Home | History | Annotate | Download | only in IR
      1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides a simple and efficient mechanism for performing general
     11 // tree-based pattern matches on the LLVM IR. The power of these routines is
     12 // that it allows you to write concise patterns that are expressive and easy to
     13 // understand. The other major advantage of this is that it allows you to
     14 // trivially capture/bind elements in the pattern to variables. For example,
     15 // you can do something like this:
     16 //
     17 //  Value *Exp = ...
     18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
     19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
     20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
     21 //    ... Pattern is matched and variables are bound ...
     22 //  }
     23 //
     24 // This is primarily useful to things like the instruction combiner, but can
     25 // also be useful for static analysis tools or code generators.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #ifndef LLVM_IR_PATTERNMATCH_H
     30 #define LLVM_IR_PATTERNMATCH_H
     31 
     32 #include "llvm/ADT/APFloat.h"
     33 #include "llvm/ADT/APInt.h"
     34 #include "llvm/IR/CallSite.h"
     35 #include "llvm/IR/Constant.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/InstrTypes.h"
     38 #include "llvm/IR/Instruction.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Intrinsics.h"
     41 #include "llvm/IR/Operator.h"
     42 #include "llvm/IR/Value.h"
     43 #include "llvm/Support/Casting.h"
     44 #include <cstdint>
     45 
     46 namespace llvm {
     47 namespace PatternMatch {
     48 
     49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
     50   return const_cast<Pattern &>(P).match(V);
     51 }
     52 
     53 template <typename SubPattern_t> struct OneUse_match {
     54   SubPattern_t SubPattern;
     55 
     56   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
     57 
     58   template <typename OpTy> bool match(OpTy *V) {
     59     return V->hasOneUse() && SubPattern.match(V);
     60   }
     61 };
     62 
     63 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
     64   return SubPattern;
     65 }
     66 
     67 template <typename Class> struct class_match {
     68   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
     69 };
     70 
     71 /// Match an arbitrary value and ignore it.
     72 inline class_match<Value> m_Value() { return class_match<Value>(); }
     73 
     74 /// Match an arbitrary binary operation and ignore it.
     75 inline class_match<BinaryOperator> m_BinOp() {
     76   return class_match<BinaryOperator>();
     77 }
     78 
     79 /// Matches any compare instruction and ignore it.
     80 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
     81 
     82 /// Match an arbitrary ConstantInt and ignore it.
     83 inline class_match<ConstantInt> m_ConstantInt() {
     84   return class_match<ConstantInt>();
     85 }
     86 
     87 /// Match an arbitrary undef constant.
     88 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
     89 
     90 /// Match an arbitrary Constant and ignore it.
     91 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
     92 
     93 /// Matching combinators
     94 template <typename LTy, typename RTy> struct match_combine_or {
     95   LTy L;
     96   RTy R;
     97 
     98   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
     99 
    100   template <typename ITy> bool match(ITy *V) {
    101     if (L.match(V))
    102       return true;
    103     if (R.match(V))
    104       return true;
    105     return false;
    106   }
    107 };
    108 
    109 template <typename LTy, typename RTy> struct match_combine_and {
    110   LTy L;
    111   RTy R;
    112 
    113   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
    114 
    115   template <typename ITy> bool match(ITy *V) {
    116     if (L.match(V))
    117       if (R.match(V))
    118         return true;
    119     return false;
    120   }
    121 };
    122 
    123 /// Combine two pattern matchers matching L || R
    124 template <typename LTy, typename RTy>
    125 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
    126   return match_combine_or<LTy, RTy>(L, R);
    127 }
    128 
    129 /// Combine two pattern matchers matching L && R
    130 template <typename LTy, typename RTy>
    131 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
    132   return match_combine_and<LTy, RTy>(L, R);
    133 }
    134 
    135 struct apint_match {
    136   const APInt *&Res;
    137 
    138   apint_match(const APInt *&R) : Res(R) {}
    139 
    140   template <typename ITy> bool match(ITy *V) {
    141     if (auto *CI = dyn_cast<ConstantInt>(V)) {
    142       Res = &CI->getValue();
    143       return true;
    144     }
    145     if (V->getType()->isVectorTy())
    146       if (const auto *C = dyn_cast<Constant>(V))
    147         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
    148           Res = &CI->getValue();
    149           return true;
    150         }
    151     return false;
    152   }
    153 };
    154 // Either constexpr if or renaming ConstantFP::getValueAPF to
    155 // ConstantFP::getValue is needed to do it via single template
    156 // function for both apint/apfloat.
    157 struct apfloat_match {
    158   const APFloat *&Res;
    159   apfloat_match(const APFloat *&R) : Res(R) {}
    160   template <typename ITy> bool match(ITy *V) {
    161     if (auto *CI = dyn_cast<ConstantFP>(V)) {
    162       Res = &CI->getValueAPF();
    163       return true;
    164     }
    165     if (V->getType()->isVectorTy())
    166       if (const auto *C = dyn_cast<Constant>(V))
    167         if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
    168           Res = &CI->getValueAPF();
    169           return true;
    170         }
    171     return false;
    172   }
    173 };
    174 
    175 /// Match a ConstantInt or splatted ConstantVector, binding the
    176 /// specified pointer to the contained APInt.
    177 inline apint_match m_APInt(const APInt *&Res) { return Res; }
    178 
    179 /// Match a ConstantFP or splatted ConstantVector, binding the
    180 /// specified pointer to the contained APFloat.
    181 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
    182 
    183 template <int64_t Val> struct constantint_match {
    184   template <typename ITy> bool match(ITy *V) {
    185     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
    186       const APInt &CIV = CI->getValue();
    187       if (Val >= 0)
    188         return CIV == static_cast<uint64_t>(Val);
    189       // If Val is negative, and CI is shorter than it, truncate to the right
    190       // number of bits.  If it is larger, then we have to sign extend.  Just
    191       // compare their negated values.
    192       return -CIV == -Val;
    193     }
    194     return false;
    195   }
    196 };
    197 
    198 /// Match a ConstantInt with a specific value.
    199 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
    200   return constantint_match<Val>();
    201 }
    202 
    203 /// This helper class is used to match scalar and vector integer constants that
    204 /// satisfy a specified predicate.
    205 /// For vector constants, undefined elements are ignored.
    206 template <typename Predicate> struct cst_pred_ty : public Predicate {
    207   template <typename ITy> bool match(ITy *V) {
    208     if (const auto *CI = dyn_cast<ConstantInt>(V))
    209       return this->isValue(CI->getValue());
    210     if (V->getType()->isVectorTy()) {
    211       if (const auto *C = dyn_cast<Constant>(V)) {
    212         if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
    213           return this->isValue(CI->getValue());
    214 
    215         // Non-splat vector constant: check each element for a match.
