Home | History | Annotate | Download | only in onenand
      1 /*
      2  *  linux/drivers/mtd/onenand/onenand_base.c
      3  *
      4  *  Copyright (C) 2005-2007 Samsung Electronics
      5  *  Kyungmin Park <kyungmin.park (at) samsung.com>
      6  *
      7  *  Credits:
      8  *      Adrian Hunter <ext-adrian.hunter (at) nokia.com>:
      9  *      auto-placement support, read-while load support, various fixes
     10  *      Copyright (C) Nokia Corporation, 2007
     11  *
     12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
     13  *      Amul Kumar Saha <amul.saha (at) samsung.com>:
     14  *      Flex-OneNAND support
     15  *      Copyright (C) Samsung Electronics, 2009
     16  *
     17  * This program is free software; you can redistribute it and/or modify
     18  * it under the terms of the GNU General Public License version 2 as
     19  * published by the Free Software Foundation.
     20  */
     21 
     22 #include <common.h>
     23 #include <watchdog.h>
     24 #include <linux/compat.h>
     25 #include <linux/mtd/mtd.h>
     26 #include "linux/mtd/flashchip.h"
     27 #include <linux/mtd/onenand.h>
     28 
     29 #include <asm/io.h>
     30 #include <linux/errno.h>
     31 #include <malloc.h>
     32 
     33 /* It should access 16-bit instead of 8-bit */
     34 static void *memcpy_16(void *dst, const void *src, unsigned int len)
     35 {
     36 	void *ret = dst;
     37 	short *d = dst;
     38 	const short *s = src;
     39 
     40 	len >>= 1;
     41 	while (len-- > 0)
     42 		*d++ = *s++;
     43 	return ret;
     44 }
     45 
     46 /**
     47  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
     48  *  For now, we expose only 64 out of 80 ecc bytes
     49  */
     50 static struct nand_ecclayout onenand_oob_128 = {
     51 	.eccbytes	= 64,
     52 	.eccpos		= {
     53 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
     54 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
     55 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
     56 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
     57 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
     58 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
     59 		102, 103, 104, 105
     60 		},
     61 	.oobfree	= {
     62 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
     63 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
     64 	}
     65 };
     66 
     67 /**
     68  * onenand_oob_64 - oob info for large (2KB) page
     69  */
     70 static struct nand_ecclayout onenand_oob_64 = {
     71 	.eccbytes	= 20,
     72 	.eccpos		= {
     73 		8, 9, 10, 11, 12,
     74 		24, 25, 26, 27, 28,
     75 		40, 41, 42, 43, 44,
     76 		56, 57, 58, 59, 60,
     77 		},
     78 	.oobfree	= {
     79 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
     80 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
     81 	}
     82 };
     83 
     84 /**
     85  * onenand_oob_32 - oob info for middle (1KB) page
     86  */
     87 static struct nand_ecclayout onenand_oob_32 = {
     88 	.eccbytes	= 10,
     89 	.eccpos		= {
     90 		8, 9, 10, 11, 12,
     91 		24, 25, 26, 27, 28,
     92 		},
     93 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
     94 };
     95 
     96 /*
     97  * Warning! This array is used with the memcpy_16() function, thus
     98  * it must be aligned to 2 bytes. GCC can make this array unaligned
     99  * as the array is made of unsigned char, which memcpy16() doesn't
    100  * like and will cause unaligned access.
    101  */
    102 static const unsigned char __aligned(2) ffchars[] = {
    103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
    105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
    107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
    109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
    111 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    112 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
    113 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    114 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
    115 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    116 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
    117 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    118 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
    119 };
    120 
    121 /**
    122  * onenand_readw - [OneNAND Interface] Read OneNAND register
    123  * @param addr		address to read
    124  *
    125  * Read OneNAND register
    126  */
    127 static unsigned short onenand_readw(void __iomem * addr)
    128 {
    129 	return readw(addr);
    130 }
    131 
    132 /**
    133  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
    134  * @param value		value to write
    135  * @param addr		address to write
    136  *
    137  * Write OneNAND register with value
    138  */
    139 static void onenand_writew(unsigned short value, void __iomem * addr)
    140 {
    141 	writew(value, addr);
    142 }
    143 
    144 /**
    145  * onenand_block_address - [DEFAULT] Get block address
    146  * @param device	the device id
    147  * @param block		the block
    148  * @return		translated block address if DDP, otherwise same
    149  *
    150  * Setup Start Address 1 Register (F100h)
    151  */
    152 static int onenand_block_address(struct onenand_chip *this, int block)
    153 {
    154 	/* Device Flash Core select, NAND Flash Block Address */
    155 	if (block & this->density_mask)
    156 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
    157 
    158 	return block;
    159 }
    160 
    161 /**
    162  * onenand_bufferram_address - [DEFAULT] Get bufferram address
    163  * @param device	the device id
    164  * @param block		the block
    165  * @return		set DBS value if DDP, otherwise 0
    166  *
    167  * Setup Start Address 2 Register (F101h) for DDP
    168  */
    169 static int onenand_bufferram_address(struct onenand_chip *this, int block)
    170 {
    171 	/* Device BufferRAM Select */
    172 	if (block & this->density_mask)
    173 		return ONENAND_DDP_CHIP1;
    174 
    175 	return ONENAND_DDP_CHIP0;
    176 }
    177 
    178 /**
    179  * onenand_page_address - [DEFAULT] Get page address
    180  * @param page		the page address
    181  * @param sector	the sector address
    182  * @return		combined page and sector address
    183  *
    184  * Setup Start Address 8 Register (F107h)
    185  */
    186 static int onenand_page_address(int page, int sector)
    187 {
    188 	/* Flash Page Address, Flash Sector Address */
    189 	int fpa, fsa;
    190 
    191 	fpa = page & ONENAND_FPA_MASK;
    192 	fsa = sector & ONENAND_FSA_MASK;
    193 
    194 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
    195 }
    196 
    197 /**
    198  * onenand_buffer_address - [DEFAULT] Get buffer address
    199  * @param dataram1	DataRAM index
    200  * @param sectors	the sector address
    201  * @param count		the number of sectors
    202  * @return		the start buffer value
    203  *
    204  * Setup Start Buffer Register (F200h)
    205  */
    206 static int onenand_buffer_address(int dataram1, int sectors, int count)
    207 {
    208 	int bsa, bsc;
    209 
    210 	/* BufferRAM Sector Address */
    211 	bsa = sectors & ONENAND_BSA_MASK;
    212 
    213 	if (dataram1)
    214 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
    215 	else
    216 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
    217 
    218 	/* BufferRAM Sector Count */
    219 	bsc = count & ONENAND_BSC_MASK;
    220 
    221 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
    222 }
    223 
    224 /**
    225  * flexonenand_block - Return block number for flash address
    226  * @param this		- OneNAND device structure
    227  * @param addr		- Address for which block number is needed
    228  */
    229 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
    230 {
    231 	unsigned int boundary, blk, die = 0;
    232 
    233 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
    234 		die = 1;
    235 		addr -= this->diesize[0];
    236 	}
    237 
    238 	boundary = this->boundary[die];
    239 
    240 	blk = addr >> (this->erase_shift - 1);
    241 	if (blk > boundary)
    242 		blk = (blk + boundary + 1) >> 1;
    243 
    244 	blk += die ? this->density_mask : 0;
    245 	return blk;
    246 }
    247 
    248 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
    249 {
    250 	if (!FLEXONENAND(this))
    251 		return addr >> this->erase_shift;
    252 	return flexonenand_block(this, addr);
    253 }
    254 
    255 /**
    256  * flexonenand_addr - Return address of the block
    257  * @this:		OneNAND device structure
    258  * @block:		Block number on Flex-OneNAND
    259  *
    260  * Return address of the block
    261  */
    262 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
    263 {
    264 	loff_t ofs = 0;
    265 	int die = 0, boundary;
    266 
    267 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
    268 		block -= this->density_mask;
    269 		die = 1;
    270 		ofs = this->diesize[0];
    271 	}
    272 
    273 	boundary = this->boundary[die];
    274 	ofs += (loff_t) block << (this->erase_shift - 1);
    275 	if (block > (boundary + 1))
    276 		ofs += (loff_t) (block - boundary - 1)
    277 			<< (this->erase_shift - 1);
    278 	return ofs;
    279 }
    280 
    281 loff_t onenand_addr(struct onenand_chip *this, int block)
    282 {
    283 	if (!FLEXONENAND(this))
    284 		return (loff_t) block << this->erase_shift;
    285 	return flexonenand_addr(this, block);
    286 }
    287 
    288 /**
    289  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
    290  * @param mtd		MTD device structure
    291  * @param addr		address whose erase region needs to be identified
    292  */
    293 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
    294 {
    295 	int i;
    296 
    297 	for (i = 0; i < mtd->numeraseregions; i++)
    298 		if (addr < mtd->eraseregions[i].offset)
    299 			break;
    300 	return i - 1;
    301 }
    302 
    303 /**
    304  * onenand_get_density - [DEFAULT] Get OneNAND density
    305  * @param dev_id        OneNAND device ID
    306  *
    307  * Get OneNAND density from device ID
    308  */
    309 static inline int onenand_get_density(int dev_id)
    310 {
    311 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
    312 	return (density & ONENAND_DEVICE_DENSITY_MASK);
    313 }
    314 
    315 /**
    316  * onenand_command - [DEFAULT] Send command to OneNAND device
    317  * @param mtd		MTD device structure
    318  * @param cmd		the command to be sent
    319  * @param addr		offset to read from or write to
    320  * @param len		number of bytes to read or write
    321  *
    322  * Send command to OneNAND device. This function is used for middle/large page
    323  * devices (1KB/2KB Bytes per page)
    324  */
    325 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
    326 			   size_t len)
    327 {
    328 	struct onenand_chip *this = mtd->priv;
    329 	int value;
    330 	int block, page;
    331 
    332 	/* Now we use page size operation */
    333 	int sectors = 0, count = 0;
    334 
    335 	/* Address translation */
    336 	switch (cmd) {
    337 	case ONENAND_CMD_UNLOCK:
    338 	case ONENAND_CMD_LOCK:
    339 	case ONENAND_CMD_LOCK_TIGHT:
    340 	case ONENAND_CMD_UNLOCK_ALL:
    341 		block = -1;
    342 		page = -1;
    343 		break;
    344 
    345 	case FLEXONENAND_CMD_PI_ACCESS:
    346 		/* addr contains die index */
    347 		block = addr * this->density_mask;
    348 		page = -1;
    349 		break;
    350 
    351 	case ONENAND_CMD_ERASE:
    352 	case ONENAND_CMD_BUFFERRAM:
    353 		block = onenand_block(this, addr);
    354 		page = -1;
    355 		break;
    356 
    357 	case FLEXONENAND_CMD_READ_PI:
    358 		cmd = ONENAND_CMD_READ;
    359 		block = addr * this->density_mask;
    360 		page = 0;
    361 		break;
    362 
    363 	default:
    364 		block = onenand_block(this, addr);
    365 		page = (int) (addr
    366 			- onenand_addr(this, block)) >> this->page_shift;
    367 		page &= this->page_mask;
    368 		break;
    369 	}
    370 
    371 	/* NOTE: The setting order of the registers is very important! */
    372 	if (cmd == ONENAND_CMD_BUFFERRAM) {
    373 		/* Select DataRAM for DDP */
    374 		value = onenand_bufferram_address(this, block);
    375 		this->write_word(value,
    376 				 this->base + ONENAND_REG_START_ADDRESS2);
    377 
    378 		if (ONENAND_IS_4KB_PAGE(this))
    379 			ONENAND_SET_BUFFERRAM0(this);
    380 		else
    381 			/* Switch to the next data buffer */
    382 			ONENAND_SET_NEXT_BUFFERRAM(this);
    383 
    384 		return 0;
    385 	}
    386 
    387 	if (block != -1) {
    388 		/* Write 'DFS, FBA' of Flash */
    389 		value = onenand_block_address(this, block);
    390 		this->write_word(value,
    391 				 this->base + ONENAND_REG_START_ADDRESS1);
    392 
    393 		/* Select DataRAM for DDP */
    394 		value = onenand_bufferram_address(this, block);
    395 		this->write_word(value,
    396 				 this->base + ONENAND_REG_START_ADDRESS2);
    397 	}
    398 
    399 	if (page != -1) {
    400 		int dataram;
    401 
    402 		switch (cmd) {
    403 		case FLEXONENAND_CMD_RECOVER_LSB:
    404 		case ONENAND_CMD_READ:
    405 		case ONENAND_CMD_READOOB:
    406 			if (ONENAND_IS_4KB_PAGE(this))
    407 				dataram = ONENAND_SET_BUFFERRAM0(this);
    408 			else
    409 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
    410 
    411 			break;
    412 
    413 		default:
    414 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
    415 			break;
    416 		}
    417 
    418 		/* Write 'FPA, FSA' of Flash */
    419 		value = onenand_page_address(page, sectors);
    420 		this->write_word(value,
    421 				 this->base + ONENAND_REG_START_ADDRESS8);
    422 
    423 		/* Write 'BSA, BSC' of DataRAM */
    424 		value = onenand_buffer_address(dataram, sectors, count);
    425 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
    426 	}
    427 
    428 	/* Interrupt clear */
    429 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
    430 	/* Write command */
    431 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
    432 
    433 	return 0;
    434 }
    435 
    436 /**
    437  * onenand_read_ecc - return ecc status
    438  * @param this		onenand chip structure
    439  */
    440 static int onenand_read_ecc(struct onenand_chip *this)
    441 {
    442 	int ecc, i;
    443 
    444 	if (!FLEXONENAND(this))
    445 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
    446 
    447 	for (i = 0; i < 4; i++) {
    448 		ecc = this->read_word(this->base
    449 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
    450 		if (likely(!ecc))
    451 			continue;
    452 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
    453 			return ONENAND_ECC_2BIT_ALL;
    454 	}
    455 
    456 	return 0;
    457 }
    458 
    459 /**
    460  * onenand_wait - [DEFAULT] wait until the command is done
    461  * @param mtd		MTD device structure
    462  * @param state		state to select the max. timeout value
    463  *
    464  * Wait for command done. This applies to all OneNAND command
    465  * Read can take up to 30us, erase up to 2ms and program up to 350us
    466  * according to general OneNAND specs
    467  */
    468 static int onenand_wait(struct mtd_info *mtd, int state)
    469 {
    470 	struct onenand_chip *this = mtd->priv;
    471 	unsigned int interrupt = 0;
    472 	unsigned int ctrl;
    473 
    474 	/* Wait at most 20ms ... */
    475 	u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
    476 	u32 time_start = get_timer(0);
    477 	do {
    478 		WATCHDOG_RESET();
    479 		if (get_timer(time_start) > timeo)
    480 			return -EIO;
    481 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
    482 	} while ((interrupt & ONENAND_INT_MASTER) == 0);
    483 
    484 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
    485 
    486 	if (interrupt & ONENAND_INT_READ) {
    487 		int ecc = onenand_read_ecc(this);
    488 		if (ecc & ONENAND_ECC_2BIT_ALL) {
    489 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
    490 			return -EBADMSG;
    491 		}
    492 	}
    493 
    494 	if (ctrl & ONENAND_CTRL_ERROR) {
    495 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
    496 		if (ctrl & ONENAND_CTRL_LOCK)
    497 			printk("onenand_wait: it's locked error = 0x%04x\n",
    498 				ctrl);
    499 
    500 		return -EIO;
    501 	}
    502 
    503 
    504 	return 0;
    505 }
    506 
    507 /**
    508  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
    509  * @param mtd		MTD data structure
    510  * @param area		BufferRAM area
    511  * @return		offset given area
    512  *
    513  * Return BufferRAM offset given area
    514  */
    515 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
    516 {
    517 	struct onenand_chip *this = mtd->priv;
    518 
    519 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
    520 		if (area == ONENAND_DATARAM)
    521 			return mtd->writesize;
    522 		if (area == ONENAND_SPARERAM)
    523 			return mtd->oobsize;
    524 	}
    525 
    526 	return 0;
    527 }
    528 
    529 /**
    530  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
    531  * @param mtd		MTD data structure
    532  * @param area		BufferRAM area
    533  * @param buffer	the databuffer to put/get data
    534  * @param offset	offset to read from or write to
    535  * @param count		number of bytes to read/write
    536  *
    537  * Read the BufferRAM area
    538  */
    539 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
    540 				  unsigned char *buffer, int offset,
    541 				  size_t count)
    542 {
    543 	struct onenand_chip *this = mtd->priv;
    544 	void __iomem *bufferram;
    545 
    546 	bufferram = this->base + area;
    547 	bufferram += onenand_bufferram_offset(mtd, area);
    548 
    549 	memcpy_16(buffer, bufferram + offset, count);
    550 
    551 	return 0;
    552 }
    553 
    554 /**
    555  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
    556  * @param mtd		MTD data structure
    557  * @param area		BufferRAM area
    558  * @param buffer	the databuffer to put/get data
    559  * @param offset	offset to read from or write to
    560  * @param count		number of bytes to read/write
    561  *
    562  * Read the BufferRAM area with Sync. Burst Mode
    563  */
    564 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
    565 				       unsigned char *buffer, int offset,
    566 				       size_t count)
    567 {
    568 	struct onenand_chip *this = mtd->priv;
    569 	void __iomem *bufferram;
    570 
    571 	bufferram = this->base + area;
    572 	bufferram += onenand_bufferram_offset(mtd, area);
    573 
    574 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
    575 
    576 	memcpy_16(buffer, bufferram + offset, count);
    577 
    578 	this->mmcontrol(mtd, 0);
    579 
    580 	return 0;
    581 }
    582 
    583 /**
    584  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
    585  * @param mtd		MTD data structure
    586  * @param area		BufferRAM area
    587  * @param buffer	the databuffer to put/get data
    588  * @param offset	offset to read from or write to
    589  * @param count		number of bytes to read/write
    590  *
    591  * Write the BufferRAM area
    592  */
    593 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
    594 				   const unsigned char *buffer, int offset,
    595 				   size_t count)
    596 {
    597 	struct onenand_chip *this = mtd->priv;
    598 	void __iomem *bufferram;
    599 
    600 	bufferram = this->base + area;
    601 	bufferram += onenand_bufferram_offset(mtd, area);
    602 
    603 	memcpy_16(bufferram + offset, buffer, count);
    604 
    605 	return 0;
    606 }
    607 
    608 /**
    609  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
    610  * @param mtd		MTD data structure
    611  * @param addr		address to check
    612  * @return		blockpage address
    613  *
    614  * Get blockpage address at 2x program mode
    615  */
    616 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
    617 {
    618 	struct onenand_chip *this = mtd->priv;
    619 	int blockpage, block, page;
    620 
    621 	/* Calculate the even block number */
    622 	block = (int) (addr >> this->erase_shift) & ~1;
    623 	/* Is it the odd plane? */
    624 	if (addr & this->writesize)
    625 		block++;
    626 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
    627 	blockpage = (block << 7) | page;
    628 
    629 	return blockpage;
    630 }
    631 
    632 /**
    633  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
    634  * @param mtd		MTD data structure
    635  * @param addr		address to check
    636  * @return		1 if there are valid data, otherwise 0
    637  *
    638  * Check bufferram if there is data we required
    639  */
    640 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
    641 {
    642 	struct onenand_chip *this = mtd->priv;
    643 	int blockpage, found = 0;
    644 	unsigned int i;
    645 
    646 	if (ONENAND_IS_2PLANE(this))
    647 		blockpage = onenand_get_2x_blockpage(mtd, addr);
    648 	else
    649 		blockpage = (int) (addr >> this->page_shift);
    650 
    651 	/* Is there valid data? */
    652 	i = ONENAND_CURRENT_BUFFERRAM(this);
    653 	if (this->bufferram[i].blockpage == blockpage)
    654 		found = 1;
    655 	else {
    656 		/* Check another BufferRAM */
    657 		i = ONENAND_NEXT_BUFFERRAM(this);
    658 		if (this->bufferram[i].blockpage == blockpage) {
    659 			ONENAND_SET_NEXT_BUFFERRAM(this);
    660 			found = 1;
    661 		}
    662 	}
    663 
    664 	if (found && ONENAND_IS_DDP(this)) {
    665 		/* Select DataRAM for DDP */
    666 		int block = onenand_block(this, addr);
    667 		int value = onenand_bufferram_address(this, block);
    668 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
    669 	}
    670 
    671 	return found;
    672 }
    673 
    674 /**
    675  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
    676  * @param mtd		MTD data structure
    677  * @param addr		address to update
    678  * @param valid		valid flag
    679  *
    680  * Update BufferRAM information
    681  */
    682 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
    683 				    int valid)
    684 {
    685 	struct onenand_chip *this = mtd->priv;
    686 	int blockpage;
    687 	unsigned int i;
    688 
    689 	if (ONENAND_IS_2PLANE(this))
    690 		blockpage = onenand_get_2x_blockpage(mtd, addr);
    691 	else
    692 		blockpage = (int)(addr >> this->page_shift);
    693 
    694 	/* Invalidate another BufferRAM */
    695 	i = ONENAND_NEXT_BUFFERRAM(this);
    696 	if (this->bufferram[i].blockpage == blockpage)
    697 		this->bufferram[i].blockpage = -1;
    698 
    699 	/* Update BufferRAM */
    700 	i = ONENAND_CURRENT_BUFFERRAM(this);
    701 	if (valid)
    702 		this->bufferram[i].blockpage = blockpage;
    703 	else
    704 		this->bufferram[i].blockpage = -1;
    705 
    706 	return 0;
    707 }
    708 
    709 /**
    710  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
    711  * @param mtd           MTD data structure
    712  * @param addr          start address to invalidate
    713  * @param len           length to invalidate
    714  *
    715  * Invalidate BufferRAM information
    716  */
    717 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
    718 					 unsigned int len)
    719 {
    720 	struct onenand_chip *this = mtd->priv;
    721 	int i;
    722 	loff_t end_addr = addr + len;
    723 
    724 	/* Invalidate BufferRAM */
    725 	for (i = 0; i < MAX_BUFFERRAM; i++) {
    726 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
    727 
    728 		if (buf_addr >= addr && buf_addr < end_addr)
    729 			this->bufferram[i].blockpage = -1;
    730 	}
    731 }
    732 
    733 /**
    734  * onenand_get_device - [GENERIC] Get chip for selected access
    735  * @param mtd		MTD device structure
    736  * @param new_state	the state which is requested
    737  *
    738  * Get the device and lock it for exclusive access
    739  */
    740 static void onenand_get_device(struct mtd_info *mtd, int new_state)
    741 {
    742 	/* Do nothing */
    743 }
    744 
    745 /**
    746  * onenand_release_device - [GENERIC] release chip
    747  * @param mtd		MTD device structure
    748  *
    749  * Deselect, release chip lock and wake up anyone waiting on the device
    750  */
    751 static void onenand_release_device(struct mtd_info *mtd)
    752 {
    753 	/* Do nothing */
    754 }
    755 
    756 /**
    757  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
    758  * @param mtd		MTD device structure
    759  * @param buf		destination address
    760  * @param column	oob offset to read from
    761  * @param thislen	oob length to read
    762  */
    763 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
    764 					int column, int thislen)
    765 {
    766 	struct onenand_chip *this = mtd->priv;
    767 	struct nand_oobfree *free;
    768 	int readcol = column;
    769 	int readend = column + thislen;
    770 	int lastgap = 0;
    771 	unsigned int i;
    772 	uint8_t *oob_buf = this->oob_buf;
    773 
    774 	free = this->ecclayout->oobfree;
    775 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
    776 	     i++, free++) {
    777 		if (readcol >= lastgap)
    778 			readcol += free->offset - lastgap;
    779 		if (readend >= lastgap)
    780 			readend += free->offset - lastgap;
    781 		lastgap = free->offset + free->length;
    782 	}
    783 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
    784 	free = this->ecclayout->oobfree;
    785 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
    786 	     i++, free++) {
    787 		int free_end = free->offset + free->length;
    788 		if (free->offset < readend && free_end > readcol) {
    789 			int st = max_t(int,free->offset,readcol);
    790 			int ed = min_t(int,free_end,readend);
    791 			int n = ed - st;
    792 			memcpy(buf, oob_buf + st, n);
    793 			buf += n;
    794 		} else if (column == 0)
    795 			break;
    796 	}
    797 	return 0;
    798 }
    799 
    800 /**
    801  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
    802  * @param mtd		MTD device structure
    803  * @param addr		address to recover
    804  * @param status	return value from onenand_wait
    805  *
    806  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
    807  * lower page address and MSB page has higher page address in paired pages.
