1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "runtime.h" 18 19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc 20 #include <sys/mount.h> 21 #ifdef __linux__ 22 #include <linux/fs.h> 23 #include <sys/prctl.h> 24 #endif 25 26 #include <fcntl.h> 27 #include <signal.h> 28 #include <sys/syscall.h> 29 30 #if defined(__APPLE__) 31 #include <crt_externs.h> // for _NSGetEnviron 32 #endif 33 34 #include <cstdio> 35 #include <cstdlib> 36 #include <limits> 37 #include <thread> 38 #include <vector> 39 40 #include "android-base/strings.h" 41 42 #include "aot_class_linker.h" 43 #include "arch/arm/registers_arm.h" 44 #include "arch/arm64/registers_arm64.h" 45 #include "arch/context.h" 46 #include "arch/instruction_set_features.h" 47 #include "arch/mips/registers_mips.h" 48 #include "arch/mips64/registers_mips64.h" 49 #include "arch/x86/registers_x86.h" 50 #include "arch/x86_64/registers_x86_64.h" 51 #include "art_field-inl.h" 52 #include "art_method-inl.h" 53 #include "asm_support.h" 54 #include "base/aborting.h" 55 #include "base/arena_allocator.h" 56 #include "base/atomic.h" 57 #include "base/dumpable.h" 58 #include "base/enums.h" 59 #include "base/file_utils.h" 60 #include "base/malloc_arena_pool.h" 61 #include "base/mem_map_arena_pool.h" 62 #include "base/memory_tool.h" 63 #include "base/mutex.h" 64 #include "base/os.h" 65 #include "base/quasi_atomic.h" 66 #include "base/sdk_version.h" 67 #include "base/stl_util.h" 68 #include "base/systrace.h" 69 #include "base/unix_file/fd_file.h" 70 #include "base/utils.h" 71 #include "class_linker-inl.h" 72 #include "class_root.h" 73 #include "compiler_callbacks.h" 74 #include "debugger.h" 75 #include "dex/art_dex_file_loader.h" 76 #include "dex/dex_file_loader.h" 77 #include "elf_file.h" 78 #include "entrypoints/runtime_asm_entrypoints.h" 79 #include "experimental_flags.h" 80 #include "fault_handler.h" 81 #include "gc/accounting/card_table-inl.h" 82 #include "gc/heap.h" 83 #include "gc/scoped_gc_critical_section.h" 84 #include "gc/space/image_space.h" 85 #include "gc/space/space-inl.h" 86 #include "gc/system_weak.h" 87 #include "handle_scope-inl.h" 88 #include "hidden_api.h" 89 #include "image-inl.h" 90 #include "instrumentation.h" 91 #include "intern_table-inl.h" 92 #include "interpreter/interpreter.h" 93 #include "jit/jit.h" 94 #include "jit/jit_code_cache.h" 95 #include "jit/profile_saver.h" 96 #include "jni/java_vm_ext.h" 97 #include "jni/jni_internal.h" 98 #include "linear_alloc.h" 99 #include "memory_representation.h" 100 #include "mirror/array.h" 101 #include "mirror/class-alloc-inl.h" 102 #include "mirror/class-inl.h" 103 #include "mirror/class_ext.h" 104 #include "mirror/class_loader.h" 105 #include "mirror/emulated_stack_frame.h" 106 #include "mirror/field.h" 107 #include "mirror/method.h" 108 #include "mirror/method_handle_impl.h" 109 #include "mirror/method_handles_lookup.h" 110 #include "mirror/method_type.h" 111 #include "mirror/stack_trace_element.h" 112 #include "mirror/throwable.h" 113 #include "mirror/var_handle.h" 114 #include "monitor.h" 115 #include "native/dalvik_system_DexFile.h" 116 #include "native/dalvik_system_VMDebug.h" 117 #include "native/dalvik_system_VMRuntime.h" 118 #include "native/dalvik_system_VMStack.h" 119 #include "native/dalvik_system_ZygoteHooks.h" 120 #include "native/java_lang_Class.h" 121 #include "native/java_lang_Object.h" 122 #include "native/java_lang_String.h" 123 #include "native/java_lang_StringFactory.h" 124 #include "native/java_lang_System.h" 125 #include "native/java_lang_Thread.h" 126 #include "native/java_lang_Throwable.h" 127 #include "native/java_lang_VMClassLoader.h" 128 #include "native/java_lang_invoke_MethodHandleImpl.h" 129 #include "native/java_lang_ref_FinalizerReference.h" 130 #include "native/java_lang_ref_Reference.h" 131 #include "native/java_lang_reflect_Array.h" 132 #include "native/java_lang_reflect_Constructor.h" 133 #include "native/java_lang_reflect_Executable.h" 134 #include "native/java_lang_reflect_Field.h" 135 #include "native/java_lang_reflect_Method.h" 136 #include "native/java_lang_reflect_Parameter.h" 137 #include "native/java_lang_reflect_Proxy.h" 138 #include "native/java_util_concurrent_atomic_AtomicLong.h" 139 #include "native/libcore_util_CharsetUtils.h" 140 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h" 141 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h" 142 #include "native/sun_misc_Unsafe.h" 143 #include "native_bridge_art_interface.h" 144 #include "native_stack_dump.h" 145 #include "nativehelper/scoped_local_ref.h" 146 #include "oat_file.h" 147 #include "oat_file_manager.h" 148 #include "object_callbacks.h" 149 #include "parsed_options.h" 150 #include "quick/quick_method_frame_info.h" 151 #include "reflection.h" 152 #include "runtime_callbacks.h" 153 #include "runtime_intrinsics.h" 154 #include "runtime_options.h" 155 #include "scoped_thread_state_change-inl.h" 156 #include "sigchain.h" 157 #include "signal_catcher.h" 158 #include "signal_set.h" 159 #include "thread.h" 160 #include "thread_list.h" 161 #include "ti/agent.h" 162 #include "trace.h" 163 #include "transaction.h" 164 #include "vdex_file.h" 165 #include "verifier/class_verifier.h" 166 #include "well_known_classes.h" 167 168 #ifdef ART_TARGET_ANDROID 169 #include <android/set_abort_message.h> 170 #endif 171 172 // Static asserts to check the values of generated assembly-support macros. 173 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME); 174 #include "asm_defines.def" 175 #undef ASM_DEFINE 176 177 namespace art { 178 179 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack. 180 static constexpr bool kEnableJavaStackTraceHandler = false; 181 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class 182 // linking. 183 static constexpr double kLowMemoryMinLoadFactor = 0.5; 184 static constexpr double kLowMemoryMaxLoadFactor = 0.8; 185 static constexpr double kNormalMinLoadFactor = 0.4; 186 static constexpr double kNormalMaxLoadFactor = 0.7; 187 188 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read 189 // barrier config. 190 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0; 191 192 static constexpr const char* kApexBootImageLocation = "/system/framework/apex.art"; 193 194 Runtime* Runtime::instance_ = nullptr; 195 196 struct TraceConfig { 197 Trace::TraceMode trace_mode; 198 Trace::TraceOutputMode trace_output_mode; 199 std::string trace_file; 200 size_t trace_file_size; 201 }; 202 203 namespace { 204 205 #ifdef __APPLE__ 206 inline char** GetEnviron() { 207 // When Google Test is built as a framework on MacOS X, the environ variable 208 // is unavailable. Apple's documentation (man environ) recommends using 209 // _NSGetEnviron() instead. 210 return *_NSGetEnviron(); 211 } 212 #else 213 // Some POSIX platforms expect you to declare environ. extern "C" makes 214 // it reside in the global namespace. 