1118 
   1119 /*
   1120  * The cpunodemap maps each cpu in [0 ... cpuset_cpus_nbits()),
   1121  * to the node on which that cpu resides or cpuset_mems_nbits().
   1122  *
   1123  * To avoid every user having to recalculate this relation
   1124  * from various clues in the sysfs file system (below the
   1125  * path /sys/devices/system) a copy of this map is kept at
   1126  * /var/run/cpunodemap.
   1127  *
   1128  * The system automatically cleans out files below
   1129  * /var/run on each system reboot (see the init script
   1130  * /etc/rc.d/boot.d/S*boot.localnet), so we don't have to worry
   1131  * about stale data in this file across reboots.  If the file
   1132  * is missing, let the first process that needs it, and has
   1133  * permission to write in the /var/run directory, rebuild it.
   1134  *
   1135  * If using this cached data, remember the mtime of the mapfile
   1136  * the last time we read it in case something like a hotplug
   1137  * event results in the file being removed and rebuilt, so we
   1138  * can detect if we're using a stale cache, and need to reload.
   1139  *
   1140  * The mtime of this file is set to the time when we did
   1141  * the recalculation of the map, from the clues beneath
   1142  * /sys/devices/system.  This is done so that a program
   1143  * won't see the mapfile it just wrote as being newer than what
   1144  * it just wrote out (store_map) and read the same map back in
   1145  * (load_file).
   1146  */
   1147 
   1148 /*
   1149  * Hold flockfile(stdin) while using cpunodemap for posix thread safety.
   1150  *
   1151  * Note on locking and flockfile(FILE *):
   1152  *
   1153  *  We use flockfile() and funlockfile() instead of directly
   1154  *  calling pthread_mutex_lock and pthread_mutex_unlock on
   1155  *  a pthread_mutex_t, because this avoids forcing the app
   1156  *  to link with libpthread.  The glibc implementation of
   1157  *  flockfile/funlockfile will fall back to no-ops if libpthread
   1158  *  doesn't happen to be linked.
   1159  *
   1160  *  Since flockfile already has the moderately convoluted
   1161  *  combination of weak and strong symbols required to accomplish
   1162  *  this, it is easier to use flockfile() on some handy FILE *
   1163  *  stream as a surrogate for pthread locking than it is to so
   1164  *  re-invent that wheel.
   1165  *
   1166  *  Forcing all apps that use cpusets to link with libpthread
   1167  *  would force non-transparent initialization on apps that
   1168  *  might not be prepared to handle it.
   1169  *
   1170  *  The application using libcpuset should never notice this
   1171  *  odd use of flockfile(), because we never return to the
   1172  *  application from any libcpuset call with any such lock held.
   1173  *  We just use this locking for guarding some non-atomic cached
   1174  *  data updates and accesses, internal to some libcpuset calls.
   1175  *  Also, flockfile() allows recursive nesting, so if the app
   1176  *  calls libcpuset holding such a file lock, we won't deadlock
   1177  *  if we go to acquire the same lock.  We'll just get the lock
   1178  *  and increment its counter while we hold it.
   1179  */
   1180 
   1181 static struct cpunodemap {
   1182 	int *map;		/* map[cpumask_sz]: maps cpu to its node */
   1183 	time_t mtime;		/* modtime of mapfile when last read */
   1184 } cpunodemap;
   1185 
   1186 /*
   1187  * rebuild_map() - Rebuild cpunodemap[] from scratch.
   1188  *
   1189  * Situation:
   1190  *	Neither our in-memory cpunodemap[] array nor the
   1191  *	cache of it in mapfile is current.
   1192  * Action:
   1193  *	Rebuild it from first principles and the information
   1194  *	available below /sys/devices/system.
   1195  */
   1196 
   1197 static void rebuild_map(void)
   1198 {
   1199 	char buf[PATH_MAX];
   1200 	DIR *dir1, *dir2;
   1201 	struct dirent *dent1, *dent2;
   1202 	int ncpus = cpuset_cpus_nbits();
   1203 	int nmems = cpuset_mems_nbits();
   1204 	unsigned int cpu, mem;
   1205 
   1206 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++)
   1207 		cpunodemap.map[cpu] = -1;
   1208 	pathcat2(buf, sizeof(buf), sysdevices, "node");
   1209 	if ((dir1 = opendir(buf)) == NULL)
   1210 		return;
   1211 	while ((dent1 = readdir(dir1)) != NULL) {
   1212 		if (sscanf(dent1->d_name, "node%u", &mem) < 1)
   1213 			continue;
   1214 		pathcat3(buf, sizeof(buf), sysdevices, "node", dent1->d_name);
   1215 		if ((dir2 = opendir(buf)) == NULL)
   1216 			continue;
   1217 		while ((dent2 = readdir(dir2)) != NULL) {
   1218 			if (sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
   1219 				continue;
   1220 			if (cpu >= (unsigned int)ncpus
   1221 			    || mem >= (unsigned int)nmems)
   1222 				continue;
   1223 			cpunodemap.map[cpu] = mem;
   1224 		}
   1225 		closedir(dir2);
   1226 	}
   1227 	closedir(dir1);
   1228 	cpunodemap.mtime = time(0);
   1229 }
   1230 
   1231 /*
   1232  * load_map() - Load cpunodemap[] from mapfile.
   1233  *
   1234  * Situation:
   1235  *	The cpunodemap in mapfile is more recent than
   1236  *	what we have in the cpunodemap[] array.
   1237  * Action:
   1238  *	Reload the cpunodemap[] array from the file.
   1239  */
   1240 
   1241 static void load_map(void)
   1242 {
   1243 	char buf[SMALL_BUFSZ];	/* buffer 1 line of mapfile */
   1244 	FILE *mapfp;		/* File stream on mapfile */
   1245 	int ncpus = cpuset_cpus_nbits();
   1246 	int nmems = cpuset_mems_nbits();
   1247 	unsigned int cpu, mem;
   1248 
   1249 	if ((cpunodemap.map = calloc(ncpus, sizeof(int))) == NULL)
   1250 		return;
   1251 	cpunodemap.mtime = get_mtime(mapfile);
   1252 	if ((mapfp = fopen(mapfile, "r")) == NULL)
   1253 		return;
   1254 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++)
   1255 		cpunodemap.map[cpu] = nmems;
   1256 	while (flgets(buf, sizeof(buf), mapfp) != NULL) {
   1257 		if (sscanf(buf, "%u %u", &cpu, &mem) < 2)
   1258 			continue;
   1259 		if (cpu >= (unsigned int)ncpus || mem >= (unsigned int)nmems)
   1260 			continue;
   1261 		cpunodemap.map[cpu] = mem;
   1262 	}
   1263 	fclose(mapfp);
   1264 }
   1265 
   1266 /*
   1267  * store_map() - Write cpunodemap[] out to mapfile.
   1268  *
   1269  * Situation:
   1270  *	The cpunodemap in the cpunodemap[] array is
   1271  *	more recent than the one in mapfile.
   1272  * Action:
   1273  *	Write cpunodemap[] out to mapfile.
   1274  */
   1275 
   1276 static void store_map(void)
   1277 {
   1278 	char buf[PATH_MAX];
   1279 	int fd = -1;
   1280 	FILE *mapfp = NULL;
   1281 	int ncpus = cpuset_cpus_nbits();
   1282 	int nmems = cpuset_mems_nbits();
   1283 	unsigned int cpu, mem;
   1284 
   1285 	snprintf(buf, sizeof(buf), "%s.%s", mapfile, "XXXXXX");
   1286 	if ((fd = mkstemp(buf)) < 0)
   1287 		goto err;
   1288 	if ((mapfp = fdopen(fd, "w")) == NULL)
   1289 		goto err;
   1290 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1291 		mem = cpunodemap.map[cpu];
   1292 		if (mem < (unsigned int)nmems)
   1293 			fprintf(mapfp, "%u %u\n", cpu, mem);
   1294 	}
   1295 	fclose(mapfp);
   1296 	set_mtime(buf, cpunodemap.mtime);
   1297 	if (rename(buf, mapfile) < 0)
   1298 		goto err;
   1299 	/* mkstemp() creates mode 0600 - change to world readable */
   1300 	(void)chmod(mapfile, 0444);
   1301 	return;
   1302 err:
   1303 	if (mapfp != NULL) {
   1304 		fclose(mapfp);
   1305 		fd = -1;
   1306 	}
   1307 	if (fd >= 0)
   1308 		close(fd);
   1309 	(void)unlink(buf);
   1310 }
   1311 
   1312 /*
   1313  * Load and gain thread safe access to the <cpu, node> map.
   1314  *
   1315  * Return 0 on success with flockfile(stdin) held.
   1316  * Each successful get_map() call must be matched with a
   1317  * following put_map() call to release the lock.
   1318  *
   1319  * On error, return -1 with errno set and no lock held.
   1320  */
   1321 
   1322 static int get_map(void)
   1323 {
   1324 	time_t file_mtime;
   1325 
   1326 	flockfile(stdin);
   1327 
   1328 	if (cpunodemap.map == NULL) {
   1329 		cpunodemap.map = calloc(cpuset_cpus_nbits(), sizeof(int));
   1330 		if (cpunodemap.map == NULL)
   1331 			goto err;
   1332 	}
   1333 
   1334 	/* If no one has a good cpunodemap, rebuild from scratch */
   1335 	file_mtime = get_mtime(mapfile);
   1336 	if (cpunodemap.mtime == 0 && file_mtime == 0)
   1337 		rebuild_map();
   1338 
   1339 	/* If either cpunodemap[] or mapfile newer, update other with it */
   1340 	file_mtime = get_mtime(mapfile);
   1341 	if (cpunodemap.mtime < file_mtime)
   1342 		load_map();
   1343 	else if (cpunodemap.mtime > file_mtime)
   1344 		store_map();
   1345 	return 0;
   1346 err:
   1347 	funlockfile(stdin);
   1348 	return -1;
   1349 }
   1350 
   1351 static void put_map(void)
   1352 {
   1353 	funlockfile(stdin);
   1354 }
   1355 
   1356 /* Set cpus to those local to Memory Nodes mems */
   1357 int cpuset_localcpus(const struct bitmask *mems, struct bitmask *cpus)
   1358 {
   1359 	int ncpus = cpuset_cpus_nbits();
   1360 	unsigned int cpu;
   1361 
   1362 	if (check() < 0)
   1363 		return -1;
   1364 
   1365 	get_map();
   1366 	bitmask_clearall(cpus);
   1367 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1368 		if (bitmask_isbitset(mems, cpunodemap.map[cpu]))
   1369 			bitmask_setbit(cpus, cpu);
   1370 	}
   1371 	put_map();
   1372 	return 0;
   1373 }
   1374 
   1375 /* Set mems to those local to CPUs cpus */
   1376 int cpuset_localmems(const struct bitmask *cpus, struct bitmask *mems)
   1377 {
   1378 	int ncpus = cpuset_cpus_nbits();
   1379 	unsigned int cpu;
   1380 
   1381 	if (check() < 0)
   1382 		return -1;
   1383 
   1384 	get_map();
   1385 	bitmask_clearall(mems);
   1386 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1387 		if (bitmask_isbitset(cpus, cpu))
   1388 			bitmask_setbit(mems, cpunodemap.map[cpu]);
   1389 	}
   1390 	put_map();
   1391 	return 0;
   1392 }
   1393 
   1394 /*
   1395  * distmap[]
   1396  *
   1397  * Array of ints of size cpumask_sz by nodemask_sz.
   1398  *
   1399  * Element distmap[cpu][mem] is the distance between CPU cpu
   1400  * and Memory Node mem.  Distances are weighted to roughly
   1401  * approximate the cost of memory references, and scaled so that
   1402  * the distance from a CPU to its local Memory Node is ten (10).
   1403  *
   1404  * The first call to cpuset_cpumemdist() builds this map, from
   1405  * whatever means the kernel provides to obtain these distances.
   1406  *
   1407  * These distances derive from ACPI SLIT table entries, which are
   1408  * eight bits in size.
   1409  *
   1410  * Hold flockfile(stdout) while using distmap for posix thread safety.
   1411  */
   1412 
   1413 typedef unsigned char distmap_entry_t;	/* type of distmap[] entries */
   1414 
   1415 static distmap_entry_t *distmap;	/* maps <cpu, mem> to distance */
   1416 
   1417 #define DISTMAP_MAX UCHAR_MAX	/* maximum value in distmap[] */
   1418 
   1419 #define I(i,j) ((i) * nmems + (j))	/* 2-D array index simulation */
   1420 
   1421 /*
   1422  * Parse arch neutral lines from 'distance' files of form:
   1423  *
   1424  *	46 66 10 20
   1425  *
   1426  * The lines contain a space separated list of distances, which is parsed
   1427  * into array dists[] of each nodes distance from the specified node.