    808  * If power off occurs during MSB page program, the paired LSB page data can
    809  * become corrupt. LSB page recovery read is a way to read LSB page though page
    810  * data are corrupted. When uncorrectable error occurs as a result of LSB page
    811  * read after power up, issue LSB page recovery read.
    812  */
    813 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
    814 {
    815 	struct onenand_chip *this = mtd->priv;
    816 	int i;
    817 
    818 	/* Recovery is only for Flex-OneNAND */
    819 	if (!FLEXONENAND(this))
    820 		return status;
    821 
    822 	/* check if we failed due to uncorrectable error */
    823 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
    824 		return status;
    825 
    826 	/* check if address lies in MLC region */
    827 	i = flexonenand_region(mtd, addr);
    828 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
    829 		return status;
    830 
    831 	printk("onenand_recover_lsb:"
    832 		"Attempting to recover from uncorrectable read\n");
    833 
    834 	/* Issue the LSB page recovery command */
    835 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
    836 	return this->wait(mtd, FL_READING);
    837 }
    838 
    839 /**
    840  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
    841  * @param mtd		MTD device structure
    842  * @param from		offset to read from
    843  * @param ops		oob operation description structure
    844  *
    845  * OneNAND read main and/or out-of-band data
    846  */
    847 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
    848 		struct mtd_oob_ops *ops)
    849 {
    850 	struct onenand_chip *this = mtd->priv;
    851 	struct mtd_ecc_stats stats;
    852 	size_t len = ops->len;
    853 	size_t ooblen = ops->ooblen;
    854 	u_char *buf = ops->datbuf;
    855 	u_char *oobbuf = ops->oobbuf;
    856 	int read = 0, column, thislen;
    857 	int oobread = 0, oobcolumn, thisooblen, oobsize;
    858 	int ret = 0, boundary = 0;
    859 	int writesize = this->writesize;
    860 
    861 	pr_debug("onenand_read_ops_nolock: from = 0x%08x, len = %i\n",
    862 		 (unsigned int) from, (int) len);
    863 
    864 	if (ops->mode == MTD_OPS_AUTO_OOB)
    865 		oobsize = this->ecclayout->oobavail;
    866 	else
    867 		oobsize = mtd->oobsize;
    868 
    869 	oobcolumn = from & (mtd->oobsize - 1);
    870 
    871 	/* Do not allow reads past end of device */
    872 	if ((from + len) > mtd->size) {
    873 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
    874 		ops->retlen = 0;
    875 		ops->oobretlen = 0;
    876 		return -EINVAL;
    877 	}
    878 
    879 	stats = mtd->ecc_stats;
    880 
    881 	/* Read-while-load method */
    882 	/* Note: We can't use this feature in MLC */
    883 
    884 	/* Do first load to bufferRAM */
    885 	if (read < len) {
    886 		if (!onenand_check_bufferram(mtd, from)) {
    887 			this->main_buf = buf;
    888 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
    889 			ret = this->wait(mtd, FL_READING);
    890 			if (unlikely(ret))
    891 				ret = onenand_recover_lsb(mtd, from, ret);
    892 			onenand_update_bufferram(mtd, from, !ret);
    893 			if (ret == -EBADMSG)
    894 				ret = 0;
    895 		}
    896 	}
    897 
    898 	thislen = min_t(int, writesize, len - read);
    899 	column = from & (writesize - 1);
    900 	if (column + thislen > writesize)
    901 		thislen = writesize - column;
    902 
    903 	while (!ret) {
    904 		/* If there is more to load then start next load */
    905 		from += thislen;
    906 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
    907 			this->main_buf = buf + thislen;
    908 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
    909 			/*
    910 			 * Chip boundary handling in DDP
    911 			 * Now we issued chip 1 read and pointed chip 1
    912 			 * bufferam so we have to point chip 0 bufferam.
    913 			 */
    914 			if (ONENAND_IS_DDP(this) &&
    915 					unlikely(from == (this->chipsize >> 1))) {
    916 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
    917 				boundary = 1;
    918 			} else
    919 				boundary = 0;
    920 			ONENAND_SET_PREV_BUFFERRAM(this);
    921 		}
    922 
    923 		/* While load is going, read from last bufferRAM */
    924 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
    925 
    926 		/* Read oob area if needed */
    927 		if (oobbuf) {
    928 			thisooblen = oobsize - oobcolumn;
    929 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
    930 
    931 			if (ops->mode == MTD_OPS_AUTO_OOB)
    932 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
    933 			else
    934 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
    935 			oobread += thisooblen;
    936 			oobbuf += thisooblen;
    937 			oobcolumn = 0;
    938 		}
    939 
    940 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
    941 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
    942 			ret = this->wait(mtd, FL_READING);
    943 			if (unlikely(ret))
    944 				ret = onenand_recover_lsb(mtd, from, ret);
    945 			onenand_update_bufferram(mtd, from, !ret);
    946 			if (mtd_is_eccerr(ret))
    947 				ret = 0;
    948 		}
    949 
    950 		/* See if we are done */
    951 		read += thislen;
    952 		if (read == len)
    953 			break;
    954 		/* Set up for next read from bufferRAM */
    955 		if (unlikely(boundary))
    956 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
    957 		if (!ONENAND_IS_4KB_PAGE(this))
    958 			ONENAND_SET_NEXT_BUFFERRAM(this);
    959 		buf += thislen;
    960 		thislen = min_t(int, writesize, len - read);
    961 		column = 0;
    962 
    963 		if (!ONENAND_IS_4KB_PAGE(this)) {
    964 			/* Now wait for load */
    965 			ret = this->wait(mtd, FL_READING);
    966 			onenand_update_bufferram(mtd, from, !ret);
    967 			if (mtd_is_eccerr(ret))
    968 				ret = 0;
    969 		}
    970 	}
    971 
    972 	/*
    973 	 * Return success, if no ECC failures, else -EBADMSG
    974 	 * fs driver will take care of that, because
    975 	 * retlen == desired len and result == -EBADMSG
    976 	 */
    977 	ops->retlen = read;
    978 	ops->oobretlen = oobread;
    979 
    980 	if (ret)
    981 		return ret;
    982 
    983 	if (mtd->ecc_stats.failed - stats.failed)
    984 		return -EBADMSG;
    985 
    986 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
    987 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
    988 }
    989 
    990 /**
    991  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
    992  * @param mtd		MTD device structure
    993  * @param from		offset to read from
    994  * @param ops		oob operation description structure
    995  *
    996  * OneNAND read out-of-band data from the spare area
    997  */
    998 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
    999 		struct mtd_oob_ops *ops)
   1000 {
   1001 	struct onenand_chip *this = mtd->priv;
   1002 	struct mtd_ecc_stats stats;
   1003 	int read = 0, thislen, column, oobsize;
   1004 	size_t len = ops->ooblen;
   1005 	unsigned int mode = ops->mode;
   1006 	u_char *buf = ops->oobbuf;
   1007 	int ret = 0, readcmd;
   1008 
   1009 	from += ops->ooboffs;
   1010 
   1011 	pr_debug("onenand_read_oob_nolock: from = 0x%08x, len = %i\n",
   1012 		 (unsigned int) from, (int) len);
   1013 
   1014 	/* Initialize return length value */
   1015 	ops->oobretlen = 0;
   1016 
   1017 	if (mode == MTD_OPS_AUTO_OOB)
   1018 		oobsize = this->ecclayout->oobavail;
   1019 	else
   1020 		oobsize = mtd->oobsize;
   1021 
   1022 	column = from & (mtd->oobsize - 1);
   1023 
   1024 	if (unlikely(column >= oobsize)) {
   1025 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
   1026 		return -EINVAL;
   1027 	}
   1028 
   1029 	/* Do not allow reads past end of device */
   1030 	if (unlikely(from >= mtd->size ||
   1031 		column + len > ((mtd->size >> this->page_shift) -
   1032 				(from >> this->page_shift)) * oobsize)) {
   1033 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
   1034 		return -EINVAL;
   1035 	}
   1036 
   1037 	stats = mtd->ecc_stats;
   1038 
   1039 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
   1040 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1041 
   1042 	while (read < len) {
   1043 		thislen = oobsize - column;
   1044 		thislen = min_t(int, thislen, len);
   1045 
   1046 		this->spare_buf = buf;
   1047 		this->command(mtd, readcmd, from, mtd->oobsize);
   1048 
   1049 		onenand_update_bufferram(mtd, from, 0);
   1050 
   1051 		ret = this->wait(mtd, FL_READING);
   1052 		if (unlikely(ret))
   1053 			ret = onenand_recover_lsb(mtd, from, ret);
   1054 
   1055 		if (ret && ret != -EBADMSG) {
   1056 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
   1057 			break;
   1058 		}
   1059 
   1060 		if (mode == MTD_OPS_AUTO_OOB)
   1061 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
   1062 		else
   1063 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
   1064 
   1065 		read += thislen;
   1066 
   1067 		if (read == len)
   1068 			break;
   1069 
   1070 		buf += thislen;
   1071 
   1072 		/* Read more? */
   1073 		if (read < len) {
   1074 			/* Page size */
   1075 			from += mtd->writesize;
   1076 			column = 0;
   1077 		}
   1078 	}
   1079 
   1080 	ops->oobretlen = read;
   1081 
   1082 	if (ret)
   1083 		return ret;
   1084 
   1085 	if (mtd->ecc_stats.failed - stats.failed)
   1086 		return -EBADMSG;
   1087 
   1088 	return 0;
   1089 }
   1090 
   1091 /**
   1092  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
   1093  * @param mtd		MTD device structure
   1094  * @param from		offset to read from
   1095  * @param len		number of bytes to read
   1096  * @param retlen	pointer to variable to store the number of read bytes
   1097  * @param buf		the databuffer to put data
   1098  *
   1099  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
   1100 */
   1101 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
   1102 		 size_t * retlen, u_char * buf)
   1103 {
   1104 	struct mtd_oob_ops ops = {
   1105 		.len    = len,
   1106 		.ooblen = 0,
   1107 		.datbuf = buf,
   1108 		.oobbuf = NULL,
   1109 	};
   1110 	int ret;
   1111 
   1112 	onenand_get_device(mtd, FL_READING);
   1113 	ret = onenand_read_ops_nolock(mtd, from, &ops);
   1114 	onenand_release_device(mtd);
   1115 
   1116 	*retlen = ops.retlen;
   1117 	return ret;
   1118 }
   1119 
   1120 /**
   1121  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
   1122  * @param mtd		MTD device structure
   1123  * @param from		offset to read from
   1124  * @param ops		oob operations description structure
   1125  *
   1126  * OneNAND main and/or out-of-band
   1127  */
   1128 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
   1129 			struct mtd_oob_ops *ops)
   1130 {
   1131 	int ret;
   1132 
   1133 	switch (ops->mode) {
   1134 	case MTD_OPS_PLACE_OOB:
   1135 	case MTD_OPS_AUTO_OOB:
   1136 		break;
   1137 	case MTD_OPS_RAW:
   1138 		/* Not implemented yet */
   1139 	default:
   1140 		return -EINVAL;
   1141 	}
   1142 
   1143 	onenand_get_device(mtd, FL_READING);
   1144 	if (ops->datbuf)
   1145 		ret = onenand_read_ops_nolock(mtd, from, ops);
   1146 	else
   1147 		ret = onenand_read_oob_nolock(mtd, from, ops);
   1148 	onenand_release_device(mtd);
   1149 
   1150 	return ret;
   1151 }
   1152 
   1153 /**
   1154  * onenand_bbt_wait - [DEFAULT] wait until the command is done
   1155  * @param mtd		MTD device structure
   1156  * @param state		state to select the max. timeout value
   1157  *
   1158  * Wait for command done.