215 extern "C" char** environ; 216 inline char** GetEnviron() { return environ; } 217 #endif 218 219 void CheckConstants() { 220 CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset()); 221 } 222 223 } // namespace 224 225 Runtime::Runtime() 226 : resolution_method_(nullptr), 227 imt_conflict_method_(nullptr), 228 imt_unimplemented_method_(nullptr), 229 instruction_set_(InstructionSet::kNone), 230 compiler_callbacks_(nullptr), 231 is_zygote_(false), 232 is_system_server_(false), 233 must_relocate_(false), 234 is_concurrent_gc_enabled_(true), 235 is_explicit_gc_disabled_(false), 236 image_dex2oat_enabled_(true), 237 default_stack_size_(0), 238 heap_(nullptr), 239 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), 240 monitor_list_(nullptr), 241 monitor_pool_(nullptr), 242 thread_list_(nullptr), 243 intern_table_(nullptr), 244 class_linker_(nullptr), 245 signal_catcher_(nullptr), 246 java_vm_(nullptr), 247 thread_pool_ref_count_(0u), 248 fault_message_(nullptr), 249 threads_being_born_(0), 250 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), 251 shutting_down_(false), 252 shutting_down_started_(false), 253 started_(false), 254 finished_starting_(false), 255 vfprintf_(nullptr), 256 exit_(nullptr), 257 abort_(nullptr), 258 stats_enabled_(false), 259 is_running_on_memory_tool_(kRunningOnMemoryTool), 260 instrumentation_(), 261 main_thread_group_(nullptr), 262 system_thread_group_(nullptr), 263 system_class_loader_(nullptr), 264 dump_gc_performance_on_shutdown_(false), 265 preinitialization_transactions_(), 266 verify_(verifier::VerifyMode::kNone), 267 allow_dex_file_fallback_(true), 268 target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)), 269 implicit_null_checks_(false), 270 implicit_so_checks_(false), 271 implicit_suspend_checks_(false), 272 no_sig_chain_(false), 273 force_native_bridge_(false), 274 is_native_bridge_loaded_(false), 275 is_native_debuggable_(false), 276 async_exceptions_thrown_(false), 277 non_standard_exits_enabled_(false), 278 is_java_debuggable_(false), 279 zygote_max_failed_boots_(0), 280 experimental_flags_(ExperimentalFlags::kNone), 281 oat_file_manager_(nullptr), 282 is_low_memory_mode_(false), 283 safe_mode_(false), 284 hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), 285 core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), 286 dedupe_hidden_api_warnings_(true), 287 hidden_api_access_event_log_rate_(0), 288 dump_native_stack_on_sig_quit_(true), 289 pruned_dalvik_cache_(false), 290 // Initially assume we perceive jank in case the process state is never updated. 291 process_state_(kProcessStateJankPerceptible), 292 zygote_no_threads_(false), 293 verifier_logging_threshold_ms_(100) { 294 static_assert(Runtime::kCalleeSaveSize == 295 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size"); 296 CheckConstants(); 297 298 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u); 299 interpreter::CheckInterpreterAsmConstants(); 300 callbacks_.reset(new RuntimeCallbacks()); 301 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) { 302 deoptimization_counts_[i] = 0u; 303 } 304 } 305 306 Runtime::~Runtime() { 307 ScopedTrace trace("Runtime shutdown"); 308 if (is_native_bridge_loaded_) { 309 UnloadNativeBridge(); 310 } 311 312 Thread* self = Thread::Current(); 313 const bool attach_shutdown_thread = self == nullptr; 314 if (attach_shutdown_thread) { 315 // We can only create a peer if the runtime is actually started. This is only not true during 316 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail. 317 // In this case we will just try again without allocating a peer so that shutdown can continue. 318 // Very few things are actually capable of distinguishing between the peer & peerless states so 319 // this should be fine. 320 bool thread_attached = AttachCurrentThread("Shutdown thread", 321 /* as_daemon= */ false, 322 GetSystemThreadGroup(), 323 /* create_peer= */ IsStarted()); 324 if (UNLIKELY(!thread_attached)) { 325 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer."; 326 CHECK(AttachCurrentThread("Shutdown thread (no java peer)", 327 /* as_daemon= */ false, 328 /* thread_group=*/ nullptr, 329 /* create_peer= */ false)); 330 } 331 self = Thread::Current(); 332 } else { 333 LOG(WARNING) << "Current thread not detached in Runtime shutdown"; 334 } 335 336 if (dump_gc_performance_on_shutdown_) { 337 heap_->CalculatePreGcWeightedAllocatedBytes(); 338 uint64_t process_cpu_end_time = ProcessCpuNanoTime(); 339 ScopedLogSeverity sls(LogSeverity::INFO); 340 // This can't be called from the Heap destructor below because it 341 // could call RosAlloc::InspectAll() which needs the thread_list 342 // to be still alive. 343 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO)); 344 345 uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime(); 346 uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime(); 347 float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time; 348 LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time) 349 << " out of process CPU time " << PrettyDuration(process_cpu_time) 350 << " (" << ratio << ")" 351 << "\n"; 352 double pre_gc_weighted_allocated_bytes = 353 heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time; 354 // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real 355 // GC. Both numerator and denominator take into account until the end of the last GC, 356 // instead of the whole process life time like pre_gc_weighted_allocated_bytes. 357 double post_gc_weighted_allocated_bytes = 358 heap_->GetPostGcWeightedAllocatedBytes() / 359 (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime()); 360 361 LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: " 362 << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes) 363 << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")"; 364 LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: " 365 << static_cast<uint64_t>(post_gc_weighted_allocated_bytes) 366 << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")" 367 << "\n"; 368 } 369 370 // Wait for the workers of thread pools to be created since there can't be any 371 // threads attaching during shutdown. 372 WaitForThreadPoolWorkersToStart(); 373 if (jit_ != nullptr) { 374 jit_->WaitForWorkersToBeCreated(); 375 // Stop the profile saver thread before marking the runtime as shutting down. 376 // The saver will try to dump the profiles before being sopped and that 377 // requires holding the mutator lock. 378 jit_->StopProfileSaver(); 379 } 380 if (oat_file_manager_ != nullptr) { 381 oat_file_manager_->WaitForWorkersToBeCreated(); 382 } 383 384 { 385 ScopedTrace trace2("Wait for shutdown cond"); 386 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 387 shutting_down_started_ = true; 388 while (threads_being_born_ > 0) { 389 shutdown_cond_->Wait(self); 390 } 391 shutting_down_ = true; 392 } 393 // Shutdown and wait for the daemons. 394 CHECK(self != nullptr); 395 if (IsFinishedStarting()) { 396 ScopedTrace trace2("Waiting for Daemons"); 397 self->ClearException(); 398 self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, 399 WellKnownClasses::java_lang_Daemons_stop); 400 } 401 402 // Shutdown any trace running. 403 Trace::Shutdown(); 404 405 // Report death. Clients me require a working thread, still, so do it before GC completes and 406 // all non-daemon threads are done. 407 { 408 ScopedObjectAccess soa(self); 409 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath); 410 } 411 412 if (attach_shutdown_thread) { 413 DetachCurrentThread(); 414 self = nullptr; 415 } 416 417 // Make sure to let the GC complete if it is running. 418 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); 419 heap_->DeleteThreadPool(); 420 if (jit_ != nullptr) { 421 ScopedTrace trace2("Delete jit"); 422 VLOG(jit) << "Deleting jit thread pool"; 423 // Delete thread pool before the thread list since we don't want to wait forever on the 424 // JIT compiler threads. 425 jit_->DeleteThreadPool(); 426 } 427 if (oat_file_manager_ != nullptr) { 428 oat_file_manager_->DeleteThreadPool(); 429 } 430 DeleteThreadPool(); 431 CHECK(thread_pool_ == nullptr); 432 433 // Make sure our internal threads are dead before we start tearing down things they're using. 434 GetRuntimeCallbacks()->StopDebugger(); 435 delete signal_catcher_; 436 437 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. 438 { 439 ScopedTrace trace2("Delete thread list"); 440 thread_list_->ShutDown(); 441 } 442 443 // TODO Maybe do some locking. 