    216         unsigned NumElts = V->getType()->getVectorNumElements();
    217         assert(NumElts != 0 && "Constant vector with no elements?");
    218         for (unsigned i = 0; i != NumElts; ++i) {
    219           Constant *Elt = C->getAggregateElement(i);
    220           if (!Elt)
    221             return false;
    222           if (isa<UndefValue>(Elt))
    223             continue;
    224           auto *CI = dyn_cast<ConstantInt>(Elt);
    225           if (!CI || !this->isValue(CI->getValue()))
    226             return false;
    227         }
    228         return true;
    229       }
    230     }
    231     return false;
    232   }
    233 };
    234 
    235 /// This helper class is used to match scalar and vector constants that
    236 /// satisfy a specified predicate, and bind them to an APInt.
    237 template <typename Predicate> struct api_pred_ty : public Predicate {
    238   const APInt *&Res;
    239 
    240   api_pred_ty(const APInt *&R) : Res(R) {}
    241 
    242   template <typename ITy> bool match(ITy *V) {
    243     if (const auto *CI = dyn_cast<ConstantInt>(V))
    244       if (this->isValue(CI->getValue())) {
    245         Res = &CI->getValue();
    246         return true;
    247       }
    248     if (V->getType()->isVectorTy())
    249       if (const auto *C = dyn_cast<Constant>(V))
    250         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
    251           if (this->isValue(CI->getValue())) {
    252             Res = &CI->getValue();
    253             return true;
    254           }
    255 
    256     return false;
    257   }
    258 };
    259 
    260 /// This helper class is used to match scalar and vector floating-point
    261 /// constants that satisfy a specified predicate.
    262 /// For vector constants, undefined elements are ignored.
    263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
    264   template <typename ITy> bool match(ITy *V) {
    265     if (const auto *CF = dyn_cast<ConstantFP>(V))
    266       return this->isValue(CF->getValueAPF());
    267     if (V->getType()->isVectorTy()) {
    268       if (const auto *C = dyn_cast<Constant>(V)) {
    269         if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
    270           return this->isValue(CF->getValueAPF());
    271 
    272         // Non-splat vector constant: check each element for a match.
    273         unsigned NumElts = V->getType()->getVectorNumElements();
    274         assert(NumElts != 0 && "Constant vector with no elements?");
    275         for (unsigned i = 0; i != NumElts; ++i) {
    276           Constant *Elt = C->getAggregateElement(i);
    277           if (!Elt)
    278             return false;
    279           if (isa<UndefValue>(Elt))
    280             continue;
    281           auto *CF = dyn_cast<ConstantFP>(Elt);
    282           if (!CF || !this->isValue(CF->getValueAPF()))
    283             return false;
    284         }
    285         return true;
    286       }
    287     }
    288     return false;
    289   }
    290 };
    291 
    292 ///////////////////////////////////////////////////////////////////////////////
    293 //
    294 // Encapsulate constant value queries for use in templated predicate matchers.
    295 // This allows checking if constants match using compound predicates and works
    296 // with vector constants, possibly with relaxed constraints. For example, ignore
    297 // undef values.
    298 //
    299 ///////////////////////////////////////////////////////////////////////////////
    300 
    301 struct is_all_ones {
    302   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
    303 };
    304 /// Match an integer or vector with all bits set.
    305 /// For vectors, this includes constants with undefined elements.
    306 inline cst_pred_ty<is_all_ones> m_AllOnes() {
    307   return cst_pred_ty<is_all_ones>();
    308 }
    309 
    310 struct is_maxsignedvalue {
    311   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
    312 };
    313 /// Match an integer or vector with values having all bits except for the high
    314 /// bit set (0x7f...).
    315 /// For vectors, this includes constants with undefined elements.
    316 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
    317   return cst_pred_ty<is_maxsignedvalue>();
    318 }
    319 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
    320   return V;
    321 }
    322 
    323 struct is_negative {
    324   bool isValue(const APInt &C) { return C.isNegative(); }
    325 };
    326 /// Match an integer or vector of negative values.
    327 /// For vectors, this includes constants with undefined elements.
    328 inline cst_pred_ty<is_negative> m_Negative() {
    329   return cst_pred_ty<is_negative>();
    330 }
    331 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
    332   return V;
    333 }
    334 
    335 struct is_nonnegative {
    336   bool isValue(const APInt &C) { return C.isNonNegative(); }
    337 };
    338 /// Match an integer or vector of nonnegative values.
    339 /// For vectors, this includes constants with undefined elements.
    340 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
    341   return cst_pred_ty<is_nonnegative>();
    342 }
    343 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
    344   return V;
    345 }
    346 
    347 struct is_one {
    348   bool isValue(const APInt &C) { return C.isOneValue(); }
    349 };
    350 /// Match an integer 1 or a vector with all elements equal to 1.
    351 /// For vectors, this includes constants with undefined elements.
    352 inline cst_pred_ty<is_one> m_One() {
    353   return cst_pred_ty<is_one>();
    354 }
    355 
    356 struct is_zero_int {
    357   bool isValue(const APInt &C) { return C.isNullValue(); }
    358 };
    359 /// Match an integer 0 or a vector with all elements equal to 0.
    360 /// For vectors, this includes constants with undefined elements.
    361 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
    362   return cst_pred_ty<is_zero_int>();
    363 }
    364 
    365 struct is_zero {
    366   template <typename ITy> bool match(ITy *V) {
    367     auto *C = dyn_cast<Constant>(V);
    368     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
    369   }
    370 };
    371 /// Match any null constant or a vector with all elements equal to 0.
    372 /// For vectors, this includes constants with undefined elements.
    373 inline is_zero m_Zero() {
    374   return is_zero();
    375 }
    376 
    377 struct is_power2 {
    378   bool isValue(const APInt &C) { return C.isPowerOf2(); }
    379 };
    380 /// Match an integer or vector power-of-2.
    381 /// For vectors, this includes constants with undefined elements.
    382 inline cst_pred_ty<is_power2> m_Power2() {
    383   return cst_pred_ty<is_power2>();
    384 }
    385 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
    386   return V;
    387 }
    388 
    389 struct is_power2_or_zero {
    390   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
    391 };
    392 /// Match an integer or vector of 0 or power-of-2 values.
    393 /// For vectors, this includes constants with undefined elements.
    394 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
    395   return cst_pred_ty<is_power2_or_zero>();
    396 }
    397 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
    398   return V;
    399 }
    400 
    401 struct is_sign_mask {
    402   bool isValue(const APInt &C) { return C.isSignMask(); }
    403 };
    404 /// Match an integer or vector with only the sign bit(s) set.
    405 /// For vectors, this includes constants with undefined elements.
    406 inline cst_pred_ty<is_sign_mask> m_SignMask() {
    407   return cst_pred_ty<is_sign_mask>();
    408 }
    409 
    410 struct is_lowbit_mask {
    411   bool isValue(const APInt &C) { return C.isMask(); }
    412 };
    413 /// Match an integer or vector with only the low bit(s) set.
    414 /// For vectors, this includes constants with undefined elements.
    415 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
    416   return cst_pred_ty<is_lowbit_mask>();
    417 }
    418 
    419 struct is_nan {
    420   bool isValue(const APFloat &C) { return C.isNaN(); }
    421 };
    422 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
    423 /// For vectors, this includes constants with undefined elements.