   1428  *
   1429  * Result is placed in distmap[ncpus][nmems]:
   1430  *
   1431  *	For each cpu c on node:
   1432  *		For each node position n in list of distances:
   1433  *			distmap[c][n] = dists[n]
   1434  */
   1435 
   1436 static int parse_distmap_line(unsigned int node, char *buf)
   1437 {
   1438 	char *p, *q;
   1439 	int ncpus = cpuset_cpus_nbits();
   1440 	int nmems = cpuset_mems_nbits();
   1441 	unsigned int c, n;
   1442 	distmap_entry_t *dists = NULL;
   1443 	struct bitmask *cpus = NULL, *mems = NULL;
   1444 	int ret = -1;
   1445 
   1446 	p = buf;
   1447 	if ((dists = calloc(nmems, sizeof(*dists))) == NULL)
   1448 		goto err;
   1449 	for (n = 0; n < (unsigned int)nmems; n++)
   1450 		dists[n] = DISTMAP_MAX;
   1451 
   1452 	for (n = 0; n < (unsigned int)nmems && *p; n++, p = q) {
   1453 		unsigned int d;
   1454 
   1455 		if ((p = strpbrk(p, "0123456789")) == NULL)
   1456 			break;
   1457 		d = strtoul(p, &q, 10);
   1458 		if (p == q)
   1459 			break;
   1460 		if (d < DISTMAP_MAX)
   1461 			dists[n] = (distmap_entry_t) d;
   1462 	}
   1463 
   1464 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1465 		goto err;
   1466 	bitmask_setbit(mems, node);
   1467 
   1468 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1469 		goto err;
   1470 	cpuset_localcpus(mems, cpus);
   1471 
   1472 	for (c = bitmask_first(cpus); c < (unsigned int)ncpus;
   1473 	     c = bitmask_next(cpus, c + 1))
   1474 		for (n = 0; n < (unsigned int)nmems; n++)
   1475 			distmap[I(c, n)] = dists[n];
   1476 	ret = 0;
   1477 	/* fall into ... */
   1478 err:
   1479 	bitmask_free(mems);
   1480 	bitmask_free(cpus);
   1481 	free(dists);
   1482 	return ret;
   1483 }
   1484 
   1485 static int parse_distance_file(unsigned int node, const char *path)
   1486 {
   1487 	FILE *fp;
   1488 	char *buf = NULL;
   1489 	int buflen;
   1490 
   1491 	if ((fp = fopen(path, "r")) == NULL)
   1492 		goto err;
   1493 
   1494 	buflen = filesize(fp);
   1495 
   1496 	if ((buf = malloc(buflen)) == NULL)
   1497 		goto err;
   1498 
   1499 	if (flgets(buf, buflen, fp) == NULL)
   1500 		goto err;
   1501 
   1502 	if (parse_distmap_line(node, buf) < 0)
   1503 		goto err;
   1504 
   1505 	free(buf);
   1506 	fclose(fp);
   1507 	return 0;
   1508 err:
   1509 	free(buf);
   1510 	if (fp)
   1511 		fclose(fp);
   1512 	return -1;
   1513 }
   1514 
   1515 static void build_distmap(void)
   1516 {
   1517 	static int tried_before = 0;
   1518 	int ncpus = cpuset_cpus_nbits();
   1519 	int nmems = cpuset_mems_nbits();
   1520 	int c, m;
   1521 	DIR *dir = NULL;
   1522 	struct dirent *dent;
   1523 
   1524 	if (tried_before)
   1525 		goto err;
   1526 	tried_before = 1;
   1527 
   1528 	if ((distmap = calloc(ncpus * nmems, sizeof(*distmap))) == NULL)
   1529 		goto err;
   1530 
   1531 	for (c = 0; c < ncpus; c++)
   1532 		for (m = 0; m < nmems; m++)
   1533 			distmap[I(c, m)] = DISTMAP_MAX;
   1534 
   1535 	if ((dir = opendir(distance_directory)) == NULL)
   1536 		goto err;
   1537 	while ((dent = readdir(dir)) != NULL) {
   1538 		char buf[PATH_MAX];
   1539 		unsigned int node;
   1540 
   1541 		if (sscanf(dent->d_name, "node%u", &node) < 1)
   1542 			continue;
   1543 		pathcat3(buf, sizeof(buf), distance_directory, dent->d_name,
   1544 			 "distance");
   1545 		if (parse_distance_file(node, buf) < 0)
   1546 			goto err;
   1547 	}
   1548 	closedir(dir);
   1549 	return;
   1550 err:
   1551 	if (dir)
   1552 		closedir(dir);
   1553 	free(distmap);
   1554 	distmap = NULL;
   1555 }
   1556 
   1557 #ifdef ALTERNATE_SN_DISTMAP
   1558 
   1559 /*
   1560  * Parse SN architecture specific line of form:
   1561  *
   1562  *	node 3 001c14#1 local asic SHub_1.1, nasid 0x6, dist 66:46:20:10
   1563  *
   1564  * Second field is node number.  The "dist" field is the colon separated list
   1565  * of distances, which is parsed into array dists[] of each nodes distance
   1566  * from that node.
   1567  *
   1568  * Result is placed in distmap[ncpus][nmems]:
   1569  *
   1570  *	For each cpu c on that node:
   1571  *		For each node position n in list of distances:
   1572  *			distmap[c][n] = dists[n]
   1573  */
   1574 
   1575 static void parse_distmap_line_sn(char *buf)
   1576 {
   1577 	char *p, *pend, *q;
   1578 	int ncpus = cpuset_cpus_nbits();
   1579 	int nmems = cpuset_mems_nbits();
   1580 	unsigned long c, n, node;
   1581 	distmap_entry_t *dists = NULL;
   1582 	struct bitmask *cpus = NULL, *mems = NULL;
   1583 
   1584 	if ((p = strchr(buf, ' ')) == NULL)
   1585 		goto err;
   1586 	if ((node = strtoul(p, &q, 10)) >= (unsigned int)nmems)
   1587 		goto err;
   1588 	if ((p = strstr(q, " dist ")) == NULL)
   1589 		goto err;
   1590 	p += strlen(" dist ");
   1591 	if ((pend = strchr(p, ' ')) != NULL)
   1592 		*pend = '\0';
   1593 	if ((dists = calloc(nmems, sizeof(*dists))) == NULL)
   1594 		goto err;
   1595 	for (n = 0; n < (unsigned int)nmems; n++)
   1596 		dists[n] = DISTMAP_MAX;
   1597 
   1598 	for (n = 0; n < (unsigned int)nmems && *p; n++, p = q) {
   1599 		unsigned long d;
   1600 
   1601 		if ((p = strpbrk(p, "0123456789")) == NULL)
   1602 			break;
   1603 		d = strtoul(p, &q, 10);
   1604 		if (p == q)
   1605 			break;
   1606 		if (d < DISTMAP_MAX)
   1607 			dists[n] = (distmap_entry_t) d;
   1608 	}
   1609 
   1610 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1611 		goto err;
   1612 	bitmask_setbit(mems, node);
   1613 
   1614 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1615 		goto err;
   1616 	cpuset_localcpus(mems, cpus);
   1617 
   1618 	for (c = bitmask_first(cpus); c < (unsigned int)ncpus;
   1619 	     c = bitmask_next(cpus, c + 1))
   1620 		for (n = 0; n < (unsigned int)nmems; n++)
   1621 			distmap[I(c, n)] = dists[n];
   1622 	/* fall into ... */
   1623 err:
   1624 	bitmask_free(mems);
   1625 	bitmask_free(cpus);
   1626 	free(dists);
   1627 }
   1628 
   1629 static void build_distmap_sn(void)
   1630 {
   1631 	int ncpus = cpuset_cpus_nbits();
   1632 	int nmems = cpuset_mems_nbits();
   1633 	int c, m;
   1634 	static int tried_before = 0;
   1635 	FILE *fp = NULL;
   1636 	char *buf = NULL;
   1637 	int buflen;
   1638 
   1639 	if (tried_before)
   1640 		goto err;
   1641 	tried_before = 1;
   1642 
   1643 	if ((fp = fopen(sn_topology, "r")) == NULL)
   1644 		goto err;
   1645 
   1646 	if ((distmap = calloc(ncpus * nmems, sizeof(*distmap))) == NULL)
   1647 		goto err;
   1648 
   1649 	for (c = 0; c < ncpus; c++)
   1650 		for (m = 0; m < nmems; m++)
   1651 			distmap[I(c, m)] = DISTMAP_MAX;
   1652 
   1653 	buflen = filesize(fp);
   1654 	if ((buf = malloc(buflen)) == NULL)
   1655 		goto err;
   1656 
   1657 	while (flgets(buf, buflen, fp) != NULL)
   1658 		if (strprefix(buf, sn_top_node_prefix))
   1659 			parse_distmap_line_sn(buf);
   1660 
   1661 	free(buf);
   1662 	fclose(fp);
   1663 	return;
   1664 err:
   1665 	free(buf);
   1666 	free(distmap);
   1667 	distmap = NULL;
   1668 	if (fp)
   1669 		fclose(fp);
   1670 }
   1671 
   1672 #endif
   1673 
   1674 /* [optional] Hardware distance from CPU to Memory Node */
   1675 unsigned int cpuset_cpumemdist(int cpu, int mem)
   1676 {
   1677 	int ncpus = cpuset_cpus_nbits();
   1678 	int nmems = cpuset_mems_nbits();
   1679 	distmap_entry_t r = DISTMAP_MAX;
   1680 
   1681 	flockfile(stdout);
   1682 
   1683 	if (check() < 0)
   1684 		goto err;
   1685 
   1686 	if (distmap == NULL)
   1687 		build_distmap();
   1688 
   1689 #ifdef ALTERNATE_SN_DISTMAP
   1690 	if (distmap == NULL)
   1691 		build_distmap_sn();
   1692 #endif
   1693 
   1694 	if (distmap == NULL)
   1695 		goto err;
   1696 
   1697 	if (cpu < 0 || cpu >= ncpus || mem < 0 || mem >= nmems)
   1698 		goto err;
   1699 
   1700 	r = distmap[I(cpu, mem)];
   1701 	/* fall into ... */
   1702 err:
   1703 	funlockfile(stdout);
   1704 	return r;
   1705 }
   1706 
   1707 /* [optional] Return Memory Node closest to cpu */
   1708 int cpuset_cpu2node(int cpu)
   1709 {
   1710 	int ncpus = cpuset_cpus_nbits();
   1711 	int nmems = cpuset_mems_nbits();
   1712 	struct bitmask *cpus = NULL, *mems = NULL;
   1713 	int r = -1;
   1714 
   1715 	if (check() < 0)
   1716 		goto err;
   1717 
   1718 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1719 		goto err;
   1720 	bitmask_setbit(cpus, cpu);
   1721 
   1722 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1723 		goto err;
   1724 	cpuset_localmems(cpus, mems);
   1725 	r = bitmask_first(mems);
   1726 	/* fall into ... */
   1727 err:
   1728 	bitmask_free(cpus);
   1729 	bitmask_free(mems);
   1730 	return r;
   1731 }
   1732 
   1733 static int apply_cpuset_settings(const char *path, const struct cpuset *cp)
   1734 {
   1735 	if (cp->cpu_exclusive_valid && cp->cpu_exclusive_dirty) {
   1736 		if (store_flag(path, "cpu_exclusive", cp->cpu_exclusive) < 0)
   1737 			goto err;
   1738 	}
   1739 
   1740 	if (cp->mem_exclusive_valid && cp->mem_exclusive_dirty) {
   1741 		if (store_flag(path, "mem_exclusive", cp->mem_exclusive) < 0)
   1742 			goto err;
   1743 	}
   1744 
   1745 	if (cp->mem_hardwall_valid && cp->mem_hardwall_dirty) {
   1746 		if (store_flag(path, "mem_hardwall", cp->mem_hardwall) < 0)
   1747 			goto err;
   1748 	}
   1749 
   1750 	if (cp->notify_on_release_valid && cp->notify_on_release_dirty) {
   1751 		if (store_flag(path, "notify_on_release", cp->notify_on_release)
   1752 		    < 0)
   1753 			goto err;
   1754 	}
   1755 
   1756 	if (cp->memory_migrate_valid &&
   1757 	    cp->memory_migrate_dirty && exists_flag(path, "memory_migrate")) {
   1758 		if (store_flag(path, "memory_migrate", cp->memory_migrate) < 0)
   1759 			goto err;
   1760 	}
   1761 
   1762 	if (cp->memory_pressure_enabled_valid &&
   1763 	    cp->memory_pressure_enabled_dirty &&
   1764 	    exists_flag(path, "memory_pressure_enabled")) {
   1765 		if (store_flag
   1766 		    (path, "memory_pressure_enabled",
   1767 		     cp->memory_pressure_enabled) < 0)
   1768 			goto err;
   1769 	}
   1770 
   1771 	if (cp->memory_spread_page_valid &&
   1772 	    cp->memory_spread_page_dirty &&
   1773 	    exists_flag(path, "memory_spread_page")) {
   1774 		if (store_flag
   1775 		    (path, "memory_spread_page", cp->memory_spread_page) < 0)
   1776 			goto err;
   1777 	}
   1778 
   1779 	if (cp->memory_spread_slab_valid &&
   1780 	    cp->memory_spread_slab_dirty &&
   1781 	    exists_flag(path, "memory_spread_slab")) {
   1782 		if (store_flag
   1783 		    (path, "memory_spread_slab", cp->memory_spread_slab) < 0)
   1784 			goto err;
   1785 	}
   1786 
   1787 	if (cp->sched_load_balance_valid &&
   1788 	    cp->sched_load_balance_dirty &&
   1789 	    exists_flag(path, "sched_load_balance")) {
   1790 		if (store_flag
   1791 		    (path, "sched_load_balance", cp->sched_load_balance) < 0)
   1792 			goto err;
   1793 	}
   1794 
   1795 	if (cp->sched_relax_domain_level_valid &&
   1796 	    cp->sched_relax_domain_level_dirty &&
   1797 	    exists_flag(path, "sched_relax_domain_level")) {
   1798 		if (store_number
   1799 		    (path, "sched_relax_domain_level",
   1800 		     cp->sched_relax_domain_level) < 0)
   1801 			goto err;
   1802 	}
   1803 
   1804 	if (cp->cpus_valid && cp->cpus_dirty) {
   1805 		if (store_mask(path, "cpus", cp->cpus) < 0)
   1806 			goto err;
   1807 	}
   1808 
   1809 	if (cp->mems_valid && cp->mems_dirty) {
   1810 		if (store_mask(path, "mems", cp->mems) < 0)
   1811 			goto err;
   1812 	}
   1813 	return 0;
   1814 err:
   1815 	return -1;
   1816 }
   1817 
   1818 /*
   1819  * get_siblings() - helper routine for cpuset_would_crash_kernel(), below.
   1820  *
   1821  * Extract max value of any 'siblings' field in /proc/cpuinfo.
   1822  * Cache the result - only need to extract once in lifetime of task.
   1823  *
   1824  * The siblings field is the number of logical CPUs in a physical
   1825  * processor package.  It is equal to the product of the number of
   1826  * cores in that package, times the number of hyper-threads per core.
   1827  * The bug that cpuset_would_crash_kernel() is detecting arises
   1828  * when a cpu_exclusive cpuset tries to include just some, not all,
   1829  * of the sibling logical CPUs available in a processor package.
