Home | History | Annotate | Download | only in nand
      1 /*
      2  *  Overview:
      3  *   This is the generic MTD driver for NAND flash devices. It should be
      4  *   capable of working with almost all NAND chips currently available.
      5  *
      6  *	Additional technical information is available on
      7  *	http://www.linux-mtd.infradead.org/doc/nand.html
      8  *
      9  *  Copyright (C) 2000 Steven J. Hill (sjhill (at) realitydiluted.com)
     10  *		  2002-2006 Thomas Gleixner (tglx (at) linutronix.de)
     11  *
     12  *  Credits:
     13  *	David Woodhouse for adding multichip support
     14  *
     15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
     16  *	rework for 2K page size chips
     17  *
     18  *  TODO:
     19  *	Enable cached programming for 2k page size chips
     20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
     21  *	if we have HW ECC support.
     22  *	BBT table is not serialized, has to be fixed
     23  *
     24  * This program is free software; you can redistribute it and/or modify
     25  * it under the terms of the GNU General Public License version 2 as
     26  * published by the Free Software Foundation.
     27  *
     28  */
     29 
     30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     31 #include <common.h>
     32 #if CONFIG_IS_ENABLED(OF_CONTROL)
     33 #include <fdtdec.h>
     34 #endif
     35 #include <malloc.h>
     36 #include <watchdog.h>
     37 #include <linux/err.h>
     38 #include <linux/compat.h>
     39 #include <linux/mtd/mtd.h>
     40 #include <linux/mtd/rawnand.h>
     41 #include <linux/mtd/nand_ecc.h>
     42 #include <linux/mtd/nand_bch.h>
     43 #ifdef CONFIG_MTD_PARTITIONS
     44 #include <linux/mtd/partitions.h>
     45 #endif
     46 #include <asm/io.h>
     47 #include <linux/errno.h>
     48 
     49 /* Define default oob placement schemes for large and small page devices */
     50 static struct nand_ecclayout nand_oob_8 = {
     51 	.eccbytes = 3,
     52 	.eccpos = {0, 1, 2},
     53 	.oobfree = {
     54 		{.offset = 3,
     55 		 .length = 2},
     56 		{.offset = 6,
     57 		 .length = 2} }
     58 };
     59 
     60 static struct nand_ecclayout nand_oob_16 = {
     61 	.eccbytes = 6,
     62 	.eccpos = {0, 1, 2, 3, 6, 7},
     63 	.oobfree = {
     64 		{.offset = 8,
     65 		 . length = 8} }
     66 };
     67 
     68 static struct nand_ecclayout nand_oob_64 = {
     69 	.eccbytes = 24,
     70 	.eccpos = {
     71 		   40, 41, 42, 43, 44, 45, 46, 47,
     72 		   48, 49, 50, 51, 52, 53, 54, 55,
     73 		   56, 57, 58, 59, 60, 61, 62, 63},
     74 	.oobfree = {
     75 		{.offset = 2,
     76 		 .length = 38} }
     77 };
     78 
     79 static struct nand_ecclayout nand_oob_128 = {
     80 	.eccbytes = 48,
     81 	.eccpos = {
     82 		   80, 81, 82, 83, 84, 85, 86, 87,
     83 		   88, 89, 90, 91, 92, 93, 94, 95,
     84 		   96, 97, 98, 99, 100, 101, 102, 103,
     85 		   104, 105, 106, 107, 108, 109, 110, 111,
     86 		   112, 113, 114, 115, 116, 117, 118, 119,
     87 		   120, 121, 122, 123, 124, 125, 126, 127},
     88 	.oobfree = {
     89 		{.offset = 2,
     90 		 .length = 78} }
     91 };
     92 
     93 static int nand_get_device(struct mtd_info *mtd, int new_state);
     94 
     95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
     96 			     struct mtd_oob_ops *ops);
     97 
     98 /*
     99  * For devices which display every fart in the system on a separate LED. Is
    100  * compiled away when LED support is disabled.
    101  */
    102 DEFINE_LED_TRIGGER(nand_led_trigger);
    103 
    104 static int check_offs_len(struct mtd_info *mtd,
    105 					loff_t ofs, uint64_t len)
    106 {
    107 	struct nand_chip *chip = mtd_to_nand(mtd);
    108 	int ret = 0;
    109 
    110 	/* Start address must align on block boundary */
    111 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
    112 		pr_debug("%s: unaligned address\n", __func__);
    113 		ret = -EINVAL;
    114 	}
    115 
    116 	/* Length must align on block boundary */
    117 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
    118 		pr_debug("%s: length not block aligned\n", __func__);
    119 		ret = -EINVAL;
    120 	}
    121 
    122 	return ret;
    123 }
    124 
    125 /**
    126  * nand_release_device - [GENERIC] release chip
    127  * @mtd: MTD device structure
    128  *
    129  * Release chip lock and wake up anyone waiting on the device.
    130  */
    131 static void nand_release_device(struct mtd_info *mtd)
    132 {
    133 	struct nand_chip *chip = mtd_to_nand(mtd);
    134 
    135 	/* De-select the NAND device */
    136 	chip->select_chip(mtd, -1);
    137 }
    138 
    139 /**
    140  * nand_read_byte - [DEFAULT] read one byte from the chip
    141  * @mtd: MTD device structure
    142  *
    143  * Default read function for 8bit buswidth
    144  */
    145 uint8_t nand_read_byte(struct mtd_info *mtd)
    146 {
    147 	struct nand_chip *chip = mtd_to_nand(mtd);
    148 	return readb(chip->IO_ADDR_R);
    149 }
    150 
    151 /**
    152  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
    153  * @mtd: MTD device structure
    154  *
    155  * Default read function for 16bit buswidth with endianness conversion.
    156  *
    157  */
    158 static uint8_t nand_read_byte16(struct mtd_info *mtd)
    159 {
    160 	struct nand_chip *chip = mtd_to_nand(mtd);
    161 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
    162 }
    163 
    164 /**
    165  * nand_read_word - [DEFAULT] read one word from the chip
    166  * @mtd: MTD device structure
    167  *
    168  * Default read function for 16bit buswidth without endianness conversion.
    169  */
    170 static u16 nand_read_word(struct mtd_info *mtd)
    171 {
    172 	struct nand_chip *chip = mtd_to_nand(mtd);
    173 	return readw(chip->IO_ADDR_R);
    174 }
    175 
    176 /**
    177  * nand_select_chip - [DEFAULT] control CE line
    178  * @mtd: MTD device structure
    179  * @chipnr: chipnumber to select, -1 for deselect
    180  *
    181  * Default select function for 1 chip devices.
    182  */
    183 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
    184 {
    185 	struct nand_chip *chip = mtd_to_nand(mtd);
    186 
    187 	switch (chipnr) {
    188 	case -1:
    189 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
    190 		break;
    191 	case 0:
    192 		break;
    193 
    194 	default:
    195 		BUG();
    196 	}
    197 }
    198 
    199 /**
    200  * nand_write_byte - [DEFAULT] write single byte to chip
    201  * @mtd: MTD device structure
    202  * @byte: value to write
    203  *
    204  * Default function to write a byte to I/O[7:0]
    205  */
    206 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
    207 {
    208 	struct nand_chip *chip = mtd_to_nand(mtd);
    209 
    210 	chip->write_buf(mtd, &byte, 1);
    211 }
    212 
    213 /**
    214  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
    215  * @mtd: MTD device structure
    216  * @byte: value to write
    217  *
    218  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
    219  */
    220 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
    221 {
    222 	struct nand_chip *chip = mtd_to_nand(mtd);
    223 	uint16_t word = byte;
    224 
    225 	/*
    226 	 * It's not entirely clear what should happen to I/O[15:8] when writing
    227 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
    228 	 *
    229 	 *    When the host supports a 16-bit bus width, only data is
    230 	 *    transferred at the 16-bit width. All address and command line
    231 	 *    transfers shall use only the lower 8-bits of the data bus. During
    232 	 *    command transfers, the host may place any value on the upper
    233 	 *    8-bits of the data bus. During address transfers, the host shall
    234 	 *    set the upper 8-bits of the data bus to 00h.
    235 	 *
    236 	 * One user of the write_byte callback is nand_onfi_set_features. The
    237 	 * four parameters are specified to be written to I/O[7:0], but this is
    238 	 * neither an address nor a command transfer. Let's assume a 0 on the
    239 	 * upper I/O lines is OK.
    240 	 */
    241 	chip->write_buf(mtd, (uint8_t *)&word, 2);
    242 }
    243 
    244 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
    245 {
    246 	int i;
    247 
    248 	for (i = 0; i < len; i++)
    249 		writeb(buf[i], addr);
    250 }
    251 static void ioread8_rep(void *addr, uint8_t *buf, int len)
    252 {
    253 	int i;
    254 
    255 	for (i = 0; i < len; i++)
    256 		buf[i] = readb(addr);
    257 }
    258 
    259 static void ioread16_rep(void *addr, void *buf, int len)
    260 {
    261 	int i;
    262  	u16 *p = (u16 *) buf;
    263 
    264 	for (i = 0; i < len; i++)
    265 		p[i] = readw(addr);
    266 }
    267 
    268 static void iowrite16_rep(void *addr, void *buf, int len)
    269 {
    270 	int i;
    271         u16 *p = (u16 *) buf;
    272 
    273         for (i = 0; i < len; i++)
    274                 writew(p[i], addr);
    275 }
    276 
    277 /**
    278  * nand_write_buf - [DEFAULT] write buffer to chip
    279  * @mtd: MTD device structure
    280  * @buf: data buffer
    281  * @len: number of bytes to write
    282  *
    283  * Default write function for 8bit buswidth.
    284  */
    285 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
    286 {
    287 	struct nand_chip *chip = mtd_to_nand(mtd);
    288 
    289 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
    290 }
    291 
    292 /**
    293  * nand_read_buf - [DEFAULT] read chip data into buffer
    294  * @mtd: MTD device structure
    295  * @buf: buffer to store date
    296  * @len: number of bytes to read
    297  *
    298  * Default read function for 8bit buswidth.
    299  */
    300 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
    301 {
    302 	struct nand_chip *chip = mtd_to_nand(mtd);
    303 
    304 	ioread8_rep(chip->IO_ADDR_R, buf, len);
    305 }
    306 
    307 /**
    308  * nand_write_buf16 - [DEFAULT] write buffer to chip
    309  * @mtd: MTD device structure
    310  * @buf: data buffer
    311  * @len: number of bytes to write
    312  *
    313  * Default write function for 16bit buswidth.
    314  */
    315 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
    316 {
    317 	struct nand_chip *chip = mtd_to_nand(mtd);
    318 	u16 *p = (u16 *) buf;
    319 
    320 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
    321 }
    322 
    323 /**
    324  * nand_read_buf16 - [DEFAULT] read chip data into buffer
    325  * @mtd: MTD device structure
    326  * @buf: buffer to store date
    327  * @len: number of bytes to read
    328  *
    329  * Default read function for 16bit buswidth.
    330  */
    331 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
    332 {
    333 	struct nand_chip *chip = mtd_to_nand(mtd);
    334 	u16 *p = (u16 *) buf;
    335 
    336 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
    337 }
    338 
    339 /**
    340  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
    341  * @mtd: MTD device structure
    342  * @ofs: offset from device start
    343  *
    344  * Check, if the block is bad.
    345  */
    346 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
    347 {
    348 	int page, res = 0, i = 0;
    349 	struct nand_chip *chip = mtd_to_nand(mtd);
    350 	u16 bad;
    351 
    352 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
    353 		ofs += mtd->erasesize - mtd->writesize;
    354 
    355 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
    356 
    357 	do {
    358 		if (chip->options & NAND_BUSWIDTH_16) {
    359 			chip->cmdfunc(mtd, NAND_CMD_READOOB,
    360 					chip->badblockpos & 0xFE, page);
    361 			bad = cpu_to_le16(chip->read_word(mtd));
    362 			if (chip->badblockpos & 0x1)
    363 				bad >>= 8;
    364 			else
    365 				bad &= 0xFF;
    366 		} else {
    367 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
    368 					page);
    369 			bad = chip->read_byte(mtd);
    370 		}
    371 
    372 		if (likely(chip->badblockbits == 8))
    373 			res = bad != 0xFF;
    374 		else
    375 			res = hweight8(bad) < chip->badblockbits;
    376 		ofs += mtd->writesize;
    377 		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
    378 		i++;
    379 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
    380 
    381 	return res;
    382 }
    383 
    384 /**
    385  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
    386  * @mtd: MTD device structure
    387  * @ofs: offset from device start
    388  *
    389  * This is the default implementation, which can be overridden by a hardware
    390  * specific driver. It provides the details for writing a bad block marker to a
    391  * block.
    392  */
    393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
    394 {
    395 	struct nand_chip *chip = mtd_to_nand(mtd);
    396 	struct mtd_oob_ops ops;
    397 	uint8_t buf[2] = { 0, 0 };
    398 	int ret = 0, res, i = 0;
    399 
    400 	memset(&ops, 0, sizeof(ops));
    401 	ops.oobbuf = buf;
    402 	ops.ooboffs = chip->badblockpos;
    403 	if (chip->options & NAND_BUSWIDTH_16) {
    404 		ops.ooboffs &= ~0x01;
    405 		ops.len = ops.ooblen = 2;
    406 	} else {
    407 		ops.len = ops.ooblen = 1;
    408 	}
    409 	ops.mode = MTD_OPS_PLACE_OOB;
    410 
    411 	/* Write to first/last page(s) if necessary */
    412 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
    413 		ofs += mtd->erasesize - mtd->writesize;
    414 	do {
    415 		res = nand_do_write_oob(mtd, ofs, &ops);
    416 		if (!ret)
    417 			ret = res;
    418 
    419 		i++;
    420 		ofs += mtd->writesize;
    421 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
    422 
    423 	return ret;
    424 }
    425 
    426 /**
    427  * nand_block_markbad_lowlevel - mark a block bad
    428  * @mtd: MTD device structure
    429  * @ofs: offset from device start
    430  *
    431  * This function performs the generic NAND bad block marking steps (i.e., bad
    432  * block table(s) and/or marker(s)). We only allow the hardware driver to
    433  * specify how to write bad block markers to OOB (chip->block_markbad).
    434  *
    435  * We try operations in the following order:
    436  *  (1) erase the affected block, to allow OOB marker to be written cleanly
    437  *  (2) write bad block marker to OOB area of affected block (unless flag
    438  *      NAND_BBT_NO_OOB_BBM is present)
    439  *  (3) update the BBT
    440  * Note that we retain the first error encountered in (2) or (3), finish the
    441  * procedures, and dump the error in the end.
    442 */
    443 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
    444 {
    445 	struct nand_chip *chip = mtd_to_nand(mtd);
    446 	int res, ret = 0;
    447 
    448 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
    449 		struct erase_info einfo;
    450 
    451 		/* Attempt erase before marking OOB */
    452 		memset(&einfo, 0, sizeof(einfo));
    453 		einfo.mtd = mtd;
    454 		einfo.addr = ofs;
    455 		einfo.len = 1ULL << chip->phys_erase_shift;
    456 		nand_erase_nand(mtd, &einfo, 0);
    457 
    458 		/* Write bad block marker to OOB */
    459 		nand_get_device(mtd, FL_WRITING);
    460 		ret = chip->block_markbad(mtd, ofs);
    461 		nand_release_device(mtd);
    462 	}
    463 
    464 	/* Mark block bad in BBT */
    465 	if (chip->bbt) {
    466 		res = nand_markbad_bbt(mtd, ofs);
    467 		if (!ret)
    468 			ret = res;
    469 	}
    470 
    471 	if (!ret)
    472 		mtd->ecc_stats.badblocks++;
    473 
    474 	return ret;
    475 }
    476 
    477 /**
    478  * nand_check_wp - [GENERIC] check if the chip is write protected
    479  * @mtd: MTD device structure
    480  *
    481  * Check, if the device is write protected. The function expects, that the
    482  * device is already selected.
    483  */
    484 static int nand_check_wp(struct mtd_info *mtd)
    485 {
    486 	struct nand_chip *chip = mtd_to_nand(mtd);
    487 
    488 	/* Broken xD cards report WP despite being writable */
    489 	if (chip->options & NAND_BROKEN_XD)
    490 		return 0;
    491 
    492 	/* Check the WP bit */
    493 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
    494 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
    495 }
    496 
    497 /**
    498  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
    499  * @mtd: MTD device structure
    500  * @ofs: offset from device start
    501  *
    502  * Check if the block is marked as reserved.
    503  */
    504 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
    505 {
    506 	struct nand_chip *chip = mtd_to_nand(mtd);
    507 
    508 	if (!chip->bbt)
    509 		return 0;
    510 	/* Return info from the table */
    511 	return nand_isreserved_bbt(mtd, ofs);
    512 }
    513 
    514 /**
    515  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
    516  * @mtd: MTD device structure
    517  * @ofs: offset from device start
    518  * @allowbbt: 1, if its allowed to access the bbt area
    519  *
    520  * Check, if the block is bad. Either by reading the bad block table or
    521  * calling of the scan function.
    522  */
    523 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
    524 {
    525 	struct nand_chip *chip = mtd_to_nand(mtd);
    526 
    527 	if (!(chip->options & NAND_SKIP_BBTSCAN) &&
    528 	    !(chip->options & NAND_BBT_SCANNED)) {
    529 		chip->options |= NAND_BBT_SCANNED;
    530 		chip->scan_bbt(mtd);
    531 	}
    532 
    533 	if (!chip->bbt)
    534 		return chip->block_bad(mtd, ofs);
    535 
    536 	/* Return info from the table */
    537 	return nand_isbad_bbt(mtd, ofs, allowbbt);
    538 }
    539 
    540 /**
    541  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
    542  * @mtd: MTD device structure
    543  *
    544  * Wait for the ready pin after a command, and warn if a timeout occurs.
    545  */
    546 void nand_wait_ready(struct mtd_info *mtd)
    547 {
    548 	struct nand_chip *chip = mtd_to_nand(mtd);
    549 	u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
    550 	u32 time_start;
    551 
    552 	time_start = get_timer(0);
    553 	/* Wait until command is processed or timeout occurs */
    554 	while (get_timer(time_start) < timeo) {
    555 		if (chip->dev_ready)
    556 			if (chip->dev_ready(mtd))
    557 				break;
    558 	}
    559 
    560 	if (!chip->dev_ready(mtd))
    561 		pr_warn("timeout while waiting for chip to become ready\n");
    562 }
    563 EXPORT_SYMBOL_GPL(nand_wait_ready);
    564 
    565 /**
    566  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
    567  * @mtd: MTD device structure
    568  * @timeo: Timeout in ms
    569  *
    570  * Wait for status ready (i.e. command done) or timeout.
    571  */
    572 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
    573 {
    574 	register struct nand_chip *chip = mtd_to_nand(mtd);
    575 	u32 time_start;
    576 
    577 	timeo = (CONFIG_SYS_HZ * timeo) / 1000;
    578 	time_start = get_timer(0);
    579 	while (get_timer(time_start) < timeo) {
    580 		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
    581 			break;
    582 		WATCHDOG_RESET();
    583 	}
    584 };
    585 
    586 /**
    587  * nand_command - [DEFAULT] Send command to NAND device
    588  * @mtd: MTD device structure
    589  * @command: the command to be sent
    590  * @column: the column address for this command, -1 if none
    591  * @page_addr: the page address for this command, -1 if none
    592  *
    593  * Send command to NAND device. This function is used for small page devices
    594  * (512 Bytes per page).