    424 inline cstfp_pred_ty<is_nan> m_NaN() {
    425   return cstfp_pred_ty<is_nan>();
    426 }
    427 
    428 struct is_any_zero_fp {
    429   bool isValue(const APFloat &C) { return C.isZero(); }
    430 };
    431 /// Match a floating-point negative zero or positive zero.
    432 /// For vectors, this includes constants with undefined elements.
    433 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
    434   return cstfp_pred_ty<is_any_zero_fp>();
    435 }
    436 
    437 struct is_pos_zero_fp {
    438   bool isValue(const APFloat &C) { return C.isPosZero(); }
    439 };
    440 /// Match a floating-point positive zero.
    441 /// For vectors, this includes constants with undefined elements.
    442 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
    443   return cstfp_pred_ty<is_pos_zero_fp>();
    444 }
    445 
    446 struct is_neg_zero_fp {
    447   bool isValue(const APFloat &C) { return C.isNegZero(); }
    448 };
    449 /// Match a floating-point negative zero.
    450 /// For vectors, this includes constants with undefined elements.
    451 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
    452   return cstfp_pred_ty<is_neg_zero_fp>();
    453 }
    454 
    455 ///////////////////////////////////////////////////////////////////////////////
    456 
    457 template <typename Class> struct bind_ty {
    458   Class *&VR;
    459 
    460   bind_ty(Class *&V) : VR(V) {}
    461 
    462   template <typename ITy> bool match(ITy *V) {
    463     if (auto *CV = dyn_cast<Class>(V)) {
    464       VR = CV;
    465       return true;
    466     }
    467     return false;
    468   }
    469 };
    470 
    471 /// Match a value, capturing it if we match.
    472 inline bind_ty<Value> m_Value(Value *&V) { return V; }
    473 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
    474 
    475 /// Match an instruction, capturing it if we match.
    476 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
    477 /// Match a binary operator, capturing it if we match.
    478 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
    479 
    480 /// Match a ConstantInt, capturing the value if we match.
    481 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
    482 
    483 /// Match a Constant, capturing the value if we match.
    484 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
    485 
    486 /// Match a ConstantFP, capturing the value if we match.
    487 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
    488 
    489 /// Match a specified Value*.
    490 struct specificval_ty {
    491   const Value *Val;
    492 
    493   specificval_ty(const Value *V) : Val(V) {}
    494 
    495   template <typename ITy> bool match(ITy *V) { return V == Val; }
    496 };
    497 
    498 /// Match if we have a specific specified value.
    499 inline specificval_ty m_Specific(const Value *V) { return V; }
    500 
    501 /// Stores a reference to the Value *, not the Value * itself,
    502 /// thus can be used in commutative matchers.
    503 template <typename Class> struct deferredval_ty {
    504   Class *const &Val;
    505 
    506   deferredval_ty(Class *const &V) : Val(V) {}
    507 
    508   template <typename ITy> bool match(ITy *const V) { return V == Val; }
    509 };
    510 
    511 /// A commutative-friendly version of m_Specific().
    512 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
    513 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
    514   return V;
    515 }
    516 
    517 /// Match a specified floating point value or vector of all elements of
    518 /// that value.
    519 struct specific_fpval {
    520   double Val;
    521 
    522   specific_fpval(double V) : Val(V) {}
    523 
    524   template <typename ITy> bool match(ITy *V) {
    525     if (const auto *CFP = dyn_cast<ConstantFP>(V))
    526       return CFP->isExactlyValue(Val);
    527     if (V->getType()->isVectorTy())
    528       if (const auto *C = dyn_cast<Constant>(V))
    529         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
    530           return CFP->isExactlyValue(Val);
    531     return false;
    532   }
    533 };
    534 
    535 /// Match a specific floating point value or vector with all elements
    536 /// equal to the value.
    537 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
    538 
    539 /// Match a float 1.0 or vector with all elements equal to 1.0.
    540 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
    541 
    542 struct bind_const_intval_ty {
    543   uint64_t &VR;
    544 
    545   bind_const_intval_ty(uint64_t &V) : VR(V) {}
    546 
    547   template <typename ITy> bool match(ITy *V) {
    548     if (const auto *CV = dyn_cast<ConstantInt>(V))
    549       if (CV->getValue().ule(UINT64_MAX)) {
    550         VR = CV->getZExtValue();
    551         return true;
    552       }
    553     return false;
    554   }
    555 };
    556 
    557 /// Match a specified integer value or vector of all elements of that
    558 // value.
    559 struct specific_intval {
    560   uint64_t Val;
    561 
    562   specific_intval(uint64_t V) : Val(V) {}
    563 
    564   template <typename ITy> bool match(ITy *V) {
    565     const auto *CI = dyn_cast<ConstantInt>(V);
    566     if (!CI && V->getType()->isVectorTy())
    567       if (const auto *C = dyn_cast<Constant>(V))
    568         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
    569 
    570     return CI && CI->getValue() == Val;
    571   }
    572 };
    573 
    574 /// Match a specific integer value or vector with all elements equal to
    575 /// the value.
    576 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
    577 
    578 /// Match a ConstantInt and bind to its value.  This does not match
    579 /// ConstantInts wider than 64-bits.
    580 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
    581 
    582 //===----------------------------------------------------------------------===//
    583 // Matcher for any binary operator.
    584 //
    585 template <typename LHS_t, typename RHS_t, bool Commutable = false>
    586 struct AnyBinaryOp_match {
    587   LHS_t L;
    588   RHS_t R;
    589 
    590   // The evaluation order is always stable, regardless of Commutability.
    591   // The LHS is always matched first.
    592   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    593 
    594   template <typename OpTy> bool match(OpTy *V) {
    595     if (auto *I = dyn_cast<BinaryOperator>(V))
    596       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
    597              (Commutable && L.match(I->getOperand(1)) &&
    598               R.match(I->getOperand(0)));
    599     return false;
    600   }
    601 };
    602 
    603 template <typename LHS, typename RHS>
    604 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
    605   return AnyBinaryOp_match<LHS, RHS>(L, R);
    606 }
    607 
    608 //===----------------------------------------------------------------------===//
    609 // Matchers for specific binary operators.
    610 //
    611 
    612 template <typename LHS_t, typename RHS_t, unsigned Opcode,
    613           bool Commutable = false>
    614 struct BinaryOp_match {
    615   LHS_t L;
    616   RHS_t R;
    617 
    618   // The evaluation order is always stable, regardless of Commutability.
    619   // The LHS is always matched first.
