Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "loop_optimization.h"
     18 
     19 #include "arch/arm/instruction_set_features_arm.h"
     20 #include "arch/arm64/instruction_set_features_arm64.h"
     21 #include "arch/instruction_set.h"
     22 #include "arch/mips/instruction_set_features_mips.h"
     23 #include "arch/mips64/instruction_set_features_mips64.h"
     24 #include "arch/x86/instruction_set_features_x86.h"
     25 #include "arch/x86_64/instruction_set_features_x86_64.h"
     26 #include "driver/compiler_options.h"
     27 #include "linear_order.h"
     28 #include "mirror/array-inl.h"
     29 #include "mirror/string.h"
     30 
     31 namespace art {
     32 
     33 // Enables vectorization (SIMDization) in the loop optimizer.
     34 static constexpr bool kEnableVectorization = true;
     35 
     36 //
     37 // Static helpers.
     38 //
     39 
     40 // Base alignment for arrays/strings guaranteed by the Android runtime.
     41 static uint32_t BaseAlignment() {
     42   return kObjectAlignment;
     43 }
     44 
     45 // Hidden offset for arrays/strings guaranteed by the Android runtime.
     46 static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) {
     47   return is_string_char_at
     48       ? mirror::String::ValueOffset().Uint32Value()
     49       : mirror::Array::DataOffset(DataType::Size(type)).Uint32Value();
     50 }
     51 
     52 // Remove the instruction from the graph. A bit more elaborate than the usual
     53 // instruction removal, since there may be a cycle in the use structure.
     54 static void RemoveFromCycle(HInstruction* instruction) {
     55   instruction->RemoveAsUserOfAllInputs();
     56   instruction->RemoveEnvironmentUsers();
     57   instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
     58   RemoveEnvironmentUses(instruction);
     59   ResetEnvironmentInputRecords(instruction);
     60 }
     61 
     62 // Detect a goto block and sets succ to the single successor.
     63 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
     64   if (block->GetPredecessors().size() == 1 &&
     65       block->GetSuccessors().size() == 1 &&
     66       block->IsSingleGoto()) {
     67     *succ = block->GetSingleSuccessor();
     68     return true;
     69   }
     70   return false;
     71 }
     72 
     73 // Detect an early exit loop.
     74 static bool IsEarlyExit(HLoopInformation* loop_info) {
     75   HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
     76   for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
     77     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
     78       if (!loop_info->Contains(*successor)) {
     79         return true;
     80       }
     81     }
     82   }
     83   return false;
     84 }
     85 
     86 // Forward declaration.
     87 static bool IsZeroExtensionAndGet(HInstruction* instruction,
     88                                   DataType::Type type,
     89                                   /*out*/ HInstruction** operand);
     90 
     91 // Detect a sign extension in instruction from the given type.
     92 // Returns the promoted operand on success.
     93 static bool IsSignExtensionAndGet(HInstruction* instruction,
     94                                   DataType::Type type,
     95                                   /*out*/ HInstruction** operand) {
     96   // Accept any already wider constant that would be handled properly by sign
     97   // extension when represented in the *width* of the given narrower data type
     98   // (the fact that Uint8/Uint16 normally zero extend does not matter here).
     99   int64_t value = 0;
    100   if (IsInt64AndGet(instruction, /*out*/ &value)) {
    101     switch (type) {
    102       case DataType::Type::kUint8:
    103       case DataType::Type::kInt8:
    104         if (IsInt<8>(value)) {
    105           *operand = instruction;
    106           return true;
    107         }
    108         return false;
    109       case DataType::Type::kUint16:
    110       case DataType::Type::kInt16:
    111         if (IsInt<16>(value)) {
    112           *operand = instruction;
    113           return true;
    114         }
    115         return false;
    116       default:
    117         return false;
    118     }
    119   }
    120   // An implicit widening conversion of any signed expression sign-extends.
    121   if (instruction->GetType() == type) {
    122     switch (type) {
    123       case DataType::Type::kInt8:
    124       case DataType::Type::kInt16:
    125         *operand = instruction;
    126         return true;
    127       default:
    128         return false;
    129     }
    130   }
    131   // An explicit widening conversion of a signed expression sign-extends.
    132   if (instruction->IsTypeConversion()) {
    133     HInstruction* conv = instruction->InputAt(0);
    134     DataType::Type from = conv->GetType();
    135     switch (instruction->GetType()) {
    136       case DataType::Type::kInt32:
    137       case DataType::Type::kInt64:
    138         if (type == from && (from == DataType::Type::kInt8 ||
    139                              from == DataType::Type::kInt16 ||
    140                              from == DataType::Type::kInt32)) {
    141           *operand = conv;
    142           return true;
    143         }
    144         return false;
    145       case DataType::Type::kInt16:
    146         return type == DataType::Type::kUint16 &&
    147                from == DataType::Type::kUint16 &&
    148                IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
    149       default:
    150         return false;
    151     }
    152   }
    153   return false;
    154 }
    155 
    156 // Detect a zero extension in instruction from the given type.
    157 // Returns the promoted operand on success.
    158 static bool IsZeroExtensionAndGet(HInstruction* instruction,
    159                                   DataType::Type type,
    160                                   /*out*/ HInstruction** operand) {
    161   // Accept any already wider constant that would be handled properly by zero
    162   // extension when represented in the *width* of the given narrower data type
    163   // (the fact that Int8/Int16 normally sign extend does not matter here).
    164   int64_t value = 0;
    165   if (IsInt64AndGet(instruction, /*out*/ &value)) {
    166     switch (type) {
    167       case DataType::Type::kUint8:
    168       case DataType::Type::kInt8:
    169         if (IsUint<8>(value)) {
    170           *operand = instruction;
    171           return true;
    172         }
    173         return false;
    174       case DataType::Type::kUint16:
    175       case DataType::Type::kInt16:
    176         if (IsUint<16>(value)) {
    177           *operand = instruction;
    178           return true;
    179         }
    180         return false;
    181       default:
    182         return false;
    183     }
    184   }
    185   // An implicit widening conversion of any unsigned expression zero-extends.
    186   if (instruction->GetType() == type) {
    187     switch (type) {
    188       case DataType::Type::kUint8:
    189       case DataType::Type::kUint16:
    190         *operand = instruction;
    191         return true;
    192       default:
    193         return false;
    194     }
    195   }
    196   // An explicit widening conversion of an unsigned expression zero-extends.
    197   if (instruction->IsTypeConversion()) {
    198     HInstruction* conv = instruction->InputAt(0);
    199     DataType::Type from = conv->GetType();
    200     switch (instruction->GetType()) {
    201       case DataType::Type::kInt32:
    202       case DataType::Type::kInt64:
    203         if (type == from && from == DataType::Type::kUint16) {
    204           *operand = conv;
    205           return true;
    206         }
    207         return false;
    208       case DataType::Type::kUint16:
    209         return type == DataType::Type::kInt16 &&
    210                from == DataType::Type::kInt16 &&
    211                IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
    212       default:
    213         return false;
    214     }
    215   }
    216   return false;
    217 }
    218 
    219 // Detect situations with same-extension narrower operands.
    220 // Returns true on success and sets is_unsigned accordingly.
    221 static bool IsNarrowerOperands(HInstruction* a,
    222                                HInstruction* b,
    223                                DataType::Type type,
    224                                /*out*/ HInstruction** r,
    225                                /*out*/ HInstruction** s,
    226                                /*out*/ bool* is_unsigned) {
    227   DCHECK(a != nullptr && b != nullptr);
    228   // Look for a matching sign extension.
    229   DataType::Type stype = HVecOperation::ToSignedType(type);
    230   if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) {
    231     *is_unsigned = false;
    232     return true;
    233   }
    234   // Look for a matching zero extension.
    235   DataType::Type utype = HVecOperation::ToUnsignedType(type);
    236   if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) {
    237     *is_unsigned = true;
    238     return true;
    239   }
    240   return false;
    241 }
    242 
    243 // As above, single operand.
    244 static bool IsNarrowerOperand(HInstruction* a,
    245                               DataType::Type type,
    246                               /*out*/ HInstruction** r,
    247                               /*out*/ bool* is_unsigned) {
    248   DCHECK(a != nullptr);
    249   // Look for a matching sign extension.
    250   DataType::Type stype = HVecOperation::ToSignedType(type);
    251   if (IsSignExtensionAndGet(a, stype, r)) {
    252     *is_unsigned = false;
    253     return true;
    254   }
    255   // Look for a matching zero extension.
    256   DataType::Type utype = HVecOperation::ToUnsignedType(type);
    257   if (IsZeroExtensionAndGet(a, utype, r)) {
    258     *is_unsigned = true;
    259     return true;
    260   }
    261   return false;
    262 }
    263 
    264 // Compute relative vector length based on type difference.
    265 static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) {
    266   DCHECK(DataType::IsIntegralType(other_type));
    267   DCHECK(DataType::IsIntegralType(vector_type));
    268   DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type));
    269   return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type));
    270 }
    271 
    272 // Detect up to two added operands a and b and an acccumulated constant c.
    273 static bool IsAddConst(HInstruction* instruction,
    274                        /*out*/ HInstruction** a,
    275                        /*out*/ HInstruction** b,
    276                        /*out*/ int64_t* c,
    277                        int32_t depth = 8) {  // don't search too deep
    278   int64_t value = 0;
    279   // Enter add/sub while still within reasonable depth.
    280   if (depth > 0) {
    281     if (instruction->IsAdd()) {
    282       return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1) &&
    283              IsAddConst(instruction->InputAt(1), a, b, c, depth - 1);
    284     } else if (instruction->IsSub() &&
    285                IsInt64AndGet(instruction->InputAt(1), &value)) {
    286       *c -= value;
    287       return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1);
    288     }
    289   }
    290   // Otherwise, deal with leaf nodes.
    291   if (IsInt64AndGet(instruction, &value)) {
    292     *c += value;
    293     return true;
    294   } else if (*a == nullptr) {
    295     *a = instruction;
    296     return true;
    297   } else if (*b == nullptr) {
    298     *b = instruction;
    299     return true;
    300   }
    301   return false;  // too many operands
    302 }
    303 
    304 // Detect a + b + c with optional constant c.
    305 static bool IsAddConst2(HGraph* graph,
    306                         HInstruction* instruction,
    307                         /*out*/ HInstruction** a,
    308                         /*out*/ HInstruction** b,
    309                         /*out*/ int64_t* c) {
    310   if (IsAddConst(instruction, a, b, c) && *a != nullptr) {
    311     if (*b == nullptr) {
    312       // Constant is usually already present, unless accumulated.
    313       *b = graph->GetConstant(instruction->GetType(), (*c));
    314       *c = 0;
    315     }
    316     return true;
    317   }
    318   return false;
    319 }
    320 
    321 // Detect a direct a - b or a hidden a - (-c).
    322 static bool IsSubConst2(HGraph* graph,
    323                         HInstruction* instruction,
    324                         /*out*/ HInstruction** a,
    325                         /*out*/ HInstruction** b) {
    326   int64_t c = 0;
    327   if (instruction->IsSub()) {
    328     *a = instruction->InputAt(0);
    329     *b = instruction->InputAt(1);
    330     return true;
    331   } else if (IsAddConst(instruction, a, b, &c) && *a != nullptr && *b == nullptr) {
    332     // Constant for the hidden subtraction.
    333     *b = graph->GetConstant(instruction->GetType(), -c);
    334     return true;
    335   }
    336   return false;
    337 }
    338 
    339 // Detect reductions of the following forms,
    340 //   x = x_phi + ..
    341 //   x = x_phi - ..
    342 static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) {
    343   if (reduction->IsAdd()) {
    344     return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
    345            (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
    346   } else if (reduction->IsSub()) {
    347     return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi);
    348   }
    349   return false;
    350 }
    351 
    352 // Translates vector operation to reduction kind.
    353 static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) {
    354   if (reduction->IsVecAdd() ||
    355       reduction->IsVecSub() ||
    356       reduction->IsVecSADAccumulate() ||
    357       reduction->IsVecDotProd()) {
    358     return HVecReduce::kSum;
    359   }
    360   LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId();
    361   UNREACHABLE();
    362 }
    363 
    364 // Test vector restrictions.
    365 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
    366   return (restrictions & tested) != 0;
    367 }
    368 
    369 // Insert an instruction.