   1830  *
   1831  * In the improbable case that a system has mixed values of siblings
   1832  * (some processor packages have more than others, perhaps due to
   1833  * partially enabling Hyper-Threading), we take the worse case value,
   1834  * the largest siblings value.  This might be overkill.  I don't know
   1835  * if this kernel bug considers each processor package's siblings
   1836  * separately or not.  But it sure is easier this way ...
   1837  *
   1838  * This routine takes about 0.7 msecs on a 4 CPU 2.8 MHz Xeon, from
   1839  * open to close, the first time called.
   1840  */
   1841 
   1842 static int get_siblings(void)
   1843 {
   1844 	static int siblings;
   1845 	char buf[32];		/* big enough for one 'siblings' line */
   1846 	FILE *fp;
   1847 
   1848 	if (siblings)
   1849 		return siblings;
   1850 
   1851 	if ((fp = fopen("/proc/cpuinfo", "r")) == NULL)
   1852 		return 4;	/* wing it - /proc not mounted ? */
   1853 	while (flgets(buf, sizeof(buf), fp) != NULL) {
   1854 		int s;
   1855 
   1856 		if (sscanf(buf, "siblings : %d", &s) < 1)
   1857 			continue;
   1858 		if (s > siblings)
   1859 			siblings = s;
   1860 	}
   1861 	fclose(fp);
   1862 	if (siblings == 0)
   1863 		siblings = 1;	/* old kernel, no siblings, default to 1 */
   1864 	return siblings;
   1865 }
   1866 
   1867 /*
   1868  * Some 2.6.16 and 2.6.17 kernel versions have a bug in the dynamic
   1869  * scheduler domain code invoked for cpu_exclusive cpusets that causes
   1870  * the kernel to freeze, requiring a hardware reset.
   1871  *
   1872  * On kernels built with CONFIG_SCHED_MC enabled, if a 'cpu_exclusive'
   1873  * cpuset is defined where that cpusets 'cpus' are not on package
   1874  * boundaries then the kernel will freeze, usually as soon as this
   1875  * cpuset is created, requiring a hardware reset.
   1876  *
   1877  * A cpusets 'cpus' are not on package boundaries if the cpuset
   1878  * includes a proper non-empty subset (some, but not all) of the
   1879  * logical cpus on a processor package.  This requires multiple
   1880  * logical CPUs per package, available with either Hyper-Thread or
   1881  * Multi-Core support.  Without one of these features, there is only
   1882  * one logical CPU per physical package, and it's not possible to
   1883  * have a proper, non-empty subset of a set of cardinality one.
   1884  *
   1885  * SUSE SLES10 kernels, as first released, only enable CONFIG_SCHED_MC
   1886  * on i386 and x86_64 arch's.
   1887  *
   1888  * The objective of this routine cpuset_would_crash_kernel() is to
   1889  * determine if a proposed cpuset setting would crash the kernel due
   1890  * to this bug, so that the caller can avoid the crash.
   1891  *
   1892  * Ideally we'd check for exactly these conditions here, but computing
   1893  * the package (identified by the 'physical id' field of /proc/cpuinfo)
   1894  * of each cpu in a cpuset is more effort than it's worth here.
   1895  *
   1896  * Also there is no obvious way to identify exactly whether the kernel
   1897  * one is executing on has this bug, short of trying it, and seeing
   1898  * if the kernel just crashed.
   1899  *
   1900  * So for now, we look for a simpler set of conditions, that meets
   1901  * our immediate need - avoid this crash on SUSE SLES10 systems that
   1902  * are susceptible to it.  We look for the kernel version 2.6.16.*,
   1903  * which is the base kernel of SUSE SLES10, and for i386 or x86_64
   1904  * processors, which had CONFIG_SCHED_MC enabled.
   1905  *
   1906  * If these simpler conditions are met, we further simplify the check,
   1907  * by presuming that the logical CPUs are numbered on processor
   1908  * package boundaries.  If each package has S siblings, we assume
   1909  * that CPUs numbered N through N + S -1 are on the same package,
   1910  * for any CPU N such that N mod S == 0.
   1911  *
   1912  * Yes, this is a hack, focused on avoiding kernel freezes on
   1913  * susceptible SUSE SLES10 systems.
   1914  */
   1915 
   1916 static int cpuset_would_crash_kernel(const struct cpuset *cp)
   1917 {
   1918 	static int susceptible_system = -1;
   1919 
   1920 	if (!cp->cpu_exclusive)
   1921 		goto ok;
   1922 
   1923 	if (susceptible_system == -1) {
   1924 		struct utsname u;
   1925 		int rel_2_6_16, arch_i386, arch_x86_64;
   1926 
   1927 		if (uname(&u) < 0)
   1928 			goto fail;
   1929 		rel_2_6_16 = strprefix(u.release, "2.6.16.");
   1930 		arch_i386 = streq(u.machine, "i386");
   1931 		arch_x86_64 = streq(u.machine, "x86_64");
   1932 		susceptible_system = rel_2_6_16 && (arch_i386 || arch_x86_64);
   1933 	}
   1934 
   1935 	if (susceptible_system) {
   1936 		int ncpus = cpuset_cpus_nbits();
   1937 		int siblings = get_siblings();
   1938 		unsigned int cpu;
   1939 
   1940 		for (cpu = 0; cpu < (unsigned int)ncpus; cpu += siblings) {
   1941 			int s, num_set = 0;
   1942 
   1943 			for (s = 0; s < siblings; s++) {
   1944 				if (bitmask_isbitset(cp->cpus, cpu + s))
   1945 					num_set++;
   1946 			}
   1947 
   1948 			/* If none or all siblings set, we're still ok */
   1949 			if (num_set == 0 || num_set == siblings)
   1950 				continue;
   1951 
   1952 			/* Found one that would crash kernel.  Fail.  */
   1953 			errno = ENXIO;
   1954 			goto fail;
   1955 		}
   1956 	}
   1957 	/* If not susceptible, or if all ok, fall into "ok" ... */
   1958 ok:
   1959 	return 0;		/* would not crash */
   1960 fail:
   1961 	return 1;		/* would crash */
   1962 }
   1963 
   1964 /* compare two cpuset and mark the dirty variable */
   1965 static void mark_dirty_variable(struct cpuset *cp1, const struct cpuset *cp2)
   1966 {
   1967 	if (cp1->cpu_exclusive_valid &&
   1968 	    cp1->cpu_exclusive != cp2->cpu_exclusive)
   1969 		cp1->cpu_exclusive_dirty = 1;
   1970 
   1971 	if (cp1->mem_exclusive_valid &&
   1972 	    cp1->mem_exclusive != cp2->mem_exclusive)
   1973 		cp1->mem_exclusive_dirty = 1;
   1974 
   1975 	if (cp1->mem_hardwall_valid && cp1->mem_hardwall != cp2->mem_hardwall)
   1976 		cp1->mem_hardwall_dirty = 1;
   1977 
   1978 	if (cp1->notify_on_release_valid &&
   1979 	    cp1->notify_on_release != cp2->notify_on_release)
   1980 		cp1->notify_on_release_dirty = 1;
   1981 
   1982 	if (cp1->memory_migrate_valid &&
   1983 	    cp1->memory_migrate != cp2->memory_migrate)
   1984 		cp1->memory_migrate_dirty = 1;
   1985 
   1986 	if (cp1->memory_pressure_enabled_valid &&
   1987 	    cp1->memory_pressure_enabled != cp2->memory_pressure_enabled)
   1988 		cp1->memory_pressure_enabled_dirty = 1;
   1989 
   1990 	if (cp1->memory_spread_page_valid &&
   1991 	    cp1->memory_spread_page != cp2->memory_spread_page)
   1992 		cp1->memory_spread_page_dirty = 1;
   1993 
   1994 	if (cp1->memory_spread_slab_valid &&
   1995 	    cp1->memory_spread_slab != cp2->memory_spread_slab)
   1996 		cp1->memory_spread_slab_dirty = 1;
   1997 
   1998 	if (cp1->sched_load_balance_valid &&
   1999 	    cp1->sched_load_balance != cp2->sched_load_balance)
   2000 		cp1->sched_load_balance_dirty = 1;
   2001 
   2002 	if (cp1->sched_relax_domain_level_valid &&
   2003 	    cp1->sched_relax_domain_level != cp2->sched_relax_domain_level)
   2004 		cp1->sched_relax_domain_level_dirty = 1;
   2005 
   2006 	if (cp1->cpus_valid && !bitmask_equal(cp1->cpus, cp2->cpus))
   2007 		cp1->cpus_dirty = 1;
   2008 	if (cp1->mems_valid && !bitmask_equal(cp1->mems, cp2->mems))
   2009 		cp1->mems_dirty = 1;
   2010 }
   2011 
   2012 /* Create (if new set) or modify cpuset 'cp' at location 'relpath' */
   2013 static int cr_or_mod(const char *relpath, const struct cpuset *cp, int new)
   2014 {
   2015 	char buf[PATH_MAX];
   2016 	int do_rmdir_on_err = 0;
   2017 	int do_restore_cp_sav_on_err = 0;
   2018 	struct cpuset *cp_sav = NULL;
   2019 	int sav_errno;
   2020 
   2021 	if (check() < 0)
   2022 		goto err;
   2023 
   2024 	if (cpuset_would_crash_kernel(cp))
   2025 		goto err;
   2026 
   2027 	fullpath(buf, sizeof(buf), relpath);
   2028 
   2029 	if (new) {
   2030 		if (mkdir(buf, 0755) < 0)
   2031 			goto err;
   2032 		/* we made it, so we should remove it on error */
   2033 		do_rmdir_on_err = 1;
   2034 	}
   2035 
   2036 	if ((cp_sav = cpuset_alloc()) == NULL)
   2037 		goto err;
   2038 	if (cpuset_query(cp_sav, relpath) < 0)
   2039 		goto err;
   2040 	/* we have old settings to restore on error */
   2041 	do_restore_cp_sav_on_err = 1;
   2042 
   2043 	/* check which variable need to restore on error */
   2044 	mark_dirty_variable(cp_sav, cp);
   2045 
   2046 	if (apply_cpuset_settings(buf, cp) < 0)
   2047 		goto err;
   2048 
   2049 	cpuset_free(cp_sav);
   2050 	return 0;
   2051 err:
   2052 	sav_errno = errno;
   2053 	if (do_restore_cp_sav_on_err)
   2054 		(void)apply_cpuset_settings(buf, cp_sav);
   2055 	if (cp_sav)
   2056 		cpuset_free(cp_sav);
   2057 	if (do_rmdir_on_err)
   2058 		(void)rmdir(buf);
   2059 	errno = sav_errno;
   2060 	return -1;
   2061 }
   2062 
   2063 /* Create cpuset 'cp' at location 'relpath' */
   2064 int cpuset_create(const char *relpath, const struct cpuset *cp)
   2065 {
   2066 	return cr_or_mod(relpath, cp, 1);
   2067 }
   2068 
   2069 /* Delete cpuset at location 'path' (if empty) */
   2070 int cpuset_delete(const char *relpath)
   2071 {
   2072 	char buf[PATH_MAX];
   2073 
   2074 	if (check() < 0)
   2075 		goto err;
   2076 
   2077 	fullpath(buf, sizeof(buf), relpath);
   2078 	if (rmdir(buf) < 0)
   2079 		goto err;
   2080 
   2081 	return 0;
   2082 err:
   2083 	return -1;
   2084 }
   2085 
   2086 /* Set cpuset cp to the cpuset at location 'path' */
   2087 int cpuset_query(struct cpuset *cp, const char *relpath)
   2088 {
   2089 	char buf[PATH_MAX];
   2090 
   2091 	if (check() < 0)
   2092 		goto err;
   2093 
   2094 	fullpath(buf, sizeof(buf), relpath);
   2095 
   2096 	if (load_flag(buf, &cp->cpu_exclusive, "cpu_exclusive") < 0)
   2097 		goto err;
   2098 	cp->cpu_exclusive_valid = 1;
   2099 
   2100 	if (load_flag(buf, &cp->mem_exclusive, "mem_exclusive") < 0)
   2101 		goto err;
   2102 	cp->mem_exclusive_valid = 1;
   2103 
   2104 	if (load_flag(buf, &cp->notify_on_release, "notify_on_release") < 0)
   2105 		goto err;
   2106 	cp->notify_on_release_valid = 1;
   2107 
   2108 	if (exists_flag(buf, "memory_migrate")) {
   2109 		if (load_flag(buf, &cp->memory_migrate, "memory_migrate") < 0)
   2110 			goto err;
   2111 		cp->memory_migrate_valid = 1;
   2112 	}
   2113 
   2114 	if (exists_flag(buf, "mem_hardwall")) {
   2115 		if (load_flag(buf, &cp->mem_hardwall, "mem_hardwall") < 0)
   2116 			goto err;
   2117 		cp->mem_hardwall_valid = 1;
   2118 	}
   2119 
   2120 	if (exists_flag(buf, "memory_pressure_enabled")) {
   2121 		if (load_flag
   2122 		    (buf, &cp->memory_pressure_enabled,
   2123 		     "memory_pressure_enabled") < 0)
   2124 			goto err;
   2125 		cp->memory_pressure_enabled_valid = 1;
   2126 	}
   2127 
   2128 	if (exists_flag(buf, "memory_spread_page")) {
   2129 		if (load_flag
   2130 		    (buf, &cp->memory_spread_page, "memory_spread_page") < 0)
   2131 			goto err;
   2132 		cp->memory_spread_page_valid = 1;
   2133 	}
   2134 
   2135 	if (exists_flag(buf, "memory_spread_slab")) {
   2136 		if (load_flag
   2137 		    (buf, &cp->memory_spread_slab, "memory_spread_slab") < 0)
   2138 			goto err;
   2139 		cp->memory_spread_slab_valid = 1;
   2140 	}
   2141 
   2142 	if (exists_flag(buf, "sched_load_balance")) {
   2143 		if (load_flag
   2144 		    (buf, &cp->sched_load_balance, "sched_load_balance") < 0)
   2145 			goto err;
   2146 		cp->sched_load_balance_valid = 1;
   2147 	}
   2148 
   2149 	if (exists_flag(buf, "sched_relax_domain_level")) {
   2150 		if (load_number
   2151 		    (buf, &cp->sched_relax_domain_level,
   2152 		     "sched_relax_domain_level") < 0)
   2153 			goto err;
   2154 		cp->sched_relax_domain_level_valid = 1;
   2155 	}
   2156 
   2157 	if (load_mask(buf, &cp->cpus, cpuset_cpus_nbits(), "cpus") < 0)
   2158 		goto err;
   2159 	cp->cpus_valid = 1;
   2160 
   2161 	if (load_mask(buf, &cp->mems, cpuset_mems_nbits(), "mems") < 0)
   2162 		goto err;
   2163 	cp->mems_valid = 1;
   2164 
   2165 	return 0;
   2166 err:
   2167 	return -1;
   2168 }
   2169 
   2170 /* Modify cpuset at location 'relpath' to values of 'cp' */
   2171 int cpuset_modify(const char *relpath, const struct cpuset *cp)
   2172 {
   2173 	return cr_or_mod(relpath, cp, 0);
   2174 }
   2175 
   2176 /* Get cpuset path of pid into buf */
   2177 char *cpuset_getcpusetpath(pid_t pid, char *buf, size_t size)
   2178 {
   2179 	int fd;			/* dual use: cpuset file for pid and self */
   2180 	int rc;			/* dual use: snprintf and read return codes */
   2181 
   2182 	if (check() < 0)
   2183 		return NULL;
   2184 
   2185 	/* borrow result buf[] to build cpuset file path */
   2186 	if (pid == 0)
   2187 		rc = snprintf(buf, size, "/proc/self/cpuset");
   2188 	else
   2189 		rc = snprintf(buf, size, "/proc/%d/cpuset", pid);
   2190 	if (rc >= (int)size) {
   2191 		errno = E2BIG;
   2192 		return NULL;
   2193 	}
   2194 	if ((fd = open(buf, O_RDONLY)) < 0) {
   2195 		int e = errno;
   2196 		if (e == ENOENT)
   2197 			e = ESRCH;
   2198 		if ((fd = open("/proc/self/cpuset", O_RDONLY)) < 0)
   2199 			e = ENOSYS;
   2200 		else
   2201 			close(fd);
   2202 		errno = e;
   2203 		return NULL;
   2204 	}
   2205 	rc = read(fd, buf, size);
   2206 	close(fd);
   2207 	if (rc < 0)
   2208 		return NULL;
   2209 	if (rc >= (int)size) {
   2210 		errno = E2BIG;
   2211 		return NULL;
   2212 	}
   2213 	buf[rc] = 0;
   2214 	chomp(buf);
   2215 	return buf;
   2216 
   2217 }
   2218 
   2219 /* Get cpuset 'cp' of pid */
   2220 int cpuset_cpusetofpid(struct cpuset *cp, pid_t pid)
   2221 {
   2222 	char buf[PATH_MAX];
   2223 
   2224 	if (cpuset_getcpusetpath(pid, buf, sizeof(buf)) == NULL)
   2225 		return -1;
   2226 	if (cpuset_query(cp, buf) < 0)
   2227 		return -1;
   2228 	return 0;
   2229 }
   2230 
   2231 /* [optional] Return mountpoint of cpuset filesystem */
   2232 const char *cpuset_mountpoint(void)
   2233 {
   2234 	if (check() < 0) {
   2235 		switch (errno) {
   2236 		case ENODEV:
   2237 			return "[cpuset filesystem not mounted]";
   2238 		default:
   2239 			return "[cpuset filesystem not supported]";
   2240 		}
   2241 	}
   2242 	return cpusetmnt;
   2243 }
   2244 
   2245 /* Return true if path is a directory. */
   2246 static int isdir(const char *path)
   2247 {
   2248 	struct stat statbuf;
   2249 
   2250 	if (stat(path, &statbuf) < 0)
   2251 		return 0;
   2252 	return S_ISDIR(statbuf.st_mode);
   2253 }
   2254 
   2255 /*
   2256  * [optional] cpuset_collides_exclusive() - True if would collide exclusive.