   1159  */
   1160 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
   1161 {
   1162 	struct onenand_chip *this = mtd->priv;
   1163 	unsigned int interrupt;
   1164 	unsigned int ctrl;
   1165 
   1166 	/* Wait at most 20ms ... */
   1167 	u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
   1168 	u32 time_start = get_timer(0);
   1169 	do {
   1170 		WATCHDOG_RESET();
   1171 		if (get_timer(time_start) > timeo)
   1172 			return ONENAND_BBT_READ_FATAL_ERROR;
   1173 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
   1174 	} while ((interrupt & ONENAND_INT_MASTER) == 0);
   1175 
   1176 	/* To get correct interrupt status in timeout case */
   1177 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
   1178 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
   1179 
   1180 	if (interrupt & ONENAND_INT_READ) {
   1181 		int ecc = onenand_read_ecc(this);
   1182 		if (ecc & ONENAND_ECC_2BIT_ALL) {
   1183 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
   1184 				", controller = 0x%04x\n", ecc, ctrl);
   1185 			return ONENAND_BBT_READ_ERROR;
   1186 		}
   1187 	} else {
   1188 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
   1189 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
   1190 		return ONENAND_BBT_READ_FATAL_ERROR;
   1191 	}
   1192 
   1193 	/* Initial bad block case: 0x2400 or 0x0400 */
   1194 	if (ctrl & ONENAND_CTRL_ERROR) {
   1195 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
   1196 		return ONENAND_BBT_READ_ERROR;
   1197 	}
   1198 
   1199 	return 0;
   1200 }
   1201 
   1202 /**
   1203  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
   1204  * @param mtd		MTD device structure
   1205  * @param from		offset to read from
   1206  * @param ops		oob operation description structure
   1207  *
   1208  * OneNAND read out-of-band data from the spare area for bbt scan
   1209  */
   1210 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
   1211 		struct mtd_oob_ops *ops)
   1212 {
   1213 	struct onenand_chip *this = mtd->priv;
   1214 	int read = 0, thislen, column;
   1215 	int ret = 0, readcmd;
   1216 	size_t len = ops->ooblen;
   1217 	u_char *buf = ops->oobbuf;
   1218 
   1219 	pr_debug("onenand_bbt_read_oob: from = 0x%08x, len = %zi\n",
   1220 		 (unsigned int) from, len);
   1221 
   1222 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
   1223 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1224 
   1225 	/* Initialize return value */
   1226 	ops->oobretlen = 0;
   1227 
   1228 	/* Do not allow reads past end of device */
   1229 	if (unlikely((from + len) > mtd->size)) {
   1230 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
   1231 		return ONENAND_BBT_READ_FATAL_ERROR;
   1232 	}
   1233 
   1234 	/* Grab the lock and see if the device is available */
   1235 	onenand_get_device(mtd, FL_READING);
   1236 
   1237 	column = from & (mtd->oobsize - 1);
   1238 
   1239 	while (read < len) {
   1240 
   1241 		thislen = mtd->oobsize - column;
   1242 		thislen = min_t(int, thislen, len);
   1243 
   1244 		this->spare_buf = buf;
   1245 		this->command(mtd, readcmd, from, mtd->oobsize);
   1246 
   1247 		onenand_update_bufferram(mtd, from, 0);
   1248 
   1249 		ret = this->bbt_wait(mtd, FL_READING);
   1250 		if (unlikely(ret))
   1251 			ret = onenand_recover_lsb(mtd, from, ret);
   1252 
   1253 		if (ret)
   1254 			break;
   1255 
   1256 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
   1257 		read += thislen;
   1258 		if (read == len)
   1259 			break;
   1260 
   1261 		buf += thislen;
   1262 
   1263 		/* Read more? */
   1264 		if (read < len) {
   1265 			/* Update Page size */
   1266 			from += this->writesize;
   1267 			column = 0;
   1268 		}
   1269 	}
   1270 
   1271 	/* Deselect and wake up anyone waiting on the device */
   1272 	onenand_release_device(mtd);
   1273 
   1274 	ops->oobretlen = read;
   1275 	return ret;
   1276 }
   1277 
   1278 
   1279 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
   1280 /**
   1281  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
   1282  * @param mtd           MTD device structure
   1283  * @param buf           the databuffer to verify
   1284  * @param to            offset to read from
   1285  */
   1286 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
   1287 {
   1288 	struct onenand_chip *this = mtd->priv;
   1289 	u_char *oob_buf = this->oob_buf;
   1290 	int status, i, readcmd;
   1291 
   1292 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
   1293 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
   1294 
   1295 	this->command(mtd, readcmd, to, mtd->oobsize);
   1296 	onenand_update_bufferram(mtd, to, 0);
   1297 	status = this->wait(mtd, FL_READING);
   1298 	if (status)
   1299 		return status;
   1300 
   1301 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
   1302 	for (i = 0; i < mtd->oobsize; i++)
   1303 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
   1304 			return -EBADMSG;
   1305 
   1306 	return 0;
   1307 }
   1308 
   1309 /**
   1310  * onenand_verify - [GENERIC] verify the chip contents after a write
   1311  * @param mtd          MTD device structure
   1312  * @param buf          the databuffer to verify
   1313  * @param addr         offset to read from
   1314  * @param len          number of bytes to read and compare
   1315  */
   1316 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
   1317 {
   1318 	struct onenand_chip *this = mtd->priv;
   1319 	void __iomem *dataram;
   1320 	int ret = 0;
   1321 	int thislen, column;
   1322 
   1323 	while (len != 0) {
   1324 		thislen = min_t(int, this->writesize, len);
   1325 		column = addr & (this->writesize - 1);
   1326 		if (column + thislen > this->writesize)
   1327 			thislen = this->writesize - column;
   1328 
   1329 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
   1330 
   1331 		onenand_update_bufferram(mtd, addr, 0);
   1332 
   1333 		ret = this->wait(mtd, FL_READING);
   1334 		if (ret)
   1335 			return ret;
   1336 
   1337 		onenand_update_bufferram(mtd, addr, 1);
   1338 
   1339 		dataram = this->base + ONENAND_DATARAM;
   1340 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
   1341 
   1342 		if (memcmp(buf, dataram + column, thislen))
   1343 			return -EBADMSG;
   1344 
   1345 		len -= thislen;
   1346 		buf += thislen;
   1347 		addr += thislen;
   1348 	}
   1349 
   1350 	return 0;
   1351 }
   1352 #else
   1353 #define onenand_verify(...)             (0)
   1354 #define onenand_verify_oob(...)         (0)
   1355 #endif
   1356 
   1357 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
   1358 
   1359 /**
   1360  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
   1361  * @param mtd           MTD device structure
   1362  * @param oob_buf       oob buffer
   1363  * @param buf           source address
   1364  * @param column        oob offset to write to
   1365  * @param thislen       oob length to write
   1366  */
   1367 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
   1368 		const u_char *buf, int column, int thislen)
   1369 {
   1370 	struct onenand_chip *this = mtd->priv;
   1371 	struct nand_oobfree *free;
   1372 	int writecol = column;
   1373 	int writeend = column + thislen;
   1374 	int lastgap = 0;
   1375 	unsigned int i;
   1376 
   1377 	free = this->ecclayout->oobfree;
   1378 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
   1379 	     i++, free++) {
   1380 		if (writecol >= lastgap)
   1381 			writecol += free->offset - lastgap;
   1382 		if (writeend >= lastgap)
   1383 			writeend += free->offset - lastgap;
   1384 		lastgap = free->offset + free->length;
   1385 	}
   1386 	free = this->ecclayout->oobfree;
   1387 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
   1388 	     i++, free++) {
   1389 		int free_end = free->offset + free->length;
   1390 		if (free->offset < writeend && free_end > writecol) {
   1391 			int st = max_t(int,free->offset,writecol);
   1392 			int ed = min_t(int,free_end,writeend);
   1393 			int n = ed - st;
   1394 			memcpy(oob_buf + st, buf, n);
   1395 			buf += n;
   1396 		} else if (column == 0)
   1397 			break;
   1398 	}
   1399 	return 0;
   1400 }
   1401 
   1402 /**
   1403  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
   1404  * @param mtd           MTD device structure
   1405  * @param to            offset to write to
   1406  * @param ops           oob operation description structure
   1407  *
   1408  * Write main and/or oob with ECC
   1409  */
   1410 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
   1411 		struct mtd_oob_ops *ops)
   1412 {
   1413 	struct onenand_chip *this = mtd->priv;
   1414 	int written = 0, column, thislen, subpage;
   1415 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
   1416 	size_t len = ops->len;
   1417 	size_t ooblen = ops->ooblen;
   1418 	const u_char *buf = ops->datbuf;
   1419 	const u_char *oob = ops->oobbuf;
   1420 	u_char *oobbuf;
   1421 	int ret = 0;
   1422 
   1423 	pr_debug("onenand_write_ops_nolock: to = 0x%08x, len = %i\n",
   1424 		 (unsigned int) to, (int) len);
   1425 
   1426 	/* Initialize retlen, in case of early exit */
   1427 	ops->retlen = 0;
   1428 	ops->oobretlen = 0;
   1429 
   1430 	/* Reject writes, which are not page aligned */
   1431 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
   1432 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
   1433 		return -EINVAL;
   1434 	}
   1435 
   1436 	if (ops->mode == MTD_OPS_AUTO_OOB)
   1437 		oobsize = this->ecclayout->oobavail;
   1438 	else
   1439 		oobsize = mtd->oobsize;
   1440 
   1441 	oobcolumn = to & (mtd->oobsize - 1);
   1442 
   1443 	column = to & (mtd->writesize - 1);
   1444 
   1445 	/* Loop until all data write */
   1446 	while (written < len) {
   1447 		u_char *wbuf = (u_char *) buf;
   1448 
