1 /** @file 2 The internal functions and routines to transmit the IP6 packet. 3 4 Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR> 5 6 This program and the accompanying materials 7 are licensed and made available under the terms and conditions of the BSD License 8 which accompanies this distribution. The full text of the license may be found at 9 http://opensource.org/licenses/bsd-license.php. 10 11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 13 14 **/ 15 16 #include "Ip6Impl.h" 17 18 UINT32 mIp6Id; 19 20 /** 21 Output all the available source addresses to a list entry head SourceList. The 22 number of source addresses are also returned. 23 24 @param[in] IpSb Points to an IP6 service binding instance. 25 @param[out] SourceList The list entry head of all source addresses. 26 It is the caller's responsibility to free the 27 resources. 28 @param[out] SourceCount The number of source addresses. 29 30 @retval EFI_SUCCESS The source addresses were copied to a list entry head 31 SourceList. 32 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation. 33 34 **/ 35 EFI_STATUS 36 Ip6CandidateSource ( 37 IN IP6_SERVICE *IpSb, 38 OUT LIST_ENTRY *SourceList, 39 OUT UINT32 *SourceCount 40 ) 41 { 42 IP6_INTERFACE *IpIf; 43 LIST_ENTRY *Entry; 44 LIST_ENTRY *Entry2; 45 IP6_ADDRESS_INFO *AddrInfo; 46 IP6_ADDRESS_INFO *Copy; 47 48 *SourceCount = 0; 49 50 if (IpSb->LinkLocalOk) { 51 Copy = AllocatePool (sizeof (IP6_ADDRESS_INFO)); 52 if (Copy == NULL) { 53 return EFI_OUT_OF_RESOURCES; 54 } 55 56 Copy->Signature = IP6_ADDR_INFO_SIGNATURE; 57 IP6_COPY_ADDRESS (&Copy->Address, &IpSb->LinkLocalAddr); 58 Copy->IsAnycast = FALSE; 59 Copy->PrefixLength = IP6_LINK_LOCAL_PREFIX_LENGTH; 60 Copy->ValidLifetime = (UINT32) IP6_INFINIT_LIFETIME; 61 Copy->PreferredLifetime = (UINT32) IP6_INFINIT_LIFETIME; 62 63 InsertTailList (SourceList, &Copy->Link); 64 (*SourceCount)++; 65 } 66 67 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { 68 IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link); 69 70 NET_LIST_FOR_EACH (Entry2, &IpIf->AddressList) { 71 AddrInfo = NET_LIST_USER_STRUCT_S (Entry2, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE); 72 73 if (AddrInfo->IsAnycast) { 74 // 75 // Never use an anycast address. 76 // 77 continue; 78 } 79 80 Copy = AllocateCopyPool (sizeof (IP6_ADDRESS_INFO), AddrInfo); 81 if (Copy == NULL) { 82 return EFI_OUT_OF_RESOURCES; 83 } 84 85 InsertTailList (SourceList, &Copy->Link); 86 (*SourceCount)++; 87 } 88 } 89 90 return EFI_SUCCESS; 91 } 92 93 /** 94 Calculate how many bits are the same between two IPv6 addresses. 95 96 @param[in] AddressA Points to an IPv6 address. 97 @param[in] AddressB Points to another IPv6 address. 98 99 @return The common bits of the AddressA and AddressB. 100 101 **/ 102 UINT8 103 Ip6CommonPrefixLen ( 104 IN EFI_IPv6_ADDRESS *AddressA, 105 IN EFI_IPv6_ADDRESS *AddressB 106 ) 107 { 108 UINT8 Count; 109 UINT8 Index; 110 UINT8 ByteA; 111 UINT8 ByteB; 112 UINT8 NumBits; 113 114 Count = 0; 115 Index = 0; 116 117 while (Index < 16) { 118 ByteA = AddressA->Addr[Index]; 119 ByteB = AddressB->Addr[Index]; 120 121 if (ByteA == ByteB) { 122 Count += 8; 123 Index++; 124 continue; 125 } 126 127 // 128 // Check how many bits are common between the two bytes. 129 // 130 NumBits = 8; 131 ByteA = (UINT8) (ByteA ^ ByteB); 132 133 while (ByteA != 0) { 134 NumBits--; 135 ByteA = (UINT8) (ByteA >> 1); 136 } 137 138 return (UINT8) (Count + NumBits); 139 } 140 141 return Count; 142 } 143 144 /** 145 Output all the available source addresses to a list entry head SourceList. The 146 number of source addresses are also returned. 147 148 @param[in] IpSb Points to a IP6 service binding instance. 