444 for (auto& agent : agents_) { 445 agent->Unload(); 446 } 447 448 // TODO Maybe do some locking 449 for (auto& plugin : plugins_) { 450 plugin.Unload(); 451 } 452 453 // Finally delete the thread list. 454 delete thread_list_; 455 456 // Delete the JIT after thread list to ensure that there is no remaining threads which could be 457 // accessing the instrumentation when we delete it. 458 if (jit_ != nullptr) { 459 VLOG(jit) << "Deleting jit"; 460 jit_.reset(nullptr); 461 jit_code_cache_.reset(nullptr); 462 } 463 464 // Shutdown the fault manager if it was initialized. 465 fault_manager.Shutdown(); 466 467 ScopedTrace trace2("Delete state"); 468 delete monitor_list_; 469 delete monitor_pool_; 470 delete class_linker_; 471 delete heap_; 472 delete intern_table_; 473 delete oat_file_manager_; 474 Thread::Shutdown(); 475 QuasiAtomic::Shutdown(); 476 verifier::ClassVerifier::Shutdown(); 477 478 // Destroy allocators before shutting down the MemMap because they may use it. 479 java_vm_.reset(); 480 linear_alloc_.reset(); 481 low_4gb_arena_pool_.reset(); 482 arena_pool_.reset(); 483 jit_arena_pool_.reset(); 484 protected_fault_page_.Reset(); 485 MemMap::Shutdown(); 486 487 // TODO: acquire a static mutex on Runtime to avoid racing. 488 CHECK(instance_ == nullptr || instance_ == this); 489 instance_ = nullptr; 490 491 // Well-known classes must be deleted or it is impossible to successfully start another Runtime 492 // instance. We rely on a small initialization order issue in Runtime::Start() that requires 493 // elements of WellKnownClasses to be null, see b/65500943. 494 WellKnownClasses::Clear(); 495 496 JniShutdownNativeCallerCheck(); 497 } 498 499 struct AbortState { 500 void Dump(std::ostream& os) const { 501 if (gAborting > 1) { 502 os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; 503 DumpRecursiveAbort(os); 504 return; 505 } 506 gAborting++; 507 os << "Runtime aborting...\n"; 508 if (Runtime::Current() == nullptr) { 509 os << "(Runtime does not yet exist!)\n"; 510 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); 511 return; 512 } 513 Thread* self = Thread::Current(); 514 515 // Dump all threads first and then the aborting thread. While this is counter the logical flow, 516 // it improves the chance of relevant data surviving in the Android logs. 517 518 DumpAllThreads(os, self); 519 520 if (self == nullptr) { 521 os << "(Aborting thread was not attached to runtime!)\n"; 522 DumpKernelStack(os, GetTid(), " kernel: ", false); 523 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); 524 } else { 525 os << "Aborting thread:\n"; 526 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { 527 DumpThread(os, self); 528 } else { 529 if (Locks::mutator_lock_->SharedTryLock(self)) { 530 DumpThread(os, self); 531 Locks::mutator_lock_->SharedUnlock(self); 532 } 533 } 534 } 535 } 536 537 // No thread-safety analysis as we do explicitly test for holding the mutator lock. 538 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS { 539 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)); 540 self->Dump(os); 541 if (self->IsExceptionPending()) { 542 mirror::Throwable* exception = self->GetException(); 543 os << "Pending exception " << exception->Dump(); 544 } 545 } 546 547 void DumpAllThreads(std::ostream& os, Thread* self) const { 548 Runtime* runtime = Runtime::Current(); 549 if (runtime != nullptr) { 550 ThreadList* thread_list = runtime->GetThreadList(); 551 if (thread_list != nullptr) { 552 // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be 553 // grabbed). 554 // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout 555 // acquiring the locks. 556 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); 557 bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self); 558 if (tll_already_held || tscl_already_held) { 559 os << "Skipping all-threads dump as locks are held:" 560 << (tll_already_held ? "" : " thread_list_lock") 561 << (tscl_already_held ? "" : " thread_suspend_count_lock") 562 << "\n"; 563 return; 564 } 565 bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self); 566 if (ml_already_exlusively_held) { 567 os << "Skipping all-threads dump as mutator lock is exclusively held."; 568 return; 569 } 570 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); 571 if (!ml_already_held) { 572 os << "Dumping all threads without mutator lock held\n"; 573 } 574 os << "All threads:\n"; 575 thread_list->Dump(os); 576 } 577 } 578 } 579 580 // For recursive aborts. 581 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS { 582 // The only thing we'll attempt is dumping the native stack of the current thread. We will only 583 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually 584 // die. 585 // Note: as we're using a global counter for the recursive abort detection, there is a potential 586 // race here and it is not OK to just print when the counter is "2" (one from 587 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough. 588 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u; 589 if (gAborting < kOnlyPrintWhenRecursionLessThan) { 590 gAborting++; 591 DumpNativeStack(os, GetTid()); 592 } 593 } 594 }; 595 596 void Runtime::Abort(const char* msg) { 597 auto old_value = gAborting.fetch_add(1); // set before taking any locks 598 599 // Only set the first abort message. 600 if (old_value == 0) { 601 #ifdef ART_TARGET_ANDROID 602 android_set_abort_message(msg); 603 #else 604 // Set the runtime fault message in case our unexpected-signal code will run. 605 Runtime* current = Runtime::Current(); 606 if (current != nullptr) { 607 current->SetFaultMessage(msg); 608 } 609 #endif 610 } 611 612 { 613 // Ensure that we don't have multiple threads trying to abort at once, 614 // which would result in significantly worse diagnostics. 615 ScopedThreadStateChange tsc(Thread::Current(), kNativeForAbort); 616 Locks::abort_lock_->ExclusiveLock(Thread::Current()); 617 } 618 619 // Get any pending output out of the way. 620 fflush(nullptr); 621 622 // Many people have difficulty distinguish aborts from crashes, 623 // so be explicit. 624 // Note: use cerr on the host to print log lines immediately, so we get at least some output 625 // in case of recursive aborts. We lose annotation with the source file and line number 626 // here, which is a minor issue. The same is significantly more complicated on device, 627 // which is why we ignore the issue there. 628 AbortState state; 629 if (kIsTargetBuild) { 630 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state); 631 } else { 632 std::cerr << Dumpable<AbortState>(state); 633 } 634 635 // Sometimes we dump long messages, and the Android abort message only retains the first line. 636 // In those cases, just log the message again, to avoid logcat limits. 637 if (msg != nullptr && strchr(msg, '\n') != nullptr) { 638 LOG(FATAL_WITHOUT_ABORT) << msg; 639 } 640 641 // Call the abort hook if we have one. 642 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) { 643 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook..."; 644 Runtime::Current()->abort_(); 645 // notreached 646 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!"; 647 } 648 649 abort(); 650 // notreached 651 } 652 653 void Runtime::PreZygoteFork() { 654 if (GetJit() != nullptr) { 655 GetJit()->PreZygoteFork(); 656 } 657 heap_->PreZygoteFork(); 658 } 659 660 void Runtime::PostZygoteFork() { 661 if (GetJit() != nullptr) { 662 GetJit()->PostZygoteFork(); 663 } 664 } 665 666 void Runtime::CallExitHook(jint status) { 667 if (exit_ != nullptr) { 668 ScopedThreadStateChange tsc(Thread::Current(), kNative); 669 exit_(status); 670 LOG(WARNING) << "Exit hook returned instead of exiting!"; 671 } 672 } 673 674 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) { 675 GetInternTable()->SweepInternTableWeaks(visitor); 676 GetMonitorList()->SweepMonitorList(visitor); 677 GetJavaVM()->SweepJniWeakGlobals(visitor); 678 GetHeap()->SweepAllocationRecords(visitor); 679 if (GetJit() != nullptr) { 680 // Visit JIT literal tables. Objects in these tables are classes and strings 681 // and only classes can be affected by class unloading. The strings always 682 // stay alive as they are strongly interned. 