    620   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    621 
    622   template <typename OpTy> bool match(OpTy *V) {
    623     if (V->getValueID() == Value::InstructionVal + Opcode) {
    624       auto *I = cast<BinaryOperator>(V);
    625       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
    626              (Commutable && L.match(I->getOperand(1)) &&
    627               R.match(I->getOperand(0)));
    628     }
    629     if (auto *CE = dyn_cast<ConstantExpr>(V))
    630       return CE->getOpcode() == Opcode &&
    631              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
    632               (Commutable && L.match(CE->getOperand(1)) &&
    633                R.match(CE->getOperand(0))));
    634     return false;
    635   }
    636 };
    637 
    638 template <typename LHS, typename RHS>
    639 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
    640                                                         const RHS &R) {
    641   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
    642 }
    643 
    644 template <typename LHS, typename RHS>
    645 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
    646                                                           const RHS &R) {
    647   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
    648 }
    649 
    650 template <typename LHS, typename RHS>
    651 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
    652                                                         const RHS &R) {
    653   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
    654 }
    655 
    656 template <typename LHS, typename RHS>
    657 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
    658                                                           const RHS &R) {
    659   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
    660 }
    661 
    662 /// Match 'fneg X' as 'fsub -0.0, X'.
    663 template <typename RHS>
    664 inline BinaryOp_match<cstfp_pred_ty<is_neg_zero_fp>, RHS, Instruction::FSub>
    665 m_FNeg(const RHS &X) {
    666   return m_FSub(m_NegZeroFP(), X);
    667 }
    668 
    669 template <typename LHS, typename RHS>
    670 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
    671                                                         const RHS &R) {
    672   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
    673 }
    674 
    675 template <typename LHS, typename RHS>
    676 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
    677                                                           const RHS &R) {
    678   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
    679 }
    680 
    681 template <typename LHS, typename RHS>
    682 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
    683                                                           const RHS &R) {
    684   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
    685 }
    686 
    687 template <typename LHS, typename RHS>
    688 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
    689                                                           const RHS &R) {
    690   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
    691 }
    692 
    693 template <typename LHS, typename RHS>
    694 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
    695                                                           const RHS &R) {
    696   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
    697 }
    698 
    699 template <typename LHS, typename RHS>
    700 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
    701                                                           const RHS &R) {
    702   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
    703 }
    704 
    705 template <typename LHS, typename RHS>
    706 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
    707                                                           const RHS &R) {
    708   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
    709 }
    710 
    711 template <typename LHS, typename RHS>
    712 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
    713                                                           const RHS &R) {
    714   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
    715 }
    716 
    717 template <typename LHS, typename RHS>
    718 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
    719                                                         const RHS &R) {
    720   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
    721 }
    722 
    723 template <typename LHS, typename RHS>
    724 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
    725                                                       const RHS &R) {
    726   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
    727 }
    728 
    729 template <typename LHS, typename RHS>
    730 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
    731                                                         const RHS &R) {
    732   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
    733 }
    734 
    735 template <typename LHS, typename RHS>
    736 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
    737                                                         const RHS &R) {
    738   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
    739 }
    740 
    741 template <typename LHS, typename RHS>
    742 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
    743                                                           const RHS &R) {
    744   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
    745 }
    746 
    747 template <typename LHS, typename RHS>
    748 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
    749                                                           const RHS &R) {
    750   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
    751 }
    752 
    753 template <typename LHS_t, typename RHS_t, unsigned Opcode,
    754           unsigned WrapFlags = 0>
    755 struct OverflowingBinaryOp_match {
    756   LHS_t L;
    757   RHS_t R;
    758 
    759   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
    760       : L(LHS), R(RHS) {}
    761 
    762   template <typename OpTy> bool match(OpTy *V) {
    763     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
    764       if (Op->getOpcode() != Opcode)
    765         return false;
    766       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
    767           !Op->hasNoUnsignedWrap())
    768         return false;
    769       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
    770           !Op->hasNoSignedWrap())
    771         return false;
    772       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
    773     }
    774     return false;
    775   }
    776 };
    777 
    778 template <typename LHS, typename RHS>
    779 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    780                                  OverflowingBinaryOperator::NoSignedWrap>
    781 m_NSWAdd(const LHS &L, const RHS &R) {
    782   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    783                                    OverflowingBinaryOperator::NoSignedWrap>(
    784       L, R);
    785 }
    786 template <typename LHS, typename RHS>
    787 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    788                                  OverflowingBinaryOperator::NoSignedWrap>
    789 m_NSWSub(const LHS &L, const RHS &R) {
    790   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    791                                    OverflowingBinaryOperator::NoSignedWrap>(
    792       L, R);
    793 }
    794 template <typename LHS, typename RHS>
    795 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    796                                  OverflowingBinaryOperator::NoSignedWrap>
    797 m_NSWMul(const LHS &L, const RHS &R) {
    798   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    799                                    OverflowingBinaryOperator::NoSignedWrap>(
    800       L, R);
    801 }
    802 template <typename LHS, typename RHS>
    803 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    804                                  OverflowingBinaryOperator::NoSignedWrap>
    805 m_NSWShl(const LHS &L, const RHS &R) {
    806   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    807                                    OverflowingBinaryOperator::NoSignedWrap>(
    808       L, R);
    809 }
    810 
    811 template <typename LHS, typename RHS>
    812 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    813                                  OverflowingBinaryOperator::NoUnsignedWrap>
    814 m_NUWAdd(const LHS &L, const RHS &R) {
    815   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    816                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    817       L, R);
    818 }
    819 template <typename LHS, typename RHS>
    820 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    821                                  OverflowingBinaryOperator::NoUnsignedWrap>
    822 m_NUWSub(const LHS &L, const RHS &R) {
    823   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    824                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    825       L, R);
    826 }
    827 template <typename LHS, typename RHS>
    828 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    829                                  OverflowingBinaryOperator::NoUnsignedWrap>
    830 m_NUWMul(const LHS &L, const RHS &R) {
    831   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    832                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    833       L, R);
    834 }
    835 template <typename LHS, typename RHS>
    836 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    837                                  OverflowingBinaryOperator::NoUnsignedWrap>
    838 m_NUWShl(const LHS &L, const RHS &R) {
    839   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    840                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    841       L, R);
    842 }
    843 
    844 //===----------------------------------------------------------------------===//
    845 // Class that matches a group of binary opcodes.
    846 //
    847 template <typename LHS_t, typename RHS_t, typename Predicate>
    848 struct BinOpPred_match : Predicate {
    849   LHS_t L;
    850   RHS_t R;
    851 
    852   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    853 
    854   template <typename OpTy> bool match(OpTy *V) {
    855     if (auto *I = dyn_cast<Instruction>(V))
    856       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
    857              R.match(I->getOperand(1));
    858     if (auto *CE = dyn_cast<ConstantExpr>(V))
    859       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
    860              R.match(CE->getOperand(1));
    861     return false;
    862   }
    863 };
    864 
    865 struct is_shift_op {
    866   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
    867 };
    868 
    869 struct is_right_shift_op {
    870   bool isOpType(unsigned Opcode) {
    871     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
    872   }
    873 };
    874 
    875 struct is_logical_shift_op {
    876   bool isOpType(unsigned Opcode) {
    877     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
    878   }
    879 };
    880 
    881 struct is_bitwiselogic_op {
    882   bool isOpType(unsigned Opcode) {
    883     return Instruction::isBitwiseLogicOp(Opcode);
    884   }
    885 };
    886 
    887 struct is_idiv_op {
    888   bool isOpType(unsigned Opcode) {
    889     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
    890   }
    891 };
    892 
    893 /// Matches shift operations.