149 @param[in] Destination The IPv6 destination address. 150 @param[out] Source The selected IPv6 source address according to 151 the Destination. 152 153 @retval EFI_SUCCESS The source addresses were copied to a list entry 154 head SourceList. 155 @retval EFI_NO_MAPPING The IPv6 stack is not auto configured. 156 157 **/ 158 EFI_STATUS 159 Ip6SelectSourceAddress ( 160 IN IP6_SERVICE *IpSb, 161 IN EFI_IPv6_ADDRESS *Destination, 162 OUT EFI_IPv6_ADDRESS *Source 163 ) 164 { 165 EFI_STATUS Status; 166 LIST_ENTRY SourceList; 167 UINT32 SourceCount; 168 UINT8 ScopeD; 169 LIST_ENTRY *Entry; 170 IP6_ADDRESS_INFO *AddrInfo; 171 IP6_PREFIX_LIST_ENTRY *Prefix; 172 UINT8 LastCommonLength; 173 UINT8 CurrentCommonLength; 174 EFI_IPv6_ADDRESS *TmpAddress; 175 176 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); 177 178 Status = EFI_SUCCESS; 179 InitializeListHead (&SourceList); 180 181 if (!IpSb->LinkLocalOk) { 182 return EFI_NO_MAPPING; 183 } 184 185 // 186 // Rule 1: Prefer same address. 187 // 188 if (Ip6IsOneOfSetAddress (IpSb, Destination, NULL, NULL)) { 189 IP6_COPY_ADDRESS (Source, Destination); 190 goto Exit; 191 } 192 193 // 194 // Rule 2: Prefer appropriate scope. 195 // 196 if (IP6_IS_MULTICAST (Destination)) { 197 ScopeD = (UINT8) (Destination->Addr[1] >> 4); 198 } else if (NetIp6IsLinkLocalAddr (Destination)) { 199 ScopeD = 0x2; 200 } else { 201 ScopeD = 0xE; 202 } 203 204 if (ScopeD <= 0x2) { 205 // 206 // Return the link-local address if it exists 207 // One IP6_SERVICE only has one link-local address. 208 // 209 IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr); 210 goto Exit; 211 } 212 213 // 214 // All candidate source addresses are global unicast address. 215 // 216 Ip6CandidateSource (IpSb, &SourceList, &SourceCount); 217 218 if (SourceCount == 0) { 219 Status = EFI_NO_MAPPING; 220 goto Exit; 221 } 222 223 IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr); 224 225 if (SourceCount == 1) { 226 goto Exit; 227 } 228 229 // 230 // Rule 3: Avoid deprecated addresses. 231 // TODO: check the "deprecated" state of the stateful configured address 232 // 233 NET_LIST_FOR_EACH (Entry, &IpSb->AutonomousPrefix) { 234 Prefix = NET_LIST_USER_STRUCT (Entry, IP6_PREFIX_LIST_ENTRY, Link); 235 if (Prefix->PreferredLifetime == 0) { 236 Ip6RemoveAddr (NULL, &SourceList, &SourceCount, &Prefix->Prefix, Prefix->PrefixLength); 237 238 if (SourceCount == 1) { 239 goto Exit; 240 } 241 } 242 } 243 244 // 245 // TODO: Rule 4: Prefer home addresses. 246 // TODO: Rule 5: Prefer outgoing interface. 247 // TODO: Rule 6: Prefer matching label. 248 // TODO: Rule 7: Prefer public addresses. 249 // 250 251 // 252 // Rule 8: Use longest matching prefix. 253 // 254 LastCommonLength = Ip6CommonPrefixLen (Source, Destination); 255 TmpAddress = NULL; 256 257 for (Entry = SourceList.ForwardLink; Entry != &SourceList; Entry = Entry->ForwardLink) { 258 AddrInfo = NET_LIST_USER_STRUCT_S (Entry, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE); 259 260 CurrentCommonLength = Ip6CommonPrefixLen (&AddrInfo->Address, Destination); 261 if (CurrentCommonLength > LastCommonLength) { 262 LastCommonLength = CurrentCommonLength; 263 TmpAddress = &AddrInfo->Address; 264 } 265 } 266 267 if (TmpAddress != NULL) { 268 IP6_COPY_ADDRESS (Source, TmpAddress); 269 } 270 271 Exit: 272 273 Ip6RemoveAddr (NULL, &SourceList, &SourceCount, NULL, 0); 274 275 return Status; 276 } 277 278 /** 279 Select an interface to send the packet generated in the IP6 driver 280 itself: that is, not by the requests of the IP6 child's consumer. Such 281 packets include the ICMPv6 echo replies and other ICMPv6 error packets. 282 283 @param[in] IpSb The IP4 service that wants to send the packets. 