    595  */
    596 static void nand_command(struct mtd_info *mtd, unsigned int command,
    597 			 int column, int page_addr)
    598 {
    599 	register struct nand_chip *chip = mtd_to_nand(mtd);
    600 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
    601 
    602 	/* Write out the command to the device */
    603 	if (command == NAND_CMD_SEQIN) {
    604 		int readcmd;
    605 
    606 		if (column >= mtd->writesize) {
    607 			/* OOB area */
    608 			column -= mtd->writesize;
    609 			readcmd = NAND_CMD_READOOB;
    610 		} else if (column < 256) {
    611 			/* First 256 bytes --> READ0 */
    612 			readcmd = NAND_CMD_READ0;
    613 		} else {
    614 			column -= 256;
    615 			readcmd = NAND_CMD_READ1;
    616 		}
    617 		chip->cmd_ctrl(mtd, readcmd, ctrl);
    618 		ctrl &= ~NAND_CTRL_CHANGE;
    619 	}
    620 	chip->cmd_ctrl(mtd, command, ctrl);
    621 
    622 	/* Address cycle, when necessary */
    623 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
    624 	/* Serially input address */
    625 	if (column != -1) {
    626 		/* Adjust columns for 16 bit buswidth */
    627 		if (chip->options & NAND_BUSWIDTH_16 &&
    628 				!nand_opcode_8bits(command))
    629 			column >>= 1;
    630 		chip->cmd_ctrl(mtd, column, ctrl);
    631 		ctrl &= ~NAND_CTRL_CHANGE;
    632 	}
    633 	if (page_addr != -1) {
    634 		chip->cmd_ctrl(mtd, page_addr, ctrl);
    635 		ctrl &= ~NAND_CTRL_CHANGE;
    636 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
    637 		if (chip->options & NAND_ROW_ADDR_3)
    638 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
    639 	}
    640 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
    641 
    642 	/*
    643 	 * Program and erase have their own busy handlers status and sequential
    644 	 * in needs no delay
    645 	 */
    646 	switch (command) {
    647 
    648 	case NAND_CMD_PAGEPROG:
    649 	case NAND_CMD_ERASE1:
    650 	case NAND_CMD_ERASE2:
    651 	case NAND_CMD_SEQIN:
    652 	case NAND_CMD_STATUS:
    653 	case NAND_CMD_READID:
    654 	case NAND_CMD_SET_FEATURES:
    655 		return;
    656 
    657 	case NAND_CMD_RESET:
    658 		if (chip->dev_ready)
    659 			break;
    660 		udelay(chip->chip_delay);
    661 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
    662 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
    663 		chip->cmd_ctrl(mtd,
    664 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
    665 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
    666 		nand_wait_status_ready(mtd, 250);
    667 		return;
    668 
    669 		/* This applies to read commands */
    670 	default:
    671 		/*
    672 		 * If we don't have access to the busy pin, we apply the given
    673 		 * command delay
    674 		 */
    675 		if (!chip->dev_ready) {
    676 			udelay(chip->chip_delay);
    677 			return;
    678 		}
    679 	}
    680 	/*
    681 	 * Apply this short delay always to ensure that we do wait tWB in
    682 	 * any case on any machine.
    683 	 */
    684 	ndelay(100);
    685 
    686 	nand_wait_ready(mtd);
    687 }
    688 
    689 /**
    690  * nand_command_lp - [DEFAULT] Send command to NAND large page device
    691  * @mtd: MTD device structure
    692  * @command: the command to be sent
    693  * @column: the column address for this command, -1 if none
    694  * @page_addr: the page address for this command, -1 if none
    695  *
    696  * Send command to NAND device. This is the version for the new large page
    697  * devices. We don't have the separate regions as we have in the small page
    698  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
    699  */
    700 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
    701 			    int column, int page_addr)
    702 {
    703 	register struct nand_chip *chip = mtd_to_nand(mtd);
    704 
    705 	/* Emulate NAND_CMD_READOOB */
    706 	if (command == NAND_CMD_READOOB) {
    707 		column += mtd->writesize;
    708 		command = NAND_CMD_READ0;
    709 	}
    710 
    711 	/* Command latch cycle */
    712 	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
    713 
    714 	if (column != -1 || page_addr != -1) {
    715 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
    716 
    717 		/* Serially input address */
    718 		if (column != -1) {
    719 			/* Adjust columns for 16 bit buswidth */
    720 			if (chip->options & NAND_BUSWIDTH_16 &&
    721 					!nand_opcode_8bits(command))
    722 				column >>= 1;
    723 			chip->cmd_ctrl(mtd, column, ctrl);
    724 			ctrl &= ~NAND_CTRL_CHANGE;
    725 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
    726 		}
    727 		if (page_addr != -1) {
    728 			chip->cmd_ctrl(mtd, page_addr, ctrl);
    729 			chip->cmd_ctrl(mtd, page_addr >> 8,
    730 				       NAND_NCE | NAND_ALE);
    731 			if (chip->options & NAND_ROW_ADDR_3)
    732 				chip->cmd_ctrl(mtd, page_addr >> 16,
    733 					       NAND_NCE | NAND_ALE);
    734 		}
    735 	}
    736 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
    737 
    738 	/*
    739 	 * Program and erase have their own busy handlers status, sequential
    740 	 * in and status need no delay.
    741 	 */
    742 	switch (command) {
    743 
    744 	case NAND_CMD_CACHEDPROG:
    745 	case NAND_CMD_PAGEPROG:
    746 	case NAND_CMD_ERASE1:
    747 	case NAND_CMD_ERASE2:
    748 	case NAND_CMD_SEQIN:
    749 	case NAND_CMD_RNDIN:
    750 	case NAND_CMD_STATUS:
    751 	case NAND_CMD_READID:
    752 	case NAND_CMD_SET_FEATURES:
    753 		return;
    754 
    755 	case NAND_CMD_RESET:
    756 		if (chip->dev_ready)
    757 			break;
    758 		udelay(chip->chip_delay);
    759 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
    760 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
    761 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
    762 			       NAND_NCE | NAND_CTRL_CHANGE);
    763 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
    764 		nand_wait_status_ready(mtd, 250);
    765 		return;
    766 
    767 	case NAND_CMD_RNDOUT:
    768 		/* No ready / busy check necessary */
    769 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
    770 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
    771 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
    772 			       NAND_NCE | NAND_CTRL_CHANGE);
    773 		return;
    774 
    775 	case NAND_CMD_READ0:
    776 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
    777 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
    778 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
    779 			       NAND_NCE | NAND_CTRL_CHANGE);
    780 
    781 		/* This applies to read commands */
    782 	default:
    783 		/*
    784 		 * If we don't have access to the busy pin, we apply the given
    785 		 * command delay.
    786 		 */
    787 		if (!chip->dev_ready) {
    788 			udelay(chip->chip_delay);
    789 			return;
    790 		}
    791 	}
    792 
    793 	/*
    794 	 * Apply this short delay always to ensure that we do wait tWB in
    795 	 * any case on any machine.
    796 	 */
    797 	ndelay(100);
    798 
    799 	nand_wait_ready(mtd);
    800 }
    801 
    802 /**
    803  * panic_nand_get_device - [GENERIC] Get chip for selected access
    804  * @chip: the nand chip descriptor
    805  * @mtd: MTD device structure
    806  * @new_state: the state which is requested
    807  *
    808  * Used when in panic, no locks are taken.
    809  */
    810 static void panic_nand_get_device(struct nand_chip *chip,
    811 		      struct mtd_info *mtd, int new_state)
    812 {
    813 	/* Hardware controller shared among independent devices */
    814 	chip->controller->active = chip;
    815 	chip->state = new_state;
    816 }
    817 
    818 /**
    819  * nand_get_device - [GENERIC] Get chip for selected access
    820  * @mtd: MTD device structure
    821  * @new_state: the state which is requested
    822  *
    823  * Get the device and lock it for exclusive access
    824  */
    825 static int
    826 nand_get_device(struct mtd_info *mtd, int new_state)
    827 {
    828 	struct nand_chip *chip = mtd_to_nand(mtd);
    829 	chip->state = new_state;
    830 	return 0;
    831 }
    832 
    833 /**
    834  * panic_nand_wait - [GENERIC] wait until the command is done
    835  * @mtd: MTD device structure
    836  * @chip: NAND chip structure
    837  * @timeo: timeout
    838  *
    839  * Wait for command done. This is a helper function for nand_wait used when
    840  * we are in interrupt context. May happen when in panic and trying to write
    841  * an oops through mtdoops.
    842  */
    843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
    844 			    unsigned long timeo)
    845 {
    846 	int i;
    847 	for (i = 0; i < timeo; i++) {
    848 		if (chip->dev_ready) {
    849 			if (chip->dev_ready(mtd))
    850 				break;
    851 		} else {
    852 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
    853 				break;
    854 		}
    855 		mdelay(1);
    856 	}
    857 }
    858 
    859 /**
    860  * nand_wait - [DEFAULT] wait until the command is done
    861  * @mtd: MTD device structure
    862  * @chip: NAND chip structure
    863  *
    864  * Wait for command done. This applies to erase and program only.
    865  */
    866 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
    867 {
    868 	int status;
    869 	unsigned long timeo = 400;
    870 
    871 	led_trigger_event(nand_led_trigger, LED_FULL);
    872 
    873 	/*
    874 	 * Apply this short delay always to ensure that we do wait tWB in any
    875 	 * case on any machine.
    876 	 */
    877 	ndelay(100);
    878 
    879 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
    880 
    881  	u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
    882  	u32 time_start;
    883 
    884  	time_start = get_timer(0);
    885  	while (get_timer(time_start) < timer) {
    886 		if (chip->dev_ready) {
    887 			if (chip->dev_ready(mtd))
    888 				break;
    889 		} else {
    890 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
    891 				break;
    892 		}
    893 	}
    894 	led_trigger_event(nand_led_trigger, LED_OFF);
    895 
    896 	status = (int)chip->read_byte(mtd);
    897 	/* This can happen if in case of timeout or buggy dev_ready */
    898 	WARN_ON(!(status & NAND_STATUS_READY));
    899 	return status;
    900 }
    901 
    902 /**
    903  * nand_reset_data_interface - Reset data interface and timings
    904  * @chip: The NAND chip
    905  * @chipnr: Internal die id
    906  *
    907  * Reset the Data interface and timings to ONFI mode 0.
    908  *
    909  * Returns 0 for success or negative error code otherwise.
    910  */
    911 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
    912 {
    913 	struct mtd_info *mtd = nand_to_mtd(chip);
    914 	const struct nand_data_interface *conf;
    915 	int ret;
    916 
    917 	if (!chip->setup_data_interface)
    918 		return 0;
    919 
    920 	/*
    921 	 * The ONFI specification says:
    922 	 * "
    923 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
    924 	 * interface, the host shall use the Reset (FFh) command
    925 	 * using SDR timing mode 0. A device in any timing mode is
    926 	 * required to recognize Reset (FFh) command issued in SDR
    927 	 * timing mode 0.
    928 	 * "
    929 	 *
    930 	 * Configure the data interface in SDR mode and set the
    931 	 * timings to timing mode 0.
    932 	 */
    933 
    934 	conf = nand_get_default_data_interface();
    935 	ret = chip->setup_data_interface(mtd, chipnr, conf);
    936 	if (ret)
    937 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
    938 
    939 	return ret;
    940 }
    941 
    942 /**
    943  * nand_setup_data_interface - Setup the best data interface and timings
    944  * @chip: The NAND chip
    945  * @chipnr: Internal die id
    946  *
    947  * Find and configure the best data interface and NAND timings supported by
    948  * the chip and the driver.
    949  * First tries to retrieve supported timing modes from ONFI information,
    950  * and if the NAND chip does not support ONFI, relies on the
    951  * ->onfi_timing_mode_default specified in the nand_ids table.
    952  *
    953  * Returns 0 for success or negative error code otherwise.
    954  */
    955 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
    956 {
    957 	struct mtd_info *mtd = nand_to_mtd(chip);
    958 	int ret;
    959 
    960 	if (!chip->setup_data_interface || !chip->data_interface)
    961 		return 0;
    962 
    963 	/*
    964 	 * Ensure the timing mode has been changed on the chip side
    965 	 * before changing timings on the controller side.
    966 	 */
    967 	if (chip->onfi_version) {
    968 		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
    969 			chip->onfi_timing_mode_default,
    970 		};
    971 
    972 		ret = chip->onfi_set_features(mtd, chip,
    973 				ONFI_FEATURE_ADDR_TIMING_MODE,
    974 				tmode_param);
    975 		if (ret)
    976 			goto err;
    977 	}
    978 
    979 	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
    980 err:
    981 	return ret;
    982 }
    983 
    984 /**
    985  * nand_init_data_interface - find the best data interface and timings
    986  * @chip: The NAND chip
    987  *
    988  * Find the best data interface and NAND timings supported by the chip
    989  * and the driver.
    990  * First tries to retrieve supported timing modes from ONFI information,
    991  * and if the NAND chip does not support ONFI, relies on the
    992  * ->onfi_timing_mode_default specified in the nand_ids table. After this
    993  * function nand_chip->data_interface is initialized with the best timing mode
    994  * available.
    995  *
    996  * Returns 0 for success or negative error code otherwise.
    997  */
    998 static int nand_init_data_interface(struct nand_chip *chip)
    999 {
   1000 	struct mtd_info *mtd = nand_to_mtd(chip);
   1001 	int modes, mode, ret;
   1002 
   1003 	if (!chip->setup_data_interface)
   1004 		return 0;
   1005 
   1006 	/*
   1007 	 * First try to identify the best timings from ONFI parameters and
   1008 	 * if the NAND does not support ONFI, fallback to the default ONFI
   1009 	 * timing mode.
   1010 	 */
   1011 	modes = onfi_get_async_timing_mode(chip);
   1012 	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
   1013 		if (!chip->onfi_timing_mode_default)
   1014 			return 0;
   1015 
   1016 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
   1017 	}
   1018 
   1019 	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
   1020 				       GFP_KERNEL);
   1021 	if (!chip->data_interface)
   1022 		return -ENOMEM;
   1023 
   1024 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
   1025 		ret = onfi_init_data_interface(chip, chip->data_interface,
   1026 					       NAND_SDR_IFACE, mode);
   1027 		if (ret)
   1028 			continue;
   1029 
   1030 		/* Pass -1 to only */
   1031 		ret = chip->setup_data_interface(mtd,
   1032 						 NAND_DATA_IFACE_CHECK_ONLY,
   1033 						 chip->data_interface);
   1034 		if (!ret) {
   1035 			chip->onfi_timing_mode_default = mode;
   1036 			break;
   1037 		}
   1038 	}
   1039 
   1040 	return 0;
   1041 }
   1042 
   1043 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
   1044 {
   1045 	kfree(chip->data_interface);
   1046 }
   1047 
   1048 /**
   1049  * nand_reset - Reset and initialize a NAND device
   1050  * @chip: The NAND chip
   1051  * @chipnr: Internal die id
   1052  *
   1053  * Returns 0 for success or negative error code otherwise
   1054  */
   1055 int nand_reset(struct nand_chip *chip, int chipnr)
   1056 {
   1057 	struct mtd_info *mtd = nand_to_mtd(chip);
   1058 	int ret;
   1059 
   1060 	ret = nand_reset_data_interface(chip, chipnr);
   1061 	if (ret)
   1062 		return ret;
   1063 
   1064 	/*
   1065 	 * The CS line has to be released before we can apply the new NAND
   1066 	 * interface settings, hence this weird ->select_chip() dance.
   1067 	 */
   1068 	chip->select_chip(mtd, chipnr);
   1069 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
   1070 	chip->select_chip(mtd, -1);
   1071 
   1072 	chip->select_chip(mtd, chipnr);
   1073 	ret = nand_setup_data_interface(chip, chipnr);
   1074 	chip->select_chip(mtd, -1);
   1075 	if (ret)
   1076 		return ret;
   1077 
   1078 	return 0;
   1079 }
   1080 
   1081 /**
   1082  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
   1083  * @buf: buffer to test
   1084  * @len: buffer length
   1085  * @bitflips_threshold: maximum number of bitflips
   1086  *
   1087  * Check if a buffer contains only 0xff, which means the underlying region
   1088  * has been erased and is ready to be programmed.
   1089  * The bitflips_threshold specify the maximum number of bitflips before
   1090  * considering the region is not erased.
   1091  * Note: The logic of this function has been extracted from the memweight
   1092  * implementation, except that nand_check_erased_buf function exit before
   1093  * testing the whole buffer if the number of bitflips exceed the
   1094  * bitflips_threshold value.
   1095  *
   1096  * Returns a positive number of bitflips less than or equal to
   1097  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
   1098  * threshold.
   1099  */
   1100 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
   1101 {
   1102 	const unsigned char *bitmap = buf;
   1103 	int bitflips = 0;
   1104 	int weight;
   1105 
   1106 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
   1107 	     len--, bitmap++) {
   1108 		weight = hweight8(*bitmap);
   1109 		bitflips += BITS_PER_BYTE - weight;
   1110 		if (unlikely(bitflips > bitflips_threshold))
   1111 			return -EBADMSG;
   1112 	}
   1113 
   1114 	for (; len >= 4; len -= 4, bitmap += 4) {
   1115 		weight = hweight32(*((u32 *)bitmap));
   1116 		bitflips += 32 - weight;
   1117 		if (unlikely(bitflips > bitflips_threshold))
   1118 			return -EBADMSG;
   1119 	}
   1120 
   1121 	for (; len > 0; len--, bitmap++) {
   1122 		weight = hweight8(*bitmap);
   1123 		bitflips += BITS_PER_BYTE - weight;
   1124 		if (unlikely(bitflips > bitflips_threshold))
   1125 			return -EBADMSG;
   1126 	}
   1127 
   1128 	return bitflips;
   1129 }
   1130 
   1131 /**
   1132  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
   1133  *				 0xff data
   1134  * @data: data buffer to test
   1135  * @datalen: data length
   1136  * @ecc: ECC buffer
   1137  * @ecclen: ECC length
   1138  * @extraoob: extra OOB buffer
   1139  * @extraooblen: extra OOB length
   1140  * @bitflips_threshold: maximum number of bitflips
   1141  *
   1142  * Check if a data buffer and its associated ECC and OOB data contains only
   1143  * 0xff pattern, which means the underlying region has been erased and is
   1144  * ready to be programmed.
   1145  * The bitflips_threshold specify the maximum number of bitflips before
   1146  * considering the region as not erased.
   1147  *
   1148  * Note:
   1149  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
   1150  *    different from the NAND page size. When fixing bitflips, ECC engines will
   1151  *    report the number of errors per chunk, and the NAND core infrastructure
   1152  *    expect you to return the maximum number of bitflips for the whole page.
   1153  *    This is why you should always use this function on a single chunk and
   1154  *    not on the whole page. After checking each chunk you should update your
   1155  *    max_bitflips value accordingly.
   1156  * 2/ When checking for bitflips in erased pages you should not only check
   1157  *    the payload data but also their associated ECC data, because a user might
   1158  *    have programmed almost all bits to 1 but a few. In this case, we
   1159  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
   1160  *    this case.
   1161  * 3/ The extraoob argument is optional, and should be used if some of your OOB
   1162  *    data are protected by the ECC engine.
   1163  *    It could also be used if you support subpages and want to attach some
   1164  *    extra OOB data to an ECC chunk.
   1165  *
   1166  * Returns a positive number of bitflips less than or equal to
   1167  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
   1168  * threshold. In case of success, the passed buffers are filled with 0xff.
   1169  */
   1170 int nand_check_erased_ecc_chunk(void *data, int datalen,
   1171 				void *ecc, int ecclen,
   1172 				void *extraoob, int extraooblen,
   1173 				int bitflips_threshold)
   1174 {
   1175 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
   1176 
   1177 	data_bitflips = nand_check_erased_buf(data, datalen,
   1178 					      bitflips_threshold);
   1179 	if (data_bitflips < 0)
   1180 		return data_bitflips;
   1181 
   1182 	bitflips_threshold -= data_bitflips;
   1183 
   1184 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
   1185 	if (ecc_bitflips < 0)
   1186 		return ecc_bitflips;
   1187 
   1188 	bitflips_threshold -= ecc_bitflips;
   1189 
   1190 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
   1191 						  bitflips_threshold);
   1192 	if (extraoob_bitflips < 0)
   1193 		return extraoob_bitflips;
   1194 
   1195 	if (data_bitflips)
   1196 		memset(data, 0xff, datalen);
   1197 
   1198 	if (ecc_bitflips)
   1199 		memset(ecc, 0xff, ecclen);
   1200 
   1201 	if (extraoob_bitflips)
   1202 		memset(extraoob, 0xff, extraooblen);
   1203 
   1204 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
   1205 }
   1206 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
   1207 
   1208 /**
   1209  * nand_read_page_raw - [INTERN] read raw page data without ecc
   1210  * @mtd: mtd info structure
   1211  * @chip: nand chip info structure
   1212  * @buf: buffer to store read data
   1213  * @oob_required: caller requires OOB data read to chip->oob_poi
   1214  * @page: page number to read
   1215  *
   1216  * Not for syndrome calculating ECC controllers, which use a special oob layout.