    894 template <typename LHS, typename RHS>
    895 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
    896                                                       const RHS &R) {
    897   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
    898 }
    899 
    900 /// Matches logical shift operations.
    901 template <typename LHS, typename RHS>
    902 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
    903                                                           const RHS &R) {
    904   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
    905 }
    906 
    907 /// Matches logical shift operations.
    908 template <typename LHS, typename RHS>
    909 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
    910 m_LogicalShift(const LHS &L, const RHS &R) {
    911   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
    912 }
    913 
    914 /// Matches bitwise logic operations.
    915 template <typename LHS, typename RHS>
    916 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
    917 m_BitwiseLogic(const LHS &L, const RHS &R) {
    918   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
    919 }
    920 
    921 /// Matches integer division operations.
    922 template <typename LHS, typename RHS>
    923 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
    924                                                     const RHS &R) {
    925   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
    926 }
    927 
    928 //===----------------------------------------------------------------------===//
    929 // Class that matches exact binary ops.
    930 //
    931 template <typename SubPattern_t> struct Exact_match {
    932   SubPattern_t SubPattern;
    933 
    934   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
    935 
    936   template <typename OpTy> bool match(OpTy *V) {
    937     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
    938       return PEO->isExact() && SubPattern.match(V);
    939     return false;
    940   }
    941 };
    942 
    943 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
    944   return SubPattern;
    945 }
    946 
    947 //===----------------------------------------------------------------------===//
    948 // Matchers for CmpInst classes
    949 //
    950 
    951 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
    952           bool Commutable = false>
    953 struct CmpClass_match {
    954   PredicateTy &Predicate;
    955   LHS_t L;
    956   RHS_t R;
    957 
    958   // The evaluation order is always stable, regardless of Commutability.
    959   // The LHS is always matched first.
    960   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
    961       : Predicate(Pred), L(LHS), R(RHS) {}
    962 
    963   template <typename OpTy> bool match(OpTy *V) {
    964     if (auto *I = dyn_cast<Class>(V))
    965       if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
    966           (Commutable && L.match(I->getOperand(1)) &&
    967            R.match(I->getOperand(0)))) {
    968         Predicate = I->getPredicate();
    969         return true;
    970       }
    971     return false;
    972   }
    973 };
    974 
    975 template <typename LHS, typename RHS>
    976 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
    977 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    978   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
    979 }
    980 
    981 template <typename LHS, typename RHS>
    982 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
    983 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    984   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
    985 }
    986 
    987 template <typename LHS, typename RHS>
    988 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
    989 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    990   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
    991 }
    992 
    993 //===----------------------------------------------------------------------===//
    994 // Matchers for SelectInst classes
    995 //
    996 
    997 template <typename Cond_t, typename LHS_t, typename RHS_t>
    998 struct SelectClass_match {
    999   Cond_t C;
   1000   LHS_t L;
   1001   RHS_t R;
   1002 
   1003   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
   1004       : C(Cond), L(LHS), R(RHS) {}
   1005 
   1006   template <typename OpTy> bool match(OpTy *V) {
   1007     if (auto *I = dyn_cast<SelectInst>(V))
   1008       return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
   1009              R.match(I->getOperand(2));
   1010     return false;
   1011   }
   1012 };
   1013 
   1014 template <typename Cond, typename LHS, typename RHS>
   1015 inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
   1016                                                   const RHS &R) {
   1017   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
   1018 }
   1019 
   1020 /// This matches a select of two constants, e.g.:
   1021 /// m_SelectCst<-1, 0>(m_Value(V))
   1022 template <int64_t L, int64_t R, typename Cond>
   1023 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
   1024 m_SelectCst(const Cond &C) {
   1025   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
   1026 }
   1027 
   1028 //===----------------------------------------------------------------------===//
   1029 // Matchers for InsertElementInst classes
   1030 //
   1031 
   1032 template <typename Val_t, typename Elt_t, typename Idx_t>
   1033 struct InsertElementClass_match {
   1034   Val_t V;
   1035   Elt_t E;
   1036   Idx_t I;
   1037 
   1038   InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
   1039       : V(Val), E(Elt), I(Idx) {}
   1040 
   1041   template <typename OpTy> bool match(OpTy *VV) {
   1042     if (auto *II = dyn_cast<InsertElementInst>(VV))
   1043       return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) &&
   1044              I.match(II->getOperand(2));
   1045     return false;
   1046   }
   1047 };
   1048 
   1049 template <typename Val_t, typename Elt_t, typename Idx_t>
   1050 inline InsertElementClass_match<Val_t, Elt_t, Idx_t>
   1051 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
   1052   return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx);
   1053 }
   1054 
   1055 //===----------------------------------------------------------------------===//
   1056 // Matchers for ExtractElementInst classes
   1057 //
   1058 
   1059 template <typename Val_t, typename Idx_t> struct ExtractElementClass_match {
   1060   Val_t V;
   1061   Idx_t I;
   1062 
   1063   ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx)
   1064       : V(Val), I(Idx) {}
   1065 
   1066   template <typename OpTy> bool match(OpTy *VV) {
   1067     if (auto *II = dyn_cast<ExtractElementInst>(VV))
   1068       return V.match(II->getOperand(0)) && I.match(II->getOperand(1));
   1069     return false;
   1070   }
   1071 };
   1072 
   1073 template <typename Val_t, typename Idx_t>
   1074 inline ExtractElementClass_match<Val_t, Idx_t>
   1075 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
   1076   return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx);
   1077 }
   1078 
   1079 //===----------------------------------------------------------------------===//
   1080 // Matchers for ShuffleVectorInst classes
   1081 //
   1082 
   1083 template <typename V1_t, typename V2_t, typename Mask_t>
   1084 struct ShuffleVectorClass_match {
   1085   V1_t V1;
   1086   V2_t V2;
   1087   Mask_t M;
   1088 
   1089   ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m)
   1090       : V1(v1), V2(v2), M(m) {}
   1091 
   1092   template <typename OpTy> bool match(OpTy *V) {
   1093     if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
   1094       return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) &&
   1095              M.match(SI->getOperand(2));
   1096     return false;
   1097   }
   1098 };
   1099 
   1100 template <typename V1_t, typename V2_t, typename Mask_t>
   1101 inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t>
   1102 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
   1103   return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m);
   1104 }
   1105 
   1106 //===----------------------------------------------------------------------===//
   1107 // Matchers for CastInst classes
   1108 //
   1109 
   1110 template <typename Op_t, unsigned Opcode> struct CastClass_match {
   1111   Op_t Op;
   1112 
   1113   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
   1114 
   1115   template <typename OpTy> bool match(OpTy *V) {
   1116     if (auto *O = dyn_cast<Operator>(V))
   1117       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
   1118     return false;
   1119   }
   1120 };
   1121 
   1122 /// Matches BitCast.