   1449 		thislen = min_t(int, mtd->writesize - column, len - written);
   1450 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
   1451 
   1452 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
   1453 
   1454 		/* Partial page write */
   1455 		subpage = thislen < mtd->writesize;
   1456 		if (subpage) {
   1457 			memset(this->page_buf, 0xff, mtd->writesize);
   1458 			memcpy(this->page_buf + column, buf, thislen);
   1459 			wbuf = this->page_buf;
   1460 		}
   1461 
   1462 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
   1463 
   1464 		if (oob) {
   1465 			oobbuf = this->oob_buf;
   1466 
   1467 			/* We send data to spare ram with oobsize
   1468 			 *                          * to prevent byte access */
   1469 			memset(oobbuf, 0xff, mtd->oobsize);
   1470 			if (ops->mode == MTD_OPS_AUTO_OOB)
   1471 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
   1472 			else
   1473 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
   1474 
   1475 			oobwritten += thisooblen;
   1476 			oob += thisooblen;
   1477 			oobcolumn = 0;
   1478 		} else
   1479 			oobbuf = (u_char *) ffchars;
   1480 
   1481 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
   1482 
   1483 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
   1484 
   1485 		ret = this->wait(mtd, FL_WRITING);
   1486 
   1487 		/* In partial page write we don't update bufferram */
   1488 		onenand_update_bufferram(mtd, to, !ret && !subpage);
   1489 		if (ONENAND_IS_2PLANE(this)) {
   1490 			ONENAND_SET_BUFFERRAM1(this);
   1491 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
   1492 		}
   1493 
   1494 		if (ret) {
   1495 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
   1496 			break;
   1497 		}
   1498 
   1499 		/* Only check verify write turn on */
   1500 		ret = onenand_verify(mtd, buf, to, thislen);
   1501 		if (ret) {
   1502 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
   1503 			break;
   1504 		}
   1505 
   1506 		written += thislen;
   1507 
   1508 		if (written == len)
   1509 			break;
   1510 
   1511 		column = 0;
   1512 		to += thislen;
   1513 		buf += thislen;
   1514 	}
   1515 
   1516 	ops->retlen = written;
   1517 
   1518 	return ret;
   1519 }
   1520 
   1521 /**
   1522  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
   1523  * @param mtd           MTD device structure
   1524  * @param to            offset to write to
   1525  * @param len           number of bytes to write
   1526  * @param retlen        pointer to variable to store the number of written bytes
   1527  * @param buf           the data to write
   1528  * @param mode          operation mode
   1529  *
   1530  * OneNAND write out-of-band
   1531  */
   1532 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
   1533 		struct mtd_oob_ops *ops)
   1534 {
   1535 	struct onenand_chip *this = mtd->priv;
   1536 	int column, ret = 0, oobsize;
   1537 	int written = 0, oobcmd;
   1538 	u_char *oobbuf;
   1539 	size_t len = ops->ooblen;
   1540 	const u_char *buf = ops->oobbuf;
   1541 	unsigned int mode = ops->mode;
   1542 
   1543 	to += ops->ooboffs;
   1544 
   1545 	pr_debug("onenand_write_oob_nolock: to = 0x%08x, len = %i\n",
   1546 		 (unsigned int) to, (int) len);
   1547 
   1548 	/* Initialize retlen, in case of early exit */
   1549 	ops->oobretlen = 0;
   1550 
   1551 	if (mode == MTD_OPS_AUTO_OOB)
   1552 		oobsize = this->ecclayout->oobavail;
   1553 	else
   1554 		oobsize = mtd->oobsize;
   1555 
   1556 	column = to & (mtd->oobsize - 1);
   1557 
   1558 	if (unlikely(column >= oobsize)) {
   1559 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
   1560 		return -EINVAL;
   1561 	}
   1562 
   1563 	/* For compatibility with NAND: Do not allow write past end of page */
   1564 	if (unlikely(column + len > oobsize)) {
   1565 		printk(KERN_ERR "onenand_write_oob_nolock: "
   1566 				"Attempt to write past end of page\n");
   1567 		return -EINVAL;
   1568 	}
   1569 
   1570 	/* Do not allow reads past end of device */
   1571 	if (unlikely(to >= mtd->size ||
   1572 				column + len > ((mtd->size >> this->page_shift) -
   1573 					(to >> this->page_shift)) * oobsize)) {
   1574 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
   1575 		return -EINVAL;
   1576 	}
   1577 
   1578 	oobbuf = this->oob_buf;
   1579 
   1580 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
   1581 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
   1582 
   1583 	/* Loop until all data write */
   1584 	while (written < len) {
   1585 		int thislen = min_t(int, oobsize, len - written);
   1586 
   1587 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
   1588 
   1589 		/* We send data to spare ram with oobsize
   1590 		 * to prevent byte access */
   1591 		memset(oobbuf, 0xff, mtd->oobsize);
   1592 		if (mode == MTD_OPS_AUTO_OOB)
   1593 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
   1594 		else
   1595 			memcpy(oobbuf + column, buf, thislen);
   1596 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
   1597 
   1598 		if (ONENAND_IS_4KB_PAGE(this)) {
   1599 			/* Set main area of DataRAM to 0xff*/
   1600 			memset(this->page_buf, 0xff, mtd->writesize);
   1601 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
   1602 				this->page_buf,	0, mtd->writesize);
   1603 		}
   1604 
   1605 		this->command(mtd, oobcmd, to, mtd->oobsize);
   1606 
   1607 		onenand_update_bufferram(mtd, to, 0);
   1608 		if (ONENAND_IS_2PLANE(this)) {
   1609 			ONENAND_SET_BUFFERRAM1(this);
   1610 			onenand_update_bufferram(mtd, to + this->writesize, 0);
   1611 		}
   1612 
   1613 		ret = this->wait(mtd, FL_WRITING);
   1614 		if (ret) {
   1615 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
   1616 			break;
   1617 		}
   1618 
   1619 		ret = onenand_verify_oob(mtd, oobbuf, to);
   1620 		if (ret) {
   1621 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
   1622 			break;
   1623 		}
   1624 
   1625 		written += thislen;
   1626 		if (written == len)
   1627 			break;
   1628 
   1629 		to += mtd->writesize;
   1630 		buf += thislen;
   1631 		column = 0;
   1632 	}
   1633 
   1634 	ops->oobretlen = written;
   1635 
   1636 	return ret;
   1637 }
   1638 
   1639 /**
   1640  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
   1641  * @param mtd		MTD device structure
   1642  * @param to		offset to write to
   1643  * @param len		number of bytes to write
   1644  * @param retlen	pointer to variable to store the number of written bytes
   1645  * @param buf		the data to write
   1646  *
   1647  * Write with ECC
   1648  */
   1649 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
   1650 		  size_t * retlen, const u_char * buf)
   1651 {
   1652 	struct mtd_oob_ops ops = {
   1653 		.len    = len,
   1654 		.ooblen = 0,
   1655 		.datbuf = (u_char *) buf,
   1656 		.oobbuf = NULL,
   1657 	};
   1658 	int ret;
   1659 
   1660 	onenand_get_device(mtd, FL_WRITING);
   1661 	ret = onenand_write_ops_nolock(mtd, to, &ops);
   1662 	onenand_release_device(mtd);
   1663 
   1664 	*retlen = ops.retlen;
   1665 	return ret;
   1666 }
   1667 
   1668 /**
   1669  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
   1670  * @param mtd		MTD device structure
   1671  * @param to		offset to write to
   1672  * @param ops		oob operation description structure
   1673  *
   1674  * OneNAND write main and/or out-of-band
   1675  */
   1676 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
   1677 			struct mtd_oob_ops *ops)
   1678 {
   1679 	int ret;
   1680 
   1681 	switch (ops->mode) {
   1682 	case MTD_OPS_PLACE_OOB:
   1683 	case MTD_OPS_AUTO_OOB:
   1684 		break;
   1685 	case MTD_OPS_RAW:
   1686 		/* Not implemented yet */
   1687 	default:
   1688 		return -EINVAL;
   1689 	}
   1690 
   1691 	onenand_get_device(mtd, FL_WRITING);
   1692 	if (ops->datbuf)
   1693 		ret = onenand_write_ops_nolock(mtd, to, ops);
   1694 	else
   1695 		ret = onenand_write_oob_nolock(mtd, to, ops);
   1696 	onenand_release_device(mtd);
   1697 
   1698 	return ret;
   1699 
   1700 }
   1701 
   1702 /**
   1703  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
   1704  * @param mtd		MTD device structure
   1705  * @param ofs		offset from device start
   1706  * @param allowbbt	1, if its allowed to access the bbt area
   1707  *
   1708  * Check, if the block is bad, Either by reading the bad block table or
   1709  * calling of the scan function.
   1710  */
   1711 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
   1712 {
   1713 	struct onenand_chip *this = mtd->priv;
   1714 	struct bbm_info *bbm = this->bbm;
   1715 
   1716 	/* Return info from the table */
   1717 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
   1718 }
   1719 
   1720 
   1721 /**
   1722  * onenand_erase - [MTD Interface] erase block(s)
   1723  * @param mtd		MTD device structure
   1724  * @param instr		erase instruction
   1725  *
   1726  * Erase one ore more blocks
   1727  */
   1728 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
   1729 {
   1730 	struct onenand_chip *this = mtd->priv;
   1731 	unsigned int block_size;
   1732 	loff_t addr = instr->addr;
   1733 	unsigned int len = instr->len;
   1734 	int ret = 0, i;
   1735 	struct mtd_erase_region_info *region = NULL;
   1736 	unsigned int region_end = 0;
   1737 
   1738 	pr_debug("onenand_erase: start = 0x%08x, len = %i\n",
   1739 			(unsigned int) addr, len);
   1740 
   1741 	if (FLEXONENAND(this)) {
   1742 		/* Find the eraseregion of this address */
   1743 		i = flexonenand_region(mtd, addr);
   1744 		region = &mtd->eraseregions[i];
   1745 
   1746 		block_size = region->erasesize;
   1747 		region_end = region->offset
   1748 			+ region->erasesize * region->numblocks;
   1749 
   1750 		/* Start address within region must align on block boundary.
   1751 		 * Erase region's start offset is always block start address.