   1217  */
   1218 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
   1219 			      uint8_t *buf, int oob_required, int page)
   1220 {
   1221 	chip->read_buf(mtd, buf, mtd->writesize);
   1222 	if (oob_required)
   1223 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
   1224 	return 0;
   1225 }
   1226 
   1227 /**
   1228  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
   1229  * @mtd: mtd info structure
   1230  * @chip: nand chip info structure
   1231  * @buf: buffer to store read data
   1232  * @oob_required: caller requires OOB data read to chip->oob_poi
   1233  * @page: page number to read
   1234  *
   1235  * We need a special oob layout and handling even when OOB isn't used.
   1236  */
   1237 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
   1238 				       struct nand_chip *chip, uint8_t *buf,
   1239 				       int oob_required, int page)
   1240 {
   1241 	int eccsize = chip->ecc.size;
   1242 	int eccbytes = chip->ecc.bytes;
   1243 	uint8_t *oob = chip->oob_poi;
   1244 	int steps, size;
   1245 
   1246 	for (steps = chip->ecc.steps; steps > 0; steps--) {
   1247 		chip->read_buf(mtd, buf, eccsize);
   1248 		buf += eccsize;
   1249 
   1250 		if (chip->ecc.prepad) {
   1251 			chip->read_buf(mtd, oob, chip->ecc.prepad);
   1252 			oob += chip->ecc.prepad;
   1253 		}
   1254 
   1255 		chip->read_buf(mtd, oob, eccbytes);
   1256 		oob += eccbytes;
   1257 
   1258 		if (chip->ecc.postpad) {
   1259 			chip->read_buf(mtd, oob, chip->ecc.postpad);
   1260 			oob += chip->ecc.postpad;
   1261 		}
   1262 	}
   1263 
   1264 	size = mtd->oobsize - (oob - chip->oob_poi);
   1265 	if (size)
   1266 		chip->read_buf(mtd, oob, size);
   1267 
   1268 	return 0;
   1269 }
   1270 
   1271 /**
   1272  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
   1273  * @mtd: mtd info structure
   1274  * @chip: nand chip info structure
   1275  * @buf: buffer to store read data
   1276  * @oob_required: caller requires OOB data read to chip->oob_poi
   1277  * @page: page number to read
   1278  */
   1279 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
   1280 				uint8_t *buf, int oob_required, int page)
   1281 {
   1282 	int i, eccsize = chip->ecc.size;
   1283 	int eccbytes = chip->ecc.bytes;
   1284 	int eccsteps = chip->ecc.steps;
   1285 	uint8_t *p = buf;
   1286 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   1287 	uint8_t *ecc_code = chip->buffers->ecccode;
   1288 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   1289 	unsigned int max_bitflips = 0;
   1290 
   1291 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
   1292 
   1293 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
   1294 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
   1295 
   1296 	for (i = 0; i < chip->ecc.total; i++)
   1297 		ecc_code[i] = chip->oob_poi[eccpos[i]];
   1298 
   1299 	eccsteps = chip->ecc.steps;
   1300 	p = buf;
   1301 
   1302 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   1303 		int stat;
   1304 
   1305 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
   1306 		if (stat < 0) {
   1307 			mtd->ecc_stats.failed++;
   1308 		} else {
   1309 			mtd->ecc_stats.corrected += stat;
   1310 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1311 		}
   1312 	}
   1313 	return max_bitflips;
   1314 }
   1315 
   1316 /**
   1317  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
   1318  * @mtd: mtd info structure
   1319  * @chip: nand chip info structure
   1320  * @data_offs: offset of requested data within the page
   1321  * @readlen: data length
   1322  * @bufpoi: buffer to store read data
   1323  * @page: page number to read
   1324  */
   1325 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
   1326 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
   1327 			int page)
   1328 {
   1329 	int start_step, end_step, num_steps;
   1330 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   1331 	uint8_t *p;
   1332 	int data_col_addr, i, gaps = 0;
   1333 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
   1334 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
   1335 	int index;
   1336 	unsigned int max_bitflips = 0;
   1337 
   1338 	/* Column address within the page aligned to ECC size (256bytes) */
   1339 	start_step = data_offs / chip->ecc.size;
   1340 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
   1341 	num_steps = end_step - start_step + 1;
   1342 	index = start_step * chip->ecc.bytes;
   1343 
   1344 	/* Data size aligned to ECC ecc.size */
   1345 	datafrag_len = num_steps * chip->ecc.size;
   1346 	eccfrag_len = num_steps * chip->ecc.bytes;
   1347 
   1348 	data_col_addr = start_step * chip->ecc.size;
   1349 	/* If we read not a page aligned data */
   1350 	if (data_col_addr != 0)
   1351 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
   1352 
   1353 	p = bufpoi + data_col_addr;
   1354 	chip->read_buf(mtd, p, datafrag_len);
   1355 
   1356 	/* Calculate ECC */
   1357 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
   1358 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
   1359 
   1360 	/*
   1361 	 * The performance is faster if we position offsets according to
   1362 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
   1363 	 */
   1364 	for (i = 0; i < eccfrag_len - 1; i++) {
   1365 		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
   1366 			gaps = 1;
   1367 			break;
   1368 		}
   1369 	}
   1370 	if (gaps) {
   1371 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
   1372 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
   1373 	} else {
   1374 		/*
   1375 		 * Send the command to read the particular ECC bytes take care
   1376 		 * about buswidth alignment in read_buf.
   1377 		 */
   1378 		aligned_pos = eccpos[index] & ~(busw - 1);
   1379 		aligned_len = eccfrag_len;
   1380 		if (eccpos[index] & (busw - 1))
   1381 			aligned_len++;
   1382 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
   1383 			aligned_len++;
   1384 
   1385 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
   1386 					mtd->writesize + aligned_pos, -1);
   1387 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
   1388 	}
   1389 
   1390 	for (i = 0; i < eccfrag_len; i++)
   1391 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
   1392 
   1393 	p = bufpoi + data_col_addr;
   1394 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
   1395 		int stat;
   1396 
   1397 		stat = chip->ecc.correct(mtd, p,
   1398 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
   1399 		if (stat == -EBADMSG &&
   1400 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
   1401 			/* check for empty pages with bitflips */
   1402 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
   1403 						&chip->buffers->ecccode[i],
   1404 						chip->ecc.bytes,
   1405 						NULL, 0,
   1406 						chip->ecc.strength);
   1407 		}
   1408 
   1409 		if (stat < 0) {
   1410 			mtd->ecc_stats.failed++;
   1411 		} else {
   1412 			mtd->ecc_stats.corrected += stat;
   1413 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1414 		}
   1415 	}
   1416 	return max_bitflips;
   1417 }
   1418 
   1419 /**
   1420  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
   1421  * @mtd: mtd info structure
   1422  * @chip: nand chip info structure
   1423  * @buf: buffer to store read data
   1424  * @oob_required: caller requires OOB data read to chip->oob_poi
   1425  * @page: page number to read
   1426  *
   1427  * Not for syndrome calculating ECC controllers which need a special oob layout.
   1428  */
   1429 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
   1430 				uint8_t *buf, int oob_required, int page)
   1431 {
   1432 	int i, eccsize = chip->ecc.size;
   1433 	int eccbytes = chip->ecc.bytes;
   1434 	int eccsteps = chip->ecc.steps;
   1435 	uint8_t *p = buf;
   1436 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   1437 	uint8_t *ecc_code = chip->buffers->ecccode;
   1438 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   1439 	unsigned int max_bitflips = 0;
   1440 
   1441 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   1442 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
   1443 		chip->read_buf(mtd, p, eccsize);
   1444 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
   1445 	}
   1446 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
   1447 
   1448 	for (i = 0; i < chip->ecc.total; i++)
   1449 		ecc_code[i] = chip->oob_poi[eccpos[i]];
   1450 
   1451 	eccsteps = chip->ecc.steps;
   1452 	p = buf;
   1453 
   1454 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   1455 		int stat;
   1456 
   1457 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
   1458 		if (stat == -EBADMSG &&
   1459 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
   1460 			/* check for empty pages with bitflips */
   1461 			stat = nand_check_erased_ecc_chunk(p, eccsize,
   1462 						&ecc_code[i], eccbytes,
   1463 						NULL, 0,
   1464 						chip->ecc.strength);
   1465 		}
   1466 
   1467 		if (stat < 0) {
   1468 			mtd->ecc_stats.failed++;
   1469 		} else {
   1470 			mtd->ecc_stats.corrected += stat;
   1471 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1472 		}
   1473 	}
   1474 	return max_bitflips;
   1475 }
   1476 
   1477 /**
   1478  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
   1479  * @mtd: mtd info structure
   1480  * @chip: nand chip info structure
   1481  * @buf: buffer to store read data
   1482  * @oob_required: caller requires OOB data read to chip->oob_poi
   1483  * @page: page number to read
   1484  *
   1485  * Hardware ECC for large page chips, require OOB to be read first. For this
   1486  * ECC mode, the write_page method is re-used from ECC_HW. These methods
   1487  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
   1488  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
   1489  * the data area, by overwriting the NAND manufacturer bad block markings.
   1490  */
   1491 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
   1492 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
   1493 {
   1494 	int i, eccsize = chip->ecc.size;
   1495 	int eccbytes = chip->ecc.bytes;
   1496 	int eccsteps = chip->ecc.steps;
   1497 	uint8_t *p = buf;
   1498 	uint8_t *ecc_code = chip->buffers->ecccode;
   1499 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   1500 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   1501 	unsigned int max_bitflips = 0;
   1502 
   1503 	/* Read the OOB area first */
   1504 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
   1505 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
   1506 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
   1507 
   1508 	for (i = 0; i < chip->ecc.total; i++)
   1509 		ecc_code[i] = chip->oob_poi[eccpos[i]];
   1510 
   1511 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   1512 		int stat;
   1513 
   1514 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
   1515 		chip->read_buf(mtd, p, eccsize);
   1516 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
   1517 
   1518 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
   1519 		if (stat == -EBADMSG &&
   1520 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
   1521 			/* check for empty pages with bitflips */
   1522 			stat = nand_check_erased_ecc_chunk(p, eccsize,
   1523 						&ecc_code[i], eccbytes,
   1524 						NULL, 0,
   1525 						chip->ecc.strength);
   1526 		}
   1527 
   1528 		if (stat < 0) {
   1529 			mtd->ecc_stats.failed++;
   1530 		} else {
   1531 			mtd->ecc_stats.corrected += stat;
   1532 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1533 		}
   1534 	}
   1535 	return max_bitflips;
   1536 }
   1537 
   1538 /**
   1539  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
   1540  * @mtd: mtd info structure
   1541  * @chip: nand chip info structure
   1542  * @buf: buffer to store read data
   1543  * @oob_required: caller requires OOB data read to chip->oob_poi
   1544  * @page: page number to read
   1545  *
   1546  * The hw generator calculates the error syndrome automatically. Therefore we
   1547  * need a special oob layout and handling.
   1548  */
   1549 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
   1550 				   uint8_t *buf, int oob_required, int page)
   1551 {
   1552 	int i, eccsize = chip->ecc.size;
   1553 	int eccbytes = chip->ecc.bytes;
   1554 	int eccsteps = chip->ecc.steps;
   1555 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
   1556 	uint8_t *p = buf;
   1557 	uint8_t *oob = chip->oob_poi;
   1558 	unsigned int max_bitflips = 0;
   1559 
   1560 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   1561 		int stat;
   1562 
   1563 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
   1564 		chip->read_buf(mtd, p, eccsize);
   1565 
   1566 		if (chip->ecc.prepad) {
   1567 			chip->read_buf(mtd, oob, chip->ecc.prepad);
   1568 			oob += chip->ecc.prepad;
   1569 		}
   1570 
   1571 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
   1572 		chip->read_buf(mtd, oob, eccbytes);
   1573 		stat = chip->ecc.correct(mtd, p, oob, NULL);
   1574 
   1575 		oob += eccbytes;
   1576 
   1577 		if (chip->ecc.postpad) {
   1578 			chip->read_buf(mtd, oob, chip->ecc.postpad);
   1579 			oob += chip->ecc.postpad;
   1580 		}
   1581 
   1582 		if (stat == -EBADMSG &&
   1583 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
   1584 			/* check for empty pages with bitflips */
   1585 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
   1586 							   oob - eccpadbytes,
   1587 							   eccpadbytes,
   1588 							   NULL, 0,
   1589 							   chip->ecc.strength);
   1590 		}
   1591 
   1592 		if (stat < 0) {
   1593 			mtd->ecc_stats.failed++;
   1594 		} else {
   1595 			mtd->ecc_stats.corrected += stat;
   1596 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
   1597 		}
   1598 	}
   1599 
   1600 	/* Calculate remaining oob bytes */
   1601 	i = mtd->oobsize - (oob - chip->oob_poi);
   1602 	if (i)
   1603 		chip->read_buf(mtd, oob, i);
   1604 
   1605 	return max_bitflips;
   1606 }
   1607 
   1608 /**
   1609  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
   1610  * @chip: nand chip structure
   1611  * @oob: oob destination address
   1612  * @ops: oob ops structure
   1613  * @len: size of oob to transfer
   1614  */
   1615 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
   1616 				  struct mtd_oob_ops *ops, size_t len)
   1617 {
   1618 	switch (ops->mode) {
   1619 
   1620 	case MTD_OPS_PLACE_OOB:
   1621 	case MTD_OPS_RAW:
   1622 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
   1623 		return oob + len;
   1624 
   1625 	case MTD_OPS_AUTO_OOB: {
   1626 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
   1627 		uint32_t boffs = 0, roffs = ops->ooboffs;
   1628 		size_t bytes = 0;
   1629 
   1630 		for (; free->length && len; free++, len -= bytes) {
   1631 			/* Read request not from offset 0? */
   1632 			if (unlikely(roffs)) {
   1633 				if (roffs >= free->length) {
   1634 					roffs -= free->length;
   1635 					continue;
   1636 				}
   1637 				boffs = free->offset + roffs;
   1638 				bytes = min_t(size_t, len,
   1639 					      (free->length - roffs));
   1640 				roffs = 0;
   1641 			} else {
   1642 				bytes = min_t(size_t, len, free->length);
   1643 				boffs = free->offset;
   1644 			}
   1645 			memcpy(oob, chip->oob_poi + boffs, bytes);
   1646 			oob += bytes;
   1647 		}
   1648 		return oob;
   1649 	}
   1650 	default:
   1651 		BUG();
   1652 	}
   1653 	return NULL;
   1654 }
   1655 
   1656 /**
   1657  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
   1658  * @mtd: MTD device structure
   1659  * @retry_mode: the retry mode to use
   1660  *
   1661  * Some vendors supply a special command to shift the Vt threshold, to be used
   1662  * when there are too many bitflips in a page (i.e., ECC error). After setting
   1663  * a new threshold, the host should retry reading the page.
   1664  */
   1665 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
   1666 {
   1667 	struct nand_chip *chip = mtd_to_nand(mtd);
   1668 
   1669 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
   1670 
   1671 	if (retry_mode >= chip->read_retries)
   1672 		return -EINVAL;
   1673 
   1674 	if (!chip->setup_read_retry)
   1675 		return -EOPNOTSUPP;
   1676 
   1677 	return chip->setup_read_retry(mtd, retry_mode);
   1678 }
   1679 
   1680 /**
   1681  * nand_do_read_ops - [INTERN] Read data with ECC
   1682  * @mtd: MTD device structure
   1683  * @from: offset to read from
   1684  * @ops: oob ops structure
   1685  *
   1686  * Internal function. Called with chip held.
   1687  */
   1688 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
   1689 			    struct mtd_oob_ops *ops)
   1690 {
   1691 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
   1692 	struct nand_chip *chip = mtd_to_nand(mtd);
   1693 	int ret = 0;
   1694 	uint32_t readlen = ops->len;
   1695 	uint32_t oobreadlen = ops->ooblen;
   1696 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
   1697 
   1698 	uint8_t *bufpoi, *oob, *buf;
   1699 	int use_bufpoi;
   1700 	unsigned int max_bitflips = 0;
   1701 	int retry_mode = 0;
   1702 	bool ecc_fail = false;
   1703 
   1704 	chipnr = (int)(from >> chip->chip_shift);
   1705 	chip->select_chip(mtd, chipnr);
   1706 
   1707 	realpage = (int)(from >> chip->page_shift);
   1708 	page = realpage & chip->pagemask;
   1709 
   1710 	col = (int)(from & (mtd->writesize - 1));
   1711 
   1712 	buf = ops->datbuf;
   1713 	oob = ops->oobbuf;
   1714 	oob_required = oob ? 1 : 0;
   1715 
   1716 	while (1) {
   1717 		unsigned int ecc_failures = mtd->ecc_stats.failed;
   1718 
   1719 		WATCHDOG_RESET();
   1720 		bytes = min(mtd->writesize - col, readlen);
   1721 		aligned = (bytes == mtd->writesize);
   1722 
   1723 		if (!aligned)
   1724 			use_bufpoi = 1;
   1725 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
   1726 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
   1727 						 chip->buf_align);
   1728 		else
   1729 			use_bufpoi = 0;
   1730 
   1731 		/* Is the current page in the buffer? */
   1732 		if (realpage != chip->pagebuf || oob) {
   1733 			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
   1734 
   1735 			if (use_bufpoi && aligned)
   1736 				pr_debug("%s: using read bounce buffer for buf@%p\n",
   1737 						 __func__, buf);
   1738 
   1739 read_retry:
   1740 			if (nand_standard_page_accessors(&chip->ecc))
   1741 				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
   1742 
   1743 			/*
   1744 			 * Now read the page into the buffer.  Absent an error,
   1745 			 * the read methods return max bitflips per ecc step.