683 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses 684 // from mutators. See b/32167580. 685 GetJit()->GetCodeCache()->SweepRootTables(visitor); 686 } 687 688 // All other generic system-weak holders. 689 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { 690 holder->Sweep(visitor); 691 } 692 } 693 694 bool Runtime::ParseOptions(const RuntimeOptions& raw_options, 695 bool ignore_unrecognized, 696 RuntimeArgumentMap* runtime_options) { 697 Locks::Init(); 698 InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect. 699 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options); 700 if (!parsed) { 701 LOG(ERROR) << "Failed to parse options"; 702 return false; 703 } 704 return true; 705 } 706 707 // Callback to check whether it is safe to call Abort (e.g., to use a call to 708 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created, 709 // properly initialized, and has not shut down. 710 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS { 711 Runtime* runtime = Runtime::Current(); 712 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked(); 713 } 714 715 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) { 716 // TODO: acquire a static mutex on Runtime to avoid racing. 717 if (Runtime::instance_ != nullptr) { 718 return false; 719 } 720 instance_ = new Runtime; 721 Locks::SetClientCallback(IsSafeToCallAbort); 722 if (!instance_->Init(std::move(runtime_options))) { 723 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will 724 // leak memory, instead. Fix the destructor. b/19100793. 725 // delete instance_; 726 instance_ = nullptr; 727 return false; 728 } 729 return true; 730 } 731 732 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) { 733 RuntimeArgumentMap runtime_options; 734 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) && 735 Create(std::move(runtime_options)); 736 } 737 738 static jobject CreateSystemClassLoader(Runtime* runtime) { 739 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) { 740 return nullptr; 741 } 742 743 ScopedObjectAccess soa(Thread::Current()); 744 ClassLinker* cl = Runtime::Current()->GetClassLinker(); 745 auto pointer_size = cl->GetImagePointerSize(); 746 747 StackHandleScope<2> hs(soa.Self()); 748 Handle<mirror::Class> class_loader_class( 749 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader))); 750 CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true)); 751 752 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod( 753 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size); 754 CHECK(getSystemClassLoader != nullptr); 755 CHECK(getSystemClassLoader->IsStatic()); 756 757 JValue result = InvokeWithJValues(soa, 758 nullptr, 759 jni::EncodeArtMethod(getSystemClassLoader), 760 nullptr); 761 JNIEnv* env = soa.Self()->GetJniEnv(); 762 ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL())); 763 CHECK(system_class_loader.get() != nullptr); 764 765 soa.Self()->SetClassLoaderOverride(system_class_loader.get()); 766 767 Handle<mirror::Class> thread_class( 768 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread))); 769 CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true)); 770 771 ArtField* contextClassLoader = 772 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); 773 CHECK(contextClassLoader != nullptr); 774 775 // We can't run in a transaction yet. 776 contextClassLoader->SetObject<false>( 777 soa.Self()->GetPeer(), 778 soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr()); 779 780 return env->NewGlobalRef(system_class_loader.get()); 781 } 782 783 std::string Runtime::GetCompilerExecutable() const { 784 if (!compiler_executable_.empty()) { 785 return compiler_executable_; 786 } 787 std::string compiler_executable(GetAndroidRoot()); 788 compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); 789 return compiler_executable; 790 } 791 792 void Runtime::RunRootClinits(Thread* self) { 793 class_linker_->RunRootClinits(self); 794 795 GcRoot<mirror::Throwable>* exceptions[] = { 796 &pre_allocated_OutOfMemoryError_when_throwing_exception_, 797 // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above. 798 // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above. 799 &pre_allocated_NoClassDefFoundError_, 800 }; 801 for (GcRoot<mirror::Throwable>* exception : exceptions) { 802 StackHandleScope<1> hs(self); 803 Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass()); 804 class_linker_->EnsureInitialized(self, klass, true, true); 805 self->AssertNoPendingException(); 806 } 807 } 808 809 bool Runtime::Start() { 810 VLOG(startup) << "Runtime::Start entering"; 811 812 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled"; 813 814 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump. 815 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel. 816 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__) 817 if (kIsDebugBuild) { 818 CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0); 819 } 820 #endif 821 822 // Restore main thread state to kNative as expected by native code. 823 Thread* self = Thread::Current(); 824 825 self->TransitionFromRunnableToSuspended(kNative); 826 827 DoAndMaybeSwitchInterpreter([=](){ started_ = true; }); 828 829 if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) { 830 ScopedObjectAccess soa(self); 831 StackHandleScope<2> hs(soa.Self()); 832 833 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots(); 834 auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots))); 835 auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots))); 836 837 class_linker_->EnsureInitialized(soa.Self(), class_class, true, true); 838 self->AssertNoPendingException(); 839 // Field class is needed for register_java_net_InetAddress in libcore, b/28153851. 840 class_linker_->EnsureInitialized(soa.Self(), field_class, true, true); 841 self->AssertNoPendingException(); 842 } 843 844 // InitNativeMethods needs to be after started_ so that the classes 845 // it touches will have methods linked to the oat file if necessary. 846 { 847 ScopedTrace trace2("InitNativeMethods"); 848 InitNativeMethods(); 849 } 850 851 // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods 852 // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType() 853 // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init. 854 InitializeIntrinsics(); 855 856 // Initialize well known thread group values that may be accessed threads while attaching. 857 InitThreadGroups(self); 858 859 Thread::FinishStartup(); 860 861 // Create the JIT either if we have to use JIT compilation or save profiling info. This is 862 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main 863 // ThreadGroup to exist. 864 // 865 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for 866 // recoding profiles. Maybe we should consider changing the name to be more clear it's 867 // not only about compiling. b/28295073. 