    370 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
    371   DCHECK(block != nullptr);
    372   DCHECK(instruction != nullptr);
    373   block->InsertInstructionBefore(instruction, block->GetLastInstruction());
    374   return instruction;
    375 }
    376 
    377 // Check that instructions from the induction sets are fully removed: have no uses
    378 // and no other instructions use them.
    379 static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) {
    380   for (HInstruction* instr : *iset) {
    381     if (instr->GetBlock() != nullptr ||
    382         !instr->GetUses().empty() ||
    383         !instr->GetEnvUses().empty() ||
    384         HasEnvironmentUsedByOthers(instr)) {
    385       return false;
    386     }
    387   }
    388   return true;
    389 }
    390 
    391 // Tries to statically evaluate condition of the specified "HIf" for other condition checks.
    392 static void TryToEvaluateIfCondition(HIf* instruction, HGraph* graph) {
    393   HInstruction* cond = instruction->InputAt(0);
    394 
    395   // If a condition 'cond' is evaluated in an HIf instruction then in the successors of the
    396   // IF_BLOCK we statically know the value of the condition 'cond' (TRUE in TRUE_SUCC, FALSE in
    397   // FALSE_SUCC). Using that we can replace another evaluation (use) EVAL of the same 'cond'
    398   // with TRUE value (FALSE value) if every path from the ENTRY_BLOCK to EVAL_BLOCK contains the
    399   // edge HIF_BLOCK->TRUE_SUCC (HIF_BLOCK->FALSE_SUCC).
    400   //     if (cond) {               if(cond) {
    401   //       if (cond) {}              if (1) {}
    402   //     } else {        =======>  } else {
    403   //       if (cond) {}              if (0) {}
    404   //     }                         }
    405   if (!cond->IsConstant()) {
    406     HBasicBlock* true_succ = instruction->IfTrueSuccessor();
    407     HBasicBlock* false_succ = instruction->IfFalseSuccessor();
    408 
    409     DCHECK_EQ(true_succ->GetPredecessors().size(), 1u);
    410     DCHECK_EQ(false_succ->GetPredecessors().size(), 1u);
    411 
    412     const HUseList<HInstruction*>& uses = cond->GetUses();
    413     for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
    414       HInstruction* user = it->GetUser();
    415       size_t index = it->GetIndex();
    416       HBasicBlock* user_block = user->GetBlock();
    417       // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
    418       ++it;
    419       if (true_succ->Dominates(user_block)) {
    420         user->ReplaceInput(graph->GetIntConstant(1), index);
    421      } else if (false_succ->Dominates(user_block)) {
    422         user->ReplaceInput(graph->GetIntConstant(0), index);
    423       }
    424     }
    425   }
    426 }
    427 
    428 // Peel the first 'count' iterations of the loop.
    429 static void PeelByCount(HLoopInformation* loop_info,
    430                         int count,
    431                         InductionVarRange* induction_range) {
    432   for (int i = 0; i < count; i++) {
    433     // Perform peeling.
    434     PeelUnrollSimpleHelper helper(loop_info, induction_range);
    435     helper.DoPeeling();
    436   }
    437 }
    438 
    439 // Returns the narrower type out of instructions a and b types.
    440 static DataType::Type GetNarrowerType(HInstruction* a, HInstruction* b) {
    441   DataType::Type type = a->GetType();
    442   if (DataType::Size(b->GetType()) < DataType::Size(type)) {
    443     type = b->GetType();
    444   }
    445   if (a->IsTypeConversion() &&
    446       DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(type)) {
    447     type = a->InputAt(0)->GetType();
    448   }
    449   if (b->IsTypeConversion() &&
    450       DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(type)) {
    451     type = b->InputAt(0)->GetType();
    452   }
    453   return type;
    454 }
    455 
    456 //
    457 // Public methods.
    458 //
    459 
    460 HLoopOptimization::HLoopOptimization(HGraph* graph,
    461                                      const CompilerOptions* compiler_options,
    462                                      HInductionVarAnalysis* induction_analysis,
    463                                      OptimizingCompilerStats* stats,
    464                                      const char* name)
    465     : HOptimization(graph, name, stats),
    466       compiler_options_(compiler_options),
    467       induction_range_(induction_analysis),
    468       loop_allocator_(nullptr),
    469       global_allocator_(graph_->GetAllocator()),
    470       top_loop_(nullptr),
    471       last_loop_(nullptr),
    472       iset_(nullptr),
    473       reductions_(nullptr),
    474       simplified_(false),
    475       vector_length_(0),
    476       vector_refs_(nullptr),
    477       vector_static_peeling_factor_(0),
    478       vector_dynamic_peeling_candidate_(nullptr),
    479       vector_runtime_test_a_(nullptr),
    480       vector_runtime_test_b_(nullptr),
    481       vector_map_(nullptr),
    482       vector_permanent_map_(nullptr),
    483       vector_mode_(kSequential),
    484       vector_preheader_(nullptr),
    485       vector_header_(nullptr),
    486       vector_body_(nullptr),
    487       vector_index_(nullptr),
    488       arch_loop_helper_(ArchNoOptsLoopHelper::Create(compiler_options_ != nullptr
    489                                                           ? compiler_options_->GetInstructionSet()
    490                                                           : InstructionSet::kNone,
    491                                                       global_allocator_)) {
    492 }
    493 
    494 bool HLoopOptimization::Run() {
    495   // Skip if there is no loop or the graph has try-catch/irreducible loops.
    496   // TODO: make this less of a sledgehammer.
    497   if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
    498     return false;
    499   }
    500 
    501   // Phase-local allocator.
    502   ScopedArenaAllocator allocator(graph_->GetArenaStack());
    503   loop_allocator_ = &allocator;
    504 
    505   // Perform loop optimizations.
    506   bool didLoopOpt = LocalRun();
    507   if (top_loop_ == nullptr) {
    508     graph_->SetHasLoops(false);  // no more loops
    509   }
    510 
    511   // Detach.
    512   loop_allocator_ = nullptr;
    513   last_loop_ = top_loop_ = nullptr;
    514 
    515   return didLoopOpt;
    516 }
    517 
    518 //
    519 // Loop setup and traversal.
    520 //
    521 
    522 bool HLoopOptimization::LocalRun() {
    523   bool didLoopOpt = false;
    524   // Build the linear order using the phase-local allocator. This step enables building
    525   // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
    526   ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
    527   LinearizeGraph(graph_, &linear_order);
    528 
    529   // Build the loop hierarchy.
    530   for (HBasicBlock* block : linear_order) {
    531     if (block->IsLoopHeader()) {
    532       AddLoop(block->GetLoopInformation());
    533     }
    534   }
    535 
    536   // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
    537   // temporary data structures using the phase-local allocator. All new HIR
    538   // should use the global allocator.
    539   if (top_loop_ != nullptr) {
    540     ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    541     ScopedArenaSafeMap<HInstruction*, HInstruction*> reds(
    542         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    543     ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    544     ScopedArenaSafeMap<HInstruction*, HInstruction*> map(
    545         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    546     ScopedArenaSafeMap<HInstruction*, HInstruction*> perm(
    547         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    548     // Attach.
    549     iset_ = &iset;
    550     reductions_ = &reds;
    551     vector_refs_ = &refs;
    552     vector_map_ = &map;
    553     vector_permanent_map_ = &perm;
    554     // Traverse.
    555     didLoopOpt = TraverseLoopsInnerToOuter(top_loop_);
    556     // Detach.
    557     iset_ = nullptr;
    558     reductions_ = nullptr;
    559     vector_refs_ = nullptr;
    560     vector_map_ = nullptr;
    561     vector_permanent_map_ = nullptr;
    562   }
    563   return didLoopOpt;
    564 }
    565 
    566 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
    567   DCHECK(loop_info != nullptr);
    568   LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
    569   if (last_loop_ == nullptr) {
    570     // First loop.
    571     DCHECK(top_loop_ == nullptr);
    572     last_loop_ = top_loop_ = node;
    573   } else if (loop_info->IsIn(*last_loop_->loop_info)) {
    574     // Inner loop.
    575     node->outer = last_loop_;
    576     DCHECK(last_loop_->inner == nullptr);
    577     last_loop_ = last_loop_->inner = node;
    578   } else {
    579     // Subsequent loop.
    580     while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
    581       last_loop_ = last_loop_->outer;
    582     }
    583     node->outer = last_loop_->outer;
    584     node->previous = last_loop_;
    585     DCHECK(last_loop_->next == nullptr);
    586     last_loop_ = last_loop_->next = node;
    587   }
    588 }
    589 
    590 void HLoopOptimization::RemoveLoop(LoopNode* node) {
    591   DCHECK(node != nullptr);
    592   DCHECK(node->inner == nullptr);
    593   if (node->previous != nullptr) {
    594     // Within sequence.
    595     node->previous->next = node->next;
    596     if (node->next != nullptr) {
    597       node->next->previous = node->previous;
    598     }
    599   } else {
    600     // First of sequence.
    601     if (node->outer != nullptr) {
    602       node->outer->inner = node->next;
    603     } else {
    604       top_loop_ = node->next;
    605     }
    606     if (node->next != nullptr) {
    607       node->next->outer = node->outer;
    608       node->next->previous = nullptr;
    609     }
    610   }
    611 }
    612 
    613 bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
    614   bool changed = false;
    615   for ( ; node != nullptr; node = node->next) {
    616     // Visit inner loops first. Recompute induction information for this
    617     // loop if the induction of any inner loop has changed.
    618     if (TraverseLoopsInnerToOuter(node->inner)) {
    619       induction_range_.ReVisit(node->loop_info);
    620       changed = true;
    621     }
    622     // Repeat simplifications in the loop-body until no more changes occur.
    623     // Note that since each simplification consists of eliminating code (without
    624     // introducing new code), this process is always finite.
    625     do {
    626       simplified_ = false;
    627       SimplifyInduction(node);
    628       SimplifyBlocks(node);
    629       changed = simplified_ || changed;
    630     } while (simplified_);
    631     // Optimize inner loop.
    632     if (node->inner == nullptr) {
    633       changed = OptimizeInnerLoop(node) || changed;
    634     }
    635   }
    636   return changed;
    637 }
    638 
    639 //
    640 // Optimization.
    641 //
    642 
    643 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
    644   HBasicBlock* header = node->loop_info->GetHeader();
    645   HBasicBlock* preheader = node->loop_info->GetPreHeader();
    646   // Scan the phis in the header to find opportunities to simplify an induction
    647   // cycle that is only used outside the loop. Replace these uses, if any, with
    648   // the last value and remove the induction cycle.
    649   // Examples: for (int i = 0; x != null;   i++) { .... no i .... }
    650   //           for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
    651   for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
    652     HPhi* phi = it.Current()->AsPhi();
    653     if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
    654         TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
    655       // Note that it's ok to have replaced uses after the loop with the last value, without
    656       // being able to remove the cycle. Environment uses (which are the reason we may not be
    657       // able to remove the cycle) within the loop will still hold the right value. We must
    658       // have tried first, however, to replace outside uses.
    659       if (CanRemoveCycle()) {
    660         simplified_ = true;
    661         for (HInstruction* i : *iset_) {
    662           RemoveFromCycle(i);
    663         }
    664         DCHECK(CheckInductionSetFullyRemoved(iset_));
    665       }
    666     }
    667   }
    668 }
    669 
    670 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
    671   // Iterate over all basic blocks in the loop-body.
    672   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
    673     HBasicBlock* block = it.Current();
    674     // Remove dead instructions from the loop-body.
    675     RemoveDeadInstructions(block->GetPhis());
    676     RemoveDeadInstructions(block->GetInstructions());
    677     // Remove trivial control flow blocks from the loop-body.
    678     if (block->GetPredecessors().size() == 1 &&
    679         block->GetSuccessors().size() == 1 &&
    680         block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
    681       simplified_ = true;
    682       block->MergeWith(block->GetSingleSuccessor());
    683     } else if (block->GetSuccessors().size() == 2) {
    684       // Trivial if block can be bypassed to either branch.