   1746 			 */
   1747 			if (unlikely(ops->mode == MTD_OPS_RAW))
   1748 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
   1749 							      oob_required,
   1750 							      page);
   1751 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
   1752 				 !oob)
   1753 				ret = chip->ecc.read_subpage(mtd, chip,
   1754 							col, bytes, bufpoi,
   1755 							page);
   1756 			else
   1757 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
   1758 							  oob_required, page);
   1759 			if (ret < 0) {
   1760 				if (use_bufpoi)
   1761 					/* Invalidate page cache */
   1762 					chip->pagebuf = -1;
   1763 				break;
   1764 			}
   1765 
   1766 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
   1767 
   1768 			/* Transfer not aligned data */
   1769 			if (use_bufpoi) {
   1770 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
   1771 				    !(mtd->ecc_stats.failed - ecc_failures) &&
   1772 				    (ops->mode != MTD_OPS_RAW)) {
   1773 					chip->pagebuf = realpage;
   1774 					chip->pagebuf_bitflips = ret;
   1775 				} else {
   1776 					/* Invalidate page cache */
   1777 					chip->pagebuf = -1;
   1778 				}
   1779 				memcpy(buf, chip->buffers->databuf + col, bytes);
   1780 			}
   1781 
   1782 			if (unlikely(oob)) {
   1783 				int toread = min(oobreadlen, max_oobsize);
   1784 
   1785 				if (toread) {
   1786 					oob = nand_transfer_oob(chip,
   1787 						oob, ops, toread);
   1788 					oobreadlen -= toread;
   1789 				}
   1790 			}
   1791 
   1792 			if (chip->options & NAND_NEED_READRDY) {
   1793 				/* Apply delay or wait for ready/busy pin */
   1794 				if (!chip->dev_ready)
   1795 					udelay(chip->chip_delay);
   1796 				else
   1797 					nand_wait_ready(mtd);
   1798 			}
   1799 
   1800 			if (mtd->ecc_stats.failed - ecc_failures) {
   1801 				if (retry_mode + 1 < chip->read_retries) {
   1802 					retry_mode++;
   1803 					ret = nand_setup_read_retry(mtd,
   1804 							retry_mode);
   1805 					if (ret < 0)
   1806 						break;
   1807 
   1808 					/* Reset failures; retry */
   1809 					mtd->ecc_stats.failed = ecc_failures;
   1810 					goto read_retry;
   1811 				} else {
   1812 					/* No more retry modes; real failure */
   1813 					ecc_fail = true;
   1814 				}
   1815 			}
   1816 
   1817 			buf += bytes;
   1818 		} else {
   1819 			memcpy(buf, chip->buffers->databuf + col, bytes);
   1820 			buf += bytes;
   1821 			max_bitflips = max_t(unsigned int, max_bitflips,
   1822 					     chip->pagebuf_bitflips);
   1823 		}
   1824 
   1825 		readlen -= bytes;
   1826 
   1827 		/* Reset to retry mode 0 */
   1828 		if (retry_mode) {
   1829 			ret = nand_setup_read_retry(mtd, 0);
   1830 			if (ret < 0)
   1831 				break;
   1832 			retry_mode = 0;
   1833 		}
   1834 
   1835 		if (!readlen)
   1836 			break;
   1837 
   1838 		/* For subsequent reads align to page boundary */
   1839 		col = 0;
   1840 		/* Increment page address */
   1841 		realpage++;
   1842 
   1843 		page = realpage & chip->pagemask;
   1844 		/* Check, if we cross a chip boundary */
   1845 		if (!page) {
   1846 			chipnr++;
   1847 			chip->select_chip(mtd, -1);
   1848 			chip->select_chip(mtd, chipnr);
   1849 		}
   1850 	}
   1851 	chip->select_chip(mtd, -1);
   1852 
   1853 	ops->retlen = ops->len - (size_t) readlen;
   1854 	if (oob)
   1855 		ops->oobretlen = ops->ooblen - oobreadlen;
   1856 
   1857 	if (ret < 0)
   1858 		return ret;
   1859 
   1860 	if (ecc_fail)
   1861 		return -EBADMSG;
   1862 
   1863 	return max_bitflips;
   1864 }
   1865 
   1866 /**
   1867  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
   1868  * @mtd: MTD device structure
   1869  * @from: offset to read from
   1870  * @len: number of bytes to read
   1871  * @retlen: pointer to variable to store the number of read bytes
   1872  * @buf: the databuffer to put data
   1873  *
   1874  * Get hold of the chip and call nand_do_read.
   1875  */
   1876 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
   1877 		     size_t *retlen, uint8_t *buf)
   1878 {
   1879 	struct mtd_oob_ops ops;
   1880 	int ret;
   1881 
   1882 	nand_get_device(mtd, FL_READING);
   1883 	memset(&ops, 0, sizeof(ops));
   1884 	ops.len = len;
   1885 	ops.datbuf = buf;
   1886 	ops.mode = MTD_OPS_PLACE_OOB;
   1887 	ret = nand_do_read_ops(mtd, from, &ops);
   1888 	*retlen = ops.retlen;
   1889 	nand_release_device(mtd);
   1890 	return ret;
   1891 }
   1892 
   1893 /**
   1894  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
   1895  * @mtd: mtd info structure
   1896  * @chip: nand chip info structure
   1897  * @page: page number to read
   1898  */
   1899 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
   1900 			     int page)
   1901 {
   1902 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
   1903 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
   1904 	return 0;
   1905 }
   1906 
   1907 /**
   1908  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
   1909  *			    with syndromes
   1910  * @mtd: mtd info structure
   1911  * @chip: nand chip info structure
   1912  * @page: page number to read
   1913  */
   1914 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
   1915 				  int page)
   1916 {
   1917 	int length = mtd->oobsize;
   1918 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
   1919 	int eccsize = chip->ecc.size;
   1920 	uint8_t *bufpoi = chip->oob_poi;
   1921 	int i, toread, sndrnd = 0, pos;
   1922 
   1923 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
   1924 	for (i = 0; i < chip->ecc.steps; i++) {
   1925 		if (sndrnd) {
   1926 			pos = eccsize + i * (eccsize + chunk);
   1927 			if (mtd->writesize > 512)
   1928 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
   1929 			else
   1930 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
   1931 		} else
   1932 			sndrnd = 1;
   1933 		toread = min_t(int, length, chunk);
   1934 		chip->read_buf(mtd, bufpoi, toread);
   1935 		bufpoi += toread;
   1936 		length -= toread;
   1937 	}
   1938 	if (length > 0)
   1939 		chip->read_buf(mtd, bufpoi, length);
   1940 
   1941 	return 0;
   1942 }
   1943 
   1944 /**
   1945  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
   1946  * @mtd: mtd info structure
   1947  * @chip: nand chip info structure
   1948  * @page: page number to write
   1949  */
   1950 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
   1951 			      int page)
   1952 {
   1953 	int status = 0;
   1954 	const uint8_t *buf = chip->oob_poi;
   1955 	int length = mtd->oobsize;
   1956 
   1957 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
   1958 	chip->write_buf(mtd, buf, length);
   1959 	/* Send command to program the OOB data */
   1960 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
   1961 
   1962 	status = chip->waitfunc(mtd, chip);
   1963 
   1964 	return status & NAND_STATUS_FAIL ? -EIO : 0;
   1965 }
   1966 
   1967 /**
   1968  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
   1969  *			     with syndrome - only for large page flash
   1970  * @mtd: mtd info structure
   1971  * @chip: nand chip info structure
   1972  * @page: page number to write
   1973  */
   1974 static int nand_write_oob_syndrome(struct mtd_info *mtd,
   1975 				   struct nand_chip *chip, int page)
   1976 {
   1977 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
   1978 	int eccsize = chip->ecc.size, length = mtd->oobsize;
   1979 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
   1980 	const uint8_t *bufpoi = chip->oob_poi;
   1981 
   1982 	/*
   1983 	 * data-ecc-data-ecc ... ecc-oob
   1984 	 * or
   1985 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
   1986 	 */
   1987 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
   1988 		pos = steps * (eccsize + chunk);
   1989 		steps = 0;
   1990 	} else
   1991 		pos = eccsize;
   1992 
   1993 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
   1994 	for (i = 0; i < steps; i++) {
   1995 		if (sndcmd) {
   1996 			if (mtd->writesize <= 512) {
   1997 				uint32_t fill = 0xFFFFFFFF;
   1998 
   1999 				len = eccsize;
   2000 				while (len > 0) {
   2001 					int num = min_t(int, len, 4);
   2002 					chip->write_buf(mtd, (uint8_t *)&fill,
   2003 							num);
   2004 					len -= num;
   2005 				}
   2006 			} else {
   2007 				pos = eccsize + i * (eccsize + chunk);
   2008 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
   2009 			}
   2010 		} else
   2011 			sndcmd = 1;
   2012 		len = min_t(int, length, chunk);
   2013 		chip->write_buf(mtd, bufpoi, len);
   2014 		bufpoi += len;
   2015 		length -= len;
   2016 	}
   2017 	if (length > 0)
   2018 		chip->write_buf(mtd, bufpoi, length);
   2019 
   2020 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
   2021 	status = chip->waitfunc(mtd, chip);
   2022 
   2023 	return status & NAND_STATUS_FAIL ? -EIO : 0;
   2024 }
   2025 
   2026 /**
   2027  * nand_do_read_oob - [INTERN] NAND read out-of-band
   2028  * @mtd: MTD device structure
   2029  * @from: offset to read from
   2030  * @ops: oob operations description structure
   2031  *
   2032  * NAND read out-of-band data from the spare area.
   2033  */
   2034 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
   2035 			    struct mtd_oob_ops *ops)
   2036 {
   2037 	int page, realpage, chipnr;
   2038 	struct nand_chip *chip = mtd_to_nand(mtd);
   2039 	struct mtd_ecc_stats stats;
   2040 	int readlen = ops->ooblen;
   2041 	int len;
   2042 	uint8_t *buf = ops->oobbuf;
   2043 	int ret = 0;
   2044 
   2045 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
   2046 			__func__, (unsigned long long)from, readlen);
   2047 
   2048 	stats = mtd->ecc_stats;
   2049 
   2050 	len = mtd_oobavail(mtd, ops);
   2051 
   2052 	if (unlikely(ops->ooboffs >= len)) {
   2053 		pr_debug("%s: attempt to start read outside oob\n",
   2054 				__func__);
   2055 		return -EINVAL;
   2056 	}
   2057 
   2058 	/* Do not allow reads past end of device */
   2059 	if (unlikely(from >= mtd->size ||
   2060 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
   2061 					(from >> chip->page_shift)) * len)) {
   2062 		pr_debug("%s: attempt to read beyond end of device\n",
   2063 				__func__);
   2064 		return -EINVAL;
   2065 	}
   2066 
   2067 	chipnr = (int)(from >> chip->chip_shift);
   2068 	chip->select_chip(mtd, chipnr);
   2069 
   2070 	/* Shift to get page */
   2071 	realpage = (int)(from >> chip->page_shift);
   2072 	page = realpage & chip->pagemask;
   2073 
   2074 	while (1) {
   2075 		WATCHDOG_RESET();
   2076 
   2077 		if (ops->mode == MTD_OPS_RAW)
   2078 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
   2079 		else
   2080 			ret = chip->ecc.read_oob(mtd, chip, page);
   2081 
   2082 		if (ret < 0)
   2083 			break;
   2084 
   2085 		len = min(len, readlen);
   2086 		buf = nand_transfer_oob(chip, buf, ops, len);
   2087 
   2088 		if (chip->options & NAND_NEED_READRDY) {
   2089 			/* Apply delay or wait for ready/busy pin */
   2090 			if (!chip->dev_ready)
   2091 				udelay(chip->chip_delay);
   2092 			else
   2093 				nand_wait_ready(mtd);
   2094 		}
   2095 
   2096 		readlen -= len;
   2097 		if (!readlen)
   2098 			break;
   2099 
   2100 		/* Increment page address */
   2101 		realpage++;
   2102 
   2103 		page = realpage & chip->pagemask;
   2104 		/* Check, if we cross a chip boundary */
   2105 		if (!page) {
   2106 			chipnr++;
   2107 			chip->select_chip(mtd, -1);
   2108 			chip->select_chip(mtd, chipnr);
   2109 		}
   2110 	}
   2111 	chip->select_chip(mtd, -1);
   2112 
   2113 	ops->oobretlen = ops->ooblen - readlen;
   2114 
   2115 	if (ret < 0)
   2116 		return ret;
   2117 
   2118 	if (mtd->ecc_stats.failed - stats.failed)
   2119 		return -EBADMSG;
   2120 
   2121 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
   2122 }
   2123 
   2124 /**
   2125  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
   2126  * @mtd: MTD device structure
   2127  * @from: offset to read from
   2128  * @ops: oob operation description structure
   2129  *
   2130  * NAND read data and/or out-of-band data.
   2131  */
   2132 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
   2133 			 struct mtd_oob_ops *ops)
   2134 {
   2135 	int ret = -ENOTSUPP;
   2136 
   2137 	ops->retlen = 0;
   2138 
   2139 	/* Do not allow reads past end of device */
   2140 	if (ops->datbuf && (from + ops->len) > mtd->size) {
   2141 		pr_debug("%s: attempt to read beyond end of device\n",
   2142 				__func__);
   2143 		return -EINVAL;
   2144 	}
   2145 
   2146 	nand_get_device(mtd, FL_READING);
   2147 
   2148 	switch (ops->mode) {
   2149 	case MTD_OPS_PLACE_OOB:
   2150 	case MTD_OPS_AUTO_OOB:
   2151 	case MTD_OPS_RAW:
   2152 		break;
   2153 
   2154 	default:
   2155 		goto out;
   2156 	}
   2157 
   2158 	if (!ops->datbuf)
   2159 		ret = nand_do_read_oob(mtd, from, ops);
   2160 	else
   2161 		ret = nand_do_read_ops(mtd, from, ops);
   2162 
   2163 out:
   2164 	nand_release_device(mtd);
   2165 	return ret;
   2166 }
   2167 
   2168 
   2169 /**
   2170  * nand_write_page_raw - [INTERN] raw page write function
   2171  * @mtd: mtd info structure
   2172  * @chip: nand chip info structure
   2173  * @buf: data buffer
   2174  * @oob_required: must write chip->oob_poi to OOB
   2175  * @page: page number to write
   2176  *
   2177  * Not for syndrome calculating ECC controllers, which use a special oob layout.
   2178  */
   2179 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
   2180 			       const uint8_t *buf, int oob_required, int page)
   2181 {
   2182 	chip->write_buf(mtd, buf, mtd->writesize);
   2183 	if (oob_required)
   2184 		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
   2185 
   2186 	return 0;
   2187 }
   2188 
   2189 /**
   2190  * nand_write_page_raw_syndrome - [INTERN] raw page write function
   2191  * @mtd: mtd info structure
   2192  * @chip: nand chip info structure
   2193  * @buf: data buffer
   2194  * @oob_required: must write chip->oob_poi to OOB
   2195  * @page: page number to write
   2196  *
   2197  * We need a special oob layout and handling even when ECC isn't checked.
   2198  */
   2199 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
   2200 					struct nand_chip *chip,
   2201 					const uint8_t *buf, int oob_required,
   2202 					int page)
   2203 {
   2204 	int eccsize = chip->ecc.size;
   2205 	int eccbytes = chip->ecc.bytes;
   2206 	uint8_t *oob = chip->oob_poi;
   2207 	int steps, size;
   2208 
   2209 	for (steps = chip->ecc.steps; steps > 0; steps--) {
   2210 		chip->write_buf(mtd, buf, eccsize);
   2211 		buf += eccsize;
   2212 
   2213 		if (chip->ecc.prepad) {
   2214 			chip->write_buf(mtd, oob, chip->ecc.prepad);
   2215 			oob += chip->ecc.prepad;
   2216 		}
   2217 
   2218 		chip->write_buf(mtd, oob, eccbytes);
   2219 		oob += eccbytes;
   2220 
   2221 		if (chip->ecc.postpad) {
   2222 			chip->write_buf(mtd, oob, chip->ecc.postpad);
   2223 			oob += chip->ecc.postpad;
   2224 		}
   2225 	}
   2226 
   2227 	size = mtd->oobsize - (oob - chip->oob_poi);
   2228 	if (size)
   2229 		chip->write_buf(mtd, oob, size);
   2230 
   2231 	return 0;
   2232 }
   2233 /**
   2234  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
   2235  * @mtd: mtd info structure
   2236  * @chip: nand chip info structure
   2237  * @buf: data buffer
   2238  * @oob_required: must write chip->oob_poi to OOB
   2239  * @page: page number to write
   2240  */
   2241 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
   2242 				 const uint8_t *buf, int oob_required,
   2243 				 int page)
   2244 {
   2245 	int i, eccsize = chip->ecc.size;
   2246 	int eccbytes = chip->ecc.bytes;
   2247 	int eccsteps = chip->ecc.steps;
   2248 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   2249 	const uint8_t *p = buf;
   2250 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   2251 
   2252 	/* Software ECC calculation */
   2253 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
   2254 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
   2255 
   2256 	for (i = 0; i < chip->ecc.total; i++)
   2257 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
   2258 
   2259 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
   2260 }
   2261 
   2262 /**
   2263  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
   2264  * @mtd: mtd info structure
   2265  * @chip: nand chip info structure
   2266  * @buf: data buffer
   2267  * @oob_required: must write chip->oob_poi to OOB
   2268  * @page: page number to write
   2269  */
   2270 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
   2271 				  const uint8_t *buf, int oob_required,
   2272 				  int page)
   2273 {
   2274 	int i, eccsize = chip->ecc.size;
   2275 	int eccbytes = chip->ecc.bytes;
   2276 	int eccsteps = chip->ecc.steps;
   2277 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   2278 	const uint8_t *p = buf;
   2279 	uint32_t *eccpos = chip->ecc.layout->eccpos;
   2280 
   2281 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   2282 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
   2283 		chip->write_buf(mtd, p, eccsize);
   2284 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
   2285 	}
   2286 
   2287 	for (i = 0; i < chip->ecc.total; i++)
   2288 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
   2289 
   2290 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
   2291 
   2292 	return 0;
   2293 }
   2294 
   2295 
   2296 /**
   2297  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
   2298  * @mtd:	mtd info structure
   2299  * @chip:	nand chip info structure
   2300  * @offset:	column address of subpage within the page
   2301  * @data_len:	data length
   2302  * @buf:	data buffer
   2303  * @oob_required: must write chip->oob_poi to OOB
   2304  * @page: page number to write
   2305  */
   2306 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
   2307 				struct nand_chip *chip, uint32_t offset,
   2308 				uint32_t data_len, const uint8_t *buf,
   2309 				int oob_required, int page)
   2310 {
   2311 	uint8_t *oob_buf  = chip->oob_poi;
   2312 	uint8_t *ecc_calc = chip->buffers->ecccalc;
   2313 	int ecc_size      = chip->ecc.size;
   2314 	int ecc_bytes     = chip->ecc.bytes;
   2315 	int ecc_steps     = chip->ecc.steps;
   2316 	uint32_t *eccpos  = chip->ecc.layout->eccpos;
   2317 	uint32_t start_step = offset / ecc_size;
   2318 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
   2319 	int oob_bytes       = mtd->oobsize / ecc_steps;
   2320 	int step, i;
   2321 
   2322 	for (step = 0; step < ecc_steps; step++) {
   2323 		/* configure controller for WRITE access */
   2324 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
   2325 
   2326 		/* write data (untouched subpages already masked by 0xFF) */
   2327 		chip->write_buf(mtd, buf, ecc_size);
   2328 
   2329 		/* mask ECC of un-touched subpages by padding 0xFF */
   2330 		if ((step < start_step) || (step > end_step))
   2331 			memset(ecc_calc, 0xff, ecc_bytes);
   2332 		else
   2333 			chip->ecc.calculate(mtd, buf, ecc_calc);
   2334 
   2335 		/* mask OOB of un-touched subpages by padding 0xFF */
   2336 		/* if oob_required, preserve OOB metadata of written subpage */
   2337 		if (!oob_required || (step < start_step) || (step > end_step))
   2338 			memset(oob_buf, 0xff, oob_bytes);
   2339 
   2340 		buf += ecc_size;
   2341 		ecc_calc += ecc_bytes;
   2342 		oob_buf  += oob_bytes;
   2343 	}
   2344 
   2345 	/* copy calculated ECC for whole page to chip->buffer->oob */
   2346 	/* this include masked-value(0xFF) for unwritten subpages */
   2347 	ecc_calc = chip->buffers->ecccalc;
   2348 	for (i = 0; i < chip->ecc.total; i++)
   2349 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
   2350 
   2351 	/* write OOB buffer to NAND device */
   2352 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
   2353 
   2354 	return 0;
   2355 }
   2356 
   2357 
   2358 /**
   2359  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
   2360  * @mtd: mtd info structure
   2361  * @chip: nand chip info structure
   2362  * @buf: data buffer
   2363  * @oob_required: must write chip->oob_poi to OOB
   2364  * @page: page number to write
   2365  *
   2366  * The hw generator calculates the error syndrome automatically. Therefore we
   2367  * need a special oob layout and handling.