   1123 template <typename OpTy>
   1124 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
   1125   return CastClass_match<OpTy, Instruction::BitCast>(Op);
   1126 }
   1127 
   1128 /// Matches PtrToInt.
   1129 template <typename OpTy>
   1130 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
   1131   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
   1132 }
   1133 
   1134 /// Matches Trunc.
   1135 template <typename OpTy>
   1136 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
   1137   return CastClass_match<OpTy, Instruction::Trunc>(Op);
   1138 }
   1139 
   1140 /// Matches SExt.
   1141 template <typename OpTy>
   1142 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
   1143   return CastClass_match<OpTy, Instruction::SExt>(Op);
   1144 }
   1145 
   1146 /// Matches ZExt.
   1147 template <typename OpTy>
   1148 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
   1149   return CastClass_match<OpTy, Instruction::ZExt>(Op);
   1150 }
   1151 
   1152 template <typename OpTy>
   1153 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
   1154                         CastClass_match<OpTy, Instruction::SExt>>
   1155 m_ZExtOrSExt(const OpTy &Op) {
   1156   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
   1157 }
   1158 
   1159 /// Matches UIToFP.
   1160 template <typename OpTy>
   1161 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
   1162   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
   1163 }
   1164 
   1165 /// Matches SIToFP.
   1166 template <typename OpTy>
   1167 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
   1168   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
   1169 }
   1170 
   1171 /// Matches FPTrunc
   1172 template <typename OpTy>
   1173 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
   1174   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
   1175 }
   1176 
   1177 /// Matches FPExt
   1178 template <typename OpTy>
   1179 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
   1180   return CastClass_match<OpTy, Instruction::FPExt>(Op);
   1181 }
   1182 
   1183 //===----------------------------------------------------------------------===//
   1184 // Matcher for LoadInst classes
   1185 //
   1186 
   1187 template <typename Op_t> struct LoadClass_match {
   1188   Op_t Op;
   1189 
   1190   LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
   1191 
   1192   template <typename OpTy> bool match(OpTy *V) {
   1193     if (auto *LI = dyn_cast<LoadInst>(V))
   1194       return Op.match(LI->getPointerOperand());
   1195     return false;
   1196   }
   1197 };
   1198 
   1199 /// Matches LoadInst.
   1200 template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) {
   1201   return LoadClass_match<OpTy>(Op);
   1202 }
   1203 
   1204 //===----------------------------------------------------------------------===//
   1205 // Matcher for StoreInst classes
   1206 //
   1207 
   1208 template <typename ValueOp_t, typename PointerOp_t> struct StoreClass_match {
   1209   ValueOp_t ValueOp;
   1210   PointerOp_t PointerOp;
   1211 
   1212   StoreClass_match(const ValueOp_t &ValueOpMatch,
   1213                    const PointerOp_t &PointerOpMatch) :
   1214     ValueOp(ValueOpMatch), PointerOp(PointerOpMatch)  {}
   1215 
   1216   template <typename OpTy> bool match(OpTy *V) {
   1217     if (auto *LI = dyn_cast<StoreInst>(V))
   1218       return ValueOp.match(LI->getValueOperand()) &&
   1219              PointerOp.match(LI->getPointerOperand());
   1220     return false;
   1221   }
   1222 };
   1223 
   1224 /// Matches StoreInst.
   1225 template <typename ValueOpTy, typename PointerOpTy>
   1226 inline StoreClass_match<ValueOpTy, PointerOpTy>
   1227 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
   1228   return StoreClass_match<ValueOpTy, PointerOpTy>(ValueOp, PointerOp);
   1229 }
   1230 
   1231 //===----------------------------------------------------------------------===//
   1232 // Matchers for control flow.
   1233 //
   1234 
   1235 struct br_match {
   1236   BasicBlock *&Succ;
   1237 
   1238   br_match(BasicBlock *&Succ) : Succ(Succ) {}
   1239 
   1240   template <typename OpTy> bool match(OpTy *V) {
   1241     if (auto *BI = dyn_cast<BranchInst>(V))
   1242       if (BI->isUnconditional()) {
   1243         Succ = BI->getSuccessor(0);
   1244         return true;
   1245       }
   1246     return false;
   1247   }
   1248 };
   1249 
   1250 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
   1251 
   1252 template <typename Cond_t> struct brc_match {
   1253   Cond_t Cond;
   1254   BasicBlock *&T, *&F;
   1255 
   1256   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
   1257       : Cond(C), T(t), F(f) {}
   1258 
   1259   template <typename OpTy> bool match(OpTy *V) {
   1260     if (auto *BI = dyn_cast<BranchInst>(V))
   1261       if (BI->isConditional() && Cond.match(BI->getCondition())) {
   1262         T = BI->getSuccessor(0);
   1263         F = BI->getSuccessor(1);
   1264         return true;
   1265       }
   1266     return false;
   1267   }
   1268 };
   1269 
   1270 template <typename Cond_t>
   1271 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
   1272   return brc_match<Cond_t>(C, T, F);
   1273 }
   1274 
   1275 //===----------------------------------------------------------------------===//
   1276 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
   1277 //
   1278 
   1279 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
   1280           bool Commutable = false>
   1281 struct MaxMin_match {
   1282   LHS_t L;
   1283   RHS_t R;
   1284 
   1285   // The evaluation order is always stable, regardless of Commutability.
   1286   // The LHS is always matched first.
   1287   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
   1288 
   1289   template <typename OpTy> bool match(OpTy *V) {
   1290     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
   1291     auto *SI = dyn_cast<SelectInst>(V);
   1292     if (!SI)
   1293       return false;
   1294     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
   1295     if (!Cmp)
   1296       return false;
   1297     // At this point we have a select conditioned on a comparison.  Check that
   1298     // it is the values returned by the select that are being compared.
   1299     Value *TrueVal = SI->getTrueValue();
   1300     Value *FalseVal = SI->getFalseValue();
   1301     Value *LHS = Cmp->getOperand(0);
   1302     Value *RHS = Cmp->getOperand(1);
   1303     if ((TrueVal != LHS || FalseVal != RHS) &&
   1304         (TrueVal != RHS || FalseVal != LHS))
   1305       return false;
   1306     typename CmpInst_t::Predicate Pred =
   1307         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
   1308     // Does "(x pred y) ? x : y" represent the desired max/min operation?
   1309     if (!Pred_t::match(Pred))
   1310       return false;
   1311     // It does!  Bind the operands.
   1312     return (L.match(LHS) && R.match(RHS)) ||
   1313            (Commutable && L.match(RHS) && R.match(LHS));
   1314   }
   1315 };
   1316 
   1317 /// Helper class for identifying signed max predicates.
   1318 struct smax_pred_ty {
   1319   static bool match(ICmpInst::Predicate Pred) {
   1320     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
   1321   }
   1322 };
   1323 
   1324 /// Helper class for identifying signed min predicates.
   1325 struct smin_pred_ty {
   1326   static bool match(ICmpInst::Predicate Pred) {
   1327     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
   1328   }
   1329 };
   1330 
   1331 /// Helper class for identifying unsigned max predicates.
