/external/libtextclassifier/lang_id/ |
lang-id_jni.cc | 48 const std::vector<std::pair<std::string, float>>& predictions = local 49 lang_id_result.predictions; 54 env->NewObjectArray(predictions.size(), result_class.get(), nullptr); 55 for (int i = 0; i < predictions.size(); i++) { 58 env->NewStringUTF(predictions[i].first.c_str()), 59 static_cast<jfloat>(predictions[i].second)));
|
lang-id.h | 48 std::vector<std::pair<string, float>> predictions; member in struct:libtextclassifier3::mobile::lang_id::LangIdResult 112 // perform predictions. For more info, see doc for LangId
|
/external/tensorflow/tensorflow/core/kernels/ |
in_topk_op.cc | 56 errors::InvalidArgument("predictions must be 2-dimensional")); 60 errors::InvalidArgument("First dimension of predictions ", 64 const auto& predictions = predictions_in.matrix<T>(); variable 74 const auto num_classes = predictions.dimension(1); 79 T target_prediction = predictions(b, target); 84 T pred = predictions(b, i); 103 .HostMemory("predictions") 110 .HostMemory("predictions") 118 .HostMemory("predictions") 126 .HostMemory("predictions") [all...] |
/cts/tests/tests/gesture/src/android/gesture/cts/ |
GestureStorageTester.java | 73 ArrayList<Prediction> predictions = mFixture.recognize(newLineGesture); local 74 assertEquals(1, predictions.size()); 75 assertEquals(TEST_GESTURE_NAME, predictions.get(0).name);
|
/external/tensorflow/tensorflow/contrib/linear_optimizer/python/ops/ |
sdca_ops.py | 77 predictions = lr.predictions(examples) 307 """Returns predictions of the form w*x.""" 331 def predictions(self, examples): member in class:SdcaModel 332 """Add operations to compute predictions by the model. 335 If poisson_loss is being used, predictions are exponentiated. 336 Otherwise, (raw) linear predictions (w*x) are returned. 339 examples: Examples to compute predictions on. 342 An Operation that computes the predictions for examples. 353 # Convert logits to probability for logistic loss predictions [all...] |
/external/tensorflow/tensorflow/lite/models/smartreply/ |
predictor_test.cc | 71 std::vector<PredictorResponse> predictions; local 73 GetSegmentPredictions({"Welcome"}, *model_, /*config=*/{{}}, &predictions); 74 EXPECT_GT(predictions.size(), 0); 77 for (const auto &item : predictions) { 85 &predictions, 90 std::vector<PredictorResponse> predictions; local 93 &predictions); 94 EXPECT_GT(predictions.size(), 0); 97 for (const auto &item : predictions) { 104 EXPECT_THAT(&predictions, IncludeAnyResponesIn(std::unordered_set<string> 109 std::vector<PredictorResponse> predictions; local 137 std::vector<PredictorResponse> predictions; local [all...] |
/external/tensorflow/tensorflow/python/saved_model/model_utils/ |
export_output.py | 216 predictions. 240 PREDICTIONS_NAME = 'predictions' 250 def __init__(self, loss=None, predictions=None, metrics=None): 255 predictions: dict of Tensors or single Tensor representing model 256 predictions. 272 if predictions is not None: 274 predictions, self.PREDICTIONS_NAME) 368 def predictions(self): member in class:_SupervisedOutput 383 receiver_tensors, self.loss, self.predictions, self.metrics) 390 training output by type-checking and wrapping loss, predictions, and metric [all...] |
/external/tensorflow/tensorflow/python/feature_column/ |
feature_column_test.py | 360 predictions = fc.linear_model(features, [price]) 366 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 368 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 375 predictions = get_keras_linear_model_predictions(features, [price]) 381 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 383 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 560 predictions = fc.linear_model(features, [bucketized_price]) 569 self.evaluate(predictions)) 577 self.evaluate(predictions)) 580 self.evaluate(predictions)) 1473 predictions = fc.linear_model(features, [dense_and_sparse_column]) variable in class:LinearModelTest.test_dense_and_sparse_column._DenseAndSparseColumn 2158 predictions = get_keras_linear_model_predictions( variable in class:_LinearModelTest.test_dense_and_sparse_column._DenseAndSparseColumn [all...] |
feature_column_v2_test.py | 424 predictions = model(features) 429 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 431 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 437 predictions = fc_old.linear_model(features, [price]) 443 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 445 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 670 predictions = model(features) 678 self.evaluate(predictions)) 686 self.evaluate(predictions)) 689 self.evaluate(predictions)) 1745 predictions = model(features) variable in class:LinearModelTest.test_dense_and_sparse_column._DenseAndSparseColumn 2475 predictions = fc_old.linear_model(features, [dense_and_sparse_column]) variable in class:OldLinearModelTest.test_dense_and_sparse_column._DenseAndSparseColumn [all...] |