868 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) { 869 // Try to load compiler pre zygote to reduce PSS. b/27744947 870 std::string error_msg; 871 if (!jit::Jit::LoadCompilerLibrary(&error_msg)) { 872 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg; 873 } 874 CreateJitCodeCache(/*rwx_memory_allowed=*/true); 875 CreateJit(); 876 } 877 878 // Send the start phase event. We have to wait till here as this is when the main thread peer 879 // has just been generated, important root clinits have been run and JNI is completely functional. 880 { 881 ScopedObjectAccess soa(self); 882 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart); 883 } 884 885 system_class_loader_ = CreateSystemClassLoader(this); 886 887 if (!is_zygote_) { 888 if (is_native_bridge_loaded_) { 889 PreInitializeNativeBridge("."); 890 } 891 NativeBridgeAction action = force_native_bridge_ 892 ? NativeBridgeAction::kInitialize 893 : NativeBridgeAction::kUnload; 894 InitNonZygoteOrPostFork(self->GetJniEnv(), 895 /* is_system_server= */ false, 896 action, 897 GetInstructionSetString(kRuntimeISA)); 898 } 899 900 StartDaemonThreads(); 901 902 // Make sure the environment is still clean (no lingering local refs from starting daemon 903 // threads). 904 { 905 ScopedObjectAccess soa(self); 906 self->GetJniEnv()->AssertLocalsEmpty(); 907 } 908 909 // Send the initialized phase event. Send it after starting the Daemon threads so that agents 910 // cannot delay the daemon threads from starting forever. 911 { 912 ScopedObjectAccess soa(self); 913 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit); 914 } 915 916 { 917 ScopedObjectAccess soa(self); 918 self->GetJniEnv()->AssertLocalsEmpty(); 919 } 920 921 VLOG(startup) << "Runtime::Start exiting"; 922 finished_starting_ = true; 923 924 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") { 925 ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart); 926 Trace::Start(trace_config_->trace_file.c_str(), 927 static_cast<int>(trace_config_->trace_file_size), 928 0, 929 trace_config_->trace_output_mode, 930 trace_config_->trace_mode, 931 0); 932 } 933 934 // In case we have a profile path passed as a command line argument, 935 // register the current class path for profiling now. Note that we cannot do 936 // this before we create the JIT and having it here is the most convenient way. 937 // This is used when testing profiles with dalvikvm command as there is no 938 // framework to register the dex files for profiling. 939 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() && 940 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) { 941 std::vector<std::string> dex_filenames; 942 Split(class_path_string_, ':', &dex_filenames); 943 RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath()); 944 } 945 946 return true; 947 } 948 949 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) { 950 DCHECK_GT(threads_being_born_, 0U); 951 threads_being_born_--; 952 if (shutting_down_started_ && threads_being_born_ == 0) { 953 shutdown_cond_->Broadcast(Thread::Current()); 954 } 955 } 956 957 void Runtime::InitNonZygoteOrPostFork( 958 JNIEnv* env, 959 bool is_system_server, 960 NativeBridgeAction action, 961 const char* isa, 962 bool profile_system_server) { 963 is_zygote_ = false; 964 965 if (is_native_bridge_loaded_) { 966 switch (action) { 967 case NativeBridgeAction::kUnload: 968 UnloadNativeBridge(); 969 is_native_bridge_loaded_ = false; 970 break; 971 972 case NativeBridgeAction::kInitialize: 973 InitializeNativeBridge(env, isa); 974 break; 975 } 976 } 977 978 if (is_system_server) { 979 jit_options_->SetSaveProfilingInfo(profile_system_server); 980 if (profile_system_server) { 981 jit_options_->SetWaitForJitNotificationsToSaveProfile(false); 982 VLOG(profiler) << "Enabling system server profiles"; 983 } 984 } 985 986 // Create the thread pools. 987 heap_->CreateThreadPool(); 988 { 989 ScopedTrace timing("CreateThreadPool"); 990 constexpr size_t kStackSize = 64 * KB; 991 constexpr size_t kMaxRuntimeWorkers = 4u; 992 const size_t num_workers = 993 std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers); 994 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); 995 CHECK(thread_pool_ == nullptr); 996 thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize)); 997 thread_pool_->StartWorkers(Thread::Current()); 998 } 999 1000 // Reset the gc performance data at zygote fork so that the GCs 1001 // before fork aren't attributed to an app. 1002 heap_->ResetGcPerformanceInfo(); 1003 1004 StartSignalCatcher(); 1005 1006 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", 1007 // this will pause the runtime (in the internal debugger implementation), so we probably want 1008 // this to come last. 1009 ScopedObjectAccess soa(Thread::Current()); 1010 GetRuntimeCallbacks()->StartDebugger(); 1011 } 1012 1013 void Runtime::StartSignalCatcher() { 1014 if (!is_zygote_) { 1015 signal_catcher_ = new SignalCatcher(); 1016 } 1017 } 1018 1019 bool Runtime::IsShuttingDown(Thread* self) { 1020 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 1021 return IsShuttingDownLocked(); 1022 } 1023 1024 void Runtime::StartDaemonThreads() { 1025 ScopedTrace trace(__FUNCTION__); 1026 VLOG(startup) << "Runtime::StartDaemonThreads entering"; 1027 1028 Thread* self = Thread::Current(); 1029 1030 // Must be in the kNative state for calling native methods. 1031 CHECK_EQ(self->GetState(), kNative); 1032 1033 JNIEnv* env = self->GetJniEnv(); 1034 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, 1035 WellKnownClasses::java_lang_Daemons_start); 1036 if (env->ExceptionCheck()) { 1037 env->ExceptionDescribe(); 1038 LOG(FATAL) << "Error starting java.lang.Daemons"; 1039 } 1040 1041 VLOG(startup) << "Runtime::StartDaemonThreads exiting"; 1042 } 1043 1044 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames, 1045 ArrayRef<const std::string> dex_locations, 1046 std::vector<std::unique_ptr<const DexFile>>* dex_files) { 1047 DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr"; 1048 size_t failure_count = 0; 1049 const ArtDexFileLoader dex_file_loader; 1050 for (size_t i = 0; i < dex_filenames.size(); i++) { 1051 const char* dex_filename = dex_filenames[i].c_str(); 1052 const char* dex_location = dex_locations[i].c_str(); 1053 static constexpr bool kVerifyChecksum = true; 1054 std::string error_msg; 1055 if (!OS::FileExists(dex_filename)) { 1056 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; 1057 continue; 1058 } 1059 bool verify = Runtime::Current()->IsVerificationEnabled(); 1060 // In the case we're using the apex boot image, we don't have support yet 1061 // on reading vdex files of boot classpath. So just assume all boot classpath 1062 // dex files have been verified (this should always be the case as the default boot 1063 // image has been generated at build time). 1064 if (Runtime::Current()->IsUsingApexBootImageLocation() && !kIsDebugBuild) { 1065 verify = false; 1066 } 1067 if (!dex_file_loader.Open(dex_filename, 1068 dex_location, 1069 verify, 1070 kVerifyChecksum, 1071 &error_msg, 1072 dex_files)) { 1073 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg; 1074 ++failure_count; 1075 } 1076 } 1077 return failure_count; 1078 } 1079 1080 void Runtime::SetSentinel(mirror::Object* sentinel) { 1081 CHECK(sentinel_.Read() == nullptr); 1082 CHECK(sentinel != nullptr); 1083 CHECK(!heap_->IsMovableObject(sentinel)); 1084 sentinel_ = GcRoot<mirror::Object>(sentinel); 1085 } 1086 1087 GcRoot<mirror::Object> Runtime::GetSentinel() { 1088 return sentinel_; 1089 } 1090 1091 static inline void CreatePreAllocatedException(Thread* self, 1092 Runtime* runtime, 1093 GcRoot<mirror::Throwable>* exception, 1094 const char* exception_class_descriptor, 1095 const char* msg) 1096 REQUIRES_SHARED(Locks::mutator_lock_) { 1097 DCHECK_EQ(self, Thread::Current()); 1098 ClassLinker* class_linker = runtime->GetClassLinker(); 1099 // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>(). 