    685       HBasicBlock* succ0 = block->GetSuccessors()[0];
    686       HBasicBlock* succ1 = block->GetSuccessors()[1];
    687       HBasicBlock* meet0 = nullptr;
    688       HBasicBlock* meet1 = nullptr;
    689       if (succ0 != succ1 &&
    690           IsGotoBlock(succ0, &meet0) &&
    691           IsGotoBlock(succ1, &meet1) &&
    692           meet0 == meet1 &&  // meets again
    693           meet0 != block &&  // no self-loop
    694           meet0->GetPhis().IsEmpty()) {  // not used for merging
    695         simplified_ = true;
    696         succ0->DisconnectAndDelete();
    697         if (block->Dominates(meet0)) {
    698           block->RemoveDominatedBlock(meet0);
    699           succ1->AddDominatedBlock(meet0);
    700           meet0->SetDominator(succ1);
    701         }
    702       }
    703     }
    704   }
    705 }
    706 
    707 bool HLoopOptimization::TryOptimizeInnerLoopFinite(LoopNode* node) {
    708   HBasicBlock* header = node->loop_info->GetHeader();
    709   HBasicBlock* preheader = node->loop_info->GetPreHeader();
    710   // Ensure loop header logic is finite.
    711   int64_t trip_count = 0;
    712   if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
    713     return false;
    714   }
    715   // Ensure there is only a single loop-body (besides the header).
    716   HBasicBlock* body = nullptr;
    717   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
    718     if (it.Current() != header) {
    719       if (body != nullptr) {
    720         return false;
    721       }
    722       body = it.Current();
    723     }
    724   }
    725   CHECK(body != nullptr);
    726   // Ensure there is only a single exit point.
    727   if (header->GetSuccessors().size() != 2) {
    728     return false;
    729   }
    730   HBasicBlock* exit = (header->GetSuccessors()[0] == body)
    731       ? header->GetSuccessors()[1]
    732       : header->GetSuccessors()[0];
    733   // Ensure exit can only be reached by exiting loop.
    734   if (exit->GetPredecessors().size() != 1) {
    735     return false;
    736   }
    737   // Detect either an empty loop (no side effects other than plain iteration) or
    738   // a trivial loop (just iterating once). Replace subsequent index uses, if any,
    739   // with the last value and remove the loop, possibly after unrolling its body.
    740   HPhi* main_phi = nullptr;
    741   if (TrySetSimpleLoopHeader(header, &main_phi)) {
    742     bool is_empty = IsEmptyBody(body);
    743     if (reductions_->empty() &&  // TODO: possible with some effort
    744         (is_empty || trip_count == 1) &&
    745         TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
    746       if (!is_empty) {
    747         // Unroll the loop-body, which sees initial value of the index.
    748         main_phi->ReplaceWith(main_phi->InputAt(0));
    749         preheader->MergeInstructionsWith(body);
    750       }
    751       body->DisconnectAndDelete();
    752       exit->RemovePredecessor(header);
    753       header->RemoveSuccessor(exit);
    754       header->RemoveDominatedBlock(exit);
    755       header->DisconnectAndDelete();
    756       preheader->AddSuccessor(exit);
    757       preheader->AddInstruction(new (global_allocator_) HGoto());
    758       preheader->AddDominatedBlock(exit);
    759       exit->SetDominator(preheader);
    760       RemoveLoop(node);  // update hierarchy
    761       return true;
    762     }
    763   }
    764   // Vectorize loop, if possible and valid.
    765   if (kEnableVectorization &&
    766       TrySetSimpleLoopHeader(header, &main_phi) &&
    767       ShouldVectorize(node, body, trip_count) &&
    768       TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
    769     Vectorize(node, body, exit, trip_count);
    770     graph_->SetHasSIMD(true);  // flag SIMD usage
    771     MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized);
    772     return true;
    773   }
    774   return false;
    775 }
    776 
    777 bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
    778   return TryOptimizeInnerLoopFinite(node) || TryPeelingAndUnrolling(node);
    779 }
    780 
    781 
    782 
    783 //
    784 // Scalar loop peeling and unrolling: generic part methods.
    785 //
    786 
    787 bool HLoopOptimization::TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo* analysis_info,
    788                                                               bool generate_code) {
    789   if (analysis_info->GetNumberOfExits() > 1) {
    790     return false;
    791   }
    792 
    793   uint32_t unrolling_factor = arch_loop_helper_->GetScalarUnrollingFactor(analysis_info);
    794   if (unrolling_factor == LoopAnalysisInfo::kNoUnrollingFactor) {
    795     return false;
    796   }
    797 
    798   if (generate_code) {
    799     // TODO: support other unrolling factors.
    800     DCHECK_EQ(unrolling_factor, 2u);
    801 
    802     // Perform unrolling.
    803     HLoopInformation* loop_info = analysis_info->GetLoopInfo();
    804     PeelUnrollSimpleHelper helper(loop_info, &induction_range_);
    805     helper.DoUnrolling();
    806 
    807     // Remove the redundant loop check after unrolling.
    808     HIf* copy_hif =
    809         helper.GetBasicBlockMap()->Get(loop_info->GetHeader())->GetLastInstruction()->AsIf();
    810     int32_t constant = loop_info->Contains(*copy_hif->IfTrueSuccessor()) ? 1 : 0;
    811     copy_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
    812   }
    813   return true;
    814 }
    815 
    816 bool HLoopOptimization::TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo* analysis_info,
    817                                                                    bool generate_code) {
    818   HLoopInformation* loop_info = analysis_info->GetLoopInfo();
    819   if (!arch_loop_helper_->IsLoopPeelingEnabled()) {
    820     return false;
    821   }
    822 
    823   if (analysis_info->GetNumberOfInvariantExits() == 0) {
    824     return false;
    825   }
    826 
    827   if (generate_code) {
    828     // Perform peeling.
    829     PeelUnrollSimpleHelper helper(loop_info, &induction_range_);
    830     helper.DoPeeling();
    831 
    832     // Statically evaluate loop check after peeling for loop invariant condition.
    833     const SuperblockCloner::HInstructionMap* hir_map = helper.GetInstructionMap();
    834     for (auto entry : *hir_map) {
    835       HInstruction* copy = entry.second;
    836       if (copy->IsIf()) {
    837         TryToEvaluateIfCondition(copy->AsIf(), graph_);
    838       }
    839     }
    840   }
    841 
    842   return true;
    843 }
    844 
    845 bool HLoopOptimization::TryFullUnrolling(LoopAnalysisInfo* analysis_info, bool generate_code) {
    846   // Fully unroll loops with a known and small trip count.
    847   int64_t trip_count = analysis_info->GetTripCount();
    848   if (!arch_loop_helper_->IsLoopPeelingEnabled() ||
    849       trip_count == LoopAnalysisInfo::kUnknownTripCount ||
    850       !arch_loop_helper_->IsFullUnrollingBeneficial(analysis_info)) {
    851     return false;
    852   }
    853 
    854   if (generate_code) {
    855     // Peeling of the N first iterations (where N equals to the trip count) will effectively
    856     // eliminate the loop: after peeling we will have N sequential iterations copied into the loop
    857     // preheader and the original loop. The trip count of this loop will be 0 as the sequential
    858     // iterations are executed first and there are exactly N of them. Thus we can statically
    859     // evaluate the loop exit condition to 'false' and fully eliminate it.
    860     //
    861     // Here is an example of full unrolling of a loop with a trip count 2:
    862     //
    863     //                                           loop_cond_1
    864     //                                           loop_body_1        <- First iteration.
    865     //                                               |
    866     //                             \                 v
    867     //                            ==\            loop_cond_2
    868     //                            ==/            loop_body_2        <- Second iteration.
    869     //                             /                 |
    870     //               <-                              v     <-
    871     //     loop_cond   \                         loop_cond   \      <- This cond is always false.
    872     //     loop_body  _/                         loop_body  _/
    873     //
    874     HLoopInformation* loop_info = analysis_info->GetLoopInfo();
    875     PeelByCount(loop_info, trip_count, &induction_range_);
    876     HIf* loop_hif = loop_info->GetHeader()->GetLastInstruction()->AsIf();
    877     int32_t constant = loop_info->Contains(*loop_hif->IfTrueSuccessor()) ? 0 : 1;
    878     loop_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
    879   }
    880 
    881   return true;
    882 }
    883 
    884 bool HLoopOptimization::TryPeelingAndUnrolling(LoopNode* node) {
    885   // Don't run peeling/unrolling if compiler_options_ is nullptr (i.e., running under tests)
    886   // as InstructionSet is needed.
    887   if (compiler_options_ == nullptr) {
    888     return false;
    889   }
    890 
    891   HLoopInformation* loop_info = node->loop_info;
    892   int64_t trip_count = LoopAnalysis::GetLoopTripCount(loop_info, &induction_range_);
    893   LoopAnalysisInfo analysis_info(loop_info);
    894   LoopAnalysis::CalculateLoopBasicProperties(loop_info, &analysis_info, trip_count);
    895 
    896   if (analysis_info.HasInstructionsPreventingScalarOpts() ||
    897       arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&analysis_info)) {
    898     return false;
    899   }
    900 
    901   if (!TryFullUnrolling(&analysis_info, /*generate_code*/ false) &&
    902       !TryPeelingForLoopInvariantExitsElimination(&analysis_info, /*generate_code*/ false) &&
    903       !TryUnrollingForBranchPenaltyReduction(&analysis_info, /*generate_code*/ false)) {
    904     return false;
    905   }
    906 
    907   // Run 'IsLoopClonable' the last as it might be time-consuming.
    908   if (!PeelUnrollHelper::IsLoopClonable(loop_info)) {
    909     return false;
    910   }
    911 
    912   return TryFullUnrolling(&analysis_info) ||
    913          TryPeelingForLoopInvariantExitsElimination(&analysis_info) ||
    914          TryUnrollingForBranchPenaltyReduction(&analysis_info);
    915 }
    916 
    917 //
    918 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
    919 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
    920 // Intel Press, June, 2004 (http://www.aartbik.com/).
    921 //
    922 
    923 bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
    924   // Reset vector bookkeeping.
    925   vector_length_ = 0;
    926   vector_refs_->clear();
    927   vector_static_peeling_factor_ = 0;
    928   vector_dynamic_peeling_candidate_ = nullptr;
    929   vector_runtime_test_a_ =
    930   vector_runtime_test_b_ = nullptr;
    931 
    932   // Phis in the loop-body prevent vectorization.
    933   if (!block->GetPhis().IsEmpty()) {
    934     return false;
    935   }
    936 
    937   // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
    938   // occurrence, which allows passing down attributes down the use tree.
    939   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    940     if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
    941       return false;  // failure to vectorize a left-hand-side
    942     }
    943   }
    944 
    945   // Prepare alignment analysis:
    946   // (1) find desired alignment (SIMD vector size in bytes).
    947   // (2) initialize static loop peeling votes (peeling factor that will
    948   //     make one particular reference aligned), never to exceed (1).
    949   // (3) variable to record how many references share same alignment.
    950   // (4) variable to record suitable candidate for dynamic loop peeling.
    951   uint32_t desired_alignment = GetVectorSizeInBytes();
    952   DCHECK_LE(desired_alignment, 16u);
    953   uint32_t peeling_votes[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    954   uint32_t max_num_same_alignment = 0;
    955   const ArrayReference* peeling_candidate = nullptr;
    956 
    957   // Data dependence analysis. Find each pair of references with same type, where
    958   // at least one is a write. Each such pair denotes a possible data dependence.
    959   // This analysis exploits the property that differently typed arrays cannot be
    960   // aliased, as well as the property that references either point to the same
    961   // array or to two completely disjoint arrays, i.e., no partial aliasing.
    962   // Other than a few simply heuristics, no detailed subscript analysis is done.
    963   // The scan over references also prepares finding a suitable alignment strategy.
    964   for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
    965     uint32_t num_same_alignment = 0;
    966     // Scan over all next references.
    967     for (auto j = i; ++j != vector_refs_->end(); ) {
    968       if (i->type == j->type && (i->lhs || j->lhs)) {
    969         // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
    970         HInstruction* a = i->base;
    971         HInstruction* b = j->base;
    972         HInstruction* x = i->offset;
    973         HInstruction* y = j->offset;
    974         if (a == b) {
    975           // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
    976           // Conservatively assume a loop-carried data dependence otherwise, and reject.
    977           if (x != y) {
    978             return false;
    979           }
    980           // Count the number of references that have the same alignment (since
    981           // base and offset are the same) and where at least one is a write, so
    982           // e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]).
    983           num_same_alignment++;
    984         } else {
    985           // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
    986           // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
    987           // generating an explicit a != b disambiguation runtime test on the two references.
    988           if (x != y) {
    989             // To avoid excessive overhead, we only accept one a != b test.
    990             if (vector_runtime_test_a_ == nullptr) {
    991               // First test found.