   2257  *
   2258  * Return true iff the specified cpuset would overlap with any
   2259  * sibling cpusets in either cpus or mems, where either this
   2260  * cpuset or the sibling is cpu_exclusive or mem_exclusive.
   2261  *
   2262  * cpuset_create() fails with errno == EINVAL if the requested cpuset
   2263  * would overlap with any sibling, where either one is cpu_exclusive or
   2264  * mem_exclusive.  This is a common, and not obvious error.  The
   2265  * following routine checks for this particular case, so that code
   2266  * creating cpusets can better identify the situation, perhaps to issue
   2267  * a more informative error message.
   2268  *
   2269  * Can also be used to diagnose cpuset_modify failures.  This
   2270  * routine ignores any existing cpuset with the same path as the
   2271  * given 'cpusetpath', and only looks for exclusive collisions with
   2272  * sibling cpusets of that path.
   2273  *
   2274  * In case of any error, returns (0) -- does not collide.  Presumably
   2275  * any actual attempt to create or modify a cpuset will encounter the
   2276  * same error, and report it usefully.
   2277  *
   2278  * This routine is not particularly efficient; most likely code creating or
   2279  * modifying a cpuset will want to try the operation first, and then if that
   2280  * fails with errno EINVAL, perhaps call this routine to determine if an
   2281  * exclusive cpuset collision caused the error.
   2282  */
   2283 
   2284 int cpuset_collides_exclusive(const char *cpusetpath, const struct cpuset *cp1)
   2285 {
   2286 	char parent[PATH_MAX];
   2287 	char *p;
   2288 	char *pathcopy = NULL;
   2289 	char *base;
   2290 	DIR *dir = NULL;
   2291 	struct dirent *dent;
   2292 	struct cpuset *cp2 = NULL;
   2293 	struct bitmask *cpus1 = NULL, *cpus2 = NULL;
   2294 	struct bitmask *mems1 = NULL, *mems2 = NULL;
   2295 	int ret;
   2296 
   2297 	if (check() < 0)
   2298 		goto err;
   2299 
   2300 	fullpath(parent, sizeof(parent), cpusetpath);
   2301 	if (streq(parent, cpusetmnt))
   2302 		goto err;	/* only one cpuset root - can't collide */
   2303 	pathcopy = strdup(parent);
   2304 	p = strrchr(parent, '/');
   2305 	if (!p)
   2306 		goto err;	/* huh? - impossible - run and hide */
   2307 	*p = 0;			/* now parent is dirname of fullpath */
   2308 
   2309 	p = strrchr(pathcopy, '/');
   2310 	base = p + 1;		/* now base is basename of fullpath */
   2311 	if (!*base)
   2312 		goto err;	/* this is also impossible - run away */
   2313 
   2314 	if ((dir = opendir(parent)) == NULL)
   2315 		goto err;
   2316 	if ((cp2 = cpuset_alloc()) == NULL)
   2317 		goto err;
   2318 	if ((cpus1 = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   2319 		goto err;
   2320 	if ((cpus2 = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   2321 		goto err;
   2322 	if ((mems1 = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   2323 		goto err;
   2324 	if ((mems2 = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   2325 		goto err;
   2326 
   2327 	while ((dent = readdir(dir)) != NULL) {
   2328 		char child[PATH_MAX];
   2329 
   2330 		if (streq(dent->d_name, ".") || streq(dent->d_name, ".."))
   2331 			continue;
   2332 		if (streq(dent->d_name, base))
   2333 			continue;
   2334 		pathcat2(child, sizeof(child), parent, dent->d_name);
   2335 		if (!isdir(child))
   2336 			continue;
   2337 		if (cpuset_query(cp2, child + strlen(cpusetmnt)) < 0)
   2338 			goto err;
   2339 		if (cp1->cpu_exclusive || cp2->cpu_exclusive) {
   2340 			cpuset_getcpus(cp1, cpus1);
   2341 			cpuset_getcpus(cp2, cpus2);
   2342 			if (bitmask_intersects(cpus1, cpus2))
   2343 				goto collides;
   2344 		}
   2345 		if (cp1->mem_exclusive || cp2->mem_exclusive) {
   2346 			cpuset_getmems(cp1, mems1);
   2347 			cpuset_getmems(cp2, mems2);
   2348 			if (bitmask_intersects(mems1, mems2))
   2349 				goto collides;
   2350 		}
   2351 	}
   2352 err:
   2353 	/* error, or did not collide */
   2354 	ret = 0;
   2355 	goto done;
   2356 collides:
   2357 	/* collides */
   2358 	ret = 1;
   2359 	/* fall into ... */
   2360 done:
   2361 	if (dir)
   2362 		closedir(dir);
   2363 	cpuset_free(cp2);
   2364 	free(pathcopy);
   2365 	bitmask_free(cpus1);
   2366 	bitmask_free(cpus2);
   2367 	bitmask_free(mems1);
   2368 	bitmask_free(mems2);
   2369 	return ret;
   2370 }
   2371 
   2372 /*
   2373  * [optional] cpuset_nuke() - Remove cpuset anyway possible
   2374  *
   2375  * Remove a cpuset, including killing tasks in it, and
   2376  * removing any descendent cpusets and killing their tasks.
   2377  *
   2378  * Tasks can take a long time (minutes on some configurations)
   2379  * to exit.  Loop up to 'seconds' seconds, trying to kill them.
   2380  *
   2381  * How we do it:
   2382  *	1) First, kill all the pids, looping until there are
   2383  *	   no more pids in this cpuset or below, or until the
   2384  *	   'seconds' timeout limit is exceeded.
   2385  *	2) Then depth first recursively rmdir the cpuset directories.
   2386  *	3) If by this point the original cpuset is gone, we succeeded.
   2387  *
   2388  * If the timeout is exceeded, and tasks still exist, fail with
   2389  * errno == ETIME.
   2390  *
   2391  * We sleep a variable amount of time.  After the first attempt to
   2392  * kill all the tasks in the cpuset or its descendents, we sleep 1
   2393  * second, the next time 2 seconds, increasing 1 second each loop
   2394  * up to a max of 10 seconds.  If more loops past 10 are required
   2395  * to kill all the tasks, we sleep 10 seconds each subsequent loop.
   2396  * In any case, before the last loop, we sleep however many seconds
   2397  * remain of the original timeout 'seconds' requested.  The total
   2398  * time of all sleeps will be no more than the requested 'seconds'.
   2399  *
   2400  * If the cpuset started out empty of any tasks, or if the passed in
   2401  * 'seconds' was zero, then this routine will return quickly, having
   2402  * not slept at all.  Otherwise, this routine will at a minimum send
   2403  * a SIGKILL to all the tasks in this cpuset subtree, then sleep one
   2404  * second, before looking to see if any tasks remain.  If tasks remain
   2405  * in the cpuset subtree, and a longer 'seconds' timeout was requested
   2406  * (more than one), it will continue to kill remaining tasks and sleep,
   2407  * in a loop, for as long as time and tasks remain.
   2408  *
   2409  * The signal sent for the kill is hardcoded to SIGKILL (9).  If some
   2410  * other signal should be sent first, use a separate code loop,
   2411  * perhaps based on cpuset_init_pidlist and cpuset_get_pidlist, to
   2412  * scan the task pids in a cpuset.  If SIGKILL should -not- be sent,
   2413  * this cpuset_nuke() routine can still be called to recursively
   2414  * remove a cpuset subtree, by specifying a timeout of zero 'seconds'.
   2415  *
   2416  * On success, returns 0 with errno == 0.
   2417  *
   2418  * On failure, returns -1, with errno possibly one of:
   2419  *  EACCES - search permission denied on intervening directory
   2420  *  ETIME - timed out - tasks remain after 'seconds' timeout
   2421  *  EMFILE - too many open files
   2422  *  ENODEV - /dev/cpuset not mounted
   2423  *  ENOENT - component of cpuset path doesn't exist
   2424  *  ENOMEM - out of memory
   2425  *  ENOSYS - kernel doesn't support cpusets
   2426  *  ENOTDIR - component of cpuset path is not a directory
   2427  *  EPERM - lacked permission to kill a task
   2428  *  EPERM - lacked permission to read cpusets or files therein
   2429  */
   2430 
   2431 void cpuset_fts_reverse(struct cpuset_fts_tree *cs_tree);
   2432 
   2433 int cpuset_nuke(const char *relpath, unsigned int seconds)
   2434 {
   2435 	unsigned int secs_left = seconds;	/* total sleep seconds left */
   2436 	unsigned int secs_loop = 1;	/* how much sleep next loop */
   2437 	unsigned int secs_slept;	/* seconds slept in sleep() */
   2438 	struct cpuset_pidlist *pl = NULL;	/* pids in cpuset subtree */
   2439 	struct cpuset_fts_tree *cs_tree;
   2440 	const struct cpuset_fts_entry *cs_entry;
   2441 	int ret, sav_errno = 0;
   2442 
   2443 	if (check() < 0)
   2444 		return -1;
   2445 
   2446 	if (seconds == 0)
   2447 		goto rmdir_cpusets;
   2448 
   2449 	while (1) {
   2450 		int plen, j;
   2451 
   2452 		if ((pl = cpuset_init_pidlist(relpath, 1)) == NULL) {
   2453 			/* missing cpuset is as good as if already nuked */
   2454 			if (errno == ENOENT) {
   2455 				ret = 0;
   2456 				goto no_more_cpuset;
   2457 			}
   2458 
   2459 			/* other problems reading cpuset are bad news */
   2460 			sav_errno = errno;
   2461 			goto failed;
   2462 		}
   2463 
   2464 		if ((plen = cpuset_pidlist_length(pl)) == 0)
   2465 			goto rmdir_cpusets;
   2466 
   2467 		for (j = 0; j < plen; j++) {
   2468 			pid_t pid;
   2469 
   2470 			if ((pid = cpuset_get_pidlist(pl, j)) > 1) {
   2471 				if (kill(pid, SIGKILL) < 0 && errno != ESRCH) {
   2472 					sav_errno = errno;
   2473 					goto failed;
   2474 				}
   2475 			}
   2476 		}
   2477 
   2478 		if (secs_left == 0)
   2479 			goto took_too_long;
   2480 
   2481 		cpuset_freepidlist(pl);
   2482 		pl = NULL;
   2483 
   2484 		secs_slept = secs_loop - sleep(secs_loop);
   2485 
   2486 		/* Ensure forward progress */
   2487 		if (secs_slept == 0)
   2488 			secs_slept = 1;
   2489 
   2490 		/* Ensure sane sleep() return (unnecessary?) */
   2491 		if (secs_slept > secs_loop)
   2492 			secs_slept = secs_loop;
   2493 
   2494 		secs_left -= secs_slept;
   2495 
   2496 		if (secs_loop < 10)
   2497 			secs_loop++;
   2498 
   2499 		secs_loop = MIN(secs_left, secs_loop);
   2500 	}
   2501 
   2502 took_too_long:
   2503 	sav_errno = ETIME;
   2504 	/* fall into ... */
   2505 failed:
   2506 	cpuset_freepidlist(pl);
   2507 	errno = sav_errno;
   2508 	return -1;
   2509 
   2510 rmdir_cpusets:
   2511 	/* Let's try removing cpuset(s) now. */
   2512 	cpuset_freepidlist(pl);
   2513 
   2514 	if ((cs_tree = cpuset_fts_open(relpath)) == NULL && errno != ENOENT)
   2515 		return -1;
   2516 	ret = 0;
   2517 	cpuset_fts_reverse(cs_tree);	/* rmdir's must be done bottom up */
   2518 	while ((cs_entry = cpuset_fts_read(cs_tree)) != NULL) {
   2519 		char buf[PATH_MAX];
   2520 
   2521 		fullpath(buf, sizeof(buf), cpuset_fts_get_path(cs_entry));
   2522 		if (rmdir(buf) < 0 && errno != ENOENT) {
   2523 			sav_errno = errno;
   2524 			ret = -1;
   2525 		}
   2526 	}
   2527 	cpuset_fts_close(cs_tree);
   2528 	/* fall into ... */
   2529 no_more_cpuset:
   2530 	if (ret == 0)
   2531 		errno = 0;
   2532 	else
   2533 		errno = sav_errno;
   2534 	return ret;
   2535 }
   2536 
   2537 /*
   2538  * When recursively reading all the tasks files from a subtree,
   2539  * chain together the read results, one pidblock per tasks file,
   2540  * containing the raw unprocessed ascii as read(2) in.  After
   2541  * we gather up this raw data, we then go back to count how
   2542  * many pid's there are in total, allocate an array of pid_t
   2543  * of that size, and transform the raw ascii data into this
   2544  * array of pid_t's.