1100 ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor); 1101 CHECK(klass != nullptr); 1102 gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator(); 1103 ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast( 1104 klass->Alloc</* kIsInstrumented= */ true>(self, allocator_type)); 1105 CHECK(exception_object != nullptr); 1106 *exception = GcRoot<mirror::Throwable>(exception_object); 1107 // Initialize the "detailMessage" field. 1108 ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg); 1109 CHECK(message != nullptr); 1110 ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker); 1111 ArtField* detailMessageField = 1112 throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;"); 1113 CHECK(detailMessageField != nullptr); 1114 detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message); 1115 } 1116 1117 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) { 1118 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. 1119 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc. 1120 env_snapshot_.TakeSnapshot(); 1121 1122 using Opt = RuntimeArgumentMap; 1123 Opt runtime_options(std::move(runtime_options_in)); 1124 ScopedTrace trace(__FUNCTION__); 1125 CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize); 1126 1127 // Early override for logging output. 1128 if (runtime_options.Exists(Opt::UseStderrLogger)) { 1129 android::base::SetLogger(android::base::StderrLogger); 1130 } 1131 1132 MemMap::Init(); 1133 1134 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels. 1135 // If we cannot reserve it, log a warning. 1136 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..) 1137 // is out-of-the-way enough that it should not collide with boot image mapping. 1138 // Note: Don't request an error message. That will lead to a maps dump in the case of failure, 1139 // leading to logspam. 1140 { 1141 constexpr uintptr_t kSentinelAddr = 1142 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize); 1143 protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page", 1144 reinterpret_cast<uint8_t*>(kSentinelAddr), 1145 kPageSize, 1146 PROT_NONE, 1147 /*low_4gb=*/ true, 1148 /*reuse=*/ false, 1149 /*reservation=*/ nullptr, 1150 /*error_msg=*/ nullptr); 1151 if (!protected_fault_page_.IsValid()) { 1152 LOG(WARNING) << "Could not reserve sentinel fault page"; 1153 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) { 1154 LOG(WARNING) << "Could not reserve sentinel fault page at the right address."; 1155 protected_fault_page_.Reset(); 1156 } 1157 } 1158 1159 VLOG(startup) << "Runtime::Init -verbose:startup enabled"; 1160 1161 QuasiAtomic::Startup(); 1162 1163 oat_file_manager_ = new OatFileManager; 1164 1165 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread)); 1166 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold), 1167 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold)); 1168 1169 image_location_ = runtime_options.GetOrDefault(Opt::Image); 1170 { 1171 std::string error_msg; 1172 is_using_apex_boot_image_location_ = (image_location_ == kApexBootImageLocation); 1173 } 1174 1175 SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet)); 1176 boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath); 1177 boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations); 1178 DCHECK(boot_class_path_locations_.empty() || 1179 boot_class_path_locations_.size() == boot_class_path_.size()); 1180 if (boot_class_path_.empty()) { 1181 // Try to extract the boot class path from the system boot image. 1182 if (image_location_.empty()) { 1183 LOG(ERROR) << "Empty boot class path, cannot continue without image."; 1184 return false; 1185 } 1186 std::string system_oat_filename = ImageHeader::GetOatLocationFromImageLocation( 1187 GetSystemImageFilename(image_location_.c_str(), instruction_set_)); 1188 std::string system_oat_location = ImageHeader::GetOatLocationFromImageLocation(image_location_); 1189 std::string error_msg; 1190 std::unique_ptr<OatFile> oat_file(OatFile::Open(/*zip_fd=*/ -1, 1191 system_oat_filename, 1192 system_oat_location, 1193 /*executable=*/ false, 1194 /*low_4gb=*/ false, 1195 /*abs_dex_location=*/ nullptr, 1196 /*reservation=*/ nullptr, 1197 &error_msg)); 1198 if (oat_file == nullptr) { 1199 LOG(ERROR) << "Could not open boot oat file for extracting boot class path: " << error_msg; 1200 return false; 1201 } 1202 const OatHeader& oat_header = oat_file->GetOatHeader(); 1203 const char* oat_boot_class_path = oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); 1204 if (oat_boot_class_path != nullptr) { 1205 Split(oat_boot_class_path, ':', &boot_class_path_); 1206 } 1207 if (boot_class_path_.empty()) { 1208 LOG(ERROR) << "Boot class path missing from boot image oat file " << oat_file->GetLocation(); 1209 return false; 1210 } 1211 } 1212 1213 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath); 1214 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList); 1215 1216 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr); 1217 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate); 1218 is_zygote_ = runtime_options.Exists(Opt::Zygote); 1219 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC); 1220 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat); 1221 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit); 1222 1223 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf); 1224 exit_ = runtime_options.GetOrDefault(Opt::HookExit); 1225 abort_ = runtime_options.GetOrDefault(Opt::HookAbort); 1226 1227 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize); 1228 1229 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler); 1230 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions); 1231 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) { 1232 if (option == "--debuggable") { 1233 SetJavaDebuggable(true); 1234 break; 1235 } 1236 } 1237 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions); 1238 1239 finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs); 1240 max_spins_before_thin_lock_inflation_ = 1241 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation); 1242 1243 monitor_list_ = new MonitorList; 1244 monitor_pool_ = MonitorPool::Create(); 1245 thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout)); 1246 intern_table_ = new InternTable; 1247 1248 verify_ = runtime_options.GetOrDefault(Opt::Verify); 1249 allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback); 1250 1251 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion); 1252 1253 // Set hidden API enforcement policy. The checks are disabled by default and 1254 // we only enable them if: 1255 // (a) runtime was started with a command line flag that enables the checks, or 1256 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks). 