   2368  */
   2369 static int nand_write_page_syndrome(struct mtd_info *mtd,
   2370 				    struct nand_chip *chip,
   2371 				    const uint8_t *buf, int oob_required,
   2372 				    int page)
   2373 {
   2374 	int i, eccsize = chip->ecc.size;
   2375 	int eccbytes = chip->ecc.bytes;
   2376 	int eccsteps = chip->ecc.steps;
   2377 	const uint8_t *p = buf;
   2378 	uint8_t *oob = chip->oob_poi;
   2379 
   2380 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
   2381 
   2382 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
   2383 		chip->write_buf(mtd, p, eccsize);
   2384 
   2385 		if (chip->ecc.prepad) {
   2386 			chip->write_buf(mtd, oob, chip->ecc.prepad);
   2387 			oob += chip->ecc.prepad;
   2388 		}
   2389 
   2390 		chip->ecc.calculate(mtd, p, oob);
   2391 		chip->write_buf(mtd, oob, eccbytes);
   2392 		oob += eccbytes;
   2393 
   2394 		if (chip->ecc.postpad) {
   2395 			chip->write_buf(mtd, oob, chip->ecc.postpad);
   2396 			oob += chip->ecc.postpad;
   2397 		}
   2398 	}
   2399 
   2400 	/* Calculate remaining oob bytes */
   2401 	i = mtd->oobsize - (oob - chip->oob_poi);
   2402 	if (i)
   2403 		chip->write_buf(mtd, oob, i);
   2404 
   2405 	return 0;
   2406 }
   2407 
   2408 /**
   2409  * nand_write_page - [REPLACEABLE] write one page
   2410  * @mtd: MTD device structure
   2411  * @chip: NAND chip descriptor
   2412  * @offset: address offset within the page
   2413  * @data_len: length of actual data to be written
   2414  * @buf: the data to write
   2415  * @oob_required: must write chip->oob_poi to OOB
   2416  * @page: page number to write
   2417  * @raw: use _raw version of write_page
   2418  */
   2419 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
   2420 		uint32_t offset, int data_len, const uint8_t *buf,
   2421 		int oob_required, int page, int raw)
   2422 {
   2423 	int status, subpage;
   2424 
   2425 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
   2426 		chip->ecc.write_subpage)
   2427 		subpage = offset || (data_len < mtd->writesize);
   2428 	else
   2429 		subpage = 0;
   2430 
   2431 	if (nand_standard_page_accessors(&chip->ecc))
   2432 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
   2433 
   2434 	if (unlikely(raw))
   2435 		status = chip->ecc.write_page_raw(mtd, chip, buf,
   2436 						  oob_required, page);
   2437 	else if (subpage)
   2438 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
   2439 						 buf, oob_required, page);
   2440 	else
   2441 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
   2442 					      page);
   2443 
   2444 	if (status < 0)
   2445 		return status;
   2446 
   2447 	if (nand_standard_page_accessors(&chip->ecc)) {
   2448 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
   2449 
   2450 		status = chip->waitfunc(mtd, chip);
   2451 		if (status & NAND_STATUS_FAIL)
   2452 			return -EIO;
   2453 	}
   2454 
   2455 	return 0;
   2456 }
   2457 
   2458 /**
   2459  * nand_fill_oob - [INTERN] Transfer client buffer to oob
   2460  * @mtd: MTD device structure
   2461  * @oob: oob data buffer
   2462  * @len: oob data write length
   2463  * @ops: oob ops structure
   2464  */
   2465 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
   2466 			      struct mtd_oob_ops *ops)
   2467 {
   2468 	struct nand_chip *chip = mtd_to_nand(mtd);
   2469 
   2470 	/*
   2471 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
   2472 	 * data from a previous OOB read.
   2473 	 */
   2474 	memset(chip->oob_poi, 0xff, mtd->oobsize);
   2475 
   2476 	switch (ops->mode) {
   2477 
   2478 	case MTD_OPS_PLACE_OOB:
   2479 	case MTD_OPS_RAW:
   2480 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
   2481 		return oob + len;
   2482 
   2483 	case MTD_OPS_AUTO_OOB: {
   2484 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
   2485 		uint32_t boffs = 0, woffs = ops->ooboffs;
   2486 		size_t bytes = 0;
   2487 
   2488 		for (; free->length && len; free++, len -= bytes) {
   2489 			/* Write request not from offset 0? */
   2490 			if (unlikely(woffs)) {
   2491 				if (woffs >= free->length) {
   2492 					woffs -= free->length;
   2493 					continue;
   2494 				}
   2495 				boffs = free->offset + woffs;
   2496 				bytes = min_t(size_t, len,
   2497 					      (free->length - woffs));
   2498 				woffs = 0;
   2499 			} else {
   2500 				bytes = min_t(size_t, len, free->length);
   2501 				boffs = free->offset;
   2502 			}
   2503 			memcpy(chip->oob_poi + boffs, oob, bytes);
   2504 			oob += bytes;
   2505 		}
   2506 		return oob;
   2507 	}
   2508 	default:
   2509 		BUG();
   2510 	}
   2511 	return NULL;
   2512 }
   2513 
   2514 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
   2515 
   2516 /**
   2517  * nand_do_write_ops - [INTERN] NAND write with ECC
   2518  * @mtd: MTD device structure
   2519  * @to: offset to write to
   2520  * @ops: oob operations description structure
   2521  *
   2522  * NAND write with ECC.
   2523  */
   2524 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
   2525 			     struct mtd_oob_ops *ops)
   2526 {
   2527 	int chipnr, realpage, page, column;
   2528 	struct nand_chip *chip = mtd_to_nand(mtd);
   2529 	uint32_t writelen = ops->len;
   2530 
   2531 	uint32_t oobwritelen = ops->ooblen;
   2532 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
   2533 
   2534 	uint8_t *oob = ops->oobbuf;
   2535 	uint8_t *buf = ops->datbuf;
   2536 	int ret;
   2537 	int oob_required = oob ? 1 : 0;
   2538 
   2539 	ops->retlen = 0;
   2540 	if (!writelen)
   2541 		return 0;
   2542 
   2543 	/* Reject writes, which are not page aligned */
   2544 	if (NOTALIGNED(to)) {
   2545 		pr_notice("%s: attempt to write non page aligned data\n",
   2546 			   __func__);
   2547 		return -EINVAL;
   2548 	}
   2549 
   2550 	column = to & (mtd->writesize - 1);
   2551 
   2552 	chipnr = (int)(to >> chip->chip_shift);
   2553 	chip->select_chip(mtd, chipnr);
   2554 
   2555 	/* Check, if it is write protected */
   2556 	if (nand_check_wp(mtd)) {
   2557 		ret = -EIO;
   2558 		goto err_out;
   2559 	}
   2560 
   2561 	realpage = (int)(to >> chip->page_shift);
   2562 	page = realpage & chip->pagemask;
   2563 
   2564 	/* Invalidate the page cache, when we write to the cached page */
   2565 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
   2566 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
   2567 		chip->pagebuf = -1;
   2568 
   2569 	/* Don't allow multipage oob writes with offset */
   2570 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
   2571 		ret = -EINVAL;
   2572 		goto err_out;
   2573 	}
   2574 
   2575 	while (1) {
   2576 		int bytes = mtd->writesize;
   2577 		uint8_t *wbuf = buf;
   2578 		int use_bufpoi;
   2579 		int part_pagewr = (column || writelen < mtd->writesize);
   2580 
   2581 		if (part_pagewr)
   2582 			use_bufpoi = 1;
   2583 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
   2584 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
   2585 						 chip->buf_align);
   2586 		else
   2587 			use_bufpoi = 0;
   2588 
   2589 		WATCHDOG_RESET();
   2590 		/* Partial page write?, or need to use bounce buffer */
   2591 		if (use_bufpoi) {
   2592 			pr_debug("%s: using write bounce buffer for buf@%p\n",
   2593 					 __func__, buf);
   2594 			if (part_pagewr)
   2595 				bytes = min_t(int, bytes - column, writelen);
   2596 			chip->pagebuf = -1;
   2597 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
   2598 			memcpy(&chip->buffers->databuf[column], buf, bytes);
   2599 			wbuf = chip->buffers->databuf;
   2600 		}
   2601 
   2602 		if (unlikely(oob)) {
   2603 			size_t len = min(oobwritelen, oobmaxlen);
   2604 			oob = nand_fill_oob(mtd, oob, len, ops);
   2605 			oobwritelen -= len;
   2606 		} else {
   2607 			/* We still need to erase leftover OOB data */
   2608 			memset(chip->oob_poi, 0xff, mtd->oobsize);
   2609 		}
   2610 		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
   2611 					oob_required, page,
   2612 					(ops->mode == MTD_OPS_RAW));
   2613 		if (ret)
   2614 			break;
   2615 
   2616 		writelen -= bytes;
   2617 		if (!writelen)
   2618 			break;
   2619 
   2620 		column = 0;
   2621 		buf += bytes;
   2622 		realpage++;
   2623 
   2624 		page = realpage & chip->pagemask;
   2625 		/* Check, if we cross a chip boundary */
   2626 		if (!page) {
   2627 			chipnr++;
   2628 			chip->select_chip(mtd, -1);
   2629 			chip->select_chip(mtd, chipnr);
   2630 		}
   2631 	}
   2632 
   2633 	ops->retlen = ops->len - writelen;
   2634 	if (unlikely(oob))
   2635 		ops->oobretlen = ops->ooblen;
   2636 
   2637 err_out:
   2638 	chip->select_chip(mtd, -1);
   2639 	return ret;
   2640 }
   2641 
   2642 /**
   2643  * panic_nand_write - [MTD Interface] NAND write with ECC
   2644  * @mtd: MTD device structure
   2645  * @to: offset to write to
   2646  * @len: number of bytes to write
   2647  * @retlen: pointer to variable to store the number of written bytes
   2648  * @buf: the data to write
   2649  *
   2650  * NAND write with ECC. Used when performing writes in interrupt context, this
   2651  * may for example be called by mtdoops when writing an oops while in panic.
   2652  */
   2653 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
   2654 			    size_t *retlen, const uint8_t *buf)
   2655 {
   2656 	struct nand_chip *chip = mtd_to_nand(mtd);
   2657 	struct mtd_oob_ops ops;
   2658 	int ret;
   2659 
   2660 	/* Wait for the device to get ready */
   2661 	panic_nand_wait(mtd, chip, 400);
   2662 
   2663 	/* Grab the device */
   2664 	panic_nand_get_device(chip, mtd, FL_WRITING);
   2665 
   2666 	memset(&ops, 0, sizeof(ops));
   2667 	ops.len = len;
   2668 	ops.datbuf = (uint8_t *)buf;
   2669 	ops.mode = MTD_OPS_PLACE_OOB;
   2670 
   2671 	ret = nand_do_write_ops(mtd, to, &ops);
   2672 
   2673 	*retlen = ops.retlen;
   2674 	return ret;
   2675 }
   2676 
   2677 /**
   2678  * nand_write - [MTD Interface] NAND write with ECC
   2679  * @mtd: MTD device structure
   2680  * @to: offset to write to
   2681  * @len: number of bytes to write
   2682  * @retlen: pointer to variable to store the number of written bytes
   2683  * @buf: the data to write
   2684  *
   2685  * NAND write with ECC.
   2686  */
   2687 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
   2688 			  size_t *retlen, const uint8_t *buf)
   2689 {
   2690 	struct mtd_oob_ops ops;
   2691 	int ret;
   2692 
   2693 	nand_get_device(mtd, FL_WRITING);
   2694 	memset(&ops, 0, sizeof(ops));
   2695 	ops.len = len;
   2696 	ops.datbuf = (uint8_t *)buf;
   2697 	ops.mode = MTD_OPS_PLACE_OOB;
   2698 	ret = nand_do_write_ops(mtd, to, &ops);
   2699 	*retlen = ops.retlen;
   2700 	nand_release_device(mtd);
   2701 	return ret;
   2702 }
   2703 
   2704 /**
   2705  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
   2706  * @mtd: MTD device structure
   2707  * @to: offset to write to
   2708  * @ops: oob operation description structure
   2709  *
   2710  * NAND write out-of-band.
   2711  */
   2712 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
   2713 			     struct mtd_oob_ops *ops)
   2714 {
   2715 	int chipnr, page, status, len;
   2716 	struct nand_chip *chip = mtd_to_nand(mtd);
   2717 
   2718 	pr_debug("%s: to = 0x%08x, len = %i\n",
   2719 			 __func__, (unsigned int)to, (int)ops->ooblen);
   2720 
   2721 	len = mtd_oobavail(mtd, ops);
   2722 
   2723 	/* Do not allow write past end of page */
   2724 	if ((ops->ooboffs + ops->ooblen) > len) {
   2725 		pr_debug("%s: attempt to write past end of page\n",
   2726 				__func__);
   2727 		return -EINVAL;
   2728 	}
   2729 
   2730 	if (unlikely(ops->ooboffs >= len)) {
   2731 		pr_debug("%s: attempt to start write outside oob\n",
   2732 				__func__);
   2733 		return -EINVAL;
   2734 	}
   2735 
   2736 	/* Do not allow write past end of device */
   2737 	if (unlikely(to >= mtd->size ||
   2738 		     ops->ooboffs + ops->ooblen >
   2739 			((mtd->size >> chip->page_shift) -
   2740 			 (to >> chip->page_shift)) * len)) {
   2741 		pr_debug("%s: attempt to write beyond end of device\n",
   2742 				__func__);
   2743 		return -EINVAL;
   2744 	}
   2745 
   2746 	chipnr = (int)(to >> chip->chip_shift);
   2747 
   2748 	/*
   2749 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
   2750 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
   2751 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
   2752 	 * it in the doc2000 driver in August 1999.  dwmw2.
   2753 	 */
   2754 	nand_reset(chip, chipnr);
   2755 
   2756 	chip->select_chip(mtd, chipnr);
   2757 
   2758 	/* Shift to get page */
   2759 	page = (int)(to >> chip->page_shift);
   2760 
   2761 	/* Check, if it is write protected */
   2762 	if (nand_check_wp(mtd)) {
   2763 		chip->select_chip(mtd, -1);
   2764 		return -EROFS;
   2765 	}
   2766 
   2767 	/* Invalidate the page cache, if we write to the cached page */
   2768 	if (page == chip->pagebuf)
   2769 		chip->pagebuf = -1;
   2770 
   2771 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
   2772 
   2773 	if (ops->mode == MTD_OPS_RAW)
   2774 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
   2775 	else
   2776 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
   2777 
   2778 	chip->select_chip(mtd, -1);
   2779 
   2780 	if (status)
   2781 		return status;
   2782 
   2783 	ops->oobretlen = ops->ooblen;
   2784 
   2785 	return 0;
   2786 }
   2787 
   2788 /**
   2789  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
   2790  * @mtd: MTD device structure
   2791  * @to: offset to write to
   2792  * @ops: oob operation description structure
   2793  */
   2794 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
   2795 			  struct mtd_oob_ops *ops)
   2796 {
   2797 	int ret = -ENOTSUPP;
   2798 
   2799 	ops->retlen = 0;
   2800 
   2801 	/* Do not allow writes past end of device */
   2802 	if (ops->datbuf && (to + ops->len) > mtd->size) {
   2803 		pr_debug("%s: attempt to write beyond end of device\n",
   2804 				__func__);
   2805 		return -EINVAL;
   2806 	}
   2807 
   2808 	nand_get_device(mtd, FL_WRITING);
   2809 
   2810 	switch (ops->mode) {
   2811 	case MTD_OPS_PLACE_OOB:
   2812 	case MTD_OPS_AUTO_OOB:
   2813 	case MTD_OPS_RAW:
   2814 		break;
   2815 
   2816 	default:
   2817 		goto out;
   2818 	}
   2819 
   2820 	if (!ops->datbuf)
   2821 		ret = nand_do_write_oob(mtd, to, ops);
   2822 	else
   2823 		ret = nand_do_write_ops(mtd, to, ops);
   2824 
   2825 out:
   2826 	nand_release_device(mtd);
   2827 	return ret;
   2828 }
   2829 
   2830 /**
   2831  * single_erase - [GENERIC] NAND standard block erase command function
   2832  * @mtd: MTD device structure
   2833  * @page: the page address of the block which will be erased
   2834  *
   2835  * Standard erase command for NAND chips. Returns NAND status.
   2836  */
   2837 static int single_erase(struct mtd_info *mtd, int page)
   2838 {
   2839 	struct nand_chip *chip = mtd_to_nand(mtd);
   2840 	/* Send commands to erase a block */
   2841 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
   2842 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
   2843 
   2844 	return chip->waitfunc(mtd, chip);
   2845 }
   2846 
   2847 /**
   2848  * nand_erase - [MTD Interface] erase block(s)
   2849  * @mtd: MTD device structure
   2850  * @instr: erase instruction
   2851  *
   2852  * Erase one ore more blocks.
   2853  */
   2854 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
   2855 {
   2856 	return nand_erase_nand(mtd, instr, 0);
   2857 }
   2858 
   2859 /**
   2860  * nand_erase_nand - [INTERN] erase block(s)
   2861  * @mtd: MTD device structure
   2862  * @instr: erase instruction
   2863  * @allowbbt: allow erasing the bbt area
   2864  *
   2865  * Erase one ore more blocks.
   2866  */
   2867 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
   2868 		    int allowbbt)
   2869 {
   2870 	int page, status, pages_per_block, ret, chipnr;
   2871 	struct nand_chip *chip = mtd_to_nand(mtd);
   2872 	loff_t len;
   2873 
   2874 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
   2875 			__func__, (unsigned long long)instr->addr,
   2876 			(unsigned long long)instr->len);
   2877 
   2878 	if (check_offs_len(mtd, instr->addr, instr->len))
   2879 		return -EINVAL;
   2880 
   2881 	/* Grab the lock and see if the device is available */
   2882 	nand_get_device(mtd, FL_ERASING);
   2883 
   2884 	/* Shift to get first page */
   2885 	page = (int)(instr->addr >> chip->page_shift);
   2886 	chipnr = (int)(instr->addr >> chip->chip_shift);
   2887 
   2888 	/* Calculate pages in each block */
   2889 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
   2890 
   2891 	/* Select the NAND device */
   2892 	chip->select_chip(mtd, chipnr);
   2893 
   2894 	/* Check, if it is write protected */
   2895 	if (nand_check_wp(mtd)) {
   2896 		pr_debug("%s: device is write protected!\n",
   2897 				__func__);
   2898 		instr->state = MTD_ERASE_FAILED;
   2899 		goto erase_exit;
   2900 	}
   2901 
   2902 	/* Loop through the pages */
   2903 	len = instr->len;
   2904 
   2905 	instr->state = MTD_ERASING;
   2906 
   2907 	while (len) {
   2908 		WATCHDOG_RESET();
   2909 
   2910 		/* Check if we have a bad block, we do not erase bad blocks! */
   2911 		if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
   2912 					chip->page_shift, allowbbt)) {
   2913 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
   2914 				    __func__, page);
   2915 			instr->state = MTD_ERASE_FAILED;
   2916 			goto erase_exit;
   2917 		}
   2918 
   2919 		/*
   2920 		 * Invalidate the page cache, if we erase the block which
   2921 		 * contains the current cached page.
   2922 		 */
   2923 		if (page <= chip->pagebuf && chip->pagebuf <
   2924 		    (page + pages_per_block))
   2925 			chip->pagebuf = -1;
   2926 
   2927 		status = chip->erase(mtd, page & chip->pagemask);
   2928 
   2929 		/* See if block erase succeeded */
   2930 		if (status & NAND_STATUS_FAIL) {
   2931 			pr_debug("%s: failed erase, page 0x%08x\n",
   2932 					__func__, page);
   2933 			instr->state = MTD_ERASE_FAILED;
   2934 			instr->fail_addr =
   2935 				((loff_t)page << chip->page_shift);
   2936 			goto erase_exit;
   2937 		}
   2938 
   2939 		/* Increment page address and decrement length */
   2940 		len -= (1ULL << chip->phys_erase_shift);
   2941 		page += pages_per_block;
   2942 
   2943 		/* Check, if we cross a chip boundary */
   2944 		if (len && !(page & chip->pagemask)) {
   2945 			chipnr++;
   2946 			chip->select_chip(mtd, -1);
   2947 			chip->select_chip(mtd, chipnr);
   2948 		}
   2949 	}
   2950 	instr->state = MTD_ERASE_DONE;
   2951 
   2952 erase_exit:
   2953 
   2954 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
   2955 
   2956 	/* Deselect and wake up anyone waiting on the device */
   2957 	chip->select_chip(mtd, -1);
   2958 	nand_release_device(mtd);
   2959 
   2960 	/* Do call back function */
   2961 	if (!ret)
   2962 		mtd_erase_callback(instr);
   2963 
   2964 	/* Return more or less happy */
   2965 	return ret;
   2966 }
   2967 
   2968 /**
   2969  * nand_sync - [MTD Interface] sync
   2970  * @mtd: MTD device structure
   2971  *
   2972  * Sync is actually a wait for chip ready function.