   1752 		 */
   1753 		if (unlikely((addr - region->offset) & (block_size - 1))) {
   1754 			pr_debug("onenand_erase:" " Unaligned address\n");
   1755 			return -EINVAL;
   1756 		}
   1757 	} else {
   1758 		block_size = 1 << this->erase_shift;
   1759 
   1760 		/* Start address must align on block boundary */
   1761 		if (unlikely(addr & (block_size - 1))) {
   1762 			pr_debug("onenand_erase:" "Unaligned address\n");
   1763 			return -EINVAL;
   1764 		}
   1765 	}
   1766 
   1767 	/* Length must align on block boundary */
   1768 	if (unlikely(len & (block_size - 1))) {
   1769 		pr_debug("onenand_erase: Length not block aligned\n");
   1770 		return -EINVAL;
   1771 	}
   1772 
   1773 	/* Grab the lock and see if the device is available */
   1774 	onenand_get_device(mtd, FL_ERASING);
   1775 
   1776 	/* Loop throught the pages */
   1777 	instr->state = MTD_ERASING;
   1778 
   1779 	while (len) {
   1780 
   1781 		/* Check if we have a bad block, we do not erase bad blocks */
   1782 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
   1783 			printk(KERN_WARNING "onenand_erase: attempt to erase"
   1784 				" a bad block at addr 0x%08x\n",
   1785 				(unsigned int) addr);
   1786 			instr->state = MTD_ERASE_FAILED;
   1787 			goto erase_exit;
   1788 		}
   1789 
   1790 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
   1791 
   1792 		onenand_invalidate_bufferram(mtd, addr, block_size);
   1793 
   1794 		ret = this->wait(mtd, FL_ERASING);
   1795 		/* Check, if it is write protected */
   1796 		if (ret) {
   1797 			if (ret == -EPERM)
   1798 				pr_debug("onenand_erase: "
   1799 					 "Device is write protected!!!\n");
   1800 			else
   1801 				pr_debug("onenand_erase: "
   1802 					 "Failed erase, block %d\n",
   1803 					 onenand_block(this, addr));
   1804 			instr->state = MTD_ERASE_FAILED;
   1805 			instr->fail_addr = addr;
   1806 
   1807 			goto erase_exit;
   1808 		}
   1809 
   1810 		len -= block_size;
   1811 		addr += block_size;
   1812 
   1813 		if (addr == region_end) {
   1814 			if (!len)
   1815 				break;
   1816 			region++;
   1817 
   1818 			block_size = region->erasesize;
   1819 			region_end = region->offset
   1820 				+ region->erasesize * region->numblocks;
   1821 
   1822 			if (len & (block_size - 1)) {
   1823 				/* This has been checked at MTD
   1824 				 * partitioning level. */
   1825 				printk("onenand_erase: Unaligned address\n");
   1826 				goto erase_exit;
   1827 			}
   1828 		}
   1829 	}
   1830 
   1831 	instr->state = MTD_ERASE_DONE;
   1832 
   1833 erase_exit:
   1834 
   1835 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
   1836 	/* Do call back function */
   1837 	if (!ret)
   1838 		mtd_erase_callback(instr);
   1839 
   1840 	/* Deselect and wake up anyone waiting on the device */
   1841 	onenand_release_device(mtd);
   1842 
   1843 	return ret;
   1844 }
   1845 
   1846 /**
   1847  * onenand_sync - [MTD Interface] sync
   1848  * @param mtd		MTD device structure
   1849  *
   1850  * Sync is actually a wait for chip ready function
   1851  */
   1852 void onenand_sync(struct mtd_info *mtd)
   1853 {
   1854 	pr_debug("onenand_sync: called\n");
   1855 
   1856 	/* Grab the lock and see if the device is available */
   1857 	onenand_get_device(mtd, FL_SYNCING);
   1858 
   1859 	/* Release it and go back */
   1860 	onenand_release_device(mtd);
   1861 }
   1862 
   1863 /**
   1864  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
   1865  * @param mtd		MTD device structure
   1866  * @param ofs		offset relative to mtd start
   1867  *
   1868  * Check whether the block is bad
   1869  */
   1870 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
   1871 {
   1872 	int ret;
   1873 
   1874 	/* Check for invalid offset */
   1875 	if (ofs > mtd->size)
   1876 		return -EINVAL;
   1877 
   1878 	onenand_get_device(mtd, FL_READING);
   1879 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
   1880 	onenand_release_device(mtd);
   1881 	return ret;
   1882 }
   1883 
   1884 /**
   1885  * onenand_default_block_markbad - [DEFAULT] mark a block bad
   1886  * @param mtd           MTD device structure
   1887  * @param ofs           offset from device start
   1888  *
   1889  * This is the default implementation, which can be overridden by
   1890  * a hardware specific driver.
   1891  */
   1892 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
   1893 {
   1894 	struct onenand_chip *this = mtd->priv;
   1895 	struct bbm_info *bbm = this->bbm;
   1896 	u_char buf[2] = {0, 0};
   1897 	struct mtd_oob_ops ops = {
   1898 		.mode = MTD_OPS_PLACE_OOB,
   1899 		.ooblen = 2,
   1900 		.oobbuf = buf,
   1901 		.ooboffs = 0,
   1902 	};
   1903 	int block;
   1904 
   1905 	/* Get block number */
   1906 	block = onenand_block(this, ofs);
   1907 	if (bbm->bbt)
   1908 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
   1909 
   1910 	/* We write two bytes, so we dont have to mess with 16 bit access */
   1911 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
   1912 	return onenand_write_oob_nolock(mtd, ofs, &ops);
   1913 }
   1914 
   1915 /**
   1916  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
   1917  * @param mtd		MTD device structure
   1918  * @param ofs		offset relative to mtd start
   1919  *
   1920  * Mark the block as bad
   1921  */
   1922 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
   1923 {
   1924 	struct onenand_chip *this = mtd->priv;
   1925 	int ret;
   1926 
   1927 	ret = onenand_block_isbad(mtd, ofs);
   1928 	if (ret) {
   1929 		/* If it was bad already, return success and do nothing */
   1930 		if (ret > 0)
   1931 			return 0;
   1932 		return ret;
   1933 	}
   1934 
   1935 	onenand_get_device(mtd, FL_WRITING);
   1936 	ret = this->block_markbad(mtd, ofs);
   1937 	onenand_release_device(mtd);
   1938 
   1939 	return ret;
   1940 }
   1941 
   1942 /**
   1943  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
   1944  * @param mtd           MTD device structure
   1945  * @param ofs           offset relative to mtd start
   1946  * @param len           number of bytes to lock or unlock
   1947  * @param cmd           lock or unlock command
   1948  *
   1949  * Lock or unlock one or more blocks
   1950  */
   1951 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
   1952 {
   1953 	struct onenand_chip *this = mtd->priv;
   1954 	int start, end, block, value, status;
   1955 
   1956 	start = onenand_block(this, ofs);
   1957 	end = onenand_block(this, ofs + len);
   1958 
   1959 	/* Continuous lock scheme */
   1960 	if (this->options & ONENAND_HAS_CONT_LOCK) {
   1961 		/* Set start block address */
   1962 		this->write_word(start,
   1963 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   1964 		/* Set end block address */
   1965 		this->write_word(end - 1,
   1966 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
   1967 		/* Write unlock command */
   1968 		this->command(mtd, cmd, 0, 0);
   1969 
   1970 		/* There's no return value */
   1971 		this->wait(mtd, FL_UNLOCKING);
   1972 
   1973 		/* Sanity check */
   1974 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   1975 		       & ONENAND_CTRL_ONGO)
   1976 			continue;
   1977 
   1978 		/* Check lock status */
   1979 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   1980 		if (!(status & ONENAND_WP_US))
   1981 			printk(KERN_ERR "wp status = 0x%x\n", status);
   1982 
   1983 		return 0;
   1984 	}
   1985 
   1986 	/* Block lock scheme */
   1987 	for (block = start; block < end; block++) {
   1988 		/* Set block address */
   1989 		value = onenand_block_address(this, block);
   1990 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
   1991 		/* Select DataRAM for DDP */
   1992 		value = onenand_bufferram_address(this, block);
   1993 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
   1994 
   1995 		/* Set start block address */
   1996 		this->write_word(block,
   1997 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   1998 		/* Write unlock command */
   1999 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
   2000 
   2001 		/* There's no return value */
   2002 		this->wait(mtd, FL_UNLOCKING);
   2003 
   2004 		/* Sanity check */
   2005 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   2006 		       & ONENAND_CTRL_ONGO)
   2007 			continue;
   2008 
   2009 		/* Check lock status */
   2010 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   2011 		if (!(status & ONENAND_WP_US))
   2012 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
   2013 			       block, status);
   2014 	}
   2015 
   2016 	return 0;
   2017 }
   2018 
   2019 #ifdef ONENAND_LINUX
   2020 /**
   2021  * onenand_lock - [MTD Interface] Lock block(s)
   2022  * @param mtd           MTD device structure
   2023  * @param ofs           offset relative to mtd start
   2024  * @param len           number of bytes to unlock
   2025  *
   2026  * Lock one or more blocks
   2027  */
   2028 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
   2029 {
   2030 	int ret;
   2031 
   2032 	onenand_get_device(mtd, FL_LOCKING);
   2033 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
   2034 	onenand_release_device(mtd);
   2035 	return ret;
   2036 }
   2037 
   2038 /**
   2039  * onenand_unlock - [MTD Interface] Unlock block(s)
   2040  * @param mtd           MTD device structure
   2041  * @param ofs           offset relative to mtd start
   2042  * @param len           number of bytes to unlock
   2043  *
   2044  * Unlock one or more blocks
   2045  */
   2046 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
   2047 {
   2048 	int ret;
   2049 
   2050 	onenand_get_device(mtd, FL_LOCKING);
   2051 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
   2052 	onenand_release_device(mtd);
   2053 	return ret;
   2054 }
   2055 #endif
   2056 
   2057 /**
   2058  * onenand_check_lock_status - [OneNAND Interface] Check lock status
   2059  * @param this          onenand chip data structure
   2060  *
   2061  * Check lock status
   2062  */
   2063 static int onenand_check_lock_status(struct onenand_chip *this)
   2064 {
   2065 	unsigned int value, block, status;
   2066 	unsigned int end;
   2067 
   2068 	end = this->chipsize >> this->erase_shift;
   2069 	for (block = 0; block < end; block++) {
   2070 		/* Set block address */
   2071 		value = onenand_block_address(this, block);
   2072 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
   2073 		/* Select DataRAM for DDP */
   2074 		value = onenand_bufferram_address(this, block);
   2075 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
   2076 		/* Set start block address */
   2077 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2078 
   2079 		/* Check lock status */
   2080 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
   2081 		if (!(status & ONENAND_WP_US)) {
   2082 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
   2083 			return 0;
   2084 		}
   2085 	}
   2086 
   2087 	return 1;
   2088 }
   2089 
   2090 /**
   2091  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
   2092  * @param mtd           MTD device structure