1257 hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy); 1258 DCHECK(!is_zygote_ || hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled); 1259 1260 // Set core platform API enforcement policy. The checks are disabled by default and 1261 // can be enabled with a command line flag. AndroidRuntime will pass the flag if 1262 // a system property is set. 1263 core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy); 1264 if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) { 1265 LOG(INFO) << "Core platform API reporting enabled, enforcing=" 1266 << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false"); 1267 } 1268 1269 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain); 1270 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge); 1271 1272 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_); 1273 1274 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint); 1275 1276 if (runtime_options.GetOrDefault(Opt::Interpret)) { 1277 GetInstrumentation()->ForceInterpretOnly(); 1278 } 1279 1280 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots); 1281 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental); 1282 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode); 1283 madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess); 1284 1285 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins); 1286 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath); 1287 // TODO Add back in -agentlib 1288 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) { 1289 // agents_.push_back(lib); 1290 // } 1291 1292 float foreground_heap_growth_multiplier; 1293 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) { 1294 // If low memory mode, use 1.0 as the multiplier by default. 1295 foreground_heap_growth_multiplier = 1.0f; 1296 } else { 1297 foreground_heap_growth_multiplier = 1298 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1299 kExtraDefaultHeapGrowthMultiplier; 1300 } 1301 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption); 1302 1303 // Generational CC collection is currently only compatible with Baker read barriers. 1304 bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc; 1305 1306 image_space_loading_order_ = runtime_options.GetOrDefault(Opt::ImageSpaceLoadingOrder); 1307 1308 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize), 1309 runtime_options.GetOrDefault(Opt::HeapGrowthLimit), 1310 runtime_options.GetOrDefault(Opt::HeapMinFree), 1311 runtime_options.GetOrDefault(Opt::HeapMaxFree), 1312 runtime_options.GetOrDefault(Opt::HeapTargetUtilization), 1313 foreground_heap_growth_multiplier, 1314 runtime_options.GetOrDefault(Opt::MemoryMaximumSize), 1315 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity), 1316 GetBootClassPath(), 1317 GetBootClassPathLocations(), 1318 image_location_, 1319 instruction_set_, 1320 // Override the collector type to CC if the read barrier config. 1321 kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_, 1322 kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) 1323 : runtime_options.GetOrDefault(Opt::BackgroundGc), 1324 runtime_options.GetOrDefault(Opt::LargeObjectSpace), 1325 runtime_options.GetOrDefault(Opt::LargeObjectThreshold), 1326 runtime_options.GetOrDefault(Opt::ParallelGCThreads), 1327 runtime_options.GetOrDefault(Opt::ConcGCThreads), 1328 runtime_options.Exists(Opt::LowMemoryMode), 1329 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold), 1330 runtime_options.GetOrDefault(Opt::LongGCLogThreshold), 1331 runtime_options.Exists(Opt::IgnoreMaxFootprint), 1332 runtime_options.GetOrDefault(Opt::UseTLAB), 1333 xgc_option.verify_pre_gc_heap_, 1334 xgc_option.verify_pre_sweeping_heap_, 1335 xgc_option.verify_post_gc_heap_, 1336 xgc_option.verify_pre_gc_rosalloc_, 1337 xgc_option.verify_pre_sweeping_rosalloc_, 1338 xgc_option.verify_post_gc_rosalloc_, 1339 xgc_option.gcstress_, 1340 xgc_option.measure_, 1341 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM), 1342 use_generational_cc, 1343 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs), 1344 runtime_options.Exists(Opt::DumpRegionInfoBeforeGC), 1345 runtime_options.Exists(Opt::DumpRegionInfoAfterGC), 1346 image_space_loading_order_); 1347 1348 if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) { 1349 LOG(ERROR) << "Dex file fallback disabled, cannot continue without image."; 1350 return false; 1351 } 1352 1353 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown); 1354 1355 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions); 1356 jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider), 1357 IsJavaDebuggable()); 1358 switch (jdwp_provider_) { 1359 case JdwpProvider::kNone: { 1360 VLOG(jdwp) << "Disabling all JDWP support."; 1361 if (!jdwp_options_.empty()) { 1362 bool has_transport = jdwp_options_.find("transport") != std::string::npos; 1363 const char* transport_internal = !has_transport ? "transport=dt_android_adb," : ""; 1364 std::string adb_connection_args = 1365 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_; 1366 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable " 1367 << "jdwp with one of:" << std::endl 1368 << " -XjdwpProvider:internal " 1369 << "-XjdwpOptions:" << transport_internal << jdwp_options_ << std::endl 1370 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so " 1371 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl 1372 << (has_transport ? "" : adb_connection_args); 1373 } 1374 break; 1375 } 1376 case JdwpProvider::kInternal: { 1377 if (runtime_options.Exists(Opt::JdwpOptions)) { 1378 JDWP::JdwpOptions ops; 1379 if (!JDWP::ParseJdwpOptions(runtime_options.GetOrDefault(Opt::JdwpOptions), &ops)) { 1380 LOG(ERROR) << "failed to parse jdwp options!"; 1381 return false; 1382 } 1383 Dbg::ConfigureJdwp(ops); 1384 } 1385 break; 1386 } 1387 case JdwpProvider::kAdbConnection: { 1388 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so" 1389 : "libadbconnection.so"; 1390 plugins_.push_back(Plugin::Create(plugin_name)); 1391 break; 1392 } 1393 case JdwpProvider::kUnset: { 1394 LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!"; 1395 } 1396 } 1397 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback()); 1398 callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback()); 1399 1400 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options)); 1401 if (IsAotCompiler()) { 1402 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in 1403 // this case. 1404 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns 1405 // null and we don't create the jit. 1406 jit_options_->SetUseJitCompilation(false); 1407 jit_options_->SetSaveProfilingInfo(false); 1408 } 1409 1410 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but 1411 // can't be trimmed as easily. 1412 const bool use_malloc = IsAotCompiler(); 1413 if (use_malloc) { 1414 arena_pool_.reset(new MallocArenaPool()); 1415 jit_arena_pool_.reset(new MallocArenaPool()); 1416 } else { 1417 arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false)); 1418 jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata")); 1419 } 1420 1421 if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) { 1422 // 4gb, no malloc. Explanation in header. 1423 low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true)); 1424 } 1425 linear_alloc_.reset(CreateLinearAlloc()); 1426 1427 BlockSignals(); 1428 InitPlatformSignalHandlers(); 1429 1430 // Change the implicit checks flags based on runtime architecture. 1431 switch (kRuntimeISA) { 1432 case InstructionSet::kArm: 1433 case InstructionSet::kThumb2: 1434 case InstructionSet::kX86: 1435 case InstructionSet::kArm64: 1436 case InstructionSet::kX86_64: 1437 case InstructionSet::kMips: 1438 case InstructionSet::kMips64: 1439 implicit_null_checks_ = true; 1440 // Historical note: Installing stack protection was not playing well with Valgrind. 1441 implicit_so_checks_ = true; 1442 break; 1443 default: 1444 // Keep the defaults. 1445 break; 1446 } 1447 1448 if (!no_sig_chain_) { 1449 // Dex2Oat's Runtime does not need the signal chain or the fault handler. 1450 if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) { 1451 fault_manager.Init(); 1452 1453 // These need to be in a specific order. The null point check handler must be 1454 // after the suspend check and stack overflow check handlers. 1455 // 1456 // Note: the instances attach themselves to the fault manager and are handled by it. The 1457 // manager will delete the instance on Shutdown(). 