   1332 struct umax_pred_ty {
   1333   static bool match(ICmpInst::Predicate Pred) {
   1334     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
   1335   }
   1336 };
   1337 
   1338 /// Helper class for identifying unsigned min predicates.
   1339 struct umin_pred_ty {
   1340   static bool match(ICmpInst::Predicate Pred) {
   1341     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
   1342   }
   1343 };
   1344 
   1345 /// Helper class for identifying ordered max predicates.
   1346 struct ofmax_pred_ty {
   1347   static bool match(FCmpInst::Predicate Pred) {
   1348     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
   1349   }
   1350 };
   1351 
   1352 /// Helper class for identifying ordered min predicates.
   1353 struct ofmin_pred_ty {
   1354   static bool match(FCmpInst::Predicate Pred) {
   1355     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
   1356   }
   1357 };
   1358 
   1359 /// Helper class for identifying unordered max predicates.
   1360 struct ufmax_pred_ty {
   1361   static bool match(FCmpInst::Predicate Pred) {
   1362     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
   1363   }
   1364 };
   1365 
   1366 /// Helper class for identifying unordered min predicates.
   1367 struct ufmin_pred_ty {
   1368   static bool match(FCmpInst::Predicate Pred) {
   1369     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
   1370   }
   1371 };
   1372 
   1373 template <typename LHS, typename RHS>
   1374 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
   1375                                                              const RHS &R) {
   1376   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
   1377 }
   1378 
   1379 template <typename LHS, typename RHS>
   1380 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
   1381                                                              const RHS &R) {
   1382   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
   1383 }
   1384 
   1385 template <typename LHS, typename RHS>
   1386 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
   1387                                                              const RHS &R) {
   1388   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
   1389 }
   1390 
   1391 template <typename LHS, typename RHS>
   1392 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
   1393                                                              const RHS &R) {
   1394   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
   1395 }
   1396 
   1397 /// Match an 'ordered' floating point maximum function.
   1398 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1399 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1400 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
   1401 /// semantics. In the presence of 'NaN' we have to preserve the original
   1402 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
   1403 ///
   1404 ///                         max(L, R)  iff L and R are not NaN
   1405 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
   1406 template <typename LHS, typename RHS>
   1407 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
   1408                                                                  const RHS &R) {
   1409   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
   1410 }
   1411 
   1412 /// Match an 'ordered' floating point minimum function.
   1413 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1414 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1415 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
   1416 /// semantics. In the presence of 'NaN' we have to preserve the original
   1417 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
   1418 ///
   1419 ///                         min(L, R)  iff L and R are not NaN
   1420 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
   1421 template <typename LHS, typename RHS>
   1422 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
   1423                                                                  const RHS &R) {
   1424   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
   1425 }
   1426 
   1427 /// Match an 'unordered' floating point maximum function.
   1428 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1429 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1430 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
   1431 /// semantics. In the presence of 'NaN' we have to preserve the original
   1432 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
   1433 ///
   1434 ///                         max(L, R)  iff L and R are not NaN
   1435 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
   1436 template <typename LHS, typename RHS>
   1437 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
   1438 m_UnordFMax(const LHS &L, const RHS &R) {
   1439   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
   1440 }
   1441 
   1442 /// Match an 'unordered' floating point minimum function.
   1443 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1444 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1445 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
   1446 /// semantics. In the presence of 'NaN' we have to preserve the original
   1447 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
   1448 ///
   1449 ///                          min(L, R)  iff L and R are not NaN
   1450 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
   1451 template <typename LHS, typename RHS>
   1452 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
   1453 m_UnordFMin(const LHS &L, const RHS &R) {
   1454   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
   1455 }
   1456 
   1457 //===----------------------------------------------------------------------===//
   1458 // Matchers for overflow check patterns: e.g. (a + b) u< a
   1459 //
   1460 
   1461 template <typename LHS_t, typename RHS_t, typename Sum_t>
   1462 struct UAddWithOverflow_match {
   1463   LHS_t L;
   1464   RHS_t R;
   1465   Sum_t S;
   1466 
   1467   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
   1468       : L(L), R(R), S(S) {}
   1469 
   1470   template <typename OpTy> bool match(OpTy *V) {
   1471     Value *ICmpLHS, *ICmpRHS;
   1472     ICmpInst::Predicate Pred;
   1473     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
   1474       return false;
   1475 
   1476     Value *AddLHS, *AddRHS;
   1477     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
   1478 
   1479     // (a + b) u< a, (a + b) u< b
   1480     if (Pred == ICmpInst::ICMP_ULT)
   1481       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
   1482         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
   1483 
   1484     // a >u (a + b), b >u (a + b)
   1485     if (Pred == ICmpInst::ICMP_UGT)
   1486       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
   1487         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
   1488 
   1489     return false;
   1490   }
   1491 };
   1492 
   1493 /// Match an icmp instruction checking for unsigned overflow on addition.
   1494 ///
   1495 /// S is matched to the addition whose result is being checked for overflow, and
   1496 /// L and R are matched to the LHS and RHS of S.
   1497 template <typename LHS_t, typename RHS_t, typename Sum_t>
   1498 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
   1499 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
   1500   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
   1501 }
   1502 
   1503 template <typename Opnd_t> struct Argument_match {
   1504   unsigned OpI;
   1505   Opnd_t Val;
   1506 
   1507   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
   1508 
   1509   template <typename OpTy> bool match(OpTy *V) {
   1510     CallSite CS(V);
   1511     return CS.isCall() && Val.match(CS.getArgument(OpI));
   1512   }
   1513 };
   1514 
   1515 /// Match an argument.
   1516 template <unsigned OpI, typename Opnd_t>
   1517 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
   1518   return Argument_match<Opnd_t>(OpI, Op);
   1519 }
   1520 
   1521 /// Intrinsic matchers.
   1522 struct IntrinsicID_match {
   1523   unsigned ID;
   1524 
   1525   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
   1526 
   1527   template <typename OpTy> bool match(OpTy *V) {
   1528     if (const auto *CI = dyn_cast<CallInst>(V))
   1529       if (const auto *F = CI->getCalledFunction())
   1530         return F->getIntrinsicID() == ID;
   1531     return false;
   1532   }
   1533 };
   1534 
   1535 /// Intrinsic matches are combinations of ID matchers, and argument
   1536 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
   1537 /// them with lower arity matchers. Here's some convenient typedefs for up to
   1538 /// several arguments, and more can be added as needed
   1539 template <typename T0 = void, typename T1 = void, typename T2 = void,
   1540           typename T3 = void, typename T4 = void, typename T5 = void,
   1541           typename T6 = void, typename T7 = void, typename T8 = void,
   1542           typename T9 = void, typename T10 = void>
   1543 struct m_Intrinsic_Ty;
   1544 template <typename T0> struct m_Intrinsic_Ty<T0> {
   1545   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
   1546 };
   1547 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
   1548   using Ty =
   1549       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
   1550 };
   1551 template <typename T0, typename T1, typename T2>
   1552 struct m_Intrinsic_Ty<T0, T1, T2> {
   1553   using Ty =
   1554       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
   1555                         Argument_match<T2>>;
   1556 };
   1557 template <typename T0, typename T1, typename T2, typename T3>
   1558 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
   1559   using Ty =
   1560       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
   1561                         Argument_match<T3>>;
   1562 };
   1563 
   1564 /// Match intrinsic calls like this:
   1565 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
   1566 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
   1567   return IntrinsicID_match(IntrID);
   1568 }
   1569 
   1570 template <Intrinsic::ID IntrID, typename T0>
   1571 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
   1572   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
   1573 }
   1574 
   1575 template <Intrinsic::ID IntrID, typename T0, typename T1>
   1576 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
   1577                                                        const T1 &Op1) {
   1578   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
   1579 }
   1580 
   1581 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
   1582 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
   1583 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
   1584   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
   1585 }
   1586 
   1587 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
   1588           typename T3>
   1589 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
   1590 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
   1591   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
   1592 }
   1593 
   1594 // Helper intrinsic matching specializations.