284 @param[in] Destination The destination of the packet. 285 @param[in, out] Source The source of the packet. 286 287 @return NULL if no proper interface is found, otherwise, the interface that 288 can be used to send the system packet from. 289 290 **/ 291 IP6_INTERFACE * 292 Ip6SelectInterface ( 293 IN IP6_SERVICE *IpSb, 294 IN EFI_IPv6_ADDRESS *Destination, 295 IN OUT EFI_IPv6_ADDRESS *Source 296 ) 297 { 298 EFI_STATUS Status; 299 EFI_IPv6_ADDRESS SelectedSource; 300 IP6_INTERFACE *IpIf; 301 BOOLEAN Exist; 302 303 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); 304 ASSERT (Destination != NULL && Source != NULL); 305 306 if (NetIp6IsUnspecifiedAddr (Destination)) { 307 return NULL; 308 } 309 310 if (!NetIp6IsUnspecifiedAddr (Source)) { 311 Exist = Ip6IsOneOfSetAddress (IpSb, Source, &IpIf, NULL); 312 ASSERT (Exist); 313 314 return IpIf; 315 } 316 317 // 318 // If source is unspecified, select a source according to the destination. 319 // 320 Status = Ip6SelectSourceAddress (IpSb, Destination, &SelectedSource); 321 if (EFI_ERROR (Status)) { 322 return IpSb->DefaultInterface; 323 } 324 325 Ip6IsOneOfSetAddress (IpSb, &SelectedSource, &IpIf, NULL); 326 IP6_COPY_ADDRESS (Source, &SelectedSource); 327 328 return IpIf; 329 } 330 331 /** 332 The default callback function for the system generated packet. 333 It will free the packet. 334 335 @param[in] Packet The packet that transmitted. 336 @param[in] IoStatus The result of the transmission, succeeded or failed. 337 @param[in] LinkFlag Not used when transmitted. Check IP6_FRAME_CALLBACK 338 for reference. 339 @param[in] Context The context provided by us. 340 341 **/ 342 VOID 343 Ip6SysPacketSent ( 344 NET_BUF *Packet, 345 EFI_STATUS IoStatus, 346 UINT32 LinkFlag, 347 VOID *Context 348 ) 349 { 350 NetbufFree (Packet); 351 Packet = NULL; 352 } 353 354 /** 355 Prefix an IP6 basic head and unfragmentable extension headers and a fragment header 356 to the Packet. Used for IP6 fragmentation. 357 358 @param[in] IpSb The IP6 service instance to transmit the packet. 359 @param[in] Packet The packet to prefix the IP6 header to. 360 @param[in] Head The caller supplied header. 361 @param[in] FragmentOffset The fragment offset of the data following the header. 362 @param[in] ExtHdrs The length of the original extension header. 363 @param[in] ExtHdrsLen The length of the extension headers. 364 @param[in] LastHeader The pointer of next header of last extension header. 365 @param[in] HeadLen The length of the unfragmented part of the IP6 header. 366 367 @retval EFI_BAD_BUFFER_SIZE There is no enough room in the head space of 368 Packet. 369 @retval EFI_SUCCESS The operation performed successfully. 370 371 **/ 372 EFI_STATUS 373 Ip6PrependHead ( 374 IN IP6_SERVICE *IpSb, 375 IN NET_BUF *Packet, 376 IN EFI_IP6_HEADER *Head, 377 IN UINT16 FragmentOffset, 378 IN UINT8 *ExtHdrs, 379 IN UINT32 ExtHdrsLen, 380 IN UINT8 LastHeader, 381 IN UINT32 HeadLen 382 ) 383 { 384 UINT32 Len; 385 UINT32 UnFragExtHdrsLen; 386 EFI_IP6_HEADER *PacketHead; 387 UINT8 *UpdatedExtHdrs; 388 EFI_STATUS Status; 389 UINT8 NextHeader; 390 391 UpdatedExtHdrs = NULL; 392 393 // 394 // HeadLen is the length of the fixed part of the sequences of fragments, i.e. 395 // the unfragment part. 396 // 397 PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD); 398 if (PacketHead == NULL) { 399 return EFI_BAD_BUFFER_SIZE; 400 } 401 402 // 403 // Set the head up, convert the host byte order to network byte order 404 // 405 CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER)); 406 PacketHead->PayloadLength = HTONS ((UINT16) (Packet->TotalSize - sizeof (EFI_IP6_HEADER))); 407 Packet->Ip.Ip6 = PacketHead; 408 409 Len = HeadLen - sizeof (EFI_IP6_HEADER); 410 UnFragExtHdrsLen = Len - sizeof (IP6_FRAGMENT_HEADER); 411 412 if (UnFragExtHdrsLen == 0) { 413 PacketHead->NextHeader = IP6_FRAGMENT; 414 } 415 416 // 417 // Append the extension headers: firstly copy the unfragmentable headers, then append 418 // fragmentation header. 