    992               vector_runtime_test_a_ = a;
    993               vector_runtime_test_b_ = b;
    994             } else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) &&
    995                        (vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) {
    996               return false;  // second test would be needed
    997             }
    998           }
    999         }
   1000       }
   1001     }
   1002     // Update information for finding suitable alignment strategy:
   1003     // (1) update votes for static loop peeling,
   1004     // (2) update suitable candidate for dynamic loop peeling.
   1005     Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at);
   1006     if (alignment.Base() >= desired_alignment) {
   1007       // If the array/string object has a known, sufficient alignment, use the
   1008       // initial offset to compute the static loop peeling vote (this always
   1009       // works, since elements have natural alignment).
   1010       uint32_t offset = alignment.Offset() & (desired_alignment - 1u);
   1011       uint32_t vote = (offset == 0)
   1012           ? 0
   1013           : ((desired_alignment - offset) >> DataType::SizeShift(i->type));
   1014       DCHECK_LT(vote, 16u);
   1015       ++peeling_votes[vote];
   1016     } else if (BaseAlignment() >= desired_alignment &&
   1017                num_same_alignment > max_num_same_alignment) {
   1018       // Otherwise, if the array/string object has a known, sufficient alignment
   1019       // for just the base but with an unknown offset, record the candidate with
   1020       // the most occurrences for dynamic loop peeling (again, the peeling always
   1021       // works, since elements have natural alignment).
   1022       max_num_same_alignment = num_same_alignment;
   1023       peeling_candidate = &(*i);
   1024     }
   1025   }  // for i
   1026 
   1027   // Find a suitable alignment strategy.
   1028   SetAlignmentStrategy(peeling_votes, peeling_candidate);
   1029 
   1030   // Does vectorization seem profitable?
   1031   if (!IsVectorizationProfitable(trip_count)) {
   1032     return false;
   1033   }
   1034 
   1035   // Success!
   1036   return true;
   1037 }
   1038 
   1039 void HLoopOptimization::Vectorize(LoopNode* node,
   1040                                   HBasicBlock* block,
   1041                                   HBasicBlock* exit,
   1042                                   int64_t trip_count) {
   1043   HBasicBlock* header = node->loop_info->GetHeader();
   1044   HBasicBlock* preheader = node->loop_info->GetPreHeader();
   1045 
   1046   // Pick a loop unrolling factor for the vector loop.
   1047   uint32_t unroll = arch_loop_helper_->GetSIMDUnrollingFactor(
   1048       block, trip_count, MaxNumberPeeled(), vector_length_);
   1049   uint32_t chunk = vector_length_ * unroll;
   1050 
   1051   DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk));
   1052 
   1053   // A cleanup loop is needed, at least, for any unknown trip count or
   1054   // for a known trip count with remainder iterations after vectorization.
   1055   bool needs_cleanup = trip_count == 0 ||
   1056       ((trip_count - vector_static_peeling_factor_) % chunk) != 0;
   1057 
   1058   // Adjust vector bookkeeping.
   1059   HPhi* main_phi = nullptr;
   1060   bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi);  // refills sets
   1061   DCHECK(is_simple_loop_header);
   1062   vector_header_ = header;
   1063   vector_body_ = block;
   1064 
   1065   // Loop induction type.
   1066   DataType::Type induc_type = main_phi->GetType();
   1067   DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64)
   1068       << induc_type;
   1069 
   1070   // Generate the trip count for static or dynamic loop peeling, if needed:
   1071   // ptc = <peeling factor>;
   1072   HInstruction* ptc = nullptr;
   1073   if (vector_static_peeling_factor_ != 0) {
   1074     // Static loop peeling for SIMD alignment (using the most suitable
   1075     // fixed peeling factor found during prior alignment analysis).
   1076     DCHECK(vector_dynamic_peeling_candidate_ == nullptr);
   1077     ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_);
   1078   } else if (vector_dynamic_peeling_candidate_ != nullptr) {
   1079     // Dynamic loop peeling for SIMD alignment (using the most suitable
   1080     // candidate found during prior alignment analysis):
   1081     // rem = offset % ALIGN;    // adjusted as #elements
   1082     // ptc = rem == 0 ? 0 : (ALIGN - rem);
   1083     uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type);
   1084     uint32_t align = GetVectorSizeInBytes() >> shift;
   1085     uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type,
   1086                                           vector_dynamic_peeling_candidate_->is_string_char_at);
   1087     HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift);
   1088     HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd(
   1089         induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset));
   1090     HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd(
   1091         induc_type, offset, graph_->GetConstant(induc_type, align - 1u)));
   1092     HInstruction* sub = Insert(preheader, new (global_allocator_) HSub(
   1093         induc_type, graph_->GetConstant(induc_type, align), rem));
   1094     HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual(
   1095         rem, graph_->GetConstant(induc_type, 0)));
   1096     ptc = Insert(preheader, new (global_allocator_) HSelect(
   1097         cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc));
   1098     needs_cleanup = true;  // don't know the exact amount
   1099   }
   1100 
   1101   // Generate loop control:
   1102   // stc = <trip-count>;
   1103   // ptc = min(stc, ptc);
   1104   // vtc = stc - (stc - ptc) % chunk;
   1105   // i = 0;
   1106   HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
   1107   HInstruction* vtc = stc;
   1108   if (needs_cleanup) {
   1109     DCHECK(IsPowerOfTwo(chunk));
   1110     HInstruction* diff = stc;
   1111     if (ptc != nullptr) {
   1112       if (trip_count == 0) {
   1113         HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc));
   1114         ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc));
   1115       }
   1116       diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc));
   1117     }
   1118     HInstruction* rem = Insert(
   1119         preheader, new (global_allocator_) HAnd(induc_type,
   1120                                                 diff,
   1121                                                 graph_->GetConstant(induc_type, chunk - 1)));
   1122     vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
   1123   }
   1124   vector_index_ = graph_->GetConstant(induc_type, 0);
   1125 
   1126   // Generate runtime disambiguation test:
   1127   // vtc = a != b ? vtc : 0;
   1128   if (vector_runtime_test_a_ != nullptr) {
   1129     HInstruction* rt = Insert(
   1130         preheader,
   1131         new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
   1132     vtc = Insert(preheader,
   1133                  new (global_allocator_)
   1134                  HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc));
   1135     needs_cleanup = true;
   1136   }
   1137 
   1138   // Generate alignment peeling loop, if needed:
   1139   // for ( ; i < ptc; i += 1)
   1140   //    <loop-body>
   1141   //
   1142   // NOTE: The alignment forced by the peeling loop is preserved even if data is
   1143   //       moved around during suspend checks, since all analysis was based on
   1144   //       nothing more than the Android runtime alignment conventions.
   1145   if (ptc != nullptr) {
   1146     vector_mode_ = kSequential;
   1147     GenerateNewLoop(node,
   1148                     block,
   1149                     graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
   1150                     vector_index_,
   1151                     ptc,
   1152                     graph_->GetConstant(induc_type, 1),
   1153                     LoopAnalysisInfo::kNoUnrollingFactor);
   1154   }
   1155 
   1156   // Generate vector loop, possibly further unrolled:
   1157   // for ( ; i < vtc; i += chunk)
   1158   //    <vectorized-loop-body>
   1159   vector_mode_ = kVector;
   1160   GenerateNewLoop(node,
   1161                   block,
   1162                   graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
   1163                   vector_index_,
   1164                   vtc,
   1165                   graph_->GetConstant(induc_type, vector_length_),  // increment per unroll
   1166                   unroll);
   1167   HLoopInformation* vloop = vector_header_->GetLoopInformation();
   1168 
   1169   // Generate cleanup loop, if needed:
   1170   // for ( ; i < stc; i += 1)
   1171   //    <loop-body>
   1172   if (needs_cleanup) {
   1173     vector_mode_ = kSequential;
   1174     GenerateNewLoop(node,
   1175                     block,
   1176                     graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
   1177                     vector_index_,
   1178                     stc,
   1179                     graph_->GetConstant(induc_type, 1),
   1180                     LoopAnalysisInfo::kNoUnrollingFactor);
   1181   }
   1182 
   1183   // Link reductions to their final uses.
   1184   for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
   1185     if (i->first->IsPhi()) {
   1186       HInstruction* phi = i->first;
   1187       HInstruction* repl = ReduceAndExtractIfNeeded(i->second);
   1188       // Deal with regular uses.
   1189       for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
   1190         induction_range_.Replace(use.GetUser(), phi, repl);  // update induction use
   1191       }
   1192       phi->ReplaceWith(repl);
   1193     }
   1194   }
   1195 
   1196   // Remove the original loop by disconnecting the body block
   1197   // and removing all instructions from the header.
   1198   block->DisconnectAndDelete();
   1199   while (!header->GetFirstInstruction()->IsGoto()) {
   1200     header->RemoveInstruction(header->GetFirstInstruction());
   1201   }
   1202 
   1203   // Update loop hierarchy: the old header now resides in the same outer loop
   1204   // as the old preheader. Note that we don't bother putting sequential
   1205   // loops back in the hierarchy at this point.
   1206   header->SetLoopInformation(preheader->GetLoopInformation());  // outward
   1207   node->loop_info = vloop;
   1208 }
   1209 
   1210 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
   1211                                         HBasicBlock* block,
   1212                                         HBasicBlock* new_preheader,
   1213                                         HInstruction* lo,
   1214                                         HInstruction* hi,
   1215                                         HInstruction* step,
   1216                                         uint32_t unroll) {
   1217   DCHECK(unroll == 1 || vector_mode_ == kVector);
   1218   DataType::Type induc_type = lo->GetType();
   1219   // Prepare new loop.
   1220   vector_preheader_ = new_preheader,
   1221   vector_header_ = vector_preheader_->GetSingleSuccessor();
   1222   vector_body_ = vector_header_->GetSuccessors()[1];
   1223   HPhi* phi = new (global_allocator_) HPhi(global_allocator_,
   1224                                            kNoRegNumber,
   1225                                            0,
   1226                                            HPhi::ToPhiType(induc_type));
   1227   // Generate header and prepare body.
   1228   // for (i = lo; i < hi; i += step)
   1229   //    <loop-body>
   1230   HInstruction* cond = new (global_allocator_) HAboveOrEqual(phi, hi);
   1231   vector_header_->AddPhi(phi);
   1232   vector_header_->AddInstruction(cond);
   1233   vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
   1234   vector_index_ = phi;
   1235   vector_permanent_map_->clear();  // preserved over unrolling
   1236   for (uint32_t u = 0; u < unroll; u++) {
   1237     // Generate instruction map.
   1238     vector_map_->clear();
   1239     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
   1240       bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
   1241       DCHECK(vectorized_def);
   1242     }
   1243     // Generate body from the instruction map, but in original program order.
   1244     HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
   1245     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
   1246       auto i = vector_map_->find(it.Current());
   1247       if (i != vector_map_->end() && !i->second->IsInBlock()) {
   1248         Insert(vector_body_, i->second);
   1249         // Deal with instructions that need an environment, such as the scalar intrinsics.
   1250         if (i->second->NeedsEnvironment()) {
   1251           i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
   1252         }
   1253       }
   1254     }
   1255     // Generate the induction.
   1256     vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step);
   1257     Insert(vector_body_, vector_index_);
   1258   }
   1259   // Finalize phi inputs for the reductions (if any).
   1260   for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
   1261     if (!i->first->IsPhi()) {
   1262       DCHECK(i->second->IsPhi());
   1263       GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first);
   1264     }
   1265   }
   1266   // Finalize phi inputs for the loop index.
   1267   phi->AddInput(lo);
   1268   phi->AddInput(vector_index_);
   1269   vector_index_ = phi;
   1270 }
   1271 
   1272 bool HLoopOptimization::VectorizeDef(LoopNode* node,
   1273                                      HInstruction* instruction,
   1274                                      bool generate_code) {
   1275   // Accept a left-hand-side array base[index] for
   1276   // (1) supported vector type,
   1277   // (2) loop-invariant base,
   1278   // (3) unit stride index,
   1279   // (4) vectorizable right-hand-side value.
   1280   uint64_t restrictions = kNone;
   1281   if (instruction->IsArraySet()) {
   1282     DataType::Type type = instruction->AsArraySet()->GetComponentType();
   1283     HInstruction* base = instruction->InputAt(0);
   1284     HInstruction* index = instruction->InputAt(1);
   1285     HInstruction* value = instruction->InputAt(2);
   1286     HInstruction* offset = nullptr;
   1287     // For narrow types, explicit type conversion may have been
   1288     // optimized way, so set the no hi bits restriction here.