   1595 template <typename Opnd0>
   1596 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
   1597   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
   1598 }
   1599 
   1600 template <typename Opnd0>
   1601 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
   1602   return m_Intrinsic<Intrinsic::bswap>(Op0);
   1603 }
   1604 
   1605 template <typename Opnd0>
   1606 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
   1607   return m_Intrinsic<Intrinsic::fabs>(Op0);
   1608 }
   1609 
   1610 template <typename Opnd0>
   1611 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
   1612   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
   1613 }
   1614 
   1615 template <typename Opnd0, typename Opnd1>
   1616 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
   1617                                                         const Opnd1 &Op1) {
   1618   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
   1619 }
   1620 
   1621 template <typename Opnd0, typename Opnd1>
   1622 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
   1623                                                         const Opnd1 &Op1) {
   1624   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
   1625 }
   1626 
   1627 //===----------------------------------------------------------------------===//
   1628 // Matchers for two-operands operators with the operators in either order
   1629 //
   1630 
   1631 /// Matches a BinaryOperator with LHS and RHS in either order.
   1632 template <typename LHS, typename RHS>
   1633 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
   1634   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
   1635 }
   1636 
   1637 /// Matches an ICmp with a predicate over LHS and RHS in either order.
   1638 /// Does not swap the predicate.
   1639 template <typename LHS, typename RHS>
   1640 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
   1641 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
   1642   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
   1643                                                                        R);
   1644 }
   1645 
   1646 /// Matches a Add with LHS and RHS in either order.
   1647 template <typename LHS, typename RHS>
   1648 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
   1649                                                                 const RHS &R) {
   1650   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
   1651 }
   1652 
   1653 /// Matches a Mul with LHS and RHS in either order.
   1654 template <typename LHS, typename RHS>
   1655 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
   1656                                                                 const RHS &R) {
   1657   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
   1658 }
   1659 
   1660 /// Matches an And with LHS and RHS in either order.
   1661 template <typename LHS, typename RHS>
   1662 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
   1663                                                                 const RHS &R) {
   1664   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
   1665 }
   1666 
   1667 /// Matches an Or with LHS and RHS in either order.
   1668 template <typename LHS, typename RHS>
   1669 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
   1670                                                               const RHS &R) {
   1671   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
   1672 }
   1673 
   1674 /// Matches an Xor with LHS and RHS in either order.
   1675 template <typename LHS, typename RHS>
   1676 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
   1677                                                                 const RHS &R) {
   1678   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
   1679 }
   1680 
   1681 /// Matches a 'Neg' as 'sub 0, V'.
   1682 template <typename ValTy>
   1683 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
   1684 m_Neg(const ValTy &V) {
   1685   return m_Sub(m_ZeroInt(), V);
   1686 }
   1687 
   1688 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
   1689 template <typename ValTy>
   1690 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
   1691 m_Not(const ValTy &V) {
   1692   return m_c_Xor(V, m_AllOnes());
   1693 }
   1694 
   1695 /// Matches an SMin with LHS and RHS in either order.
   1696 template <typename LHS, typename RHS>
   1697 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
   1698 m_c_SMin(const LHS &L, const RHS &R) {
   1699   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
   1700 }
   1701 /// Matches an SMax with LHS and RHS in either order.
   1702 template <typename LHS, typename RHS>
   1703 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
   1704 m_c_SMax(const LHS &L, const RHS &R) {
   1705   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
   1706 }
   1707 /// Matches a UMin with LHS and RHS in either order.
   1708 template <typename LHS, typename RHS>
   1709 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
   1710 m_c_UMin(const LHS &L, const RHS &R) {
   1711   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
   1712 }
   1713 /// Matches a UMax with LHS and RHS in either order.
   1714 template <typename LHS, typename RHS>
   1715 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
   1716 m_c_UMax(const LHS &L, const RHS &R) {
   1717   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
   1718 }
   1719 
   1720 /// Matches FAdd with LHS and RHS in either order.
   1721 template <typename LHS, typename RHS>
   1722 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
   1723 m_c_FAdd(const LHS &L, const RHS &R) {
   1724   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
   1725 }
   1726 
   1727 /// Matches FMul with LHS and RHS in either order.
   1728 template <typename LHS, typename RHS>
   1729 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
   1730 m_c_FMul(const LHS &L, const RHS &R) {
   1731   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
   1732 }
   1733 
   1734 template <typename Opnd_t> struct Signum_match {
   1735   Opnd_t Val;
   1736   Signum_match(const Opnd_t &V) : Val(V) {}
   1737 
   1738   template <typename OpTy> bool match(OpTy *V) {
   1739     unsigned TypeSize = V->getType()->getScalarSizeInBits();
   1740     if (TypeSize == 0)
   1741       return false;
   1742 
   1743     unsigned ShiftWidth = TypeSize - 1;
   1744     Value *OpL = nullptr, *OpR = nullptr;
   1745 
   1746     // This is the representation of signum we match:
   1747     //
   1748     //  signum(x) == (x >> 63) | (-x >>u 63)
   1749     //
   1750     // An i1 value is its own signum, so it's correct to match
   1751     //
   1752     //  signum(x) == (x >> 0)  | (-x >>u 0)
   1753     //
   1754     // for i1 values.
   1755 
   1756     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
   1757     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
   1758     auto Signum = m_Or(LHS, RHS);
   1759 
   1760     return Signum.match(V) && OpL == OpR && Val.match(OpL);
   1761   }
   1762 };
   1763 
   1764 /// Matches a signum pattern.
   1765 ///
   1766 /// signum(x) =
   1767 ///      x >  0  ->  1
   1768 ///      x == 0  ->  0
   1769 ///      x <  0  -> -1
   1770 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
   1771   return Signum_match<Val_t>(V);
   1772 }
   1773 
   1774 } // end namespace PatternMatch
   1775 } // end namespace llvm
   1776 
   1777 #endif // LLVM_IR_PATTERNMATCH_H
   1778