   2545  */
   2546 
   2547 struct pidblock {
   2548 	char *buf;
   2549 	int buflen;
   2550 	struct pidblock *next;
   2551 };
   2552 
   2553 /*
   2554  * Chain the raw contents of a file onto the pbhead list.
   2555  *
   2556  * We malloc "+ 1" extra byte for a nul-terminator, so that
   2557  * the strtoul() loop in pid_transform() won't scan past
   2558  * the end of pb->buf[] and accidentally find more pids.
   2559  */
   2560 static void add_pidblock(const char *file, struct pidblock **ppbhead)
   2561 {
   2562 	FILE *fp = NULL;
   2563 	struct pidblock *pb = NULL;
   2564 	int fsz;
   2565 
   2566 	if ((fp = fopen(file, "r")) == NULL)
   2567 		goto err;
   2568 	fsz = filesize(fp);
   2569 	if (fsz == 0)
   2570 		goto err;
   2571 	if ((pb = calloc(1, sizeof(*pb))) == NULL)
   2572 		goto err;
   2573 	pb->buflen = fsz;
   2574 	if ((pb->buf = malloc(pb->buflen + 1)) == NULL)
   2575 		goto err;
   2576 	if (fread(pb->buf, 1, pb->buflen, fp) > 0) {
   2577 		pb->buf[pb->buflen] = '\0';
   2578 		pb->next = *ppbhead;
   2579 		*ppbhead = pb;
   2580 	}
   2581 	fclose(fp);
   2582 	return;
   2583 err:
   2584 	if (fp)
   2585 		fclose(fp);
   2586 	free(pb);
   2587 }
   2588 
   2589 static void read_task_file(const char *relpath, struct pidblock **ppbhead)
   2590 {
   2591 	char buf[PATH_MAX];
   2592 
   2593 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2594 	add_pidblock(buf, ppbhead);
   2595 }
   2596 
   2597 struct cpuset_pidlist {
   2598 	pid_t *pids;
   2599 	int npids;
   2600 };
   2601 
   2602 /* Count how many pids in buf (one per line - just count newlines) */
   2603 static int pidcount(const char *buf, int buflen)
   2604 {
   2605 	int n = 0;
   2606 	const char *cp;
   2607 
   2608 	for (cp = buf; cp < buf + buflen; cp++) {
   2609 		if (*cp == '\n')
   2610 			n++;
   2611 	}
   2612 	return n;
   2613 }
   2614 
   2615 /* Transform one-per-line ascii pids in pb to pid_t entries in pl */
   2616 static int pid_transform(struct pidblock *pb, struct cpuset_pidlist *pl, int n)
   2617 {
   2618 	char *a, *b;
   2619 
   2620 	for (a = pb->buf; a < pb->buf + pb->buflen; a = b) {
   2621 		pid_t p = strtoul(a, &b, 10);
   2622 		if (a == b)
   2623 			break;
   2624 		pl->pids[n++] = p;
   2625 	}
   2626 	return n;
   2627 }
   2628 
   2629 static void free_pidblocks(struct pidblock *pbhead)
   2630 {
   2631 	struct pidblock *pb, *nextpb;
   2632 
   2633 	for (pb = pbhead; pb; pb = nextpb) {
   2634 		nextpb = pb->next;
   2635 		free(pb->buf);
   2636 		free(pb);
   2637 	}
   2638 }
   2639 
   2640 /* numeric comparison routine for qsort */
   2641 static int numericsort(const void *m1, const void *m2)
   2642 {
   2643 	pid_t p1 = *(pid_t *) m1;
   2644 	pid_t p2 = *(pid_t *) m2;
   2645 
   2646 	return p1 - p2;
   2647 }
   2648 
   2649 /* Return list pids in cpuset 'path' */
   2650 struct cpuset_pidlist *cpuset_init_pidlist(const char *relpath,
   2651 					   int recursiveflag)
   2652 {
   2653 	struct pidblock *pb = NULL;
   2654 	struct cpuset_pidlist *pl = NULL;
   2655 	struct pidblock *pbhead = NULL;
   2656 	int n;
   2657 
   2658 	if (check() < 0)
   2659 		goto err;
   2660 
   2661 	if (recursiveflag) {
   2662 		struct cpuset_fts_tree *cs_tree;
   2663 		const struct cpuset_fts_entry *cs_entry;
   2664 
   2665 		if ((cs_tree = cpuset_fts_open(relpath)) == NULL)
   2666 			goto err;
   2667 		while ((cs_entry = cpuset_fts_read(cs_tree)) != NULL) {
   2668 			if (cpuset_fts_get_info(cs_entry) != CPUSET_FTS_CPUSET)
   2669 				continue;
   2670 			read_task_file(cpuset_fts_get_path(cs_entry), &pbhead);
   2671 		}
   2672 		cpuset_fts_close(cs_tree);
   2673 	} else {
   2674 		read_task_file(relpath, &pbhead);
   2675 	}
   2676 
   2677 	if ((pl = calloc(1, sizeof(*pl))) == NULL)
   2678 		goto err;
   2679 	pl->npids = 0;
   2680 	for (pb = pbhead; pb; pb = pb->next)
   2681 		pl->npids += pidcount(pb->buf, pb->buflen);
   2682 	if ((pl->pids = calloc(pl->npids, sizeof(pid_t))) == NULL)
   2683 		goto err;
   2684 	n = 0;
   2685 	for (pb = pbhead; pb; pb = pb->next)
   2686 		n = pid_transform(pb, pl, n);
   2687 	free_pidblocks(pbhead);
   2688 	qsort(pl->pids, pl->npids, sizeof(pid_t), numericsort);
   2689 	return pl;
   2690 err:
   2691 	cpuset_freepidlist(pl);
   2692 	free_pidblocks(pbhead);
   2693 	return NULL;
   2694 }
   2695 
   2696 /* Return number of elements in pidlist */
   2697 int cpuset_pidlist_length(const struct cpuset_pidlist *pl)
   2698 {
   2699 	if (pl)
   2700 		return pl->npids;
   2701 	else
   2702 		return 0;
   2703 }
   2704 
   2705 /* Return i'th element of pidlist */
   2706 pid_t cpuset_get_pidlist(const struct cpuset_pidlist * pl, int i)
   2707 {
   2708 	if (pl && i >= 0 && i < pl->npids)
   2709 		return pl->pids[i];
   2710 	else
   2711 		return (pid_t) - 1;
   2712 }
   2713 
   2714 /* Free pidlist */
   2715 void cpuset_freepidlist(struct cpuset_pidlist *pl)
   2716 {
   2717 	if (pl && pl->pids)
   2718 		free(pl->pids);
   2719 	free(pl);
   2720 }
   2721 
   2722 static int __cpuset_move(pid_t pid, const char *path)
   2723 {
   2724 	char buf[SMALL_BUFSZ];
   2725 
   2726 	snprintf(buf, sizeof(buf), "%u", pid);
   2727 	return write_string_file(path, buf);
   2728 }
   2729 
   2730 /* Move task (pid == 0 for current) to a cpuset */
   2731 int cpuset_move(pid_t pid, const char *relpath)
   2732 {
   2733 	char buf[PATH_MAX];
   2734 
   2735 	if (check() < 0)
   2736 		return -1;
   2737 
   2738 	if (pid == 0)
   2739 		pid = getpid();
   2740 
   2741 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2742 	return __cpuset_move(pid, buf);
   2743 }
   2744 
   2745 /* Move all tasks in pidlist to a cpuset */
   2746 int cpuset_move_all(struct cpuset_pidlist *pl, const char *relpath)
   2747 {
   2748 	int i;
   2749 	char buf[PATH_MAX];
   2750 	int ret;
   2751 
   2752 	if (check() < 0)
   2753 		return -1;
   2754 
   2755 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2756 
   2757 	ret = 0;
   2758 	for (i = 0; i < pl->npids; i++)
   2759 		if (__cpuset_move(pl->pids[i], buf) < 0)
   2760 			ret = -1;
   2761 	return ret;
   2762 }
   2763 
   2764 /*
   2765  * [optional] cpuset_move_cpuset_tasks() - Move all tasks in a
   2766  *                                      cpuset to another cpuset
   2767  *
   2768  * Move all tasks in cpuset fromrelpath to cpuset torelpath. This may
   2769  * race with tasks being added to or forking into fromrelpath. Loop
   2770  * repeatedly, reading the tasks file of cpuset fromrelpath and writing
   2771  * any task pid's found there to the tasks file of cpuset torelpath,
   2772  * up to ten attempts, or until the tasks file of cpuset fromrelpath
   2773  * is empty, or until fromrelpath is no longer present.
   2774  *
   2775  * Returns 0 with errno == 0 if able to empty the tasks file of cpuset
   2776  * fromrelpath. Of course it is still possible that some independent
   2777  * task could add another task to cpuset fromrelpath at the same time
   2778  * that such a successful result is being returned, so there can be
   2779  * no guarantee that a successful return means that fromrelpath is
   2780  * still empty of tasks.
   2781  *
   2782  * We are careful to allow for the possibility that the cpuset
   2783  * fromrelpath might disappear out from under us, perhaps because it
   2784  * has notify_on_release set and gets automatically removed as soon
   2785  * as we detach its last task from it.  Consider a missing fromrelpath
   2786  * to be a successful move.
   2787  *
   2788  * If called with fromrelpath and torelpath pathnames that evaluate to
   2789  * the same cpuset, then treat that as if cpuset_reattach() was called,
   2790  * rebinding each task in this cpuset one time, and return success or
   2791  * failure depending on the return of that cpuset_reattach() call.
   2792  *
   2793  * On failure, returns -1, with errno possibly one of:
   2794  *  EACCES - search permission denied on intervening directory
   2795  *  ENOTEMPTY - tasks remain after multiple attempts to move them
   2796  *  EMFILE - too many open files
   2797  *  ENODEV - /dev/cpuset not mounted
   2798  *  ENOENT - component of cpuset path doesn't exist
   2799  *  ENOMEM - out of memory
   2800  *  ENOSYS - kernel doesn't support cpusets
   2801  *  ENOTDIR - component of cpuset path is not a directory
   2802  *  EPERM - lacked permission to kill a task
   2803  *  EPERM - lacked permission to read cpusets or files therein
   2804  *
   2805  * This is an [optional] function. Use cpuset_function to invoke it.