   2973  */
   2974 static void nand_sync(struct mtd_info *mtd)
   2975 {
   2976 	pr_debug("%s: called\n", __func__);
   2977 
   2978 	/* Grab the lock and see if the device is available */
   2979 	nand_get_device(mtd, FL_SYNCING);
   2980 	/* Release it and go back */
   2981 	nand_release_device(mtd);
   2982 }
   2983 
   2984 /**
   2985  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
   2986  * @mtd: MTD device structure
   2987  * @offs: offset relative to mtd start
   2988  */
   2989 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
   2990 {
   2991 	struct nand_chip *chip = mtd_to_nand(mtd);
   2992 	int chipnr = (int)(offs >> chip->chip_shift);
   2993 	int ret;
   2994 
   2995 	/* Select the NAND device */
   2996 	nand_get_device(mtd, FL_READING);
   2997 	chip->select_chip(mtd, chipnr);
   2998 
   2999 	ret = nand_block_checkbad(mtd, offs, 0);
   3000 
   3001 	chip->select_chip(mtd, -1);
   3002 	nand_release_device(mtd);
   3003 
   3004 	return ret;
   3005 }
   3006 
   3007 /**
   3008  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
   3009  * @mtd: MTD device structure
   3010  * @ofs: offset relative to mtd start
   3011  */
   3012 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
   3013 {
   3014 	int ret;
   3015 
   3016 	ret = nand_block_isbad(mtd, ofs);
   3017 	if (ret) {
   3018 		/* If it was bad already, return success and do nothing */
   3019 		if (ret > 0)
   3020 			return 0;
   3021 		return ret;
   3022 	}
   3023 
   3024 	return nand_block_markbad_lowlevel(mtd, ofs);
   3025 }
   3026 
   3027 /**
   3028  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
   3029  * @mtd: MTD device structure
   3030  * @chip: nand chip info structure
   3031  * @addr: feature address.
   3032  * @subfeature_param: the subfeature parameters, a four bytes array.
   3033  */
   3034 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
   3035 			int addr, uint8_t *subfeature_param)
   3036 {
   3037 	int status;
   3038 	int i;
   3039 
   3040 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
   3041 	if (!chip->onfi_version ||
   3042 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
   3043 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
   3044 		return -EINVAL;
   3045 #endif
   3046 
   3047 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
   3048 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
   3049 		chip->write_byte(mtd, subfeature_param[i]);
   3050 
   3051 	status = chip->waitfunc(mtd, chip);
   3052 	if (status & NAND_STATUS_FAIL)
   3053 		return -EIO;
   3054 	return 0;
   3055 }
   3056 
   3057 /**
   3058  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
   3059  * @mtd: MTD device structure
   3060  * @chip: nand chip info structure
   3061  * @addr: feature address.
   3062  * @subfeature_param: the subfeature parameters, a four bytes array.
   3063  */
   3064 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
   3065 			int addr, uint8_t *subfeature_param)
   3066 {
   3067 	int i;
   3068 
   3069 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
   3070 	if (!chip->onfi_version ||
   3071 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
   3072 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
   3073 		return -EINVAL;
   3074 #endif
   3075 
   3076 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
   3077 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
   3078 		*subfeature_param++ = chip->read_byte(mtd);
   3079 	return 0;
   3080 }
   3081 
   3082 /* Set default functions */
   3083 static void nand_set_defaults(struct nand_chip *chip, int busw)
   3084 {
   3085 	/* check for proper chip_delay setup, set 20us if not */
   3086 	if (!chip->chip_delay)
   3087 		chip->chip_delay = 20;
   3088 
   3089 	/* check, if a user supplied command function given */
   3090 	if (chip->cmdfunc == NULL)
   3091 		chip->cmdfunc = nand_command;
   3092 
   3093 	/* check, if a user supplied wait function given */
   3094 	if (chip->waitfunc == NULL)
   3095 		chip->waitfunc = nand_wait;
   3096 
   3097 	if (!chip->select_chip)
   3098 		chip->select_chip = nand_select_chip;
   3099 
   3100 	/* set for ONFI nand */
   3101 	if (!chip->onfi_set_features)
   3102 		chip->onfi_set_features = nand_onfi_set_features;
   3103 	if (!chip->onfi_get_features)
   3104 		chip->onfi_get_features = nand_onfi_get_features;
   3105 
   3106 	/* If called twice, pointers that depend on busw may need to be reset */
   3107 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
   3108 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
   3109 	if (!chip->read_word)
   3110 		chip->read_word = nand_read_word;
   3111 	if (!chip->block_bad)
   3112 		chip->block_bad = nand_block_bad;
   3113 	if (!chip->block_markbad)
   3114 		chip->block_markbad = nand_default_block_markbad;
   3115 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
   3116 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
   3117 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
   3118 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
   3119 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
   3120 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
   3121 	if (!chip->scan_bbt)
   3122 		chip->scan_bbt = nand_default_bbt;
   3123 
   3124 	if (!chip->controller) {
   3125 		chip->controller = &chip->hwcontrol;
   3126 		spin_lock_init(&chip->controller->lock);
   3127 		init_waitqueue_head(&chip->controller->wq);
   3128 	}
   3129 
   3130 	if (!chip->buf_align)
   3131 		chip->buf_align = 1;
   3132 }
   3133 
   3134 /* Sanitize ONFI strings so we can safely print them */
   3135 static void sanitize_string(char *s, size_t len)
   3136 {
   3137 	ssize_t i;
   3138 
   3139 	/* Null terminate */
   3140 	s[len - 1] = 0;
   3141 
   3142 	/* Remove non printable chars */
   3143 	for (i = 0; i < len - 1; i++) {
   3144 		if (s[i] < ' ' || s[i] > 127)
   3145 			s[i] = '?';
   3146 	}
   3147 
   3148 	/* Remove trailing spaces */
   3149 	strim(s);
   3150 }
   3151 
   3152 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
   3153 {
   3154 	int i;
   3155 	while (len--) {
   3156 		crc ^= *p++ << 8;
   3157 		for (i = 0; i < 8; i++)
   3158 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
   3159 	}
   3160 
   3161 	return crc;
   3162 }
   3163 
   3164 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
   3165 /* Parse the Extended Parameter Page. */
   3166 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
   3167 		struct nand_chip *chip, struct nand_onfi_params *p)
   3168 {
   3169 	struct onfi_ext_param_page *ep;
   3170 	struct onfi_ext_section *s;
   3171 	struct onfi_ext_ecc_info *ecc;
   3172 	uint8_t *cursor;
   3173 	int ret = -EINVAL;
   3174 	int len;
   3175 	int i;
   3176 
   3177 	len = le16_to_cpu(p->ext_param_page_length) * 16;
   3178 	ep = kmalloc(len, GFP_KERNEL);
   3179 	if (!ep)
   3180 		return -ENOMEM;
   3181 
   3182 	/* Send our own NAND_CMD_PARAM. */
   3183 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
   3184 
   3185 	/* Use the Change Read Column command to skip the ONFI param pages. */
   3186 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
   3187 			sizeof(*p) * p->num_of_param_pages , -1);
   3188 
   3189 	/* Read out the Extended Parameter Page. */
   3190 	chip->read_buf(mtd, (uint8_t *)ep, len);
   3191 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
   3192 		!= le16_to_cpu(ep->crc))) {
   3193 		pr_debug("fail in the CRC.\n");
   3194 		goto ext_out;
   3195 	}
   3196 
   3197 	/*
   3198 	 * Check the signature.
   3199 	 * Do not strictly follow the ONFI spec, maybe changed in future.
   3200 	 */
   3201 	if (strncmp((char *)ep->sig, "EPPS", 4)) {
   3202 		pr_debug("The signature is invalid.\n");
   3203 		goto ext_out;
   3204 	}
   3205 
   3206 	/* find the ECC section. */
   3207 	cursor = (uint8_t *)(ep + 1);
   3208 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
   3209 		s = ep->sections + i;
   3210 		if (s->type == ONFI_SECTION_TYPE_2)
   3211 			break;
   3212 		cursor += s->length * 16;
   3213 	}
   3214 	if (i == ONFI_EXT_SECTION_MAX) {
   3215 		pr_debug("We can not find the ECC section.\n");
   3216 		goto ext_out;
   3217 	}
   3218 
   3219 	/* get the info we want. */
   3220 	ecc = (struct onfi_ext_ecc_info *)cursor;
   3221 
   3222 	if (!ecc->codeword_size) {
   3223 		pr_debug("Invalid codeword size\n");
   3224 		goto ext_out;
   3225 	}
   3226 
   3227 	chip->ecc_strength_ds = ecc->ecc_bits;
   3228 	chip->ecc_step_ds = 1 << ecc->codeword_size;
   3229 	ret = 0;
   3230 
   3231 ext_out:
   3232 	kfree(ep);
   3233 	return ret;
   3234 }
   3235 
   3236 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
   3237 {
   3238 	struct nand_chip *chip = mtd_to_nand(mtd);
   3239 	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
   3240 
   3241 	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
   3242 			feature);
   3243 }
   3244 
   3245 /*
   3246  * Configure chip properties from Micron vendor-specific ONFI table
   3247  */
   3248 static void nand_onfi_detect_micron(struct nand_chip *chip,
   3249 		struct nand_onfi_params *p)
   3250 {
   3251 	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
   3252 
   3253 	if (le16_to_cpu(p->vendor_revision) < 1)
   3254 		return;
   3255 
   3256 	chip->read_retries = micron->read_retry_options;
   3257 	chip->setup_read_retry = nand_setup_read_retry_micron;
   3258 }
   3259 
   3260 /*
   3261  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
   3262  */
   3263 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
   3264 					int *busw)
   3265 {
   3266 	struct nand_onfi_params *p = &chip->onfi_params;
   3267 	int i, j;
   3268 	int val;
   3269 
   3270 	/* Try ONFI for unknown chip or LP */
   3271 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
   3272 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
   3273 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
   3274 		return 0;
   3275 
   3276 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
   3277 	for (i = 0; i < 3; i++) {
   3278 		for (j = 0; j < sizeof(*p); j++)
   3279 			((uint8_t *)p)[j] = chip->read_byte(mtd);
   3280 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
   3281 				le16_to_cpu(p->crc)) {
   3282 			break;
   3283 		}
   3284 	}
   3285 
   3286 	if (i == 3) {
   3287 		pr_err("Could not find valid ONFI parameter page; aborting\n");
   3288 		return 0;
   3289 	}
   3290 
   3291 	/* Check version */
   3292 	val = le16_to_cpu(p->revision);
   3293 	if (val & (1 << 5))
   3294 		chip->onfi_version = 23;
   3295 	else if (val & (1 << 4))
   3296 		chip->onfi_version = 22;
   3297 	else if (val & (1 << 3))
   3298 		chip->onfi_version = 21;
   3299 	else if (val & (1 << 2))
   3300 		chip->onfi_version = 20;
   3301 	else if (val & (1 << 1))
   3302 		chip->onfi_version = 10;
   3303 
   3304 	if (!chip->onfi_version) {
   3305 		pr_info("unsupported ONFI version: %d\n", val);
   3306 		return 0;
   3307 	}
   3308 
   3309 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
   3310 	sanitize_string(p->model, sizeof(p->model));
   3311 	if (!mtd->name)
   3312 		mtd->name = p->model;
   3313 
   3314 	mtd->writesize = le32_to_cpu(p->byte_per_page);
   3315 
   3316 	/*
   3317 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
   3318 	 * (don't ask me who thought of this...). MTD assumes that these
   3319 	 * dimensions will be power-of-2, so just truncate the remaining area.
   3320 	 */
   3321 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
   3322 	mtd->erasesize *= mtd->writesize;
   3323 
   3324 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
   3325 
   3326 	/* See erasesize comment */
   3327 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
   3328 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
   3329 	chip->bits_per_cell = p->bits_per_cell;
   3330 
   3331 	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
   3332 		*busw = NAND_BUSWIDTH_16;
   3333 	else
   3334 		*busw = 0;
   3335 
   3336 	if (p->ecc_bits != 0xff) {
   3337 		chip->ecc_strength_ds = p->ecc_bits;
   3338 		chip->ecc_step_ds = 512;
   3339 	} else if (chip->onfi_version >= 21 &&
   3340 		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
   3341 
   3342 		/*
   3343 		 * The nand_flash_detect_ext_param_page() uses the
   3344 		 * Change Read Column command which maybe not supported
   3345 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
   3346 		 * now. We do not replace user supplied command function.
   3347 		 */
   3348 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
   3349 			chip->cmdfunc = nand_command_lp;
   3350 
   3351 		/* The Extended Parameter Page is supported since ONFI 2.1. */
   3352 		if (nand_flash_detect_ext_param_page(mtd, chip, p))
   3353 			pr_warn("Failed to detect ONFI extended param page\n");
   3354 	} else {
   3355 		pr_warn("Could not retrieve ONFI ECC requirements\n");
   3356 	}
   3357 
   3358 	if (p->jedec_id == NAND_MFR_MICRON)
   3359 		nand_onfi_detect_micron(chip, p);
   3360 
   3361 	return 1;
   3362 }
   3363 #else
   3364 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
   3365 					int *busw)
   3366 {
   3367 	return 0;
   3368 }
   3369 #endif
   3370 
   3371 /*
   3372  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
   3373  */
   3374 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
   3375 					int *busw)
   3376 {
   3377 	struct nand_jedec_params *p = &chip->jedec_params;
   3378 	struct jedec_ecc_info *ecc;
   3379 	int val;
   3380 	int i, j;
   3381 
   3382 	/* Try JEDEC for unknown chip or LP */
   3383 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
   3384 	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
   3385 		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
   3386 		chip->read_byte(mtd) != 'C')
   3387 		return 0;
   3388 
   3389 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
   3390 	for (i = 0; i < 3; i++) {
   3391 		for (j = 0; j < sizeof(*p); j++)
   3392 			((uint8_t *)p)[j] = chip->read_byte(mtd);
   3393 
   3394 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
   3395 				le16_to_cpu(p->crc))
   3396 			break;
   3397 	}
   3398 
   3399 	if (i == 3) {
   3400 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
   3401 		return 0;
   3402 	}
   3403 
   3404 	/* Check version */
   3405 	val = le16_to_cpu(p->revision);
   3406 	if (val & (1 << 2))
   3407 		chip->jedec_version = 10;
   3408 	else if (val & (1 << 1))
   3409 		chip->jedec_version = 1; /* vendor specific version */
   3410 
   3411 	if (!chip->jedec_version) {
   3412 		pr_info("unsupported JEDEC version: %d\n", val);
   3413 		return 0;
   3414 	}
   3415 
   3416 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
   3417 	sanitize_string(p->model, sizeof(p->model));
   3418 	if (!mtd->name)
   3419 		mtd->name = p->model;
   3420 
   3421 	mtd->writesize = le32_to_cpu(p->byte_per_page);
   3422 
   3423 	/* Please reference to the comment for nand_flash_detect_onfi. */
   3424 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
   3425 	mtd->erasesize *= mtd->writesize;
   3426 
   3427 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
   3428 
   3429 	/* Please reference to the comment for nand_flash_detect_onfi. */
   3430 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
   3431 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
   3432 	chip->bits_per_cell = p->bits_per_cell;
   3433 
   3434 	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
   3435 		*busw = NAND_BUSWIDTH_16;
   3436 	else
   3437 		*busw = 0;
   3438 
   3439 	/* ECC info */
   3440 	ecc = &p->ecc_info[0];
   3441 
   3442 	if (ecc->codeword_size >= 9) {
   3443 		chip->ecc_strength_ds = ecc->ecc_bits;
   3444 		chip->ecc_step_ds = 1 << ecc->codeword_size;
   3445 	} else {
   3446 		pr_warn("Invalid codeword size\n");
   3447 	}
   3448 
   3449 	return 1;
   3450 }
   3451 
   3452 /*
   3453  * nand_id_has_period - Check if an ID string has a given wraparound period
   3454  * @id_data: the ID string
   3455  * @arrlen: the length of the @id_data array
   3456  * @period: the period of repitition
   3457  *
   3458  * Check if an ID string is repeated within a given sequence of bytes at
   3459  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
   3460  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
   3461  * if the repetition has a period of @period; otherwise, returns zero.
   3462  */
   3463 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
   3464 {
   3465 	int i, j;
   3466 	for (i = 0; i < period; i++)
   3467 		for (j = i + period; j < arrlen; j += period)
   3468 			if (id_data[i] != id_data[j])
   3469 				return 0;
   3470 	return 1;
   3471 }
   3472 
   3473 /*
   3474  * nand_id_len - Get the length of an ID string returned by CMD_READID
   3475  * @id_data: the ID string
   3476  * @arrlen: the length of the @id_data array
   3477 
   3478  * Returns the length of the ID string, according to known wraparound/trailing
   3479  * zero patterns. If no pattern exists, returns the length of the array.
   3480  */
   3481 static int nand_id_len(u8 *id_data, int arrlen)
   3482 {
   3483 	int last_nonzero, period;
   3484 
   3485 	/* Find last non-zero byte */
   3486 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
   3487 		if (id_data[last_nonzero])
   3488 			break;
   3489 
   3490 	/* All zeros */
   3491 	if (last_nonzero < 0)
   3492 		return 0;
   3493 
   3494 	/* Calculate wraparound period */
   3495 	for (period = 1; period < arrlen; period++)
   3496 		if (nand_id_has_period(id_data, arrlen, period))
   3497 			break;
   3498 
   3499 	/* There's a repeated pattern */
   3500 	if (period < arrlen)
   3501 		return period;
   3502 
   3503 	/* There are trailing zeros */
   3504 	if (last_nonzero < arrlen - 1)
   3505 		return last_nonzero + 1;
   3506 
   3507 	/* No pattern detected */
   3508 	return arrlen;
   3509 }
   3510 
   3511 /* Extract the bits of per cell from the 3rd byte of the extended ID */
   3512 static int nand_get_bits_per_cell(u8 cellinfo)
   3513 {
   3514 	int bits;
   3515 
   3516 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
   3517 	bits >>= NAND_CI_CELLTYPE_SHIFT;
   3518 	return bits + 1;
   3519 }
   3520 
   3521 /*
   3522  * Many new NAND share similar device ID codes, which represent the size of the
   3523  * chip. The rest of the parameters must be decoded according to generic or
   3524  * manufacturer-specific "extended ID" decoding patterns.
   3525  */
   3526 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
   3527 				u8 id_data[8], int *busw)
   3528 {
   3529 	int extid, id_len;
   3530 	/* The 3rd id byte holds MLC / multichip data */
   3531 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
   3532 	/* The 4th id byte is the important one */
   3533 	extid = id_data[3];
   3534 
   3535 	id_len = nand_id_len(id_data, 8);
   3536 
   3537 	/*
   3538 	 * Field definitions are in the following datasheets:
   3539 	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
   3540 	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
   3541 	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
   3542 	 *
   3543 	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
   3544 	 * ID to decide what to do.