419 // 420 if ((FragmentOffset & IP6_FRAGMENT_OFFSET_MASK) == 0) { 421 NextHeader = Head->NextHeader; 422 } else { 423 NextHeader = PacketHead->NextHeader; 424 } 425 426 Status = Ip6FillFragmentHeader ( 427 IpSb, 428 NextHeader, 429 LastHeader, 430 ExtHdrs, 431 ExtHdrsLen, 432 FragmentOffset, 433 &UpdatedExtHdrs 434 ); 435 if (EFI_ERROR (Status)) { 436 return Status; 437 } 438 439 CopyMem ( 440 (UINT8 *) (PacketHead + 1), 441 UpdatedExtHdrs, 442 UnFragExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER) 443 ); 444 445 FreePool (UpdatedExtHdrs); 446 return EFI_SUCCESS; 447 } 448 449 /** 450 Transmit an IP6 packet. The packet comes either from the IP6 451 child's consumer (IpInstance != NULL) or the IP6 driver itself 452 (IpInstance == NULL). It will route the packet, fragment it, 453 then transmit all the fragments through an interface. 454 455 @param[in] IpSb The IP6 service instance to transmit the packet. 456 @param[in] Interface The IP6 interface to transmit the packet. Ignored 457 if NULL. 458 @param[in] IpInstance The IP6 child that issues the transmission. It is 459 NULL if the packet is from the system. 460 @param[in] Packet The user data to send, excluding the IP header. 461 @param[in] Head The caller supplied header. The caller should set 462 the following header fields: NextHeader, HopLimit, 463 Src, Dest, FlowLabel, PayloadLength. This function 464 will fill in the Ver, TrafficClass. 465 @param[in] ExtHdrs The extension headers to append to the IPv6 basic 466 header. 467 @param[in] ExtHdrsLen The length of the extension headers. 468 @param[in] Callback The callback function to issue when transmission 469 completed. 470 @param[in] Context The opaque context for the callback. 471 472 @retval EFI_INVALID_PARAMETER Any input parameter or the packet is invalid. 473 @retval EFI_NO_MAPPING There is no interface to the destination. 474 @retval EFI_NOT_FOUND There is no route to the destination. 475 @retval EFI_SUCCESS The packet successfully transmitted. 476 @retval EFI_OUT_OF_RESOURCES Failed to finish the operation due to lack of 477 resources. 478 @retval Others Failed to transmit the packet. 479 480 **/ 481 EFI_STATUS 482 Ip6Output ( 483 IN IP6_SERVICE *IpSb, 484 IN IP6_INTERFACE *Interface OPTIONAL, 485 IN IP6_PROTOCOL *IpInstance OPTIONAL, 486 IN NET_BUF *Packet, 487 IN EFI_IP6_HEADER *Head, 488 IN UINT8 *ExtHdrs, 489 IN UINT32 ExtHdrsLen, 490 IN IP6_FRAME_CALLBACK Callback, 491 IN VOID *Context 492 ) 493 { 494 IP6_INTERFACE *IpIf; 495 EFI_IPv6_ADDRESS NextHop; 496 IP6_NEIGHBOR_ENTRY *NeighborCache; 497 IP6_ROUTE_CACHE_ENTRY *RouteCache; 498 EFI_STATUS Status; 499 UINT32 Mtu; 500 UINT32 HeadLen; 501 UINT16 FragmentOffset; 502 UINT8 *LastHeader; 503 UINT32 UnFragmentLen; 504 UINT32 UnFragmentHdrsLen; 505 UINT32 FragmentHdrsLen; 506 UINT16 *Checksum; 507 UINT16 PacketChecksum; 508 UINT16 PseudoChecksum; 509 UINT32 Index; 510 UINT32 PacketLen; 511 UINT32 RealExtLen; 512 UINT32 Offset; 513 NET_BUF *TmpPacket; 514 NET_BUF *Fragment; 515 UINT32 Num; 516 UINT8 *Buf; 517 EFI_IP6_HEADER *PacketHead; 518 IP6_ICMP_HEAD *IcmpHead; 519 IP6_TXTOKEN_WRAP *Wrap; 520 IP6_ROUTE_ENTRY *RouteEntry; 521 UINT8 *UpdatedExtHdrs; 522 UINT8 NextHeader; 523 UINT8 LastHeaderBackup; 524 BOOLEAN FragmentHeadInserted; 525 UINT8 *ExtHdrsBackup; 526 UINT8 NextHeaderBackup; 527 EFI_IPv6_ADDRESS Source; 528 EFI_IPv6_ADDRESS Destination; 529 530 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); 531 532 // 533 // RFC2460: Each extension header is an integer multiple of 8 octets long, 534 // in order to retain 8-octet alignment for subsequent headers. 