   1289     if (DataType::Size(type) <= 2) {
   1290       restrictions |= kNoHiBits;
   1291     }
   1292     if (TrySetVectorType(type, &restrictions) &&
   1293         node->loop_info->IsDefinedOutOfTheLoop(base) &&
   1294         induction_range_.IsUnitStride(instruction, index, graph_, &offset) &&
   1295         VectorizeUse(node, value, generate_code, type, restrictions)) {
   1296       if (generate_code) {
   1297         GenerateVecSub(index, offset);
   1298         GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type);
   1299       } else {
   1300         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
   1301       }
   1302       return true;
   1303     }
   1304     return false;
   1305   }
   1306   // Accept a left-hand-side reduction for
   1307   // (1) supported vector type,
   1308   // (2) vectorizable right-hand-side value.
   1309   auto redit = reductions_->find(instruction);
   1310   if (redit != reductions_->end()) {
   1311     DataType::Type type = instruction->GetType();
   1312     // Recognize SAD idiom or direct reduction.
   1313     if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) ||
   1314         VectorizeDotProdIdiom(node, instruction, generate_code, type, restrictions) ||
   1315         (TrySetVectorType(type, &restrictions) &&
   1316          VectorizeUse(node, instruction, generate_code, type, restrictions))) {
   1317       if (generate_code) {
   1318         HInstruction* new_red = vector_map_->Get(instruction);
   1319         vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second));
   1320         vector_permanent_map_->Overwrite(redit->second, new_red);
   1321       }
   1322       return true;
   1323     }
   1324     return false;
   1325   }
   1326   // Branch back okay.
   1327   if (instruction->IsGoto()) {
   1328     return true;
   1329   }
   1330   // Otherwise accept only expressions with no effects outside the immediate loop-body.
   1331   // Note that actual uses are inspected during right-hand-side tree traversal.
   1332   return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
   1333 }
   1334 
   1335 bool HLoopOptimization::VectorizeUse(LoopNode* node,
   1336                                      HInstruction* instruction,
   1337                                      bool generate_code,
   1338                                      DataType::Type type,
   1339                                      uint64_t restrictions) {
   1340   // Accept anything for which code has already been generated.
   1341   if (generate_code) {
   1342     if (vector_map_->find(instruction) != vector_map_->end()) {
   1343       return true;
   1344     }
   1345   }
   1346   // Continue the right-hand-side tree traversal, passing in proper
   1347   // types and vector restrictions along the way. During code generation,
   1348   // all new nodes are drawn from the global allocator.
   1349   if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
   1350     // Accept invariant use, using scalar expansion.
   1351     if (generate_code) {
   1352       GenerateVecInv(instruction, type);
   1353     }
   1354     return true;
   1355   } else if (instruction->IsArrayGet()) {
   1356     // Deal with vector restrictions.
   1357     bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt();
   1358     if (is_string_char_at && HasVectorRestrictions(restrictions, kNoStringCharAt)) {
   1359       return false;
   1360     }
   1361     // Accept a right-hand-side array base[index] for
   1362     // (1) matching vector type (exact match or signed/unsigned integral type of the same size),
   1363     // (2) loop-invariant base,
   1364     // (3) unit stride index,
   1365     // (4) vectorizable right-hand-side value.
   1366     HInstruction* base = instruction->InputAt(0);
   1367     HInstruction* index = instruction->InputAt(1);
   1368     HInstruction* offset = nullptr;
   1369     if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) &&
   1370         node->loop_info->IsDefinedOutOfTheLoop(base) &&
   1371         induction_range_.IsUnitStride(instruction, index, graph_, &offset)) {
   1372       if (generate_code) {
   1373         GenerateVecSub(index, offset);
   1374         GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type);
   1375       } else {
   1376         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at));
   1377       }
   1378       return true;
   1379     }
   1380   } else if (instruction->IsPhi()) {
   1381     // Accept particular phi operations.
   1382     if (reductions_->find(instruction) != reductions_->end()) {
   1383       // Deal with vector restrictions.
   1384       if (HasVectorRestrictions(restrictions, kNoReduction)) {
   1385         return false;
   1386       }
   1387       // Accept a reduction.
   1388       if (generate_code) {
   1389         GenerateVecReductionPhi(instruction->AsPhi());
   1390       }
   1391       return true;
   1392     }
   1393     // TODO: accept right-hand-side induction?
   1394     return false;
   1395   } else if (instruction->IsTypeConversion()) {
   1396     // Accept particular type conversions.
   1397     HTypeConversion* conversion = instruction->AsTypeConversion();
   1398     HInstruction* opa = conversion->InputAt(0);
   1399     DataType::Type from = conversion->GetInputType();
   1400     DataType::Type to = conversion->GetResultType();
   1401     if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) {
   1402       uint32_t size_vec = DataType::Size(type);
   1403       uint32_t size_from = DataType::Size(from);
   1404       uint32_t size_to = DataType::Size(to);
   1405       // Accept an integral conversion
   1406       // (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or
   1407       // (1b) widening from at least vector type, and
   1408       // (2) vectorizable operand.
   1409       if ((size_to < size_from &&
   1410            size_to == size_vec &&
   1411            VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) ||
   1412           (size_to >= size_from &&
   1413            size_from >= size_vec &&
   1414            VectorizeUse(node, opa, generate_code, type, restrictions))) {
   1415         if (generate_code) {
   1416           if (vector_mode_ == kVector) {
   1417             vector_map_->Put(instruction, vector_map_->Get(opa));  // operand pass-through
   1418           } else {
   1419             GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
   1420           }
   1421         }
   1422         return true;
   1423       }
   1424     } else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) {
   1425       DCHECK_EQ(to, type);
   1426       // Accept int to float conversion for
   1427       // (1) supported int,
   1428       // (2) vectorizable operand.
   1429       if (TrySetVectorType(from, &restrictions) &&
   1430           VectorizeUse(node, opa, generate_code, from, restrictions)) {
   1431         if (generate_code) {
   1432           GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
   1433         }
   1434         return true;
   1435       }
   1436     }
   1437     return false;
   1438   } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
   1439     // Accept unary operator for vectorizable operand.
   1440     HInstruction* opa = instruction->InputAt(0);
   1441     if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
   1442       if (generate_code) {
   1443         GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
   1444       }
   1445       return true;
   1446     }
   1447   } else if (instruction->IsAdd() || instruction->IsSub() ||
   1448              instruction->IsMul() || instruction->IsDiv() ||
   1449              instruction->IsAnd() || instruction->IsOr()  || instruction->IsXor()) {
   1450     // Deal with vector restrictions.
   1451     if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
   1452         (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
   1453       return false;
   1454     }
   1455     // Accept binary operator for vectorizable operands.
   1456     HInstruction* opa = instruction->InputAt(0);
   1457     HInstruction* opb = instruction->InputAt(1);
   1458     if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
   1459         VectorizeUse(node, opb, generate_code, type, restrictions)) {
   1460       if (generate_code) {
   1461         GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
   1462       }
   1463       return true;
   1464     }
   1465   } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
   1466     // Recognize halving add idiom.
   1467     if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
   1468       return true;
   1469     }
   1470     // Deal with vector restrictions.
   1471     HInstruction* opa = instruction->InputAt(0);
   1472     HInstruction* opb = instruction->InputAt(1);
   1473     HInstruction* r = opa;
   1474     bool is_unsigned = false;
   1475     if ((HasVectorRestrictions(restrictions, kNoShift)) ||
   1476         (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
   1477       return false;  // unsupported instruction
   1478     } else if (HasVectorRestrictions(restrictions, kNoHiBits)) {
   1479       // Shifts right need extra care to account for higher order bits.
   1480       // TODO: less likely shr/unsigned and ushr/signed can by flipping signess.
   1481       if (instruction->IsShr() &&
   1482           (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
   1483         return false;  // reject, unless all operands are sign-extension narrower
   1484       } else if (instruction->IsUShr() &&
   1485                  (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) {
   1486         return false;  // reject, unless all operands are zero-extension narrower
   1487       }
   1488     }
   1489     // Accept shift operator for vectorizable/invariant operands.
   1490     // TODO: accept symbolic, albeit loop invariant shift factors.
   1491     DCHECK(r != nullptr);
   1492     if (generate_code && vector_mode_ != kVector) {  // de-idiom
   1493       r = opa;
   1494     }
   1495     int64_t distance = 0;
   1496     if (VectorizeUse(node, r, generate_code, type, restrictions) &&
   1497         IsInt64AndGet(opb, /*out*/ &distance)) {
   1498       // Restrict shift distance to packed data type width.
   1499       int64_t max_distance = DataType::Size(type) * 8;
   1500       if (0 <= distance && distance < max_distance) {
   1501         if (generate_code) {
   1502           GenerateVecOp(instruction, vector_map_->Get(r), opb, type);
   1503         }
   1504         return true;
   1505       }
   1506     }
   1507   } else if (instruction->IsAbs()) {
   1508     // Deal with vector restrictions.
   1509     HInstruction* opa = instruction->InputAt(0);
   1510     HInstruction* r = opa;
   1511     bool is_unsigned = false;
   1512     if (HasVectorRestrictions(restrictions, kNoAbs)) {
   1513       return false;
   1514     } else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
   1515                (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
   1516       return false;  // reject, unless operand is sign-extension narrower
   1517     }
   1518     // Accept ABS(x) for vectorizable operand.
   1519     DCHECK(r != nullptr);
   1520     if (generate_code && vector_mode_ != kVector) {  // de-idiom
   1521       r = opa;
   1522     }
   1523     if (VectorizeUse(node, r, generate_code, type, restrictions)) {
   1524       if (generate_code) {
   1525         GenerateVecOp(instruction,
   1526                       vector_map_->Get(r),
   1527                       nullptr,
   1528                       HVecOperation::ToProperType(type, is_unsigned));
   1529       }
   1530       return true;
   1531     }
   1532   }
   1533   return false;
   1534 }
   1535 
   1536 uint32_t HLoopOptimization::GetVectorSizeInBytes() {
   1537   switch (compiler_options_->GetInstructionSet()) {
   1538     case InstructionSet::kArm:
   1539     case InstructionSet::kThumb2:
   1540       return 8;  // 64-bit SIMD
   1541     default:
   1542       return 16;  // 128-bit SIMD
   1543   }
   1544 }
   1545 
   1546 bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) {
   1547   const InstructionSetFeatures* features = compiler_options_->GetInstructionSetFeatures();
   1548   switch (compiler_options_->GetInstructionSet()) {
   1549     case InstructionSet::kArm:
   1550     case InstructionSet::kThumb2:
   1551       // Allow vectorization for all ARM devices, because Android assumes that
   1552       // ARM 32-bit always supports advanced SIMD (64-bit SIMD).
   1553       switch (type) {
   1554         case DataType::Type::kBool:
   1555         case DataType::Type::kUint8:
   1556         case DataType::Type::kInt8:
   1557           *restrictions |= kNoDiv | kNoReduction | kNoDotProd;
   1558           return TrySetVectorLength(8);
   1559         case DataType::Type::kUint16:
   1560         case DataType::Type::kInt16:
   1561           *restrictions |= kNoDiv | kNoStringCharAt | kNoReduction | kNoDotProd;
   1562           return TrySetVectorLength(4);
   1563         case DataType::Type::kInt32:
   1564           *restrictions |= kNoDiv | kNoWideSAD;
   1565           return TrySetVectorLength(2);
   1566         default:
   1567           break;
   1568       }
   1569       return false;
   1570     case InstructionSet::kArm64:
   1571       // Allow vectorization for all ARM devices, because Android assumes that
   1572       // ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD).
   1573       switch (type) {
   1574         case DataType::Type::kBool:
   1575         case DataType::Type::kUint8:
   1576         case DataType::Type::kInt8:
   1577           *restrictions |= kNoDiv;
   1578           return TrySetVectorLength(16);
   1579         case DataType::Type::kUint16:
   1580         case DataType::Type::kInt16:
   1581           *restrictions |= kNoDiv;
   1582           return TrySetVectorLength(8);
   1583         case DataType::Type::kInt32:
   1584           *restrictions |= kNoDiv;
   1585           return TrySetVectorLength(4);
   1586         case DataType::Type::kInt64:
   1587           *restrictions |= kNoDiv | kNoMul;
   1588           return TrySetVectorLength(2);
   1589         case DataType::Type::kFloat32:
   1590           *restrictions |= kNoReduction;
   1591           return TrySetVectorLength(4);
   1592         case DataType::Type::kFloat64:
   1593           *restrictions |= kNoReduction;
   1594           return TrySetVectorLength(2);
   1595         default:
   1596           return false;
   1597       }
   1598     case InstructionSet::kX86:
   1599     case InstructionSet::kX86_64:
   1600       // Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD).