   3545 	 */
   3546 	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
   3547 			!nand_is_slc(chip) && id_data[5] != 0x00) {
   3548 		/* Calc pagesize */
   3549 		mtd->writesize = 2048 << (extid & 0x03);
   3550 		extid >>= 2;
   3551 		/* Calc oobsize */
   3552 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
   3553 		case 1:
   3554 			mtd->oobsize = 128;
   3555 			break;
   3556 		case 2:
   3557 			mtd->oobsize = 218;
   3558 			break;
   3559 		case 3:
   3560 			mtd->oobsize = 400;
   3561 			break;
   3562 		case 4:
   3563 			mtd->oobsize = 436;
   3564 			break;
   3565 		case 5:
   3566 			mtd->oobsize = 512;
   3567 			break;
   3568 		case 6:
   3569 			mtd->oobsize = 640;
   3570 			break;
   3571 		case 7:
   3572 		default: /* Other cases are "reserved" (unknown) */
   3573 			mtd->oobsize = 1024;
   3574 			break;
   3575 		}
   3576 		extid >>= 2;
   3577 		/* Calc blocksize */
   3578 		mtd->erasesize = (128 * 1024) <<
   3579 			(((extid >> 1) & 0x04) | (extid & 0x03));
   3580 		*busw = 0;
   3581 	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
   3582 			!nand_is_slc(chip)) {
   3583 		unsigned int tmp;
   3584 
   3585 		/* Calc pagesize */
   3586 		mtd->writesize = 2048 << (extid & 0x03);
   3587 		extid >>= 2;
   3588 		/* Calc oobsize */
   3589 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
   3590 		case 0:
   3591 			mtd->oobsize = 128;
   3592 			break;
   3593 		case 1:
   3594 			mtd->oobsize = 224;
   3595 			break;
   3596 		case 2:
   3597 			mtd->oobsize = 448;
   3598 			break;
   3599 		case 3:
   3600 			mtd->oobsize = 64;
   3601 			break;
   3602 		case 4:
   3603 			mtd->oobsize = 32;
   3604 			break;
   3605 		case 5:
   3606 			mtd->oobsize = 16;
   3607 			break;
   3608 		default:
   3609 			mtd->oobsize = 640;
   3610 			break;
   3611 		}
   3612 		extid >>= 2;
   3613 		/* Calc blocksize */
   3614 		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
   3615 		if (tmp < 0x03)
   3616 			mtd->erasesize = (128 * 1024) << tmp;
   3617 		else if (tmp == 0x03)
   3618 			mtd->erasesize = 768 * 1024;
   3619 		else
   3620 			mtd->erasesize = (64 * 1024) << tmp;
   3621 		*busw = 0;
   3622 	} else {
   3623 		/* Calc pagesize */
   3624 		mtd->writesize = 1024 << (extid & 0x03);
   3625 		extid >>= 2;
   3626 		/* Calc oobsize */
   3627 		mtd->oobsize = (8 << (extid & 0x01)) *
   3628 			(mtd->writesize >> 9);
   3629 		extid >>= 2;
   3630 		/* Calc blocksize. Blocksize is multiples of 64KiB */
   3631 		mtd->erasesize = (64 * 1024) << (extid & 0x03);
   3632 		extid >>= 2;
   3633 		/* Get buswidth information */
   3634 		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
   3635 
   3636 		/*
   3637 		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
   3638 		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
   3639 		 * follows:
   3640 		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
   3641 		 *                         110b -> 24nm
   3642 		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
   3643 		 */
   3644 		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
   3645 				nand_is_slc(chip) &&
   3646 				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
   3647 				!(id_data[4] & 0x80) /* !BENAND */) {
   3648 			mtd->oobsize = 32 * mtd->writesize >> 9;
   3649 		}
   3650 
   3651 	}
   3652 }
   3653 
   3654 /*
   3655  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
   3656  * decodes a matching ID table entry and assigns the MTD size parameters for
   3657  * the chip.
   3658  */
   3659 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
   3660 				struct nand_flash_dev *type, u8 id_data[8],
   3661 				int *busw)
   3662 {
   3663 	int maf_id = id_data[0];
   3664 
   3665 	mtd->erasesize = type->erasesize;
   3666 	mtd->writesize = type->pagesize;
   3667 	mtd->oobsize = mtd->writesize / 32;
   3668 	*busw = type->options & NAND_BUSWIDTH_16;
   3669 
   3670 	/* All legacy ID NAND are small-page, SLC */
   3671 	chip->bits_per_cell = 1;
   3672 
   3673 	/*
   3674 	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
   3675 	 * some Spansion chips have erasesize that conflicts with size
   3676 	 * listed in nand_ids table.
   3677 	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
   3678 	 */
   3679 	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
   3680 			&& id_data[6] == 0x00 && id_data[7] == 0x00
   3681 			&& mtd->writesize == 512) {
   3682 		mtd->erasesize = 128 * 1024;
   3683 		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
   3684 	}
   3685 }
   3686 
   3687 /*
   3688  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
   3689  * heuristic patterns using various detected parameters (e.g., manufacturer,
   3690  * page size, cell-type information).
   3691  */
   3692 static void nand_decode_bbm_options(struct mtd_info *mtd,
   3693 				    struct nand_chip *chip, u8 id_data[8])
   3694 {
   3695 	int maf_id = id_data[0];
   3696 
   3697 	/* Set the bad block position */
   3698 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
   3699 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
   3700 	else
   3701 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
   3702 
   3703 	/*
   3704 	 * Bad block marker is stored in the last page of each block on Samsung
   3705 	 * and Hynix MLC devices; stored in first two pages of each block on
   3706 	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
   3707 	 * AMD/Spansion, and Macronix.  All others scan only the first page.
   3708 	 */
   3709 	if (!nand_is_slc(chip) &&
   3710 			(maf_id == NAND_MFR_SAMSUNG ||
   3711 			 maf_id == NAND_MFR_HYNIX))
   3712 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
   3713 	else if ((nand_is_slc(chip) &&
   3714 				(maf_id == NAND_MFR_SAMSUNG ||
   3715 				 maf_id == NAND_MFR_HYNIX ||
   3716 				 maf_id == NAND_MFR_TOSHIBA ||
   3717 				 maf_id == NAND_MFR_AMD ||
   3718 				 maf_id == NAND_MFR_MACRONIX)) ||
   3719 			(mtd->writesize == 2048 &&
   3720 			 maf_id == NAND_MFR_MICRON))
   3721 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
   3722 }
   3723 
   3724 static inline bool is_full_id_nand(struct nand_flash_dev *type)
   3725 {
   3726 	return type->id_len;
   3727 }
   3728 
   3729 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
   3730 		   struct nand_flash_dev *type, u8 *id_data, int *busw)
   3731 {
   3732 	if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
   3733 		mtd->writesize = type->pagesize;
   3734 		mtd->erasesize = type->erasesize;
   3735 		mtd->oobsize = type->oobsize;
   3736 
   3737 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
   3738 		chip->chipsize = (uint64_t)type->chipsize << 20;
   3739 		chip->options |= type->options;
   3740 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
   3741 		chip->ecc_step_ds = NAND_ECC_STEP(type);
   3742 		chip->onfi_timing_mode_default =
   3743 					type->onfi_timing_mode_default;
   3744 
   3745 		*busw = type->options & NAND_BUSWIDTH_16;
   3746 
   3747 		if (!mtd->name)
   3748 			mtd->name = type->name;
   3749 
   3750 		return true;
   3751 	}
   3752 	return false;
   3753 }
   3754 
   3755 /*
   3756  * Get the flash and manufacturer id and lookup if the type is supported.
   3757  */
   3758 struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
   3759 						  struct nand_chip *chip,
   3760 						  int *maf_id, int *dev_id,
   3761 						  struct nand_flash_dev *type)
   3762 {
   3763 	int busw;
   3764 	int i, maf_idx;
   3765 	u8 id_data[8];
   3766 
   3767 	/*
   3768 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
   3769 	 * after power-up.
   3770 	 */
   3771 	nand_reset(chip, 0);
   3772 
   3773 	/* Select the device */
   3774 	chip->select_chip(mtd, 0);
   3775 
   3776 	/* Send the command for reading device ID */
   3777 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
   3778 
   3779 	/* Read manufacturer and device IDs */
   3780 	*maf_id = chip->read_byte(mtd);
   3781 	*dev_id = chip->read_byte(mtd);
   3782 
   3783 	/*
   3784 	 * Try again to make sure, as some systems the bus-hold or other
   3785 	 * interface concerns can cause random data which looks like a
   3786 	 * possibly credible NAND flash to appear. If the two results do
   3787 	 * not match, ignore the device completely.
   3788 	 */
   3789 
   3790 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
   3791 
   3792 	/* Read entire ID string */
   3793 	for (i = 0; i < 8; i++)
   3794 		id_data[i] = chip->read_byte(mtd);
   3795 
   3796 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
   3797 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
   3798 			*maf_id, *dev_id, id_data[0], id_data[1]);
   3799 		return ERR_PTR(-ENODEV);
   3800 	}
   3801 
   3802 	if (!type)
   3803 		type = nand_flash_ids;
   3804 
   3805 	for (; type->name != NULL; type++) {
   3806 		if (is_full_id_nand(type)) {
   3807 			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
   3808 				goto ident_done;
   3809 		} else if (*dev_id == type->dev_id) {
   3810 			break;
   3811 		}
   3812 	}
   3813 
   3814 	chip->onfi_version = 0;
   3815 	if (!type->name || !type->pagesize) {
   3816 		/* Check if the chip is ONFI compliant */
   3817 		if (nand_flash_detect_onfi(mtd, chip, &busw))
   3818 			goto ident_done;
   3819 
   3820 		/* Check if the chip is JEDEC compliant */
   3821 		if (nand_flash_detect_jedec(mtd, chip, &busw))
   3822 			goto ident_done;
   3823 	}
   3824 
   3825 	if (!type->name)
   3826 		return ERR_PTR(-ENODEV);
   3827 
   3828 	if (!mtd->name)
   3829 		mtd->name = type->name;
   3830 
   3831 	chip->chipsize = (uint64_t)type->chipsize << 20;
   3832 
   3833 	if (!type->pagesize) {
   3834 		/* Decode parameters from extended ID */
   3835 		nand_decode_ext_id(mtd, chip, id_data, &busw);
   3836 	} else {
   3837 		nand_decode_id(mtd, chip, type, id_data, &busw);
   3838 	}
   3839 	/* Get chip options */
   3840 	chip->options |= type->options;
   3841 
   3842 	/*
   3843 	 * Check if chip is not a Samsung device. Do not clear the
   3844 	 * options for chips which do not have an extended id.
   3845 	 */
   3846 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
   3847 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
   3848 ident_done:
   3849 
   3850 	/* Try to identify manufacturer */
   3851 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
   3852 		if (nand_manuf_ids[maf_idx].id == *maf_id)
   3853 			break;
   3854 	}
   3855 
   3856 	if (chip->options & NAND_BUSWIDTH_AUTO) {
   3857 		WARN_ON(chip->options & NAND_BUSWIDTH_16);
   3858 		chip->options |= busw;
   3859 		nand_set_defaults(chip, busw);
   3860 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
   3861 		/*
   3862 		 * Check, if buswidth is correct. Hardware drivers should set
   3863 		 * chip correct!
   3864 		 */
   3865 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
   3866 			*maf_id, *dev_id);
   3867 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
   3868 		pr_warn("bus width %d instead %d bit\n",
   3869 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
   3870 			   busw ? 16 : 8);
   3871 		return ERR_PTR(-EINVAL);
   3872 	}
   3873 
   3874 	nand_decode_bbm_options(mtd, chip, id_data);
   3875 
   3876 	/* Calculate the address shift from the page size */
   3877 	chip->page_shift = ffs(mtd->writesize) - 1;
   3878 	/* Convert chipsize to number of pages per chip -1 */
   3879 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
   3880 
   3881 	chip->bbt_erase_shift = chip->phys_erase_shift =
   3882 		ffs(mtd->erasesize) - 1;
   3883 	if (chip->chipsize & 0xffffffff)
   3884 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
   3885 	else {
   3886 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
   3887 		chip->chip_shift += 32 - 1;
   3888 	}
   3889 
   3890 	if (chip->chip_shift - chip->page_shift > 16)
   3891 		chip->options |= NAND_ROW_ADDR_3;
   3892 
   3893 	chip->badblockbits = 8;
   3894 	chip->erase = single_erase;
   3895 
   3896 	/* Do not replace user supplied command function! */
   3897 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
   3898 		chip->cmdfunc = nand_command_lp;
   3899 
   3900 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
   3901 		*maf_id, *dev_id);
   3902 
   3903 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
   3904 	if (chip->onfi_version)
   3905 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3906 				chip->onfi_params.model);
   3907 	else if (chip->jedec_version)
   3908 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3909 				chip->jedec_params.model);
   3910 	else
   3911 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3912 				type->name);
   3913 #else
   3914 	if (chip->jedec_version)
   3915 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3916 				chip->jedec_params.model);
   3917 	else
   3918 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3919 				type->name);
   3920 
   3921 	pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
   3922 		type->name);
   3923 #endif
   3924 
   3925 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
   3926 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
   3927 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
   3928 	return type;
   3929 }
   3930 EXPORT_SYMBOL(nand_get_flash_type);
   3931 
   3932 #if CONFIG_IS_ENABLED(OF_CONTROL)
   3933 DECLARE_GLOBAL_DATA_PTR;
   3934 
   3935 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
   3936 {
   3937 	int ret, ecc_mode = -1, ecc_strength, ecc_step;
   3938 	const void *blob = gd->fdt_blob;
   3939 	const char *str;
   3940 
   3941 	ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
   3942 	if (ret == 16)
   3943 		chip->options |= NAND_BUSWIDTH_16;
   3944 
   3945 	if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
   3946 		chip->bbt_options |= NAND_BBT_USE_FLASH;
   3947 
   3948 	str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
   3949 	if (str) {
   3950 		if (!strcmp(str, "none"))
   3951 			ecc_mode = NAND_ECC_NONE;
   3952 		else if (!strcmp(str, "soft"))
   3953 			ecc_mode = NAND_ECC_SOFT;
   3954 		else if (!strcmp(str, "hw"))
   3955 			ecc_mode = NAND_ECC_HW;
   3956 		else if (!strcmp(str, "hw_syndrome"))
   3957 			ecc_mode = NAND_ECC_HW_SYNDROME;
   3958 		else if (!strcmp(str, "hw_oob_first"))
   3959 			ecc_mode = NAND_ECC_HW_OOB_FIRST;
   3960 		else if (!strcmp(str, "soft_bch"))
   3961 			ecc_mode = NAND_ECC_SOFT_BCH;
   3962 	}
   3963 
   3964 
   3965 	ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
   3966 	ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
   3967 
   3968 	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
   3969 	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
   3970 		pr_err("must set both strength and step size in DT\n");
   3971 		return -EINVAL;
   3972 	}
   3973 
   3974 	if (ecc_mode >= 0)
   3975 		chip->ecc.mode = ecc_mode;
   3976 
   3977 	if (ecc_strength >= 0)
   3978 		chip->ecc.strength = ecc_strength;
   3979 
   3980 	if (ecc_step > 0)
   3981 		chip->ecc.size = ecc_step;
   3982 
   3983 	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
   3984 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
   3985 
   3986 	return 0;
   3987 }
   3988 #else
   3989 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
   3990 {
   3991 	return 0;
   3992 }
   3993 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
   3994 
   3995 /**
   3996  * nand_scan_ident - [NAND Interface] Scan for the NAND device
   3997  * @mtd: MTD device structure
   3998  * @maxchips: number of chips to scan for
   3999  * @table: alternative NAND ID table
   4000  *
   4001  * This is the first phase of the normal nand_scan() function. It reads the
   4002  * flash ID and sets up MTD fields accordingly.
   4003  *
   4004  */
   4005 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
   4006 		    struct nand_flash_dev *table)
   4007 {
   4008 	int i, nand_maf_id, nand_dev_id;
   4009 	struct nand_chip *chip = mtd_to_nand(mtd);
   4010 	struct nand_flash_dev *type;
   4011 	int ret;
   4012 
   4013 	if (chip->flash_node) {
   4014 		ret = nand_dt_init(mtd, chip, chip->flash_node);
   4015 		if (ret)
   4016 			return ret;
   4017 	}
   4018 
   4019 	/* Set the default functions */
   4020 	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
   4021 
   4022 	/* Read the flash type */
   4023 	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
   4024 				   &nand_dev_id, table);
   4025 
   4026 	if (IS_ERR(type)) {
   4027 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
   4028 			pr_warn("No NAND device found\n");
   4029 		chip->select_chip(mtd, -1);
   4030 		return PTR_ERR(type);
   4031 	}
   4032 
   4033 	/* Initialize the ->data_interface field. */
   4034 	ret = nand_init_data_interface(chip);
   4035 	if (ret)
   4036 		return ret;
   4037 
   4038 	/*
   4039 	 * Setup the data interface correctly on the chip and controller side.
   4040 	 * This explicit call to nand_setup_data_interface() is only required
   4041 	 * for the first die, because nand_reset() has been called before
   4042 	 * ->data_interface and ->default_onfi_timing_mode were set.
   4043 	 * For the other dies, nand_reset() will automatically switch to the
   4044 	 * best mode for us.
   4045 	 */
   4046 	ret = nand_setup_data_interface(chip, 0);
   4047 	if (ret)
   4048 		return ret;
   4049 
   4050 	chip->select_chip(mtd, -1);
   4051 
   4052 	/* Check for a chip array */
   4053 	for (i = 1; i < maxchips; i++) {
   4054 		/* See comment in nand_get_flash_type for reset */
   4055 		nand_reset(chip, i);
   4056 
   4057 		chip->select_chip(mtd, i);
   4058 		/* Send the command for reading device ID */
   4059 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
   4060 		/* Read manufacturer and device IDs */
   4061 		if (nand_maf_id != chip->read_byte(mtd) ||
   4062 		    nand_dev_id != chip->read_byte(mtd)) {
   4063 			chip->select_chip(mtd, -1);
   4064 			break;
   4065 		}
   4066 		chip->select_chip(mtd, -1);
   4067 	}
   4068 
   4069 #ifdef DEBUG
   4070 	if (i > 1)
   4071 		pr_info("%d chips detected\n", i);
   4072 #endif
   4073 
   4074 	/* Store the number of chips and calc total size for mtd */
   4075 	chip->numchips = i;
   4076 	mtd->size = i * chip->chipsize;
   4077 
   4078 	return 0;
   4079 }
   4080 EXPORT_SYMBOL(nand_scan_ident);
   4081 
   4082 /**
   4083  * nand_check_ecc_caps - check the sanity of preset ECC settings
   4084  * @chip: nand chip info structure
   4085  * @caps: ECC caps info structure
   4086  * @oobavail: OOB size that the ECC engine can use
   4087  *
   4088  * When ECC step size and strength are already set, check if they are supported
   4089  * by the controller and the calculated ECC bytes fit within the chip's OOB.
   4090  * On success, the calculated ECC bytes is set.
   4091  */
   4092 int nand_check_ecc_caps(struct nand_chip *chip,
   4093 			const struct nand_ecc_caps *caps, int oobavail)
   4094 {
   4095 	struct mtd_info *mtd = nand_to_mtd(chip);
   4096 	const struct nand_ecc_step_info *stepinfo;
   4097 	int preset_step = chip->ecc.size;
   4098 	int preset_strength = chip->ecc.strength;
   4099 	int nsteps, ecc_bytes;
   4100 	int i, j;
   4101 
   4102 	if (WARN_ON(oobavail < 0))
   4103 		return -EINVAL;
   4104 
   4105 	if (!preset_step || !preset_strength)
   4106 		return -ENODATA;
   4107 
   4108 	nsteps = mtd->writesize / preset_step;
   4109 
   4110 	for (i = 0; i < caps->nstepinfos; i++) {
   4111 		stepinfo = &caps->stepinfos[i];
   4112 
   4113 		if (stepinfo->stepsize != preset_step)
   4114 			continue;
   4115 
   4116 		for (j = 0; j < stepinfo->nstrengths; j++) {
   4117 			if (stepinfo->strengths[j] != preset_strength)
   4118 				continue;
   4119 
   4120 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
   4121 							 preset_strength);
   4122 			if (WARN_ON_ONCE(ecc_bytes < 0))
   4123 				return ecc_bytes;
   4124 
   4125 			if (ecc_bytes * nsteps > oobavail) {
   4126 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
   4127 				       preset_step, preset_strength);
   4128 				return -ENOSPC;
   4129 			}
   4130 
   4131 			chip->ecc.bytes = ecc_bytes;
   4132 
   4133 			return 0;
   4134 		}
   4135 	}
   4136 
   4137 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
   4138 	       preset_step, preset_strength);
   4139 
   4140 	return -ENOTSUPP;
   4141 }
   4142 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
   4143 
   4144 /**
   4145  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
   4146  * @chip: nand chip info structure
   4147  * @caps: ECC engine caps info structure
   4148  * @oobavail: OOB size that the ECC engine can use
   4149  *
   4150  * If a chip's ECC requirement is provided, try to meet it with the least
   4151  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
   4152  * On success, the chosen ECC settings are set.