   2806  */
   2807 
   2808 #define NUMBER_MOVE_TASK_ATTEMPTS 10
   2809 
   2810 int cpuset_move_cpuset_tasks(const char *fromrelpath, const char *torelpath)
   2811 {
   2812 	char fromfullpath[PATH_MAX];
   2813 	char tofullpath[PATH_MAX];
   2814 	int i;
   2815 	struct cpuset_pidlist *pl = NULL;
   2816 	int sav_errno;
   2817 
   2818 	fullpath(fromfullpath, sizeof(fromfullpath), fromrelpath);
   2819 	fullpath(tofullpath, sizeof(tofullpath), torelpath);
   2820 
   2821 	if (samefile(fromfullpath, tofullpath))
   2822 		return cpuset_reattach(fromrelpath);
   2823 
   2824 	for (i = 0; i < NUMBER_MOVE_TASK_ATTEMPTS; i++) {
   2825 		int plen, j;
   2826 
   2827 		if ((pl = cpuset_init_pidlist(fromrelpath, 0)) == NULL) {
   2828 			/* missing cpuset is as good as if all moved */
   2829 			if (errno == ENOENT)
   2830 				goto no_more_cpuset;
   2831 
   2832 			/* other problems reading cpuset are bad news */
   2833 			sav_errno = errno;
   2834 			goto failed;
   2835 		}
   2836 
   2837 		if ((plen = cpuset_pidlist_length(pl)) == 0)
   2838 			goto no_more_pids;
   2839 
   2840 		for (j = 0; j < plen; j++) {
   2841 			pid_t pid;
   2842 
   2843 			pid = cpuset_get_pidlist(pl, j);
   2844 			if (cpuset_move(pid, torelpath) < 0) {
   2845 				/* missing task is as good as if moved */
   2846 				if (errno == ESRCH)
   2847 					continue;
   2848 
   2849 				/* other per-task errors are bad news */
   2850 				sav_errno = errno;
   2851 				goto failed;
   2852 			}
   2853 		}
   2854 
   2855 		cpuset_freepidlist(pl);
   2856 		pl = NULL;
   2857 	}
   2858 
   2859 	sav_errno = ENOTEMPTY;
   2860 	/* fall into ... */
   2861 failed:
   2862 	cpuset_freepidlist(pl);
   2863 	errno = sav_errno;
   2864 	return -1;
   2865 
   2866 no_more_pids:
   2867 no_more_cpuset:
   2868 	/* Success - all tasks (or entire cpuset ;) gone. */
   2869 	cpuset_freepidlist(pl);
   2870 	errno = 0;
   2871 	return 0;
   2872 }
   2873 
   2874 /* Migrate task (pid == 0 for current) to a cpuset (moves task and memory) */
   2875 int cpuset_migrate(pid_t pid, const char *relpath)
   2876 {
   2877 	char buf[PATH_MAX];
   2878 	char buf2[PATH_MAX];
   2879 	char memory_migrate_flag;
   2880 	int r;
   2881 
   2882 	if (check() < 0)
   2883 		return -1;
   2884 
   2885 	if (pid == 0)
   2886 		pid = getpid();
   2887 
   2888 	fullpath(buf2, sizeof(buf2), relpath);
   2889 
   2890 	if (load_flag(buf2, &memory_migrate_flag, "memory_migrate") < 0)
   2891 		return -1;
   2892 	if (store_flag(buf2, "memory_migrate", 1) < 0)
   2893 		return -1;
   2894 
   2895 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2896 
   2897 	r = __cpuset_move(pid, buf);
   2898 
   2899 	store_flag(buf2, "memory_migrate", memory_migrate_flag);
   2900 	return r;
   2901 }
   2902 
   2903 /* Migrate all tasks in pidlist to a cpuset (moves task and memory) */
   2904 int cpuset_migrate_all(struct cpuset_pidlist *pl, const char *relpath)
   2905 {
   2906 	int i;
   2907 	char buf[PATH_MAX];
   2908 	char buf2[PATH_MAX];
   2909 	char memory_migrate_flag;
   2910 	int ret;
   2911 
   2912 	if (check() < 0)
   2913 		return -1;
   2914 
   2915 	fullpath(buf2, sizeof(buf2), relpath);
   2916 
   2917 	if (load_flag(buf2, &memory_migrate_flag, "memory_migrate") < 0)
   2918 		return -1;
   2919 	if (store_flag(buf2, "memory_migrate", 1) < 0)
   2920 		return -1;
   2921 
   2922 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2923 
   2924 	ret = 0;
   2925 	for (i = 0; i < pl->npids; i++)
   2926 		if (__cpuset_move(pl->pids[i], buf) < 0)
   2927 			ret = -1;
   2928 
   2929 	if (store_flag(buf2, "memory_migrate", memory_migrate_flag) < 0)
   2930 		ret = -1;
   2931 	return ret;
   2932 }
   2933 
   2934 /* Rebind cpus_allowed of each task in cpuset 'path' */
   2935 int cpuset_reattach(const char *relpath)
   2936 {
   2937 	struct cpuset_pidlist *pl;
   2938 	int rc;
   2939 
   2940 	if ((pl = cpuset_init_pidlist(relpath, 0)) == NULL)
   2941 		return -1;
   2942 	rc = cpuset_move_all(pl, relpath);
   2943 	cpuset_freepidlist(pl);
   2944 	return rc;
   2945 }
   2946 
   2947 /* Map cpuset relative cpu number to system wide cpu number */
   2948 int cpuset_c_rel_to_sys_cpu(const struct cpuset *cp, int cpu)
   2949 {
   2950 	struct cpuset *cp_tofree = NULL;
   2951 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2952 	int pos = -1;
   2953 
   2954 	if (!cp1)
   2955 		goto err;
   2956 	pos = bitmask_rel_to_abs_pos(cp1->cpus, cpu);
   2957 	/* fall into ... */
   2958 err:
   2959 	cpuset_free(cp_tofree);
   2960 	return pos;
   2961 }
   2962 
   2963 /* Map system wide cpu number to cpuset relative cpu number */
   2964 int cpuset_c_sys_to_rel_cpu(const struct cpuset *cp, int cpu)
   2965 {
   2966 	struct cpuset *cp_tofree = NULL;
   2967 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2968 	int pos = -1;
   2969 
   2970 	if (!cp1)
   2971 		goto err;
   2972 	pos = bitmask_abs_to_rel_pos(cp1->cpus, cpu);
   2973 	/* fall into ... */
   2974 err:
   2975 	cpuset_free(cp_tofree);
   2976 	return pos;
   2977 }
   2978 
   2979 /* Map cpuset relative mem number to system wide mem number */
   2980 int cpuset_c_rel_to_sys_mem(const struct cpuset *cp, int mem)
   2981 {
   2982 	struct cpuset *cp_tofree = NULL;
   2983 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2984 	int pos = -1;
   2985 
   2986 	if (!cp1)
   2987 		goto err;
   2988 	pos = bitmask_rel_to_abs_pos(cp1->mems, mem);
   2989 	/* fall into ... */
   2990 err:
   2991 	cpuset_free(cp_tofree);
   2992 	return pos;
   2993 }
   2994 
   2995 /* Map system wide mem number to cpuset relative mem number */
   2996 int cpuset_c_sys_to_rel_mem(const struct cpuset *cp, int mem)
   2997 {
   2998 	struct cpuset *cp_tofree = NULL;
   2999 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   3000 	int pos = -1;
   3001 
   3002 	if (!cp1)
   3003 		goto err;
   3004 	pos = bitmask_abs_to_rel_pos(cp1->mems, mem);
   3005 	/* fall into ... */
   3006 err:
   3007 	cpuset_free(cp_tofree);
   3008 	return pos;
   3009 }
   3010 
   3011 /* Map pid's cpuset relative cpu number to system wide cpu number */
   3012 int cpuset_p_rel_to_sys_cpu(pid_t pid, int cpu)
   3013 {
   3014 	struct cpuset *cp;
   3015 	int rc = -1;
   3016 
   3017 	if ((cp = cpuset_alloc()) == NULL)
   3018 		goto done;
   3019 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3020 		goto done;
   3021 	rc = cpuset_c_rel_to_sys_cpu(cp, cpu);
   3022 done:
   3023 	cpuset_free(cp);
   3024 	return rc;
   3025 }
   3026 
   3027 /* Map system wide cpu number to pid's cpuset relative cpu number */
   3028 int cpuset_p_sys_to_rel_cpu(pid_t pid, int cpu)
   3029 {
   3030 	struct cpuset *cp;
   3031 	int rc = -1;
   3032 
   3033 	if ((cp = cpuset_alloc()) == NULL)
   3034 		goto done;
   3035 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3036 		goto done;
   3037 	rc = cpuset_c_sys_to_rel_cpu(cp, cpu);
   3038 done:
   3039 	cpuset_free(cp);
   3040 	return rc;
   3041 }
   3042 
   3043 /* Map pid's cpuset relative mem number to system wide mem number */
   3044 int cpuset_p_rel_to_sys_mem(pid_t pid, int mem)
   3045 {
   3046 	struct cpuset *cp;
   3047 	int rc = -1;
   3048 
   3049 	if ((cp = cpuset_alloc()) == NULL)
   3050 		goto done;
   3051 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3052 		goto done;
   3053 	rc = cpuset_c_rel_to_sys_mem(cp, mem);
   3054 done:
   3055 	cpuset_free(cp);
   3056 	return rc;
   3057 }
   3058 
   3059 /* Map system wide mem number to pid's cpuset relative mem number */
   3060 int cpuset_p_sys_to_rel_mem(pid_t pid, int mem)
   3061 {
   3062 	struct cpuset *cp;
   3063 	int rc = -1;
   3064 
   3065 	if ((cp = cpuset_alloc()) == NULL)
   3066 		goto done;
   3067 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3068 		goto done;
   3069 	rc = cpuset_c_sys_to_rel_mem(cp, mem);
   3070 done:
   3071 	cpuset_free(cp);
   3072 	return rc;
   3073 }
   3074 
   3075 /*
   3076  * Override glibc's calls for get/set affinity - they have
   3077  * something using cpu_set_t that will die when NR_CPUS > 1024.
   3078  * Go directly to the 'real' system calls.  Also override calls
   3079  * for get_mempolicy and set_mempolicy.  None of these
   3080  * calls are yet (July 2004) guaranteed to be in all glibc versions
   3081  * that we care about.
   3082  */
   3083 
   3084 static int sched_setaffinity(pid_t pid, unsigned len, unsigned long *mask)
   3085 {
   3086 	return ltp_syscall(__NR_sched_setaffinity, pid, len, mask);
   3087 }
   3088 
   3089 static int get_mempolicy(int *policy, unsigned long *nmask,
   3090 			 unsigned long maxnode, void *addr, int flags)
   3091 {
   3092 	return ltp_syscall(__NR_get_mempolicy, policy, nmask, maxnode,
   3093 		addr, flags);
   3094 }
   3095 
   3096 static int set_mempolicy(int mode, unsigned long *nmask, unsigned long maxnode)
   3097 {
   3098 	return ltp_syscall(__NR_set_mempolicy, mode, nmask, maxnode);
   3099 }
   3100 
   3101 struct cpuset_placement {
   3102 	struct bitmask *cpus;
   3103 	struct bitmask *mems;
   3104 	char *path;
   3105 };
   3106 
   3107 /* Allocate and fill in a placement struct - cpatures current placement */
   3108 struct cpuset_placement *cpuset_get_placement(pid_t pid)
   3109 {
   3110 	struct cpuset_placement *plc;
   3111 	struct cpuset *cp = NULL;
   3112 	char buf[PATH_MAX];
   3113 	int nbits;
   3114 
   3115 	if ((plc = calloc(1, sizeof(*plc))) == NULL)
   3116 		goto err;
   3117 
   3118 	nbits = cpuset_cpus_nbits();
   3119 	if ((plc->cpus = bitmask_alloc(nbits)) == NULL)
   3120 		goto err;
   3121 
   3122 	nbits = cpuset_mems_nbits();
   3123 	if ((plc->mems = bitmask_alloc(nbits)) == NULL)
   3124 		goto err;
   3125 
   3126 	if ((cp = cpuset_alloc()) == NULL)
   3127 		goto err;
   3128 	if (cpuset_getcpusetpath(pid, buf, sizeof(buf)) == NULL)
   3129 		goto err;
   3130 	if (cpuset_query(cp, buf) < 0)
   3131 		goto err;
   3132 
   3133 	bitmask_copy(plc->cpus, cp->cpus);
   3134 	bitmask_copy(plc->mems, cp->mems);
   3135 	plc->path = strdup(buf);
   3136 
   3137 	cpuset_free(cp);
   3138 	return plc;
   3139 err:
   3140 	cpuset_free(cp);
   3141 	cpuset_free_placement(plc);
   3142 	return NULL;
   3143 }
   3144 
   3145 /* Compare two placement structs - use to detect changes in placement */
   3146 int cpuset_equal_placement(const struct cpuset_placement *plc1,
   3147 			   const struct cpuset_placement *plc2)
   3148 {
   3149 	return bitmask_equal(plc1->cpus, plc2->cpus) &&
   3150 	    bitmask_equal(plc1->mems, plc2->mems) &&
   3151 	    streq(plc1->path, plc2->path);
   3152 }
   3153 
   3154 /* Free a placement struct */
   3155 void cpuset_free_placement(struct cpuset_placement *plc)
   3156 {
   3157 	if (!plc)
   3158 		return;
   3159 	bitmask_free(plc->cpus);
   3160 	bitmask_free(plc->mems);
   3161 	free(plc->path);
   3162 	free(plc);
   3163 }
   3164 
   3165 /*
   3166  * A cpuset_fts_open() call constructs a linked list of entries
   3167  * called a "cpuset_fts_tree", with one entry per cpuset below
   3168  * the specified path.  The cpuset_fts_read() routine returns the
   3169  * next entry on this list.  The various cpuset_fts_get_*() calls
   3170  * return attributes of the specified entry.  The cpuset_fts_close()
   3171  * call frees the linked list and all associated data.  All cpuset
   3172  * entries and attributes for the cpuset_fts_tree returned from a
   3173  * given cpuset_fts_open() call remain allocated and unchanged until
   3174  * that cpuset_fts_tree is closed by a cpuset_fts_close() call.  Any
   3175  * subsequent changes to the cpuset filesystem will go unnoticed
   3176  * (not affect open cpuset_fts_tree's.)