   2093  *
   2094  * Unlock all blocks
   2095  */
   2096 static void onenand_unlock_all(struct mtd_info *mtd)
   2097 {
   2098 	struct onenand_chip *this = mtd->priv;
   2099 	loff_t ofs = 0;
   2100 	size_t len = mtd->size;
   2101 
   2102 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
   2103 		/* Set start block address */
   2104 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
   2105 		/* Write unlock command */
   2106 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
   2107 
   2108 		/* There's no return value */
   2109 		this->wait(mtd, FL_LOCKING);
   2110 
   2111 		/* Sanity check */
   2112 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
   2113 				& ONENAND_CTRL_ONGO)
   2114 			continue;
   2115 
   2116 		/* Check lock status */
   2117 		if (onenand_check_lock_status(this))
   2118 			return;
   2119 
   2120 		/* Workaround for all block unlock in DDP */
   2121 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
   2122 			/* All blocks on another chip */
   2123 			ofs = this->chipsize >> 1;
   2124 			len = this->chipsize >> 1;
   2125 		}
   2126 	}
   2127 
   2128 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
   2129 }
   2130 
   2131 
   2132 /**
   2133  * onenand_check_features - Check and set OneNAND features
   2134  * @param mtd           MTD data structure
   2135  *
   2136  * Check and set OneNAND features
   2137  * - lock scheme
   2138  * - two plane
   2139  */
   2140 static void onenand_check_features(struct mtd_info *mtd)
   2141 {
   2142 	struct onenand_chip *this = mtd->priv;
   2143 	unsigned int density, process;
   2144 
   2145 	/* Lock scheme depends on density and process */
   2146 	density = onenand_get_density(this->device_id);
   2147 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
   2148 
   2149 	/* Lock scheme */
   2150 	switch (density) {
   2151 	case ONENAND_DEVICE_DENSITY_4Gb:
   2152 		if (ONENAND_IS_DDP(this))
   2153 			this->options |= ONENAND_HAS_2PLANE;
   2154 		else
   2155 			this->options |= ONENAND_HAS_4KB_PAGE;
   2156 
   2157 	case ONENAND_DEVICE_DENSITY_2Gb:
   2158 		/* 2Gb DDP don't have 2 plane */
   2159 		if (!ONENAND_IS_DDP(this))
   2160 			this->options |= ONENAND_HAS_2PLANE;
   2161 		this->options |= ONENAND_HAS_UNLOCK_ALL;
   2162 
   2163 	case ONENAND_DEVICE_DENSITY_1Gb:
   2164 		/* A-Die has all block unlock */
   2165 		if (process)
   2166 			this->options |= ONENAND_HAS_UNLOCK_ALL;
   2167 		break;
   2168 
   2169 	default:
   2170 		/* Some OneNAND has continuous lock scheme */
   2171 		if (!process)
   2172 			this->options |= ONENAND_HAS_CONT_LOCK;
   2173 		break;
   2174 	}
   2175 
   2176 	if (ONENAND_IS_MLC(this))
   2177 		this->options |= ONENAND_HAS_4KB_PAGE;
   2178 
   2179 	if (ONENAND_IS_4KB_PAGE(this))
   2180 		this->options &= ~ONENAND_HAS_2PLANE;
   2181 
   2182 	if (FLEXONENAND(this)) {
   2183 		this->options &= ~ONENAND_HAS_CONT_LOCK;
   2184 		this->options |= ONENAND_HAS_UNLOCK_ALL;
   2185 	}
   2186 
   2187 	if (this->options & ONENAND_HAS_CONT_LOCK)
   2188 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
   2189 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
   2190 		printk(KERN_DEBUG "Chip support all block unlock\n");
   2191 	if (this->options & ONENAND_HAS_2PLANE)
   2192 		printk(KERN_DEBUG "Chip has 2 plane\n");
   2193 	if (this->options & ONENAND_HAS_4KB_PAGE)
   2194 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
   2195 
   2196 }
   2197 
   2198 /**
   2199  * onenand_print_device_info - Print device ID
   2200  * @param device        device ID
   2201  *
   2202  * Print device ID
   2203  */
   2204 char *onenand_print_device_info(int device, int version)
   2205 {
   2206 	int vcc, demuxed, ddp, density, flexonenand;
   2207 	char *dev_info = malloc(80);
   2208 	char *p = dev_info;
   2209 
   2210 	vcc = device & ONENAND_DEVICE_VCC_MASK;
   2211 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
   2212 	ddp = device & ONENAND_DEVICE_IS_DDP;
   2213 	density = onenand_get_density(device);
   2214 	flexonenand = device & DEVICE_IS_FLEXONENAND;
   2215 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
   2216 	       demuxed ? "" : "Muxed ",
   2217 	       flexonenand ? "Flex-" : "",
   2218 	       ddp ? "(DDP)" : "",
   2219 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
   2220 
   2221 	sprintf(p, "\nOneNAND version = 0x%04x", version);
   2222 	printk("%s\n", dev_info);
   2223 
   2224 	return dev_info;
   2225 }
   2226 
   2227 static const struct onenand_manufacturers onenand_manuf_ids[] = {
   2228 	{ONENAND_MFR_NUMONYX, "Numonyx"},
   2229 	{ONENAND_MFR_SAMSUNG, "Samsung"},
   2230 };
   2231 
   2232 /**
   2233  * onenand_check_maf - Check manufacturer ID
   2234  * @param manuf         manufacturer ID
   2235  *
   2236  * Check manufacturer ID
   2237  */
   2238 static int onenand_check_maf(int manuf)
   2239 {
   2240 	int size = ARRAY_SIZE(onenand_manuf_ids);
   2241 	int i;
   2242 #ifdef ONENAND_DEBUG
   2243 	char *name;
   2244 #endif
   2245 
   2246 	for (i = 0; i < size; i++)
   2247 		if (manuf == onenand_manuf_ids[i].id)
   2248 			break;
   2249 
   2250 #ifdef ONENAND_DEBUG
   2251 	if (i < size)
   2252 		name = onenand_manuf_ids[i].name;
   2253 	else
   2254 		name = "Unknown";
   2255 
   2256 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
   2257 #endif
   2258 
   2259 	return i == size;
   2260 }
   2261 
   2262 /**
   2263 * flexonenand_get_boundary	- Reads the SLC boundary
   2264 * @param onenand_info		- onenand info structure
   2265 *
   2266 * Fill up boundary[] field in onenand_chip
   2267 **/
   2268 static int flexonenand_get_boundary(struct mtd_info *mtd)
   2269 {
   2270 	struct onenand_chip *this = mtd->priv;
   2271 	unsigned int die, bdry;
   2272 	int syscfg, locked;
   2273 
   2274 	/* Disable ECC */
   2275 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
   2276 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
   2277 
   2278 	for (die = 0; die < this->dies; die++) {
   2279 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
   2280 		this->wait(mtd, FL_SYNCING);
   2281 
   2282 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
   2283 		this->wait(mtd, FL_READING);
   2284 
   2285 		bdry = this->read_word(this->base + ONENAND_DATARAM);
   2286 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
   2287 			locked = 0;
   2288 		else
   2289 			locked = 1;
   2290 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
   2291 
   2292 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
   2293 		this->wait(mtd, FL_RESETING);
   2294 
   2295 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
   2296 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
   2297 	}
   2298 
   2299 	/* Enable ECC */
   2300 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
   2301 	return 0;
   2302 }
   2303 
   2304 /**
   2305  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
   2306  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
   2307  * 			  mtd->eraseregions
   2308  * @param mtd		- MTD device structure
   2309  */
   2310 static void flexonenand_get_size(struct mtd_info *mtd)
   2311 {
   2312 	struct onenand_chip *this = mtd->priv;
   2313 	int die, i, eraseshift, density;
   2314 	int blksperdie, maxbdry;
   2315 	loff_t ofs;
   2316 
   2317 	density = onenand_get_density(this->device_id);
   2318 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
   2319 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
   2320 	maxbdry = blksperdie - 1;
   2321 	eraseshift = this->erase_shift - 1;
   2322 
   2323 	mtd->numeraseregions = this->dies << 1;
   2324 
   2325 	/* This fills up the device boundary */
   2326 	flexonenand_get_boundary(mtd);
   2327 	die = 0;
   2328 	ofs = 0;
   2329 	i = -1;
   2330 	for (; die < this->dies; die++) {
   2331 		if (!die || this->boundary[die-1] != maxbdry) {
   2332 			i++;
   2333 			mtd->eraseregions[i].offset = ofs;
   2334 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
   2335 			mtd->eraseregions[i].numblocks =
   2336 							this->boundary[die] + 1;
   2337 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
   2338 			eraseshift++;
   2339 		} else {
   2340 			mtd->numeraseregions -= 1;
   2341 			mtd->eraseregions[i].numblocks +=
   2342 							this->boundary[die] + 1;
   2343 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
   2344 		}
   2345 		if (this->boundary[die] != maxbdry) {
   2346 			i++;
   2347 			mtd->eraseregions[i].offset = ofs;
   2348 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
   2349 			mtd->eraseregions[i].numblocks = maxbdry ^
   2350 							 this->boundary[die];
   2351 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
   2352 			eraseshift--;
   2353 		} else
   2354 			mtd->numeraseregions -= 1;
   2355 	}
   2356 
   2357 	/* Expose MLC erase size except when all blocks are SLC */
   2358 	mtd->erasesize = 1 << this->erase_shift;
   2359 	if (mtd->numeraseregions == 1)
   2360 		mtd->erasesize >>= 1;
   2361 
   2362 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
   2363 	for (i = 0; i < mtd->numeraseregions; i++)
   2364 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
   2365 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
   2366 			mtd->eraseregions[i].erasesize,
   2367 			mtd->eraseregions[i].numblocks);
   2368 
   2369 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
   2370 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
   2371 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
   2372 						 << (this->erase_shift - 1);
   2373 		mtd->size += this->diesize[die];
   2374 	}
   2375 }
   2376 
   2377 /**
   2378  * flexonenand_check_blocks_erased - Check if blocks are erased
   2379  * @param mtd_info	- mtd info structure
   2380  * @param start		- first erase block to check
   2381  * @param end		- last erase block to check
   2382  *
   2383  * Converting an unerased block from MLC to SLC
   2384  * causes byte values to change. Since both data and its ECC
   2385  * have changed, reads on the block give uncorrectable error.
   2386  * This might lead to the block being detected as bad.
   2387  *
   2388  * Avoid this by ensuring that the block to be converted is
   2389  * erased.
   2390  */
   2391 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
   2392 					int start, int end)
   2393 {
   2394 	struct onenand_chip *this = mtd->priv;
   2395 	int i, ret;
   2396 	int block;
   2397 	struct mtd_oob_ops ops = {
   2398 		.mode = MTD_OPS_PLACE_OOB,
   2399 		.ooboffs = 0,
   2400 		.ooblen	= mtd->oobsize,
   2401 		.datbuf	= NULL,
   2402 		.oobbuf	= this->oob_buf,
   2403 	};
   2404 	loff_t addr;
   2405 
   2406 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
   2407 
   2408 	for (block = start; block <= end; block++) {
   2409 		addr = flexonenand_addr(this, block);
   2410 		if (onenand_block_isbad_nolock(mtd, addr, 0))
   2411 			continue;
   2412 
   2413 		/*
   2414 		 * Since main area write results in ECC write to spare,
   2415 		 * it is sufficient to check only ECC bytes for change.