535 // 536 if ((ExtHdrsLen & 0x7) != 0) { 537 return EFI_INVALID_PARAMETER; 538 } 539 540 LastHeader = NULL; 541 542 Ip6IsExtsValid ( 543 NULL, 544 NULL, 545 &Head->NextHeader, 546 ExtHdrs, 547 ExtHdrsLen, 548 FALSE, 549 NULL, 550 &LastHeader, 551 NULL, 552 NULL, 553 NULL 554 ); 555 556 // 557 // Select an interface/source for system packet, application 558 // should select them itself. 559 // 560 IpIf = Interface; 561 if (IpIf == NULL) { 562 // 563 // IpInstance->Interface is NULL when IpInstance is configured with both stationaddress 564 // and destinationaddress is unspecified. 565 // 566 if (IpInstance == NULL || IpInstance->Interface == NULL) { 567 IpIf = Ip6SelectInterface (IpSb, &Head->DestinationAddress, &Head->SourceAddress); 568 if (IpInstance != NULL) { 569 IpInstance->Interface = IpIf; 570 } 571 } else { 572 IpIf = IpInstance->Interface; 573 } 574 } 575 576 if (IpIf == NULL) { 577 return EFI_NO_MAPPING; 578 } 579 580 // 581 // Update the common field in Head here. 582 // 583 Head->Version = 6; 584 Head->TrafficClassL = 0; 585 Head->TrafficClassH = 0; 586 587 Checksum = NULL; 588 NextHeader = *LastHeader; 589 590 switch (NextHeader) { 591 case EFI_IP_PROTO_UDP: 592 Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, NULL); 593 ASSERT (Packet->Udp != NULL); 594 if (Packet->Udp->Checksum == 0) { 595 Checksum = &Packet->Udp->Checksum; 596 } 597 break; 598 599 case EFI_IP_PROTO_TCP: 600 Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, NULL); 601 ASSERT (Packet->Tcp != NULL); 602 if (Packet->Tcp->Checksum == 0) { 603 Checksum = &Packet->Tcp->Checksum; 604 } 605 break; 606 607 case IP6_ICMP: 608 // 609 // Don't send ICMP packet to an IPv6 anycast address. 610 // 611 if (Ip6IsAnycast (IpSb, &Head->DestinationAddress)) { 612 return EFI_INVALID_PARAMETER; 613 } 614 615 IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL); 616 ASSERT (IcmpHead != NULL); 617 if (IcmpHead->Checksum == 0) { 618 Checksum = &IcmpHead->Checksum; 619 } 620 break; 621 622 default: 623 break; 624 } 625 626 if (Checksum != NULL) { 627 // 628 // Calculate the checksum for upper layer protocol if it is not calculated due to lack of 629 // IPv6 source address. 630 // 631 PacketChecksum = NetbufChecksum (Packet); 632 PseudoChecksum = NetIp6PseudoHeadChecksum ( 633 &Head->SourceAddress, 634 &Head->DestinationAddress, 635 NextHeader, 636 Packet->TotalSize 637 ); 638 *Checksum = (UINT16) ~NetAddChecksum (PacketChecksum, PseudoChecksum); 639 } 640 641 Status = Ip6IpSecProcessPacket ( 642 IpSb, 643 &Head, 644 LastHeader, // no need get the lasthead value for output 645 &Packet, 646 &ExtHdrs, 647 &ExtHdrsLen, 648 EfiIPsecOutBound, 649 Context 650 ); 651 652 if (EFI_ERROR(Status)) { 653 return Status; 654 } 655 656 LastHeader = NULL; 657 // 658 // Check incoming parameters. 659 // 660 if (!Ip6IsExtsValid ( 661 IpSb, 662 Packet, 663 &Head->NextHeader, 664 ExtHdrs, 665 ExtHdrsLen, 666 FALSE, 667 NULL, 668 &LastHeader, 669 &RealExtLen, 670 &UnFragmentHdrsLen, 671 NULL 672 )) { 673 return EFI_INVALID_PARAMETER; 674 } 675 676 if ((RealExtLen & 0x7) != 0) { 677 return EFI_INVALID_PARAMETER; 678 } 679 680 LastHeaderBackup = *LastHeader; 681 682 // 683 // Perform next hop determination: 684 // For multicast packets, the next-hop is always the destination address and 685 // is considered to be on-link. 686 // 687 if (IP6_IS_MULTICAST (&Head->DestinationAddress)) { 688 IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress); 689 } else { 690 // 691 // For unicast packets, use a combination of the Destination Cache, the Prefix List 692 // and the Default Router List to determine the IP address of the appropriate next hop. 693 // 694 695 NeighborCache = Ip6FindNeighborEntry (IpSb, &Head->DestinationAddress); 696 if (NeighborCache != NULL) { 697 // 698 // Hit Neighbor Cache. 