   1601       if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
   1602         switch (type) {
   1603           case DataType::Type::kBool:
   1604           case DataType::Type::kUint8:
   1605           case DataType::Type::kInt8:
   1606             *restrictions |= kNoMul |
   1607                              kNoDiv |
   1608                              kNoShift |
   1609                              kNoAbs |
   1610                              kNoSignedHAdd |
   1611                              kNoUnroundedHAdd |
   1612                              kNoSAD |
   1613                              kNoDotProd;
   1614             return TrySetVectorLength(16);
   1615           case DataType::Type::kUint16:
   1616           case DataType::Type::kInt16:
   1617             *restrictions |= kNoDiv |
   1618                              kNoAbs |
   1619                              kNoSignedHAdd |
   1620                              kNoUnroundedHAdd |
   1621                              kNoSAD|
   1622                              kNoDotProd;
   1623             return TrySetVectorLength(8);
   1624           case DataType::Type::kInt32:
   1625             *restrictions |= kNoDiv | kNoSAD;
   1626             return TrySetVectorLength(4);
   1627           case DataType::Type::kInt64:
   1628             *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoSAD;
   1629             return TrySetVectorLength(2);
   1630           case DataType::Type::kFloat32:
   1631             *restrictions |= kNoReduction;
   1632             return TrySetVectorLength(4);
   1633           case DataType::Type::kFloat64:
   1634             *restrictions |= kNoReduction;
   1635             return TrySetVectorLength(2);
   1636           default:
   1637             break;
   1638         }  // switch type
   1639       }
   1640       return false;
   1641     case InstructionSet::kMips:
   1642       if (features->AsMipsInstructionSetFeatures()->HasMsa()) {
   1643         switch (type) {
   1644           case DataType::Type::kBool:
   1645           case DataType::Type::kUint8:
   1646           case DataType::Type::kInt8:
   1647             *restrictions |= kNoDiv | kNoDotProd;
   1648             return TrySetVectorLength(16);
   1649           case DataType::Type::kUint16:
   1650           case DataType::Type::kInt16:
   1651             *restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
   1652             return TrySetVectorLength(8);
   1653           case DataType::Type::kInt32:
   1654             *restrictions |= kNoDiv;
   1655             return TrySetVectorLength(4);
   1656           case DataType::Type::kInt64:
   1657             *restrictions |= kNoDiv;
   1658             return TrySetVectorLength(2);
   1659           case DataType::Type::kFloat32:
   1660             *restrictions |= kNoReduction;
   1661             return TrySetVectorLength(4);
   1662           case DataType::Type::kFloat64:
   1663             *restrictions |= kNoReduction;
   1664             return TrySetVectorLength(2);
   1665           default:
   1666             break;
   1667         }  // switch type
   1668       }
   1669       return false;
   1670     case InstructionSet::kMips64:
   1671       if (features->AsMips64InstructionSetFeatures()->HasMsa()) {
   1672         switch (type) {
   1673           case DataType::Type::kBool:
   1674           case DataType::Type::kUint8:
   1675           case DataType::Type::kInt8:
   1676             *restrictions |= kNoDiv | kNoDotProd;
   1677             return TrySetVectorLength(16);
   1678           case DataType::Type::kUint16:
   1679           case DataType::Type::kInt16:
   1680             *restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
   1681             return TrySetVectorLength(8);
   1682           case DataType::Type::kInt32:
   1683             *restrictions |= kNoDiv;
   1684             return TrySetVectorLength(4);
   1685           case DataType::Type::kInt64:
   1686             *restrictions |= kNoDiv;
   1687             return TrySetVectorLength(2);
   1688           case DataType::Type::kFloat32:
   1689             *restrictions |= kNoReduction;
   1690             return TrySetVectorLength(4);
   1691           case DataType::Type::kFloat64:
   1692             *restrictions |= kNoReduction;
   1693             return TrySetVectorLength(2);
   1694           default:
   1695             break;
   1696         }  // switch type
   1697       }
   1698       return false;
   1699     default:
   1700       return false;
   1701   }  // switch instruction set
   1702 }
   1703 
   1704 bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
   1705   DCHECK(IsPowerOfTwo(length) && length >= 2u);
   1706   // First time set?
   1707   if (vector_length_ == 0) {
   1708     vector_length_ = length;
   1709   }
   1710   // Different types are acceptable within a loop-body, as long as all the corresponding vector
   1711   // lengths match exactly to obtain a uniform traversal through the vector iteration space
   1712   // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
   1713   return vector_length_ == length;
   1714 }
   1715 
   1716 void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) {
   1717   if (vector_map_->find(org) == vector_map_->end()) {
   1718     // In scalar code, just use a self pass-through for scalar invariants
   1719     // (viz. expression remains itself).
   1720     if (vector_mode_ == kSequential) {
   1721       vector_map_->Put(org, org);
   1722       return;
   1723     }
   1724     // In vector code, explicit scalar expansion is needed.
   1725     HInstruction* vector = nullptr;
   1726     auto it = vector_permanent_map_->find(org);
   1727     if (it != vector_permanent_map_->end()) {
   1728       vector = it->second;  // reuse during unrolling
   1729     } else {
   1730       // Generates ReplicateScalar( (optional_type_conv) org ).
   1731       HInstruction* input = org;
   1732       DataType::Type input_type = input->GetType();
   1733       if (type != input_type && (type == DataType::Type::kInt64 ||
   1734                                  input_type == DataType::Type::kInt64)) {
   1735         input = Insert(vector_preheader_,
   1736                        new (global_allocator_) HTypeConversion(type, input, kNoDexPc));
   1737       }
   1738       vector = new (global_allocator_)
   1739           HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc);
   1740       vector_permanent_map_->Put(org, Insert(vector_preheader_, vector));
   1741     }
   1742     vector_map_->Put(org, vector);
   1743   }
   1744 }
   1745 
   1746 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
   1747   if (vector_map_->find(org) == vector_map_->end()) {
   1748     HInstruction* subscript = vector_index_;
   1749     int64_t value = 0;
   1750     if (!IsInt64AndGet(offset, &value) || value != 0) {
   1751       subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset);
   1752       if (org->IsPhi()) {
   1753         Insert(vector_body_, subscript);  // lacks layout placeholder
   1754       }
   1755     }
   1756     vector_map_->Put(org, subscript);
   1757   }
   1758 }
   1759 
   1760 void HLoopOptimization::GenerateVecMem(HInstruction* org,
   1761                                        HInstruction* opa,
   1762                                        HInstruction* opb,
   1763                                        HInstruction* offset,
   1764                                        DataType::Type type) {
   1765   uint32_t dex_pc = org->GetDexPc();
   1766   HInstruction* vector = nullptr;
   1767   if (vector_mode_ == kVector) {
   1768     // Vector store or load.
   1769     bool is_string_char_at = false;
   1770     HInstruction* base = org->InputAt(0);
   1771     if (opb != nullptr) {
   1772       vector = new (global_allocator_) HVecStore(
   1773           global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc);
   1774     } else  {
   1775       is_string_char_at = org->AsArrayGet()->IsStringCharAt();
   1776       vector = new (global_allocator_) HVecLoad(global_allocator_,
   1777                                                 base,
   1778                                                 opa,
   1779                                                 type,
   1780                                                 org->GetSideEffects(),
   1781                                                 vector_length_,
   1782                                                 is_string_char_at,
   1783                                                 dex_pc);
   1784     }
   1785     // Known (forced/adjusted/original) alignment?
   1786     if (vector_dynamic_peeling_candidate_ != nullptr) {
   1787       if (vector_dynamic_peeling_candidate_->offset == offset &&  // TODO: diffs too?
   1788           DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) &&
   1789           vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) {
   1790         vector->AsVecMemoryOperation()->SetAlignment(  // forced
   1791             Alignment(GetVectorSizeInBytes(), 0));
   1792       }
   1793     } else {
   1794       vector->AsVecMemoryOperation()->SetAlignment(  // adjusted/original
   1795           ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_));
   1796     }
   1797   } else {
   1798     // Scalar store or load.
   1799     DCHECK(vector_mode_ == kSequential);
   1800     if (opb != nullptr) {
   1801       DataType::Type component_type = org->AsArraySet()->GetComponentType();
   1802       vector = new (global_allocator_) HArraySet(
   1803           org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc);
   1804     } else  {
   1805       bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
   1806       vector = new (global_allocator_) HArrayGet(
   1807           org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at);
   1808     }
   1809   }
   1810   vector_map_->Put(org, vector);
   1811 }
   1812 
   1813 void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) {
   1814   DCHECK(reductions_->find(phi) != reductions_->end());
   1815   DCHECK(reductions_->Get(phi->InputAt(1)) == phi);
   1816   HInstruction* vector = nullptr;
   1817   if (vector_mode_ == kSequential) {
   1818     HPhi* new_phi = new (global_allocator_) HPhi(
   1819         global_allocator_, kNoRegNumber, 0, phi->GetType());
   1820     vector_header_->AddPhi(new_phi);
   1821     vector = new_phi;
   1822   } else {
   1823     // Link vector reduction back to prior unrolled update, or a first phi.
   1824     auto it = vector_permanent_map_->find(phi);
   1825     if (it != vector_permanent_map_->end()) {
   1826       vector = it->second;
   1827     } else {
   1828       HPhi* new_phi = new (global_allocator_) HPhi(
   1829           global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType);
   1830       vector_header_->AddPhi(new_phi);
   1831       vector = new_phi;
   1832     }
   1833   }
   1834   vector_map_->Put(phi, vector);
   1835 }
   1836 
   1837 void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) {
   1838   HInstruction* new_phi = vector_map_->Get(phi);
   1839   HInstruction* new_init = reductions_->Get(phi);
   1840   HInstruction* new_red = vector_map_->Get(reduction);
   1841   // Link unrolled vector loop back to new phi.
   1842   for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) {
   1843     DCHECK(new_phi->IsVecOperation());
   1844   }
   1845   // Prepare the new initialization.
   1846   if (vector_mode_ == kVector) {
   1847     // Generate a [initial, 0, .., 0] vector for add or
   1848     // a [initial, initial, .., initial] vector for min/max.
   1849     HVecOperation* red_vector = new_red->AsVecOperation();
   1850     HVecReduce::ReductionKind kind = GetReductionKind(red_vector);
   1851     uint32_t vector_length = red_vector->GetVectorLength();
   1852     DataType::Type type = red_vector->GetPackedType();
   1853     if (kind == HVecReduce::ReductionKind::kSum) {
   1854       new_init = Insert(vector_preheader_,
   1855                         new (global_allocator_) HVecSetScalars(global_allocator_,
   1856                                                                &new_init,
   1857                                                                type,
   1858                                                                vector_length,
   1859                                                                1,
   1860                                                                kNoDexPc));
   1861     } else {
   1862       new_init = Insert(vector_preheader_,
   1863                         new (global_allocator_) HVecReplicateScalar(global_allocator_,
   1864                                                                     new_init,
   1865                                                                     type,
   1866                                                                     vector_length,
   1867                                                                     kNoDexPc));
   1868     }
   1869   } else {
   1870     new_init = ReduceAndExtractIfNeeded(new_init);
   1871   }
   1872   // Set the phi inputs.
   1873   DCHECK(new_phi->IsPhi());
   1874   new_phi->AsPhi()->AddInput(new_init);
   1875   new_phi->AsPhi()->AddInput(new_red);
   1876   // New feed value for next phi (safe mutation in iteration).
   1877   reductions_->find(phi)->second = new_phi;
   1878 }
   1879 
   1880 HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) {
   1881   if (instruction->IsPhi()) {
   1882     HInstruction* input = instruction->InputAt(1);
   1883     if (HVecOperation::ReturnsSIMDValue(input)) {
   1884       DCHECK(!input->IsPhi());
   1885       HVecOperation* input_vector = input->AsVecOperation();
   1886       uint32_t vector_length = input_vector->GetVectorLength();
   1887       DataType::Type type = input_vector->GetPackedType();
   1888       HVecReduce::ReductionKind kind = GetReductionKind(input_vector);
   1889       HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0];
   1890       // Generate a vector reduction and scalar extract
   1891       //    x = REDUCE( [x_1, .., x_n] )
   1892       //    y = x_1
   1893       // along the exit of the defining loop.