   3177  */
   3178 
   3179 struct cpuset_fts_entry;
   3180 void cpuset_fts_rewind(struct cpuset_fts_tree *cs_tree);
   3181 
   3182 struct cpuset_fts_tree {
   3183 	struct cpuset_fts_entry *head;	/* head of linked entry list */
   3184 	struct cpuset_fts_entry *next;	/* cpuset_fts_read() offset */
   3185 };
   3186 
   3187 struct cpuset_fts_entry {
   3188 	struct cpuset_fts_entry *next;	/* linked entry list chain */
   3189 	struct cpuset *cpuset;
   3190 	struct stat *stat;
   3191 	char *path;
   3192 	int info;
   3193 	int err;
   3194 };
   3195 
   3196 /* Open a handle on a cpuset hierarchy.  All the real work is done here. */
   3197 struct cpuset_fts_tree *cpuset_fts_open(const char *cpusetpath)
   3198 {
   3199 	FTS *fts = NULL;
   3200 	FTSENT *ftsent;
   3201 	char *path_argv[2];
   3202 	char buf[PATH_MAX];
   3203 	struct cpuset_fts_tree *cs_tree = NULL;
   3204 	struct cpuset_fts_entry *ep;	/* the latest new list entry */
   3205 	struct cpuset_fts_entry **pnlep;	/* ptr to next list entry ptr */
   3206 	char *relpath;
   3207 	int fts_flags;
   3208 
   3209 	fullpath(buf, sizeof(buf), cpusetpath);
   3210 	path_argv[0] = buf;
   3211 	path_argv[1] = NULL;
   3212 
   3213 	fts_flags = FTS_PHYSICAL | FTS_NOCHDIR | FTS_NOSTAT | FTS_XDEV;
   3214 	fts = fts_open(path_argv, fts_flags, NULL);
   3215 	if (fts == NULL)
   3216 		goto err;
   3217 
   3218 	cs_tree = malloc(sizeof(*cs_tree));
   3219 	if (cs_tree == NULL)
   3220 		goto err;
   3221 	pnlep = &cs_tree->head;
   3222 	*pnlep = NULL;
   3223 
   3224 	while ((ftsent = fts_read(fts)) != NULL) {
   3225 		if (ftsent->fts_info != FTS_D && ftsent->fts_info != FTS_DNR)
   3226 			continue;
   3227 
   3228 		/* ftsent is a directory (perhaps unreadable) ==> cpuset */
   3229 		ep = calloc(1, sizeof(*ep));
   3230 		if (ep == NULL)
   3231 			goto err;
   3232 		*pnlep = ep;
   3233 		pnlep = &ep->next;
   3234 
   3235 		/* Set entry's path, and if DNR, error */
   3236 		relpath = ftsent->fts_path + strlen(cpusetmnt);
   3237 		if (strlen(relpath) == 0)
   3238 			relpath = "/";
   3239 		ep->path = strdup(relpath);
   3240 		if (ep->path == NULL)
   3241 			goto err;
   3242 		if (ftsent->fts_info == FTS_DNR) {
   3243 			ep->info = CPUSET_FTS_ERR_DNR;
   3244 			ep->err = ftsent->fts_errno;
   3245 			continue;
   3246 		}
   3247 
   3248 		/* ftsent is a -readable- cpuset: set entry's stat, etc */
   3249 		ep->stat = calloc(1, sizeof(struct stat));
   3250 		if (ep->stat == NULL)
   3251 			goto err;
   3252 		if (stat(ftsent->fts_path, ep->stat) < 0) {
   3253 			ep->info = CPUSET_FTS_ERR_STAT;
   3254 			ep->err = ftsent->fts_errno;
   3255 			continue;
   3256 		}
   3257 
   3258 		ep->cpuset = calloc(1, sizeof(struct cpuset));
   3259 		if (ep->cpuset == NULL)
   3260 			goto err;
   3261 		if (cpuset_query(ep->cpuset, relpath) < 0) {
   3262 			ep->info = CPUSET_FTS_ERR_CPUSET;
   3263 			ep->err = errno;
   3264 			continue;
   3265 		}
   3266 		ep->info = CPUSET_FTS_CPUSET;
   3267 	}
   3268 
   3269 	(void)fts_close(fts);
   3270 	cpuset_fts_rewind(cs_tree);
   3271 	return cs_tree;
   3272 
   3273 err:
   3274 	if (cs_tree)
   3275 		cpuset_fts_close(cs_tree);
   3276 	if (fts)
   3277 		(void)fts_close(fts);
   3278 	return NULL;
   3279 }
   3280 
   3281 /* Return pointer to next cpuset entry in hierarchy */
   3282 const struct cpuset_fts_entry *cpuset_fts_read(struct cpuset_fts_tree *cs_tree)
   3283 {
   3284 	const struct cpuset_fts_entry *cs_entry = cs_tree->next;
   3285 	if (cs_tree->next != NULL)	/* seek to next entry */
   3286 		cs_tree->next = cs_tree->next->next;
   3287 	return cs_entry;
   3288 }
   3289 
   3290 /* Reverse list of cpusets, in place.  Simulates pre-order/post-order flip. */
   3291 void cpuset_fts_reverse(struct cpuset_fts_tree *cs_tree)
   3292 {
   3293 	struct cpuset_fts_entry *cs1, *cs2, *cs3;
   3294 
   3295 	/*
   3296 	 * At each step, cs1 < cs2 < cs3 and the cs2->next pointer
   3297 	 * is redirected from cs3 to cs1.
   3298 	 */
   3299 
   3300 	cs1 = cs2 = NULL;
   3301 	cs3 = cs_tree->head;
   3302 	while (cs3) {
   3303 		cs1 = cs2;
   3304 		cs2 = cs3;
   3305 		cs3 = cs3->next;
   3306 		cs2->next = cs1;
   3307 	}
   3308 	cs_tree->head = cs2;
   3309 	cpuset_fts_rewind(cs_tree);
   3310 }
   3311 
   3312 /* Rewind cpuset list to beginning */
   3313 void cpuset_fts_rewind(struct cpuset_fts_tree *cs_tree)
   3314 {
   3315 	cs_tree->next = cs_tree->head;
   3316 }
   3317 
   3318 /* Return pointer to nul-terminated cpuset path of entry in hierarchy */
   3319 const char *cpuset_fts_get_path(const struct cpuset_fts_entry *cs_entry)
   3320 {
   3321 	return cs_entry->path;
   3322 }
   3323 
   3324 /* Return pointer to stat(2) structure of a cpuset entry's directory */
   3325 const struct stat *cpuset_fts_get_stat(const struct cpuset_fts_entry *cs_entry)
   3326 {
   3327 	return cs_entry->stat;
   3328 }
   3329 
   3330 /* Return pointer to cpuset structure of a cpuset entry */
   3331 const struct cpuset *cpuset_fts_get_cpuset(const struct cpuset_fts_entry
   3332 					   *cs_entry)
   3333 {
   3334 	return cs_entry->cpuset;
   3335 }
   3336 
   3337 /* Return value of errno (0 if no error) on attempted cpuset operations */
   3338 int cpuset_fts_get_errno(const struct cpuset_fts_entry *cs_entry)
   3339 {
   3340 	return cs_entry->err;
   3341 }
   3342 
   3343 /* Return operation identity causing error */
   3344 int cpuset_fts_get_info(const struct cpuset_fts_entry *cs_entry)
   3345 {
   3346 	return cs_entry->info;
   3347 }
   3348 
   3349 /* Close a cpuset hierarchy handle (free's all associated memory) */
   3350 void cpuset_fts_close(struct cpuset_fts_tree *cs_tree)
   3351 {
   3352 	struct cpuset_fts_entry *cs_entry = cs_tree->head;
   3353 
   3354 	while (cs_entry) {
   3355 		struct cpuset_fts_entry *ep = cs_entry;
   3356 
   3357 		cs_entry = cs_entry->next;
   3358 		free(ep->path);
   3359 		free(ep->stat);
   3360 		cpuset_free(ep->cpuset);
   3361 		free(ep);
   3362 	}
   3363 	free(cs_tree);
   3364 }
   3365 
   3366 /* Bind current task to cpu (uses sched_setaffinity(2)) */
   3367 int cpuset_cpubind(int cpu)
   3368 {
   3369 	struct bitmask *bmp;
   3370 	int r;
   3371 
   3372 	if ((bmp = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   3373 		return -1;
   3374 	bitmask_setbit(bmp, cpu);
   3375 	r = sched_setaffinity(0, bitmask_nbytes(bmp), bitmask_mask(bmp));
   3376 	bitmask_free(bmp);
   3377 	return r;
   3378 }
   3379 
   3380 /*
   3381  * int cpuset_latestcpu(pid_t pid)
   3382  *
   3383  * Return most recent CPU on which task pid executed.  If pid == 0,
   3384  * examine current task.
   3385  *
   3386  * The last used CPU is visible for a given pid as field #39 (starting
   3387  * with #1) in the file /proc/pid/stat.  Currently this file has 41
   3388  * fields, in which case this is the 3rd to the last field.
   3389  *
   3390  * Unfortunately field #2 is a command name and might have embedded
   3391  * whitespace.  So we can't just count white space separated fields.
   3392  * Fortunately, this command name is surrounded by parentheses, as
   3393  * for example "(sh)", and that closing parenthesis is the last ')'
   3394  * character in the line.  No remaining fields can have embedded
   3395  * whitespace or parentheses.  So instead of looking for the 39th
   3396  * white space separated field, we can look for the 37th white space
   3397  * separated field past the last ')' character on the line.
   3398  */
   3399 
   3400 /* Return most recent CPU on which task pid executed */
   3401 int cpuset_latestcpu(pid_t pid)
   3402 {
   3403 	char buf[PATH_MAX];
   3404 	char *bp;
   3405 	int fd = -1;
   3406 	int cpu = -1;
   3407 
   3408 	if (pid == 0)
   3409 		snprintf(buf, sizeof(buf), "/proc/self/stat");
   3410 	else
   3411 		snprintf(buf, sizeof(buf), "/proc/%d/stat", pid);
   3412 
   3413 	if ((fd = open(buf, O_RDONLY)) < 0)
   3414 		goto err;
   3415 	if (read(fd, buf, sizeof(buf)) < 1)
   3416 		goto err;
   3417 	close(fd);
   3418 
   3419 	bp = strrchr(buf, ')');
   3420 	if (bp)
   3421 		sscanf(bp + 1, "%*s %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %u",	/* 37th field past ')' */
   3422 		       &cpu);
   3423 	if (cpu < 0)
   3424 		errno = EINVAL;
   3425 	return cpu;
   3426 err:
   3427 	if (fd >= 0)
   3428 		close(fd);
   3429 	return -1;
   3430 }
   3431 
   3432 /* Bind current task to memory (uses set_mempolicy(2)) */
   3433 int cpuset_membind(int mem)
   3434 {
   3435 	struct bitmask *bmp;
   3436 	int r;
   3437 
   3438 	if ((bmp = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   3439 		return -1;
   3440 	bitmask_setbit(bmp, mem);
   3441 	r = set_mempolicy(MPOL_BIND, bitmask_mask(bmp), bitmask_nbits(bmp) + 1);
   3442 	bitmask_free(bmp);
   3443 	return r;
   3444 }
   3445 
   3446 /* [optional] Return Memory Node holding page at specified addr */
   3447 int cpuset_addr2node(void *addr)
   3448 {
   3449 	int node = -1;
   3450 
   3451 	if (get_mempolicy(&node, NULL, 0, addr, MPOL_F_NODE | MPOL_F_ADDR)) {
   3452 		/* I realize this seems redundant, but I _want_ to make sure
   3453 		 * that this value is -1. */
   3454 		node = -1;
   3455 	}
   3456 	return node;
   3457 }
   3458 
   3459 /*
   3460  * Transform cpuset into Text Format Representation in buffer 'buf',
   3461  * of length 'buflen', nul-terminated if space allows.  Return number
   3462  * of characters that would have been written, if enough space had
   3463  * been available, in the same way that snprintf() does.
   3464  */
   3465 
   3466 /* Export cpuset settings to a regular file */
   3467 int cpuset_export(const struct cpuset *cp, char *buf, int buflen)
   3468 {
   3469 	char *tmp = NULL;
   3470 	int n = 0;
   3471 
   3472 	if (cp->cpu_exclusive)
   3473 		n += snprintf(buf + n, MAX(buflen - n, 0), "cpu_exclusive\n");
   3474 
   3475 	if (cp->mem_exclusive)
   3476 		n += snprintf(buf + n, MAX(buflen - n, 0), "mem_exclusive\n");
   3477 
   3478 	if (cp->notify_on_release)
   3479 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3480 			      "notify_on_release\n");
   3481 
   3482 	if (cp->memory_pressure_enabled)
   3483 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3484 			      "memory_pressure_enabled\n");
   3485 
   3486 	if (cp->memory_migrate)
   3487 		n += snprintf(buf + n, MAX(buflen - n, 0), "memory_migrate\n");
   3488 
   3489 	if (cp->memory_spread_page)
   3490 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3491 			      "memory_spread_page\n");
   3492 
   3493 	if (cp->memory_spread_slab)
   3494 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3495 			      "memory_spread_slab\n");
   3496 
   3497 	if ((tmp = sprint_mask_buf(cp->cpus)) == NULL)
   3498 		return -1;
   3499 	n += snprintf(buf + n, MAX(buflen - n, 0), "cpus %s\n", tmp);
   3500 	free(tmp);
   3501 	tmp = NULL;
   3502 
   3503 	if ((tmp = sprint_mask_buf(cp->mems)) == NULL)
   3504 		return -1;
   3505 	n += snprintf(buf + n, MAX(buflen - n, 0), "mems %s\n", tmp);
   3506 	free(tmp);
   3507 	tmp = NULL;
   3508 
   3509 	return n;
   3510 }
   3511 
   3512 static int import_list(UNUSED const char *tok, const char *arg,
   3513 		       struct bitmask *bmp, char *emsg, int elen)
   3514 {
   3515 	if (bitmask_parselist(arg, bmp) < 0) {
   3516 		if (emsg)
   3517 			snprintf(emsg, elen, "Invalid list format: %s", arg);
   3518 		return -1;
   3519 	}
   3520 	return 0;
   3521 }
   3522 
   3523 static void stolower(char *s)
   3524 {
   3525 	while (*s) {
   3526 		unsigned char c = *s;
   3527 		*s = tolower(c);
   3528 		s++;
   3529 	}
   3530 }
   3531 
   3532 /* Import cpuset settings from a regular file */
   3533 int cpuset_import(struct cpuset *cp, const char *buf, int *elinenum,
   3534 		  char *emsg, int elen)
   3535 {
   3536 	char *linebuf = NULL;
   3537 	int linebuflen;
   3538 	int linenum = 0;
   3539 	int offset = 0;
   3540 
   3541 	linebuflen = strlen(buf) + 1;
   3542 	if ((linebuf = malloc(linebuflen)) == NULL) {
   3543 		if (emsg)
   3544 			snprintf(emsg, elen, "Insufficient memory");
   3545 		goto err;
   3546 	}
   3547 
   3548 	while (slgets(linebuf, linebuflen, buf, &offset)) {
   3549 		char *tok, *arg;
   3550 		char *ptr;	/* for strtok_r */
   3551 
   3552 		linenum++;
   3553 		if ((tok = strchr(linebuf, '#')) != NULL)
   3554 			*tok = 0;
   3555 		if ((tok = strtok_r(linebuf, " \t", &ptr)) == NULL)
   3556 			continue;
   3557 		stolower(tok);
   3558 
   3559 		arg = strtok_r(0, " \t", &ptr);
   3560 
   3561 		if (streq(tok, "cpu_exclusive")) {
   3562 			cp->cpu_exclusive = 1;
   3563 			goto eol;
   3564 		}
   3565 		if (streq(tok, "mem_exclusive")) {
   3566 			cp->mem_exclusive = 1;
   3567 			goto eol;
   3568 		}
   3569 		if (streq(tok, "notify_on_release")) {
   3570 			cp->notify_on_release = 1;
   3571 			goto eol;
   3572 		}
   3573 		if (streq(tok, "memory_pressure_enabled")) {
   3574 			cp->memory_pressure_enabled = 1;
   3575 			goto eol;
   3576 		}
   3577 		if (streq(tok, "memory_migrate")) {
   3578 			cp->memory_migrate = 1;
   3579 			goto eol;
   3580 		}
   3581 		if (streq(tok, "memory_spread_page")) {
   3582 			cp->memory_spread_page = 1;
   3583 			goto eol;
   3584 		}
   3585 		if (streq(tok, "memory_spread_slab")) {
   3586 			cp->memory_spread_slab = 1;
   3587 			goto eol;
   3588 		}
   3589 		if (streq(tok, "cpu") || streq(tok, "cpus")) {
   3590 			if (import_list(tok, arg, cp->cpus, emsg, elen) < 0)
   3591 				goto err;
   3592 			goto eol;
   3593 		}
   3594 		if (streq(tok, "mem") || streq(tok, "mems")) {
   3595 			if (import_list(tok, arg, cp->mems, emsg, elen) < 0)
   3596 				goto err;
   3597 			goto eol;
   3598 		}
   3599 		if (emsg)
   3600 			snprintf(emsg, elen, "Unrecognized token: '%s'", tok);
   3601 		goto err;
   3602 eol:
   3603 		if ((tok = strtok_r(0, " \t", &ptr)) != NULL) {
   3604 			if (emsg)
   3605 				snprintf(emsg, elen, "Surplus token: '%s'",
   3606 					 tok);
   3607 			goto err;
   3608 		}
   3609 		continue;
   3610 	}
   3611 
   3612 	free(linebuf);
   3613 
   3614 	if (bitmask_isallclear(cp->cpus) && !bitmask_isallclear(cp->mems))
   3615 		cpuset_localcpus(cp->mems, cp->cpus);
   3616 	else if (!bitmask_isallclear(cp->cpus) && bitmask_isallclear(cp->mems))
   3617 		cpuset_localmems(cp->cpus, cp->mems);
   3618 
   3619 	/*
   3620 	 * All cpuset attributes are determined in an import.