699 // 700 IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress); 701 } else { 702 // 703 // Not in Neighbor Cache, check Router cache 704 // 705 RouteCache = Ip6Route (IpSb, &Head->DestinationAddress, &Head->SourceAddress); 706 if (RouteCache == NULL) { 707 return EFI_NOT_FOUND; 708 } 709 710 IP6_COPY_ADDRESS (&NextHop, &RouteCache->NextHop); 711 Ip6FreeRouteCacheEntry (RouteCache); 712 } 713 } 714 715 // 716 // Examines the Neighbor Cache for link-layer information about that neighbor. 717 // DO NOT create neighbor cache if neighbor is itself - when reporting ICMP error. 718 // 719 if (!IP6_IS_MULTICAST (&NextHop) && !EFI_IP6_EQUAL (&Head->DestinationAddress, &Head->SourceAddress)) { 720 NeighborCache = Ip6FindNeighborEntry (IpSb, &NextHop); 721 if (NeighborCache == NULL) { 722 NeighborCache = Ip6CreateNeighborEntry (IpSb, Ip6OnArpResolved, &NextHop, NULL); 723 724 if (NeighborCache == NULL) { 725 return EFI_OUT_OF_RESOURCES; 726 } 727 728 // 729 // Send out multicast neighbor solicitation for address resolution immediately. 730 // 731 Ip6CreateSNMulticastAddr (&NeighborCache->Neighbor, &Destination); 732 Status = Ip6SelectSourceAddress (IpSb, &NeighborCache->Neighbor, &Source); 733 if (EFI_ERROR (Status)) { 734 return Status; 735 } 736 737 Status = Ip6SendNeighborSolicit ( 738 IpSb, 739 &Source, 740 &Destination, 741 &NeighborCache->Neighbor, 742 &IpSb->SnpMode.CurrentAddress 743 ); 744 if (EFI_ERROR (Status)) { 745 return Status; 746 } 747 748 --NeighborCache->Transmit; 749 NeighborCache->Ticks = IP6_GET_TICKS (IpSb->RetransTimer) + 1; 750 } 751 752 NeighborCache->Interface = IpIf; 753 } 754 755 UpdatedExtHdrs = NULL; 756 ExtHdrsBackup = NULL; 757 NextHeaderBackup = 0; 758 FragmentHeadInserted = FALSE; 759 760 // 761 // Check whether we received Packet Too Big message for the packet sent to the 762 // Destination. If yes include a Fragment Header in the subsequent packets. 763 // 764 RouteEntry = Ip6FindRouteEntry ( 765 IpSb->RouteTable, 766 &Head->DestinationAddress, 767 NULL 768 ); 769 if (RouteEntry != NULL) { 770 if ((RouteEntry->Flag & IP6_PACKET_TOO_BIG) == IP6_PACKET_TOO_BIG) { 771 772 // 773 // FragmentHead is inserted after Hop-by-Hop Options header, Destination 774 // Options header (first occur), Routing header, and before Fragment header, 775 // Authentication header, Encapsulating Security Payload header, and 776 // Destination Options header (last occur), and upper-layer header. 777 // 778 Status = Ip6FillFragmentHeader ( 779 IpSb, 780 Head->NextHeader, 781 LastHeaderBackup, 782 ExtHdrs, 783 ExtHdrsLen, 784 0, 785 &UpdatedExtHdrs 786 ); 787 if (EFI_ERROR (Status)) { 788 return Status; 789 } 790 791 if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) { 792 NextHeaderBackup = Head->NextHeader; 793 Head->NextHeader = IP6_FRAGMENT; 794 } 795 796 ExtHdrsBackup = ExtHdrs; 797 ExtHdrs = UpdatedExtHdrs; 798 ExtHdrsLen = ExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER); 799 RealExtLen = RealExtLen + sizeof (IP6_FRAGMENT_HEADER); 800 801 mIp6Id++; 802 803 FragmentHeadInserted = TRUE; 804 } 805 806 Ip6FreeRouteEntry (RouteEntry); 807 } 808 809 // 810 // OK, selected the source and route, fragment the packet then send 811 // them. Tag each fragment other than the first one as spawn from it. 812 // Each extension header is an integer multiple of 8 octets long, in 813 // order to retain 8-octet alignment for subsequent headers. 