   2416 		 */
   2417 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
   2418 		if (ret)
   2419 			return ret;
   2420 
   2421 		for (i = 0; i < mtd->oobsize; i++)
   2422 			if (this->oob_buf[i] != 0xff)
   2423 				break;
   2424 
   2425 		if (i != mtd->oobsize) {
   2426 			printk(KERN_WARNING "Block %d not erased.\n", block);
   2427 			return 1;
   2428 		}
   2429 	}
   2430 
   2431 	return 0;
   2432 }
   2433 
   2434 /**
   2435  * flexonenand_set_boundary	- Writes the SLC boundary
   2436  * @param mtd			- mtd info structure
   2437  */
   2438 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
   2439 				    int boundary, int lock)
   2440 {
   2441 	struct onenand_chip *this = mtd->priv;
   2442 	int ret, density, blksperdie, old, new, thisboundary;
   2443 	loff_t addr;
   2444 
   2445 	if (die >= this->dies)
   2446 		return -EINVAL;
   2447 
   2448 	if (boundary == this->boundary[die])
   2449 		return 0;
   2450 
   2451 	density = onenand_get_density(this->device_id);
   2452 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
   2453 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
   2454 
   2455 	if (boundary >= blksperdie) {
   2456 		printk("flexonenand_set_boundary:"
   2457 			"Invalid boundary value. "
   2458 			"Boundary not changed.\n");
   2459 		return -EINVAL;
   2460 	}
   2461 
   2462 	/* Check if converting blocks are erased */
   2463 	old = this->boundary[die] + (die * this->density_mask);
   2464 	new = boundary + (die * this->density_mask);
   2465 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
   2466 						+ 1, max(old, new));
   2467 	if (ret) {
   2468 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
   2469 		return ret;
   2470 	}
   2471 
   2472 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
   2473 	this->wait(mtd, FL_SYNCING);
   2474 
   2475 	/* Check is boundary is locked */
   2476 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
   2477 	ret = this->wait(mtd, FL_READING);
   2478 
   2479 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
   2480 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
   2481 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
   2482 		goto out;
   2483 	}
   2484 
   2485 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
   2486 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
   2487 
   2488 	boundary &= FLEXONENAND_PI_MASK;
   2489 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
   2490 
   2491 	addr = die ? this->diesize[0] : 0;
   2492 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
   2493 	ret = this->wait(mtd, FL_ERASING);
   2494 	if (ret) {
   2495 		printk("flexonenand_set_boundary:"
   2496 			"Failed PI erase for Die %d\n", die);
   2497 		goto out;
   2498 	}
   2499 
   2500 	this->write_word(boundary, this->base + ONENAND_DATARAM);
   2501 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
   2502 	ret = this->wait(mtd, FL_WRITING);
   2503 	if (ret) {
   2504 		printk("flexonenand_set_boundary:"
   2505 			"Failed PI write for Die %d\n", die);
   2506 		goto out;
   2507 	}
   2508 
   2509 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
   2510 	ret = this->wait(mtd, FL_WRITING);
   2511 out:
   2512 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
   2513 	this->wait(mtd, FL_RESETING);
   2514 	if (!ret)
   2515 		/* Recalculate device size on boundary change*/
   2516 		flexonenand_get_size(mtd);
   2517 
   2518 	return ret;
   2519 }
   2520 
   2521 /**
   2522  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
   2523  * @param mtd		MTD device structure
   2524  *
   2525  * OneNAND detection method:
   2526  *   Compare the the values from command with ones from register
   2527  */
   2528 static int onenand_chip_probe(struct mtd_info *mtd)
   2529 {
   2530 	struct onenand_chip *this = mtd->priv;
   2531 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
   2532 	int syscfg;
   2533 
   2534 	/* Save system configuration 1 */
   2535 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
   2536 
   2537 	/* Clear Sync. Burst Read mode to read BootRAM */
   2538 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
   2539 			 this->base + ONENAND_REG_SYS_CFG1);
   2540 
   2541 	/* Send the command for reading device ID from BootRAM */
   2542 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
   2543 
   2544 	/* Read manufacturer and device IDs from BootRAM */
   2545 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
   2546 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
   2547 
   2548 	/* Reset OneNAND to read default register values */
   2549 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
   2550 
   2551 	/* Wait reset */
   2552 	if (this->wait(mtd, FL_RESETING))
   2553 		return -ENXIO;
   2554 
   2555 	/* Restore system configuration 1 */
   2556 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
   2557 
   2558 	/* Check manufacturer ID */
   2559 	if (onenand_check_maf(bram_maf_id))
   2560 		return -ENXIO;
   2561 
   2562 	/* Read manufacturer and device IDs from Register */
   2563 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
   2564 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
   2565 
   2566 	/* Check OneNAND device */
   2567 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
   2568 		return -ENXIO;
   2569 
   2570 	return 0;
   2571 }
   2572 
   2573 /**
   2574  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
   2575  * @param mtd		MTD device structure
   2576  *
   2577  * OneNAND detection method:
   2578  *   Compare the the values from command with ones from register
   2579  */
   2580 int onenand_probe(struct mtd_info *mtd)
   2581 {
   2582 	struct onenand_chip *this = mtd->priv;
   2583 	int dev_id, ver_id;
   2584 	int density;
   2585 	int ret;
   2586 
   2587 	ret = this->chip_probe(mtd);
   2588 	if (ret)
   2589 		return ret;
   2590 
   2591 	/* Read device IDs from Register */
   2592 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
   2593 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
   2594 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
   2595 
   2596 	/* Flash device information */
   2597 	mtd->name = onenand_print_device_info(dev_id, ver_id);
   2598 	this->device_id = dev_id;
   2599 	this->version_id = ver_id;
   2600 
   2601 	/* Check OneNAND features */
   2602 	onenand_check_features(mtd);
   2603 
   2604 	density = onenand_get_density(dev_id);
   2605 	if (FLEXONENAND(this)) {
   2606 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
   2607 		/* Maximum possible erase regions */
   2608 		mtd->numeraseregions = this->dies << 1;
   2609 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
   2610 					* (this->dies << 1));
   2611 		if (!mtd->eraseregions)
   2612 			return -ENOMEM;
   2613 	}
   2614 
   2615 	/*
   2616 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
   2617 	 * mtd->size represents the actual device size.
   2618 	 */
   2619 	this->chipsize = (16 << density) << 20;
   2620 
   2621 	/* OneNAND page size & block size */
   2622 	/* The data buffer size is equal to page size */
   2623 	mtd->writesize =
   2624 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
   2625 	/* We use the full BufferRAM */
   2626 	if (ONENAND_IS_4KB_PAGE(this))
   2627 		mtd->writesize <<= 1;
   2628 
   2629 	mtd->oobsize = mtd->writesize >> 5;
   2630 	/* Pagers per block is always 64 in OneNAND */
   2631 	mtd->erasesize = mtd->writesize << 6;
   2632 	/*
   2633 	 * Flex-OneNAND SLC area has 64 pages per block.
   2634 	 * Flex-OneNAND MLC area has 128 pages per block.
   2635 	 * Expose MLC erase size to find erase_shift and page_mask.
   2636 	 */
   2637 	if (FLEXONENAND(this))
   2638 		mtd->erasesize <<= 1;
   2639 
   2640 	this->erase_shift = ffs(mtd->erasesize) - 1;
   2641 	this->page_shift = ffs(mtd->writesize) - 1;
   2642 	this->ppb_shift = (this->erase_shift - this->page_shift);
   2643 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
   2644 	/* Set density mask. it is used for DDP */
   2645 	if (ONENAND_IS_DDP(this))
   2646 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
   2647 	/* It's real page size */
   2648 	this->writesize = mtd->writesize;
   2649 
   2650 	/* REVIST: Multichip handling */
   2651 
   2652 	if (FLEXONENAND(this))
   2653 		flexonenand_get_size(mtd);
   2654 	else
   2655 		mtd->size = this->chipsize;
   2656 
   2657 	mtd->flags = MTD_CAP_NANDFLASH;
   2658 	mtd->_erase = onenand_erase;
   2659 	mtd->_read = onenand_read;
   2660 	mtd->_write = onenand_write;
   2661 	mtd->_read_oob = onenand_read_oob;
   2662 	mtd->_write_oob = onenand_write_oob;
   2663 	mtd->_sync = onenand_sync;
   2664 	mtd->_block_isbad = onenand_block_isbad;
   2665 	mtd->_block_markbad = onenand_block_markbad;
   2666 	mtd->writebufsize = mtd->writesize;
   2667 
   2668 	return 0;
   2669 }
   2670 
   2671 /**
   2672  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
   2673  * @param mtd		MTD device structure
   2674  * @param maxchips	Number of chips to scan for
   2675  *
   2676  * This fills out all the not initialized function pointers
   2677  * with the defaults.
   2678  * The flash ID is read and the mtd/chip structures are
   2679  * filled with the appropriate values.
   2680  */
   2681 int onenand_scan(struct mtd_info *mtd, int maxchips)
   2682 {
   2683 	int i;
   2684 	struct onenand_chip *this = mtd->priv;
   2685 
   2686 	if (!this->read_word)
   2687 		this->read_word = onenand_readw;
   2688 	if (!this->write_word)
   2689 		this->write_word = onenand_writew;
   2690 
   2691 	if (!this->command)
   2692 		this->command = onenand_command;
   2693 	if (!this->wait)
   2694 		this->wait = onenand_wait;
   2695 	if (!this->bbt_wait)
   2696 		this->bbt_wait = onenand_bbt_wait;
   2697 
   2698 	if (!this->read_bufferram)
   2699 		this->read_bufferram = onenand_read_bufferram;
   2700 	if (!this->write_bufferram)
   2701 		this->write_bufferram = onenand_write_bufferram;
   2702 
   2703 	if (!this->chip_probe)
   2704 		this->chip_probe = onenand_chip_probe;
   2705 
   2706 	if (!this->block_markbad)
   2707 		this->block_markbad = onenand_default_block_markbad;
   2708 	if (!this->scan_bbt)
   2709 		this->scan_bbt = onenand_default_bbt;
   2710 
   2711 	if (onenand_probe(mtd))
   2712 		return -ENXIO;
   2713 
   2714 	/* Set Sync. Burst Read after probing */
   2715 	if (this->mmcontrol) {
   2716 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
   2717 		this->read_bufferram = onenand_sync_read_bufferram;
   2718 	}
   2719 
   2720 	/* Allocate buffers, if necessary */
   2721 	if (!this->page_buf) {
   2722 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
   2723 		if (!this->page_buf) {
   2724 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
   2725 			return -ENOMEM;
   2726 		}
   2727 		this->options |= ONENAND_PAGEBUF_ALLOC;
   2728 	}
   2729 	if (!this->oob_buf) {
   2730 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
   2731 		if (!this->oob_buf) {
   2732 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
   2733 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
   2734 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
   2735 				kfree(this->page_buf);
   2736 			}
   2737 			return -ENOMEM;
   2738 		}
   2739 		this->options |= ONENAND_OOBBUF_ALLOC;
   2740 	}
   2741 
   2742 	this->state = FL_READY;
   2743 
   2744 	/*
   2745 	 * Allow subpage writes up to oobsize.
   2746 	 */
   2747 	switch (mtd->oobsize) {
   2748 	case 128:
   2749 		this->ecclayout = &onenand_oob_128;
   2750 		mtd->subpage_sft = 0;
   2751 		break;
   2752 
   2753 	case 64:
   2754 		this->ecclayout = &onenand_oob_64;
   2755 		mtd->subpage_sft = 2;
   2756 		break;
   2757 
   2758 	case 32:
   2759 		this->ecclayout = &onenand_oob_32;
   2760 		mtd->subpage_sft = 1;
   2761 		break;
   2762 
   2763 	default:
   2764 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
   2765 			mtd->oobsize);
   2766 		mtd->subpage_sft = 0;
   2767 		/* To prevent kernel oops */
   2768 		this->ecclayout = &onenand_oob_32;
   2769 		break;
   2770 	}
   2771 
   2772 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
   2773 
   2774 	/*
   2775 	 * The number of bytes available for a client to place data into
   2776 	 * the out of band area
   2777 	 */
   2778 	this->ecclayout->oobavail = 0;
   2779 
   2780 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
   2781 	    this->ecclayout->oobfree[i].length; i++)
   2782 		this->ecclayout->oobavail +=
   2783 			this->ecclayout->oobfree[i].length;
   2784 	mtd->oobavail = this->ecclayout->oobavail;
   2785 
   2786 	mtd->ecclayout = this->ecclayout;
   2787 
   2788 	/* Unlock whole block */
   2789 	onenand_unlock_all(mtd);
   2790 
   2791 	return this->scan_bbt(mtd);
   2792 }
   2793 
   2794 /**
   2795  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
   2796  * @param mtd		MTD device structure
   2797  */
   2798 void onenand_release(struct mtd_info *mtd)
   2799 {
   2800 }
   2801