   1894       HInstruction* reduce = new (global_allocator_) HVecReduce(
   1895           global_allocator_, instruction, type, vector_length, kind, kNoDexPc);
   1896       exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction());
   1897       instruction = new (global_allocator_) HVecExtractScalar(
   1898           global_allocator_, reduce, type, vector_length, 0, kNoDexPc);
   1899       exit->InsertInstructionAfter(instruction, reduce);
   1900     }
   1901   }
   1902   return instruction;
   1903 }
   1904 
   1905 #define GENERATE_VEC(x, y) \
   1906   if (vector_mode_ == kVector) { \
   1907     vector = (x); \
   1908   } else { \
   1909     DCHECK(vector_mode_ == kSequential); \
   1910     vector = (y); \
   1911   } \
   1912   break;
   1913 
   1914 void HLoopOptimization::GenerateVecOp(HInstruction* org,
   1915                                       HInstruction* opa,
   1916                                       HInstruction* opb,
   1917                                       DataType::Type type) {
   1918   uint32_t dex_pc = org->GetDexPc();
   1919   HInstruction* vector = nullptr;
   1920   DataType::Type org_type = org->GetType();
   1921   switch (org->GetKind()) {
   1922     case HInstruction::kNeg:
   1923       DCHECK(opb == nullptr);
   1924       GENERATE_VEC(
   1925         new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc),
   1926         new (global_allocator_) HNeg(org_type, opa, dex_pc));
   1927     case HInstruction::kNot:
   1928       DCHECK(opb == nullptr);
   1929       GENERATE_VEC(
   1930         new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
   1931         new (global_allocator_) HNot(org_type, opa, dex_pc));
   1932     case HInstruction::kBooleanNot:
   1933       DCHECK(opb == nullptr);
   1934       GENERATE_VEC(
   1935         new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
   1936         new (global_allocator_) HBooleanNot(opa, dex_pc));
   1937     case HInstruction::kTypeConversion:
   1938       DCHECK(opb == nullptr);
   1939       GENERATE_VEC(
   1940         new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc),
   1941         new (global_allocator_) HTypeConversion(org_type, opa, dex_pc));
   1942     case HInstruction::kAdd:
   1943       GENERATE_VEC(
   1944         new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1945         new (global_allocator_) HAdd(org_type, opa, opb, dex_pc));
   1946     case HInstruction::kSub:
   1947       GENERATE_VEC(
   1948         new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1949         new (global_allocator_) HSub(org_type, opa, opb, dex_pc));
   1950     case HInstruction::kMul:
   1951       GENERATE_VEC(
   1952         new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1953         new (global_allocator_) HMul(org_type, opa, opb, dex_pc));
   1954     case HInstruction::kDiv:
   1955       GENERATE_VEC(
   1956         new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1957         new (global_allocator_) HDiv(org_type, opa, opb, dex_pc));
   1958     case HInstruction::kAnd:
   1959       GENERATE_VEC(
   1960         new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1961         new (global_allocator_) HAnd(org_type, opa, opb, dex_pc));
   1962     case HInstruction::kOr:
   1963       GENERATE_VEC(
   1964         new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1965         new (global_allocator_) HOr(org_type, opa, opb, dex_pc));
   1966     case HInstruction::kXor:
   1967       GENERATE_VEC(
   1968         new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1969         new (global_allocator_) HXor(org_type, opa, opb, dex_pc));
   1970     case HInstruction::kShl:
   1971       GENERATE_VEC(
   1972         new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1973         new (global_allocator_) HShl(org_type, opa, opb, dex_pc));
   1974     case HInstruction::kShr:
   1975       GENERATE_VEC(
   1976         new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1977         new (global_allocator_) HShr(org_type, opa, opb, dex_pc));
   1978     case HInstruction::kUShr:
   1979       GENERATE_VEC(
   1980         new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
   1981         new (global_allocator_) HUShr(org_type, opa, opb, dex_pc));
   1982     case HInstruction::kAbs:
   1983       DCHECK(opb == nullptr);
   1984       GENERATE_VEC(
   1985         new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc),
   1986         new (global_allocator_) HAbs(org_type, opa, dex_pc));
   1987     default:
   1988       break;
   1989   }  // switch
   1990   CHECK(vector != nullptr) << "Unsupported SIMD operator";
   1991   vector_map_->Put(org, vector);
   1992 }
   1993 
   1994 #undef GENERATE_VEC
   1995 
   1996 //
   1997 // Vectorization idioms.
   1998 //
   1999 
   2000 // Method recognizes the following idioms:
   2001 //   rounding  halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
   2002 //   truncated halving add (a + b)     >> 1 for unsigned/signed operands a, b
   2003 // Provided that the operands are promoted to a wider form to do the arithmetic and
   2004 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
   2005 // implementation that operates directly in narrower form (plus one extra bit).
   2006 // TODO: current version recognizes implicit byte/short/char widening only;
   2007 //       explicit widening from int to long could be added later.
   2008 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
   2009                                                  HInstruction* instruction,
   2010                                                  bool generate_code,
   2011                                                  DataType::Type type,
   2012                                                  uint64_t restrictions) {
   2013   // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
   2014   // (note whether the sign bit in wider precision is shifted in has no effect
   2015   // on the narrow precision computed by the idiom).
   2016   if ((instruction->IsShr() ||
   2017        instruction->IsUShr()) &&
   2018       IsInt64Value(instruction->InputAt(1), 1)) {
   2019     // Test for (a + b + c) >> 1 for optional constant c.
   2020     HInstruction* a = nullptr;
   2021     HInstruction* b = nullptr;
   2022     int64_t       c = 0;
   2023     if (IsAddConst2(graph_, instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
   2024       // Accept c == 1 (rounded) or c == 0 (not rounded).
   2025       bool is_rounded = false;
   2026       if (c == 1) {
   2027         is_rounded = true;
   2028       } else if (c != 0) {
   2029         return false;
   2030       }
   2031       // Accept consistent zero or sign extension on operands a and b.
   2032       HInstruction* r = nullptr;
   2033       HInstruction* s = nullptr;
   2034       bool is_unsigned = false;
   2035       if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) {
   2036         return false;
   2037       }
   2038       // Deal with vector restrictions.
   2039       if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
   2040           (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
   2041         return false;
   2042       }
   2043       // Accept recognized halving add for vectorizable operands. Vectorized code uses the
   2044       // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
   2045       DCHECK(r != nullptr && s != nullptr);
   2046       if (generate_code && vector_mode_ != kVector) {  // de-idiom
   2047         r = instruction->InputAt(0);
   2048         s = instruction->InputAt(1);
   2049       }
   2050       if (VectorizeUse(node, r, generate_code, type, restrictions) &&
   2051           VectorizeUse(node, s, generate_code, type, restrictions)) {
   2052         if (generate_code) {
   2053           if (vector_mode_ == kVector) {
   2054             vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
   2055                 global_allocator_,
   2056                 vector_map_->Get(r),
   2057                 vector_map_->Get(s),
   2058                 HVecOperation::ToProperType(type, is_unsigned),
   2059                 vector_length_,
   2060                 is_rounded,
   2061                 kNoDexPc));
   2062             MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
   2063           } else {
   2064             GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type);
   2065           }
   2066         }
   2067         return true;
   2068       }
   2069     }
   2070   }
   2071   return false;
   2072 }
   2073 
   2074 // Method recognizes the following idiom:
   2075 //   q += ABS(a - b) for signed operands a, b
   2076 // Provided that the operands have the same type or are promoted to a wider form.
   2077 // Since this may involve a vector length change, the idiom is handled by going directly
   2078 // to a sad-accumulate node (rather than relying combining finer grained nodes later).
   2079 // TODO: unsigned SAD too?
   2080 bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node,
   2081                                           HInstruction* instruction,
   2082                                           bool generate_code,
   2083                                           DataType::Type reduction_type,
   2084                                           uint64_t restrictions) {
   2085   // Filter integral "q += ABS(a - b);" reduction, where ABS and SUB
   2086   // are done in the same precision (either int or long).
   2087   if (!instruction->IsAdd() ||
   2088       (reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) {
   2089     return false;
   2090   }
   2091   HInstruction* q = instruction->InputAt(0);
   2092   HInstruction* v = instruction->InputAt(1);
   2093   HInstruction* a = nullptr;
   2094   HInstruction* b = nullptr;
   2095   if (v->IsAbs() &&
   2096       v->GetType() == reduction_type &&
   2097       IsSubConst2(graph_, v->InputAt(0), /*out*/ &a, /*out*/ &b)) {
   2098     DCHECK(a != nullptr && b != nullptr);
   2099   } else {
   2100     return false;
   2101   }
   2102   // Accept same-type or consistent sign extension for narrower-type on operands a and b.
   2103   // The same-type or narrower operands are called r (a or lower) and s (b or lower).
   2104   // We inspect the operands carefully to pick the most suited type.
   2105   HInstruction* r = a;
   2106   HInstruction* s = b;
   2107   bool is_unsigned = false;
   2108   DataType::Type sub_type = GetNarrowerType(a, b);
   2109   if (reduction_type != sub_type &&
   2110       (!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) {
   2111     return false;
   2112   }
   2113   // Try same/narrower type and deal with vector restrictions.
   2114   if (!TrySetVectorType(sub_type, &restrictions) ||
   2115       HasVectorRestrictions(restrictions, kNoSAD) ||
   2116       (reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) {
   2117     return false;
   2118   }
   2119   // Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand
   2120   // idiomatic operation. Sequential code uses the original scalar expressions.
   2121   DCHECK(r != nullptr && s != nullptr);
   2122   if (generate_code && vector_mode_ != kVector) {  // de-idiom
   2123     r = s = v->InputAt(0);
   2124   }
   2125   if (VectorizeUse(node, q, generate_code, sub_type, restrictions) &&
   2126       VectorizeUse(node, r, generate_code, sub_type, restrictions) &&
   2127       VectorizeUse(node, s, generate_code, sub_type, restrictions)) {
   2128     if (generate_code) {
   2129       if (vector_mode_ == kVector) {
   2130         vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate(
   2131             global_allocator_,
   2132             vector_map_->Get(q),
   2133             vector_map_->Get(r),
   2134             vector_map_->Get(s),
   2135             HVecOperation::ToProperType(reduction_type, is_unsigned),
   2136             GetOtherVL(reduction_type, sub_type, vector_length_),
   2137             kNoDexPc));
   2138         MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
   2139       } else {
   2140         GenerateVecOp(v, vector_map_->Get(r), nullptr, reduction_type);
   2141         GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
   2142       }
   2143     }
   2144     return true;
   2145   }
   2146   return false;
   2147 }
   2148 
   2149 // Method recognises the following dot product idiom:
   2150 //   q += a * b for operands a, b whose type is narrower than the reduction one.
   2151 // Provided that the operands have the same type or are promoted to a wider form.
   2152 // Since this may involve a vector length change, the idiom is handled by going directly
   2153 // to a dot product node (rather than relying combining finer grained nodes later).
   2154 bool HLoopOptimization::VectorizeDotProdIdiom(LoopNode* node,
   2155                                               HInstruction* instruction,
   2156                                               bool generate_code,
   2157                                               DataType::Type reduction_type,
   2158                                               uint64_t restrictions) {
   2159   if (!instruction->IsAdd() || (reduction_type != DataType::Type::kInt32)) {
   2160     return false;
   2161   }
   2162 
   2163   HInstruction* q = instruction->InputAt(0);
   2164   HInstruction* v = instruction->InputAt(1);
   2165   if (!v->IsMul() || v->GetType() != reduction_type) {
   2166     return false;
   2167   }
   2168 
   2169   HInstruction* a = v->InputAt(0);
   2170   HInstruction* b = v->InputAt(1);
   2171   HInstruction* r = a;
   2172   HInstruction* s = b;
   2173   DataType::Type op_type = GetNarrowerType(a, b);
   2174   bool is_unsigned = false;
   2175 
   2176   if (!IsNarrowerOperands(a, b, op_type, &r, &s, &is_unsigned)) {
   2177     return false;
   2178   }
   2179   op_type = HVecOperation::ToProperType(op_type, is_unsigned);
   2180 
   2181   if (!TrySetVectorType(op_type, &restrictions) ||
   2182       HasVectorRestrictions(restrictions, kNoDotProd)) {
   2183     return false;
   2184   }
   2185 
   2186   DCHECK(r != nullptr && s != nullptr);
   2187   // Accept dot product idiom for vectorizable operands. Vectorized code uses the shorthand
   2188   // idiomatic operation. Sequential code uses the original scalar expressions.