814 // 815 Mtu = IpSb->MaxPacketSize + sizeof (EFI_IP6_HEADER); 816 HeadLen = sizeof (EFI_IP6_HEADER) + RealExtLen; 817 818 if (Packet->TotalSize + HeadLen > Mtu) { 819 // 820 // Remove the inserted Fragment Header since we need fragment the packet. 821 // 822 if (FragmentHeadInserted) { 823 ExtHdrs = ExtHdrsBackup; 824 ExtHdrsLen = ExtHdrsLen - sizeof (IP6_FRAGMENT_HEADER); 825 826 if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) { 827 Head->NextHeader = NextHeaderBackup; 828 } 829 } 830 831 FragmentHdrsLen = ExtHdrsLen - UnFragmentHdrsLen; 832 833 // 834 // The packet is beyond the maximum which can be described through the 835 // fragment offset field in Fragment header. 836 // 837 if ((((Packet->TotalSize + FragmentHdrsLen) >> 3) & (~0x1fff)) != 0) { 838 Status = EFI_BAD_BUFFER_SIZE; 839 goto Error; 840 } 841 842 if (FragmentHdrsLen != 0) { 843 // 844 // Append the fragmentable extension hdrs before the upper layer payload 845 // to form a new NET_BUF. This NET_BUF contains all the buffer which will 846 // be fragmented below. 847 // 848 TmpPacket = NetbufGetFragment (Packet, 0, Packet->TotalSize, FragmentHdrsLen); 849 ASSERT (TmpPacket != NULL); 850 851 // 852 // Allocate the space to contain the fragmentable hdrs and copy the data. 853 // 854 Buf = NetbufAllocSpace (TmpPacket, FragmentHdrsLen, TRUE); 855 ASSERT (Buf != NULL); 856 CopyMem (Buf, ExtHdrs + UnFragmentHdrsLen, FragmentHdrsLen); 857 858 // 859 // Free the old Packet. 860 // 861 NetbufFree (Packet); 862 Packet = TmpPacket; 863 } 864 865 // 866 // The unfragment part which appears in every fragmented IPv6 packet includes 867 // the IPv6 header, the unfragmentable extension hdrs and the fragment header. 868 // 869 UnFragmentLen = sizeof (EFI_IP6_HEADER) + UnFragmentHdrsLen + sizeof (IP6_FRAGMENT_HEADER); 870 871 // 872 // Mtu now is the length of the fragment part in a full-length fragment. 873 // 874 Mtu = (Mtu - UnFragmentLen) & (~0x07); 875 Num = (Packet->TotalSize + Mtu - 1) / Mtu; 876 877 for (Index = 0, Offset = 0, PacketLen = Mtu; Index < Num; Index++) { 878 // 879 // Get fragment from the Packet, append UnFragnmentLen spare buffer 880 // before the fragmented data, the corresponding data is filled in later. 881 // 882 Fragment = NetbufGetFragment (Packet, Offset, PacketLen, UnFragmentLen); 883 if (Fragment == NULL) { 884 Status = EFI_OUT_OF_RESOURCES; 885 goto Error; 886 } 887 888 FragmentOffset = (UINT16) ((UINT16) Offset | 0x1); 889 if (Index == Num - 1){ 890 // 891 // The last fragment, clear the M flag. 892 // 893 FragmentOffset &= (~0x1); 894 } 895 896 Status = Ip6PrependHead ( 897 IpSb, 898 Fragment, 899 Head, 900 FragmentOffset, 901 ExtHdrs, 902 ExtHdrsLen, 903 LastHeaderBackup, 904 UnFragmentLen 905 ); 906 ASSERT (Status == EFI_SUCCESS); 907 908 Status = Ip6SendFrame ( 909 IpIf, 910 IpInstance, 911 Fragment, 912 &NextHop, 913 Ip6SysPacketSent, 914 Packet 915 ); 916 if (EFI_ERROR (Status)) { 917 goto Error; 918 } 919 920 // 921 // The last fragment of upper layer packet, update the IP6 token status. 922 // 923 if ((Index == Num -1) && (Context != NULL)) { 924 Wrap = (IP6_TXTOKEN_WRAP *) Context; 925 Wrap->Token->Status = Status; 926 } 927 928 Offset += PacketLen; 929 PacketLen = Packet->TotalSize - Offset; 930 if (PacketLen > Mtu) { 931 PacketLen = Mtu; 932 } 933 } 934 935 NetbufFree (Packet); 936 mIp6Id++; 937 938 if (UpdatedExtHdrs != NULL) { 939 FreePool (UpdatedExtHdrs); 940 } 941 942 return EFI_SUCCESS; 943 } 944 945 // 946 // Need not fragment the packet, send it in one frame. 