   3621 	 * Those that aren't explicitly specified are presumed
   3622 	 * to be unchanged (zero, if it's a freshly allocated
   3623 	 * struct cpuset.)
   3624 	 */
   3625 
   3626 	cp->cpus_valid = 1;
   3627 	cp->mems_valid = 1;
   3628 	cp->cpu_exclusive_valid = 1;
   3629 	cp->mem_exclusive_valid = 1;
   3630 	cp->notify_on_release_valid = 1;
   3631 	cp->memory_migrate_valid = 1;
   3632 	cp->memory_pressure_enabled_valid = 1;
   3633 	cp->memory_spread_page_valid = 1;
   3634 	cp->memory_spread_slab_valid = 1;
   3635 
   3636 	return 0;
   3637 err:
   3638 	if (elinenum)
   3639 		*elinenum = linenum;
   3640 	free(linebuf);
   3641 	return -1;
   3642 }
   3643 
   3644 /* Pin current task CPU (and memory) */
   3645 int cpuset_pin(int relcpu)
   3646 {
   3647 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3648 	int cpu, r;
   3649 
   3650 	if (check() < 0)
   3651 		return -1;
   3652 
   3653 	do {
   3654 		cpuset_free_placement(plc1);
   3655 		plc1 = cpuset_get_placement(0);
   3656 
   3657 		r = 0;
   3658 		if (cpuset_unpin() < 0)
   3659 			r = -1;
   3660 		cpu = cpuset_p_rel_to_sys_cpu(0, relcpu);
   3661 		if (cpuset_cpubind(cpu) < 0)
   3662 			r = -1;
   3663 
   3664 		cpuset_free_placement(plc2);
   3665 		plc2 = cpuset_get_placement(0);
   3666 	} while (!cpuset_equal_placement(plc1, plc2));
   3667 
   3668 	cpuset_free_placement(plc1);
   3669 	cpuset_free_placement(plc2);
   3670 	return r;
   3671 }
   3672 
   3673 /* Return number CPUs in current tasks cpuset */
   3674 int cpuset_size(void)
   3675 {
   3676 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3677 	int r;
   3678 
   3679 	if (check() < 0)
   3680 		return -1;
   3681 
   3682 	do {
   3683 		cpuset_free_placement(plc1);
   3684 		plc1 = cpuset_get_placement(0);
   3685 
   3686 		r = cpuset_cpus_weight(0);
   3687 
   3688 		cpuset_free_placement(plc2);
   3689 		plc2 = cpuset_get_placement(0);
   3690 	} while (!cpuset_equal_placement(plc1, plc2));
   3691 
   3692 	cpuset_free_placement(plc1);
   3693 	cpuset_free_placement(plc2);
   3694 	return r;
   3695 }
   3696 
   3697 /* Return relative CPU number, within current cpuset, last executed on */
   3698 int cpuset_where(void)
   3699 {
   3700 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3701 	int r;
   3702 
   3703 	if (check() < 0)
   3704 		return -1;
   3705 
   3706 	do {
   3707 		cpuset_free_placement(plc1);
   3708 		plc1 = cpuset_get_placement(0);
   3709 
   3710 		r = cpuset_p_sys_to_rel_cpu(0, cpuset_latestcpu(0));
   3711 
   3712 		cpuset_free_placement(plc2);
   3713 		plc2 = cpuset_get_placement(0);
   3714 	} while (!cpuset_equal_placement(plc1, plc2));
   3715 
   3716 	cpuset_free_placement(plc1);
   3717 	cpuset_free_placement(plc2);
   3718 	return r;
   3719 }
   3720 
   3721 /* Undo cpuset_pin - let current task have the run of all CPUs in its cpuset */
   3722 int cpuset_unpin(void)
   3723 {
   3724 	struct bitmask *cpus = NULL, *mems = NULL;
   3725 	int r = -1;
   3726 
   3727 	if (check() < 0)
   3728 		goto err;
   3729 
   3730 	/*
   3731 	 * Don't need cpuset_*_placement() guard against concurrent
   3732 	 * cpuset migration, because none of the following depends
   3733 	 * on the tasks cpuset placement.
   3734 	 */
   3735 
   3736 	if ((cpus = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   3737 		goto err;
   3738 	bitmask_setall(cpus);
   3739 	if (sched_setaffinity(0, bitmask_nbytes(cpus), bitmask_mask(cpus)) < 0)
   3740 		goto err;
   3741 
   3742 	if ((mems = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   3743 		goto err;
   3744 	if (set_mempolicy(MPOL_DEFAULT, bitmask_mask(mems),
   3745 			  bitmask_nbits(mems) + 1) < 0)
   3746 		goto err;
   3747 	r = 0;
   3748 	/* fall into ... */
   3749 err:
   3750 	bitmask_free(cpus);
   3751 	bitmask_free(mems);
   3752 	return r;
   3753 
   3754 }
   3755 
   3756 struct cpuset_function_list {
   3757 	const char *fname;
   3758 	void *func;
   3759 } flist[] = {
   3760 	{
   3761 	"cpuset_version", cpuset_version}, {
   3762 	"cpuset_alloc", cpuset_alloc}, {
   3763 	"cpuset_free", cpuset_free}, {
   3764 	"cpuset_cpus_nbits", cpuset_cpus_nbits}, {
   3765 	"cpuset_mems_nbits", cpuset_mems_nbits}, {
   3766 	"cpuset_setcpus", cpuset_setcpus}, {
   3767 	"cpuset_setmems", cpuset_setmems}, {
   3768 	"cpuset_set_iopt", cpuset_set_iopt}, {
   3769 	"cpuset_set_sopt", cpuset_set_sopt}, {
   3770 	"cpuset_getcpus", cpuset_getcpus}, {
   3771 	"cpuset_getmems", cpuset_getmems}, {
   3772 	"cpuset_cpus_weight", cpuset_cpus_weight}, {
   3773 	"cpuset_mems_weight", cpuset_mems_weight}, {
   3774 	"cpuset_get_iopt", cpuset_get_iopt}, {
   3775 	"cpuset_get_sopt", cpuset_get_sopt}, {
   3776 	"cpuset_localcpus", cpuset_localcpus}, {
   3777 	"cpuset_localmems", cpuset_localmems}, {
   3778 	"cpuset_cpumemdist", cpuset_cpumemdist}, {
   3779 	"cpuset_cpu2node", cpuset_cpu2node}, {
   3780 	"cpuset_addr2node", cpuset_addr2node}, {
   3781 	"cpuset_create", cpuset_create}, {
   3782 	"cpuset_delete", cpuset_delete}, {
   3783 	"cpuset_query", cpuset_query}, {
   3784 	"cpuset_modify", cpuset_modify}, {
   3785 	"cpuset_getcpusetpath", cpuset_getcpusetpath}, {
   3786 	"cpuset_cpusetofpid", cpuset_cpusetofpid}, {
   3787 	"cpuset_mountpoint", cpuset_mountpoint}, {
   3788 	"cpuset_collides_exclusive", cpuset_collides_exclusive}, {
   3789 	"cpuset_nuke", cpuset_nuke}, {
   3790 	"cpuset_init_pidlist", cpuset_init_pidlist}, {
   3791 	"cpuset_pidlist_length", cpuset_pidlist_length}, {
   3792 	"cpuset_get_pidlist", cpuset_get_pidlist}, {
   3793 	"cpuset_freepidlist", cpuset_freepidlist}, {
   3794 	"cpuset_move", cpuset_move}, {
   3795 	"cpuset_move_all", cpuset_move_all}, {
   3796 	"cpuset_move_cpuset_tasks", cpuset_move_cpuset_tasks}, {
   3797 	"cpuset_migrate", cpuset_migrate}, {
   3798 	"cpuset_migrate_all", cpuset_migrate_all}, {
   3799 	"cpuset_reattach", cpuset_reattach}, {
   3800 	"cpuset_open_memory_pressure", cpuset_open_memory_pressure}, {
   3801 	"cpuset_read_memory_pressure", cpuset_read_memory_pressure}, {
   3802 	"cpuset_close_memory_pressure", cpuset_close_memory_pressure}, {
   3803 	"cpuset_c_rel_to_sys_cpu", cpuset_c_rel_to_sys_cpu}, {
   3804 	"cpuset_c_sys_to_rel_cpu", cpuset_c_sys_to_rel_cpu}, {
   3805 	"cpuset_c_rel_to_sys_mem", cpuset_c_rel_to_sys_mem}, {
   3806 	"cpuset_c_sys_to_rel_mem", cpuset_c_sys_to_rel_mem}, {
   3807 	"cpuset_p_rel_to_sys_cpu", cpuset_p_rel_to_sys_cpu}, {
   3808 	"cpuset_p_sys_to_rel_cpu", cpuset_p_sys_to_rel_cpu}, {
   3809 	"cpuset_p_rel_to_sys_mem", cpuset_p_rel_to_sys_mem}, {
   3810 	"cpuset_p_sys_to_rel_mem", cpuset_p_sys_to_rel_mem}, {
   3811 	"cpuset_get_placement", cpuset_get_placement}, {
   3812 	"cpuset_equal_placement", cpuset_equal_placement}, {
   3813 	"cpuset_free_placement", cpuset_free_placement}, {
   3814 	"cpuset_fts_open", cpuset_fts_open}, {
   3815 	"cpuset_fts_read", cpuset_fts_read}, {
   3816 	"cpuset_fts_reverse", cpuset_fts_reverse}, {
   3817 	"cpuset_fts_rewind", cpuset_fts_rewind}, {
   3818 	"cpuset_fts_get_path", cpuset_fts_get_path}, {
   3819 	"cpuset_fts_get_stat", cpuset_fts_get_stat}, {
   3820 	"cpuset_fts_get_cpuset", cpuset_fts_get_cpuset}, {
   3821 	"cpuset_fts_get_errno", cpuset_fts_get_errno}, {
   3822 	"cpuset_fts_get_info", cpuset_fts_get_info}, {
   3823 	"cpuset_fts_close", cpuset_fts_close}, {
   3824 	"cpuset_cpubind", cpuset_cpubind}, {
   3825 	"cpuset_latestcpu", cpuset_latestcpu}, {
   3826 	"cpuset_membind", cpuset_membind}, {
   3827 	"cpuset_export", cpuset_export}, {
   3828 	"cpuset_import", cpuset_import}, {
   3829 	"cpuset_function", cpuset_function}, {
   3830 	"cpuset_pin", cpuset_pin}, {
   3831 	"cpuset_size", cpuset_size}, {
   3832 	"cpuset_where", cpuset_where}, {
   3833 "cpuset_unpin", cpuset_unpin},};
   3834 
   3835 /* Return pointer to a libcpuset.so function, or NULL */
   3836 void *cpuset_function(const char *function_name)
   3837 {
   3838 	unsigned int i;
   3839 
   3840 	for (i = 0; i < sizeof(flist) / sizeof(flist[0]); i++)
   3841 		if (streq(function_name, flist[i].fname))
   3842 			return flist[i].func;
   3843 	return NULL;
   3844 }
   3845 
   3846 /* Fortran interface to basic cpuset routines */
   3847 int cpuset_pin_(int *ptr_relcpu)
   3848 {
   3849 	return cpuset_pin(*ptr_relcpu);
   3850 }
   3851 
   3852 int cpuset_size_(void)
   3853 {
   3854 	return cpuset_size();
   3855 }
   3856 
   3857 int cpuset_where_(void)
   3858 {
   3859 	return cpuset_where();
   3860 }
   3861 
   3862 int cpuset_unpin_(void)
   3863 {
   3864 	return cpuset_unpin();
   3865 }
   3866 
   3867 #endif /* HAVE_LINUX_MEMPOLICY_H */
   3868