   2189   if (generate_code && vector_mode_ != kVector) {  // de-idiom
   2190     r = a;
   2191     s = b;
   2192   }
   2193   if (VectorizeUse(node, q, generate_code, op_type, restrictions) &&
   2194       VectorizeUse(node, r, generate_code, op_type, restrictions) &&
   2195       VectorizeUse(node, s, generate_code, op_type, restrictions)) {
   2196     if (generate_code) {
   2197       if (vector_mode_ == kVector) {
   2198         vector_map_->Put(instruction, new (global_allocator_) HVecDotProd(
   2199             global_allocator_,
   2200             vector_map_->Get(q),
   2201             vector_map_->Get(r),
   2202             vector_map_->Get(s),
   2203             reduction_type,
   2204             is_unsigned,
   2205             GetOtherVL(reduction_type, op_type, vector_length_),
   2206             kNoDexPc));
   2207         MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
   2208       } else {
   2209         GenerateVecOp(v, vector_map_->Get(r), vector_map_->Get(s), reduction_type);
   2210         GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
   2211       }
   2212     }
   2213     return true;
   2214   }
   2215   return false;
   2216 }
   2217 
   2218 //
   2219 // Vectorization heuristics.
   2220 //
   2221 
   2222 Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset,
   2223                                               DataType::Type type,
   2224                                               bool is_string_char_at,
   2225                                               uint32_t peeling) {
   2226   // Combine the alignment and hidden offset that is guaranteed by
   2227   // the Android runtime with a known starting index adjusted as bytes.
   2228   int64_t value = 0;
   2229   if (IsInt64AndGet(offset, /*out*/ &value)) {
   2230     uint32_t start_offset =
   2231         HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type);
   2232     return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u));
   2233   }
   2234   // Otherwise, the Android runtime guarantees at least natural alignment.
   2235   return Alignment(DataType::Size(type), 0);
   2236 }
   2237 
   2238 void HLoopOptimization::SetAlignmentStrategy(uint32_t peeling_votes[],
   2239                                              const ArrayReference* peeling_candidate) {
   2240   // Current heuristic: pick the best static loop peeling factor, if any,
   2241   // or otherwise use dynamic loop peeling on suggested peeling candidate.
   2242   uint32_t max_vote = 0;
   2243   for (int32_t i = 0; i < 16; i++) {
   2244     if (peeling_votes[i] > max_vote) {
   2245       max_vote = peeling_votes[i];
   2246       vector_static_peeling_factor_ = i;
   2247     }
   2248   }
   2249   if (max_vote == 0) {
   2250     vector_dynamic_peeling_candidate_ = peeling_candidate;
   2251   }
   2252 }
   2253 
   2254 uint32_t HLoopOptimization::MaxNumberPeeled() {
   2255   if (vector_dynamic_peeling_candidate_ != nullptr) {
   2256     return vector_length_ - 1u;  // worst-case
   2257   }
   2258   return vector_static_peeling_factor_;  // known exactly
   2259 }
   2260 
   2261 bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) {
   2262   // Current heuristic: non-empty body with sufficient number of iterations (if known).
   2263   // TODO: refine by looking at e.g. operation count, alignment, etc.
   2264   // TODO: trip count is really unsigned entity, provided the guarding test
   2265   //       is satisfied; deal with this more carefully later
   2266   uint32_t max_peel = MaxNumberPeeled();
   2267   if (vector_length_ == 0) {
   2268     return false;  // nothing found
   2269   } else if (trip_count < 0) {
   2270     return false;  // guard against non-taken/large
   2271   } else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) {
   2272     return false;  // insufficient iterations
   2273   }
   2274   return true;
   2275 }
   2276 
   2277 //
   2278 // Helpers.
   2279 //
   2280 
   2281 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
   2282   // Start with empty phi induction.
   2283   iset_->clear();
   2284 
   2285   // Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't
   2286   // smart enough to follow strongly connected components (and it's probably not worth
   2287   // it to make it so). See b/33775412.
   2288   if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) {
   2289     return false;
   2290   }
   2291 
   2292   // Lookup phi induction cycle.
   2293   ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
   2294   if (set != nullptr) {
   2295     for (HInstruction* i : *set) {
   2296       // Check that, other than instructions that are no longer in the graph (removed earlier)
   2297       // each instruction is removable and, when restrict uses are requested, other than for phi,
   2298       // all uses are contained within the cycle.
   2299       if (!i->IsInBlock()) {
   2300         continue;
   2301       } else if (!i->IsRemovable()) {
   2302         return false;
   2303       } else if (i != phi && restrict_uses) {
   2304         // Deal with regular uses.
   2305         for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
   2306           if (set->find(use.GetUser()) == set->end()) {
   2307             return false;
   2308           }
   2309         }
   2310       }
   2311       iset_->insert(i);  // copy
   2312     }
   2313     return true;
   2314   }
   2315   return false;
   2316 }
   2317 
   2318 bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) {
   2319   DCHECK(iset_->empty());
   2320   // Only unclassified phi cycles are candidates for reductions.
   2321   if (induction_range_.IsClassified(phi)) {
   2322     return false;
   2323   }
   2324   // Accept operations like x = x + .., provided that the phi and the reduction are
   2325   // used exactly once inside the loop, and by each other.
   2326   HInputsRef inputs = phi->GetInputs();
   2327   if (inputs.size() == 2) {
   2328     HInstruction* reduction = inputs[1];
   2329     if (HasReductionFormat(reduction, phi)) {
   2330       HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation();
   2331       uint32_t use_count = 0;
   2332       bool single_use_inside_loop =
   2333           // Reduction update only used by phi.
   2334           reduction->GetUses().HasExactlyOneElement() &&
   2335           !reduction->HasEnvironmentUses() &&
   2336           // Reduction update is only use of phi inside the loop.
   2337           IsOnlyUsedAfterLoop(loop_info, phi, /*collect_loop_uses*/ true, &use_count) &&
   2338           iset_->size() == 1;
   2339       iset_->clear();  // leave the way you found it
   2340       if (single_use_inside_loop) {
   2341         // Link reduction back, and start recording feed value.
   2342         reductions_->Put(reduction, phi);
   2343         reductions_->Put(phi, phi->InputAt(0));
   2344         return true;
   2345       }
   2346     }
   2347   }
   2348   return false;
   2349 }
   2350 
   2351 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) {
   2352   // Start with empty phi induction and reductions.
   2353   iset_->clear();
   2354   reductions_->clear();
   2355 
   2356   // Scan the phis to find the following (the induction structure has already
   2357   // been optimized, so we don't need to worry about trivial cases):
   2358   // (1) optional reductions in loop,
   2359   // (2) the main induction, used in loop control.
   2360   HPhi* phi = nullptr;
   2361   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
   2362     if (TrySetPhiReduction(it.Current()->AsPhi())) {
   2363       continue;
   2364     } else if (phi == nullptr) {
   2365       // Found the first candidate for main induction.
   2366       phi = it.Current()->AsPhi();
   2367     } else {
   2368       return false;
   2369     }
   2370   }
   2371 
   2372   // Then test for a typical loopheader:
   2373   //   s:  SuspendCheck
   2374   //   c:  Condition(phi, bound)
   2375   //   i:  If(c)
   2376   if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) {
   2377     HInstruction* s = block->GetFirstInstruction();
   2378     if (s != nullptr && s->IsSuspendCheck()) {
   2379       HInstruction* c = s->GetNext();
   2380       if (c != nullptr &&
   2381           c->IsCondition() &&
   2382           c->GetUses().HasExactlyOneElement() &&  // only used for termination
   2383           !c->HasEnvironmentUses()) {  // unlikely, but not impossible
   2384         HInstruction* i = c->GetNext();
   2385         if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
   2386           iset_->insert(c);
   2387           iset_->insert(s);
   2388           *main_phi = phi;
   2389           return true;
   2390         }
   2391       }
   2392     }
   2393   }
   2394   return false;
   2395 }
   2396 
   2397 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
   2398   if (!block->GetPhis().IsEmpty()) {
   2399     return false;
   2400   }
   2401   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
   2402     HInstruction* instruction = it.Current();
   2403     if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
   2404       return false;
   2405     }
   2406   }
   2407   return true;
   2408 }
   2409 
   2410 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
   2411                                           HInstruction* instruction) {
   2412   // Deal with regular uses.
   2413   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
   2414     if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
   2415       return true;
   2416     }
   2417   }
   2418   return false;
   2419 }
   2420 
   2421 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
   2422                                             HInstruction* instruction,
   2423                                             bool collect_loop_uses,
   2424                                             /*out*/ uint32_t* use_count) {
   2425   // Deal with regular uses.
   2426   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
   2427     HInstruction* user = use.GetUser();
   2428     if (iset_->find(user) == iset_->end()) {  // not excluded?
   2429       HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
   2430       if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
   2431         // If collect_loop_uses is set, simply keep adding those uses to the set.
   2432         // Otherwise, reject uses inside the loop that were not already in the set.
   2433         if (collect_loop_uses) {
   2434           iset_->insert(user);
   2435           continue;
   2436         }
   2437         return false;
   2438       }
   2439       ++*use_count;
   2440     }
   2441   }
   2442   return true;
   2443 }
   2444 
   2445 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
   2446                                                 HInstruction* instruction,
   2447                                                 HBasicBlock* block) {
   2448   // Try to replace outside uses with the last value.
   2449   if (induction_range_.CanGenerateLastValue(instruction)) {
   2450     HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
   2451     // Deal with regular uses.
   2452     const HUseList<HInstruction*>& uses = instruction->GetUses();
   2453     for (auto it = uses.begin(), end = uses.end(); it != end;) {
   2454       HInstruction* user = it->GetUser();
   2455       size_t index = it->GetIndex();
   2456       ++it;  // increment before replacing
   2457       if (iset_->find(user) == iset_->end()) {  // not excluded?
   2458         if (kIsDebugBuild) {
   2459           // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
   2460           HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
   2461           CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
   2462         }
   2463         user->ReplaceInput(replacement, index);
   2464         induction_range_.Replace(user, instruction, replacement);  // update induction
   2465       }
   2466     }
   2467     // Deal with environment uses.
   2468     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
   2469     for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
   2470       HEnvironment* user = it->GetUser();
   2471       size_t index = it->GetIndex();
   2472       ++it;  // increment before replacing
   2473       if (iset_->find(user->GetHolder()) == iset_->end()) {  // not excluded?
   2474         // Only update environment uses after the loop.
   2475         HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
   2476         if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
   2477           user->RemoveAsUserOfInput(index);
   2478           user->SetRawEnvAt(index, replacement);
   2479           replacement->AddEnvUseAt(user, index);
   2480         }
   2481       }
   2482     }
   2483     return true;
   2484   }
   2485   return false;
   2486 }
   2487 
   2488 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
   2489                                            HInstruction* instruction,
   2490                                            HBasicBlock* block,
   2491                                            bool collect_loop_uses) {
   2492   // Assigning the last value is always successful if there are no uses.
   2493   // Otherwise, it succeeds in a no early-exit loop by generating the
   2494   // proper last value assignment.
   2495   uint32_t use_count = 0;
   2496   return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
   2497       (use_count == 0 ||
   2498        (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
   2499 }
   2500 
   2501 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
   2502   for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
   2503     HInstruction* instruction = i.Current();
   2504     if (instruction->IsDeadAndRemovable()) {
   2505       simplified_ = true;
   2506       instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
   2507     }
   2508   }
   2509 }
   2510 
   2511 bool HLoopOptimization::CanRemoveCycle() {
   2512   for (HInstruction* i : *iset_) {
   2513     // We can never remove instructions that have environment
   2514     // uses when we compile 'debuggable'.
   2515     if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
   2516       return false;
   2517     }
   2518     // A deoptimization should never have an environment input removed.
   2519     for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
   2520       if (use.GetUser()->GetHolder()->IsDeoptimize()) {
   2521         return false;
   2522       }
   2523     }
   2524   }
   2525   return true;
   2526 }
   2527 
   2528 }  // namespace art
   2529