947 // 948 PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD); 949 if (PacketHead == NULL) { 950 Status = EFI_BAD_BUFFER_SIZE; 951 goto Error; 952 } 953 954 CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER)); 955 Packet->Ip.Ip6 = PacketHead; 956 957 if (ExtHdrs != NULL) { 958 Buf = (UINT8 *) (PacketHead + 1); 959 CopyMem (Buf, ExtHdrs, ExtHdrsLen); 960 } 961 962 if (UpdatedExtHdrs != NULL) { 963 // 964 // A Fragment Header is inserted to the packet, update the payload length. 965 // 966 PacketHead->PayloadLength = (UINT16) (NTOHS (PacketHead->PayloadLength) + 967 sizeof (IP6_FRAGMENT_HEADER)); 968 PacketHead->PayloadLength = HTONS (PacketHead->PayloadLength); 969 FreePool (UpdatedExtHdrs); 970 } 971 972 return Ip6SendFrame ( 973 IpIf, 974 IpInstance, 975 Packet, 976 &NextHop, 977 Callback, 978 Context 979 ); 980 981 Error: 982 if (UpdatedExtHdrs != NULL) { 983 FreePool (UpdatedExtHdrs); 984 } 985 Ip6CancelPacket (IpIf, Packet, Status); 986 return Status; 987 } 988 989 /** 990 The filter function to find a packet and all its fragments. 991 The packet's fragments have their Context set to the packet. 992 993 @param[in] Frame The frames hold by the low level interface. 994 @param[in] Context Context to the function, which is the packet. 995 996 @retval TRUE This is the packet to cancel or its fragments. 997 @retval FALSE This is an unrelated packet. 998 999 **/ 1000 BOOLEAN 1001 Ip6CancelPacketFragments ( 1002 IN IP6_LINK_TX_TOKEN *Frame, 1003 IN VOID *Context 1004 ) 1005 { 1006 if ((Frame->Packet == (NET_BUF *) Context) || (Frame->Context == Context)) { 1007 return TRUE; 1008 } 1009 1010 return FALSE; 1011 } 1012 1013 /** 1014 Remove all the frames on the interface that pass the FrameToCancel, 1015 either queued on ARP queues or that have already been delivered to 1016 MNP and not yet recycled. 1017 1018 @param[in] Interface Interface to remove the frames from. 1019 @param[in] IoStatus The transmit status returned to the frames' callback. 1020 @param[in] FrameToCancel Function to select the frame to cancel; NULL to select all. 1021 @param[in] Context Opaque parameters passed to FrameToCancel. Ignored if 1022 FrameToCancel is NULL. 1023 1024 **/ 1025 VOID 1026 Ip6CancelFrames ( 1027 IN IP6_INTERFACE *Interface, 1028 IN EFI_STATUS IoStatus, 1029 IN IP6_FRAME_TO_CANCEL FrameToCancel OPTIONAL, 1030 IN VOID *Context OPTIONAL 1031 ) 1032 { 1033 LIST_ENTRY *Entry; 1034 LIST_ENTRY *Next; 1035 IP6_LINK_TX_TOKEN *Token; 1036 IP6_SERVICE *IpSb; 1037 IP6_NEIGHBOR_ENTRY *ArpQue; 1038 EFI_STATUS Status; 1039 1040 IpSb = Interface->Service; 1041 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); 1042 1043 // 1044 // Cancel all the pending frames on ARP requests 1045 // 1046 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->ArpQues) { 1047 ArpQue = NET_LIST_USER_STRUCT (Entry, IP6_NEIGHBOR_ENTRY, ArpList); 1048 1049 Status = Ip6FreeNeighborEntry ( 1050 IpSb, 1051 ArpQue, 1052 FALSE, 1053 FALSE, 1054 IoStatus, 1055 FrameToCancel, 1056 Context 1057 ); 1058 ASSERT_EFI_ERROR (Status); 1059 } 1060 1061 // 1062 // Cancel all the frames that have been delivered to MNP 1063 // but not yet recycled. 1064 // 1065 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->SentFrames) { 1066 Token = NET_LIST_USER_STRUCT (Entry, IP6_LINK_TX_TOKEN, Link); 1067 1068 if ((FrameToCancel == NULL) || FrameToCancel (Token, Context)) { 1069 IpSb->Mnp->Cancel (IpSb->Mnp, &Token->MnpToken); 1070 } 1071 } 1072 } 1073 1074 /** 1075 Cancel the Packet and all its fragments. 1076 1077 @param[in] IpIf The interface from which the Packet is sent. 1078 @param[in] Packet The Packet to cancel. 1079 @param[in] IoStatus The status returns to the sender. 1080 1081 **/ 1082 VOID 1083 Ip6CancelPacket ( 1084 IN IP6_INTERFACE *IpIf, 1085 IN NET_BUF *Packet, 1086 IN EFI_STATUS IoStatus 1087 ) 1088 { 1089 Ip6CancelFrames (IpIf, IoStatus, Ip6CancelPacketFragments, Packet); 1090 } 1091 1092