   4153  */
   4154 int nand_match_ecc_req(struct nand_chip *chip,
   4155 		       const struct nand_ecc_caps *caps, int oobavail)
   4156 {
   4157 	struct mtd_info *mtd = nand_to_mtd(chip);
   4158 	const struct nand_ecc_step_info *stepinfo;
   4159 	int req_step = chip->ecc_step_ds;
   4160 	int req_strength = chip->ecc_strength_ds;
   4161 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
   4162 	int best_step, best_strength, best_ecc_bytes;
   4163 	int best_ecc_bytes_total = INT_MAX;
   4164 	int i, j;
   4165 
   4166 	if (WARN_ON(oobavail < 0))
   4167 		return -EINVAL;
   4168 
   4169 	/* No information provided by the NAND chip */
   4170 	if (!req_step || !req_strength)
   4171 		return -ENOTSUPP;
   4172 
   4173 	/* number of correctable bits the chip requires in a page */
   4174 	req_corr = mtd->writesize / req_step * req_strength;
   4175 
   4176 	for (i = 0; i < caps->nstepinfos; i++) {
   4177 		stepinfo = &caps->stepinfos[i];
   4178 		step_size = stepinfo->stepsize;
   4179 
   4180 		for (j = 0; j < stepinfo->nstrengths; j++) {
   4181 			strength = stepinfo->strengths[j];
   4182 
   4183 			/*
   4184 			 * If both step size and strength are smaller than the
   4185 			 * chip's requirement, it is not easy to compare the
   4186 			 * resulted reliability.
   4187 			 */
   4188 			if (step_size < req_step && strength < req_strength)
   4189 				continue;
   4190 
   4191 			if (mtd->writesize % step_size)
   4192 				continue;
   4193 
   4194 			nsteps = mtd->writesize / step_size;
   4195 
   4196 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
   4197 			if (WARN_ON_ONCE(ecc_bytes < 0))
   4198 				continue;
   4199 			ecc_bytes_total = ecc_bytes * nsteps;
   4200 
   4201 			if (ecc_bytes_total > oobavail ||
   4202 			    strength * nsteps < req_corr)
   4203 				continue;
   4204 
   4205 			/*
   4206 			 * We assume the best is to meet the chip's requrement
   4207 			 * with the least number of ECC bytes.
   4208 			 */
   4209 			if (ecc_bytes_total < best_ecc_bytes_total) {
   4210 				best_ecc_bytes_total = ecc_bytes_total;
   4211 				best_step = step_size;
   4212 				best_strength = strength;
   4213 				best_ecc_bytes = ecc_bytes;
   4214 			}
   4215 		}
   4216 	}
   4217 
   4218 	if (best_ecc_bytes_total == INT_MAX)
   4219 		return -ENOTSUPP;
   4220 
   4221 	chip->ecc.size = best_step;
   4222 	chip->ecc.strength = best_strength;
   4223 	chip->ecc.bytes = best_ecc_bytes;
   4224 
   4225 	return 0;
   4226 }
   4227 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
   4228 
   4229 /**
   4230  * nand_maximize_ecc - choose the max ECC strength available
   4231  * @chip: nand chip info structure
   4232  * @caps: ECC engine caps info structure
   4233  * @oobavail: OOB size that the ECC engine can use
   4234  *
   4235  * Choose the max ECC strength that is supported on the controller, and can fit
   4236  * within the chip's OOB.  On success, the chosen ECC settings are set.
   4237  */
   4238 int nand_maximize_ecc(struct nand_chip *chip,
   4239 		      const struct nand_ecc_caps *caps, int oobavail)
   4240 {
   4241 	struct mtd_info *mtd = nand_to_mtd(chip);
   4242 	const struct nand_ecc_step_info *stepinfo;
   4243 	int step_size, strength, nsteps, ecc_bytes, corr;
   4244 	int best_corr = 0;
   4245 	int best_step = 0;
   4246 	int best_strength, best_ecc_bytes;
   4247 	int i, j;
   4248 
   4249 	if (WARN_ON(oobavail < 0))
   4250 		return -EINVAL;
   4251 
   4252 	for (i = 0; i < caps->nstepinfos; i++) {
   4253 		stepinfo = &caps->stepinfos[i];
   4254 		step_size = stepinfo->stepsize;
   4255 
   4256 		/* If chip->ecc.size is already set, respect it */
   4257 		if (chip->ecc.size && step_size != chip->ecc.size)
   4258 			continue;
   4259 
   4260 		for (j = 0; j < stepinfo->nstrengths; j++) {
   4261 			strength = stepinfo->strengths[j];
   4262 
   4263 			if (mtd->writesize % step_size)
   4264 				continue;
   4265 
   4266 			nsteps = mtd->writesize / step_size;
   4267 
   4268 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
   4269 			if (WARN_ON_ONCE(ecc_bytes < 0))
   4270 				continue;
   4271 
   4272 			if (ecc_bytes * nsteps > oobavail)
   4273 				continue;
   4274 
   4275 			corr = strength * nsteps;
   4276 
   4277 			/*
   4278 			 * If the number of correctable bits is the same,
   4279 			 * bigger step_size has more reliability.
   4280 			 */
   4281 			if (corr > best_corr ||
   4282 			    (corr == best_corr && step_size > best_step)) {
   4283 				best_corr = corr;
   4284 				best_step = step_size;
   4285 				best_strength = strength;
   4286 				best_ecc_bytes = ecc_bytes;
   4287 			}
   4288 		}
   4289 	}
   4290 
   4291 	if (!best_corr)
   4292 		return -ENOTSUPP;
   4293 
   4294 	chip->ecc.size = best_step;
   4295 	chip->ecc.strength = best_strength;
   4296 	chip->ecc.bytes = best_ecc_bytes;
   4297 
   4298 	return 0;
   4299 }
   4300 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
   4301 
   4302 /*
   4303  * Check if the chip configuration meet the datasheet requirements.
   4304 
   4305  * If our configuration corrects A bits per B bytes and the minimum
   4306  * required correction level is X bits per Y bytes, then we must ensure
   4307  * both of the following are true:
   4308  *
   4309  * (1) A / B >= X / Y
   4310  * (2) A >= X
   4311  *
   4312  * Requirement (1) ensures we can correct for the required bitflip density.
   4313  * Requirement (2) ensures we can correct even when all bitflips are clumped
   4314  * in the same sector.
   4315  */
   4316 static bool nand_ecc_strength_good(struct mtd_info *mtd)
   4317 {
   4318 	struct nand_chip *chip = mtd_to_nand(mtd);
   4319 	struct nand_ecc_ctrl *ecc = &chip->ecc;
   4320 	int corr, ds_corr;
   4321 
   4322 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
   4323 		/* Not enough information */
   4324 		return true;
   4325 
   4326 	/*
   4327 	 * We get the number of corrected bits per page to compare
   4328 	 * the correction density.
   4329 	 */
   4330 	corr = (mtd->writesize * ecc->strength) / ecc->size;
   4331 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
   4332 
   4333 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
   4334 }
   4335 
   4336 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
   4337 {
   4338 	struct nand_ecc_ctrl *ecc = &chip->ecc;
   4339 
   4340 	if (nand_standard_page_accessors(ecc))
   4341 		return false;
   4342 
   4343 	/*
   4344 	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
   4345 	 * controller driver implements all the page accessors because
   4346 	 * default helpers are not suitable when the core does not
   4347 	 * send the READ0/PAGEPROG commands.
   4348 	 */
   4349 	return (!ecc->read_page || !ecc->write_page ||
   4350 		!ecc->read_page_raw || !ecc->write_page_raw ||
   4351 		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
   4352 		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
   4353 		 ecc->hwctl && ecc->calculate));
   4354 }
   4355 
   4356 /**
   4357  * nand_scan_tail - [NAND Interface] Scan for the NAND device
   4358  * @mtd: MTD device structure
   4359  *
   4360  * This is the second phase of the normal nand_scan() function. It fills out
   4361  * all the uninitialized function pointers with the defaults and scans for a
   4362  * bad block table if appropriate.
   4363  */
   4364 int nand_scan_tail(struct mtd_info *mtd)
   4365 {
   4366 	int i;
   4367 	struct nand_chip *chip = mtd_to_nand(mtd);
   4368 	struct nand_ecc_ctrl *ecc = &chip->ecc;
   4369 	struct nand_buffers *nbuf;
   4370 
   4371 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
   4372 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
   4373 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
   4374 
   4375 	if (invalid_ecc_page_accessors(chip)) {
   4376 		pr_err("Invalid ECC page accessors setup\n");
   4377 		return -EINVAL;
   4378 	}
   4379 
   4380 	if (!(chip->options & NAND_OWN_BUFFERS)) {
   4381 		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
   4382 		chip->buffers = nbuf;
   4383 	} else {
   4384 		if (!chip->buffers)
   4385 			return -ENOMEM;
   4386 	}
   4387 
   4388 	/* Set the internal oob buffer location, just after the page data */
   4389 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
   4390 
   4391 	/*
   4392 	 * If no default placement scheme is given, select an appropriate one.
   4393 	 */
   4394 	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
   4395 		switch (mtd->oobsize) {
   4396 		case 8:
   4397 			ecc->layout = &nand_oob_8;
   4398 			break;
   4399 		case 16:
   4400 			ecc->layout = &nand_oob_16;
   4401 			break;
   4402 		case 64:
   4403 			ecc->layout = &nand_oob_64;
   4404 			break;
   4405 		case 128:
   4406 			ecc->layout = &nand_oob_128;
   4407 			break;
   4408 		default:
   4409 			pr_warn("No oob scheme defined for oobsize %d\n",
   4410 				   mtd->oobsize);
   4411 			BUG();
   4412 		}
   4413 	}
   4414 
   4415 	if (!chip->write_page)
   4416 		chip->write_page = nand_write_page;
   4417 
   4418 	/*
   4419 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
   4420 	 * selected and we have 256 byte pagesize fallback to software ECC
   4421 	 */
   4422 
   4423 	switch (ecc->mode) {
   4424 	case NAND_ECC_HW_OOB_FIRST:
   4425 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
   4426 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
   4427 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
   4428 			BUG();
   4429 		}
   4430 		if (!ecc->read_page)
   4431 			ecc->read_page = nand_read_page_hwecc_oob_first;
   4432 
   4433 	case NAND_ECC_HW:
   4434 		/* Use standard hwecc read page function? */
   4435 		if (!ecc->read_page)
   4436 			ecc->read_page = nand_read_page_hwecc;
   4437 		if (!ecc->write_page)
   4438 			ecc->write_page = nand_write_page_hwecc;
   4439 		if (!ecc->read_page_raw)
   4440 			ecc->read_page_raw = nand_read_page_raw;
   4441 		if (!ecc->write_page_raw)
   4442 			ecc->write_page_raw = nand_write_page_raw;
   4443 		if (!ecc->read_oob)
   4444 			ecc->read_oob = nand_read_oob_std;
   4445 		if (!ecc->write_oob)
   4446 			ecc->write_oob = nand_write_oob_std;
   4447 		if (!ecc->read_subpage)
   4448 			ecc->read_subpage = nand_read_subpage;
   4449 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
   4450 			ecc->write_subpage = nand_write_subpage_hwecc;
   4451 
   4452 	case NAND_ECC_HW_SYNDROME:
   4453 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
   4454 		    (!ecc->read_page ||
   4455 		     ecc->read_page == nand_read_page_hwecc ||
   4456 		     !ecc->write_page ||
   4457 		     ecc->write_page == nand_write_page_hwecc)) {
   4458 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
   4459 			BUG();
   4460 		}
   4461 		/* Use standard syndrome read/write page function? */
   4462 		if (!ecc->read_page)
   4463 			ecc->read_page = nand_read_page_syndrome;
   4464 		if (!ecc->write_page)
   4465 			ecc->write_page = nand_write_page_syndrome;
   4466 		if (!ecc->read_page_raw)
   4467 			ecc->read_page_raw = nand_read_page_raw_syndrome;
   4468 		if (!ecc->write_page_raw)
   4469 			ecc->write_page_raw = nand_write_page_raw_syndrome;
   4470 		if (!ecc->read_oob)
   4471 			ecc->read_oob = nand_read_oob_syndrome;
   4472 		if (!ecc->write_oob)
   4473 			ecc->write_oob = nand_write_oob_syndrome;
   4474 
   4475 		if (mtd->writesize >= ecc->size) {
   4476 			if (!ecc->strength) {
   4477 				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
   4478 				BUG();
   4479 			}
   4480 			break;
   4481 		}
   4482 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
   4483 			ecc->size, mtd->writesize);
   4484 		ecc->mode = NAND_ECC_SOFT;
   4485 
   4486 	case NAND_ECC_SOFT:
   4487 		ecc->calculate = nand_calculate_ecc;
   4488 		ecc->correct = nand_correct_data;
   4489 		ecc->read_page = nand_read_page_swecc;
   4490 		ecc->read_subpage = nand_read_subpage;
   4491 		ecc->write_page = nand_write_page_swecc;
   4492 		ecc->read_page_raw = nand_read_page_raw;
   4493 		ecc->write_page_raw = nand_write_page_raw;
   4494 		ecc->read_oob = nand_read_oob_std;
   4495 		ecc->write_oob = nand_write_oob_std;
   4496 		if (!ecc->size)
   4497 			ecc->size = 256;
   4498 		ecc->bytes = 3;
   4499 		ecc->strength = 1;
   4500 		break;
   4501 
   4502 	case NAND_ECC_SOFT_BCH:
   4503 		if (!mtd_nand_has_bch()) {
   4504 			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
   4505 			BUG();
   4506 		}
   4507 		ecc->calculate = nand_bch_calculate_ecc;
   4508 		ecc->correct = nand_bch_correct_data;
   4509 		ecc->read_page = nand_read_page_swecc;
   4510 		ecc->read_subpage = nand_read_subpage;
   4511 		ecc->write_page = nand_write_page_swecc;
   4512 		ecc->read_page_raw = nand_read_page_raw;
   4513 		ecc->write_page_raw = nand_write_page_raw;
   4514 		ecc->read_oob = nand_read_oob_std;
   4515 		ecc->write_oob = nand_write_oob_std;
   4516 		/*
   4517 		 * Board driver should supply ecc.size and ecc.strength values
   4518 		 * to select how many bits are correctable. Otherwise, default
   4519 		 * to 4 bits for large page devices.
   4520 		 */
   4521 		if (!ecc->size && (mtd->oobsize >= 64)) {
   4522 			ecc->size = 512;
   4523 			ecc->strength = 4;
   4524 		}
   4525 
   4526 		/* See nand_bch_init() for details. */
   4527 		ecc->bytes = 0;
   4528 		ecc->priv = nand_bch_init(mtd);
   4529 		if (!ecc->priv) {
   4530 			pr_warn("BCH ECC initialization failed!\n");
   4531 			BUG();
   4532 		}
   4533 		break;
   4534 
   4535 	case NAND_ECC_NONE:
   4536 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
   4537 		ecc->read_page = nand_read_page_raw;
   4538 		ecc->write_page = nand_write_page_raw;
   4539 		ecc->read_oob = nand_read_oob_std;
   4540 		ecc->read_page_raw = nand_read_page_raw;
   4541 		ecc->write_page_raw = nand_write_page_raw;
   4542 		ecc->write_oob = nand_write_oob_std;
   4543 		ecc->size = mtd->writesize;
   4544 		ecc->bytes = 0;
   4545 		ecc->strength = 0;
   4546 		break;
   4547 
   4548 	default:
   4549 		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
   4550 		BUG();
   4551 	}
   4552 
   4553 	/* For many systems, the standard OOB write also works for raw */
   4554 	if (!ecc->read_oob_raw)
   4555 		ecc->read_oob_raw = ecc->read_oob;
   4556 	if (!ecc->write_oob_raw)
   4557 		ecc->write_oob_raw = ecc->write_oob;
   4558 
   4559 	/*
   4560 	 * The number of bytes available for a client to place data into
   4561 	 * the out of band area.
   4562 	 */
   4563 	mtd->oobavail = 0;
   4564 	if (ecc->layout) {
   4565 		for (i = 0; ecc->layout->oobfree[i].length; i++)
   4566 			mtd->oobavail += ecc->layout->oobfree[i].length;
   4567 	}
   4568 
   4569 	/* ECC sanity check: warn if it's too weak */
   4570 	if (!nand_ecc_strength_good(mtd))
   4571 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
   4572 			mtd->name);
   4573 
   4574 	/*
   4575 	 * Set the number of read / write steps for one page depending on ECC
   4576 	 * mode.
   4577 	 */
   4578 	ecc->steps = mtd->writesize / ecc->size;
   4579 	if (ecc->steps * ecc->size != mtd->writesize) {
   4580 		pr_warn("Invalid ECC parameters\n");
   4581 		BUG();
   4582 	}
   4583 	ecc->total = ecc->steps * ecc->bytes;
   4584 
   4585 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
   4586 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
   4587 		switch (ecc->steps) {
   4588 		case 2:
   4589 			mtd->subpage_sft = 1;
   4590 			break;
   4591 		case 4:
   4592 		case 8:
   4593 		case 16:
   4594 			mtd->subpage_sft = 2;
   4595 			break;
   4596 		}
   4597 	}
   4598 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
   4599 
   4600 	/* Initialize state */
   4601 	chip->state = FL_READY;
   4602 
   4603 	/* Invalidate the pagebuffer reference */
   4604 	chip->pagebuf = -1;
   4605 
   4606 	/* Large page NAND with SOFT_ECC should support subpage reads */
   4607 	switch (ecc->mode) {
   4608 	case NAND_ECC_SOFT:
   4609 	case NAND_ECC_SOFT_BCH:
   4610 		if (chip->page_shift > 9)
   4611 			chip->options |= NAND_SUBPAGE_READ;
   4612 		break;
   4613 
   4614 	default:
   4615 		break;
   4616 	}
   4617 
   4618 	/* Fill in remaining MTD driver data */
   4619 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
   4620 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
   4621 						MTD_CAP_NANDFLASH;
   4622 	mtd->_erase = nand_erase;
   4623 	mtd->_read = nand_read;
   4624 	mtd->_write = nand_write;
   4625 	mtd->_panic_write = panic_nand_write;
   4626 	mtd->_read_oob = nand_read_oob;
   4627 	mtd->_write_oob = nand_write_oob;
   4628 	mtd->_sync = nand_sync;
   4629 	mtd->_lock = NULL;
   4630 	mtd->_unlock = NULL;
   4631 	mtd->_block_isreserved = nand_block_isreserved;
   4632 	mtd->_block_isbad = nand_block_isbad;
   4633 	mtd->_block_markbad = nand_block_markbad;
   4634 	mtd->writebufsize = mtd->writesize;
   4635 
   4636 	/* propagate ecc info to mtd_info */
   4637 	mtd->ecclayout = ecc->layout;
   4638 	mtd->ecc_strength = ecc->strength;
   4639 	mtd->ecc_step_size = ecc->size;
   4640 	/*
   4641 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
   4642 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
   4643 	 * properly set.
   4644 	 */
   4645 	if (!mtd->bitflip_threshold)
   4646 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
   4647 
   4648 	return 0;
   4649 }
   4650 EXPORT_SYMBOL(nand_scan_tail);
   4651 
   4652 /**
   4653  * nand_scan - [NAND Interface] Scan for the NAND device
   4654  * @mtd: MTD device structure
   4655  * @maxchips: number of chips to scan for
   4656  *
   4657  * This fills out all the uninitialized function pointers with the defaults.
   4658  * The flash ID is read and the mtd/chip structures are filled with the
   4659  * appropriate values.
   4660  */
   4661 int nand_scan(struct mtd_info *mtd, int maxchips)
   4662 {
   4663 	int ret;
   4664 
   4665 	ret = nand_scan_ident(mtd, maxchips, NULL);
   4666 	if (!ret)
   4667 		ret = nand_scan_tail(mtd);
   4668 	return ret;
   4669 }
   4670 EXPORT_SYMBOL(nand_scan);
   4671 
   4672 MODULE_LICENSE("GPL");
   4673 MODULE_AUTHOR("Steven J. Hill <sjhill (at) realitydiluted.com>");
   4674 MODULE_AUTHOR("Thomas Gleixner <tglx (at) linutronix.de>");
   4675 MODULE_DESCRIPTION("Generic NAND flash driver code");
   4676