1458 if (implicit_suspend_checks_) { 1459 new SuspensionHandler(&fault_manager); 1460 } 1461 1462 if (implicit_so_checks_) { 1463 new StackOverflowHandler(&fault_manager); 1464 } 1465 1466 if (implicit_null_checks_) { 1467 new NullPointerHandler(&fault_manager); 1468 } 1469 1470 if (kEnableJavaStackTraceHandler) { 1471 new JavaStackTraceHandler(&fault_manager); 1472 } 1473 } 1474 } 1475 1476 verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold); 1477 1478 std::string error_msg; 1479 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg); 1480 if (java_vm_.get() == nullptr) { 1481 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg; 1482 return false; 1483 } 1484 1485 // Add the JniEnv handler. 1486 // TODO Refactor this stuff. 1487 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler); 1488 1489 Thread::Startup(); 1490 1491 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating 1492 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main 1493 // thread, we do not get a java peer. 1494 Thread* self = Thread::Attach("main", false, nullptr, false); 1495 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); 1496 CHECK(self != nullptr); 1497 1498 self->SetIsRuntimeThread(IsAotCompiler()); 1499 1500 // Set us to runnable so tools using a runtime can allocate and GC by default 1501 self->TransitionFromSuspendedToRunnable(); 1502 1503 // Now we're attached, we can take the heap locks and validate the heap. 1504 GetHeap()->EnableObjectValidation(); 1505 1506 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); 1507 1508 if (UNLIKELY(IsAotCompiler())) { 1509 class_linker_ = new AotClassLinker(intern_table_); 1510 } else { 1511 class_linker_ = new ClassLinker( 1512 intern_table_, 1513 runtime_options.GetOrDefault(Opt::FastClassNotFoundException)); 1514 } 1515 if (GetHeap()->HasBootImageSpace()) { 1516 bool result = class_linker_->InitFromBootImage(&error_msg); 1517 if (!result) { 1518 LOG(ERROR) << "Could not initialize from image: " << error_msg; 1519 return false; 1520 } 1521 if (kIsDebugBuild) { 1522 for (auto image_space : GetHeap()->GetBootImageSpaces()) { 1523 image_space->VerifyImageAllocations(); 1524 } 1525 } 1526 { 1527 ScopedTrace trace2("AddImageStringsToTable"); 1528 for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) { 1529 GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor()); 1530 } 1531 } 1532 if (heap_->GetBootImageSpaces().size() != GetBootClassPath().size()) { 1533 // The boot image did not contain all boot class path components. Load the rest. 1534 DCHECK_LT(heap_->GetBootImageSpaces().size(), GetBootClassPath().size()); 1535 size_t start = heap_->GetBootImageSpaces().size(); 1536 DCHECK_LT(start, GetBootClassPath().size()); 1537 std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path; 1538 if (runtime_options.Exists(Opt::BootClassPathDexList)) { 1539 extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); 1540 } else { 1541 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start), 1542 ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start), 1543 &extra_boot_class_path); 1544 } 1545 class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path)); 1546 } 1547 if (IsJavaDebuggable()) { 1548 // Now that we have loaded the boot image, deoptimize its methods if we are running 1549 // debuggable, as the code may have been compiled non-debuggable. 1550 ScopedThreadSuspension sts(self, ThreadState::kNative); 1551 ScopedSuspendAll ssa(__FUNCTION__); 1552 DeoptimizeBootImage(); 1553 } 1554 } else { 1555 std::vector<std::unique_ptr<const DexFile>> boot_class_path; 1556 if (runtime_options.Exists(Opt::BootClassPathDexList)) { 1557 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); 1558 } else { 1559 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()), 1560 ArrayRef<const std::string>(GetBootClassPathLocations()), 1561 &boot_class_path); 1562 } 1563 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) { 1564 LOG(ERROR) << "Could not initialize without image: " << error_msg; 1565 return false; 1566 } 1567 1568 // TODO: Should we move the following to InitWithoutImage? 1569 SetInstructionSet(instruction_set_); 1570 for (uint32_t i = 0; i < kCalleeSaveSize; i++) { 1571 CalleeSaveType type = CalleeSaveType(i); 1572 if (!HasCalleeSaveMethod(type)) { 1573 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type); 1574 } 1575 } 1576 } 1577 1578 CHECK(class_linker_ != nullptr); 1579 1580 verifier::ClassVerifier::Init(); 1581 1582 if (runtime_options.Exists(Opt::MethodTrace)) { 1583 trace_config_.reset(new TraceConfig()); 1584 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile); 1585 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize); 1586 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing; 1587 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ? 1588 Trace::TraceOutputMode::kStreaming : 1589 Trace::TraceOutputMode::kFile; 1590 } 1591 1592 // TODO: move this to just be an Trace::Start argument 1593 Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock)); 1594 1595 if (GetHeap()->HasBootImageSpace()) { 1596 const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader(); 1597 pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>( 1598 image_header.GetImageRoot(ImageHeader::kOomeWhenThrowingException)->AsThrowable()); 1599 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass() 1600 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); 1601 pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>( 1602 image_header.GetImageRoot(ImageHeader::kOomeWhenThrowingOome)->AsThrowable()); 1603 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass() 1604 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); 1605 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>( 1606 image_header.GetImageRoot(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable()); 1607 DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass() 1608 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); 1609 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>( 1610 image_header.GetImageRoot(ImageHeader::kNoClassDefFoundError)->AsThrowable()); 1611 DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass() 1612 ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;")); 1613 } else { 1614 // Pre-allocate an OutOfMemoryError for the case when we fail to 1615 // allocate the exception to be thrown. 1616 CreatePreAllocatedException(self, 1617 this, 1618 &pre_allocated_OutOfMemoryError_when_throwing_exception_, 1619 "Ljava/lang/OutOfMemoryError;", 1620 "OutOfMemoryError thrown while trying to throw an exception; " 1621 "no stack trace available"); 1622 // Pre-allocate an OutOfMemoryError for the double-OOME case. 1623 CreatePreAllocatedException(self, 1624 this, 1625 &pre_allocated_OutOfMemoryError_when_throwing_oome_, 1626 "Ljava/lang/OutOfMemoryError;", 1627 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " 1628 "no stack trace available"); 1629 // Pre-allocate an OutOfMemoryError for the case when we fail to 1630 // allocate while handling a stack overflow. 1631 CreatePreAllocatedException(self, 1632 this, 1633 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, 1634 "Ljava/lang/OutOfMemoryError;", 1635 "OutOfMemoryError thrown while trying to handle a stack overflow; " 1636 "no stack trace available"); 1637 1638 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class 1639 // ahead of checking the application's class loader. 1640 CreatePreAllocatedException(self, 1641 this, 1642 &pre_allocated_NoClassDefFoundError_, 1643 "Ljava/lang/NoClassDefFoundError;", 1644 "Class not found using the boot class loader; " 1645 "no stack trace available"); 1646 } 1647 1648 // Runtime initialization is largely done now. 1649 // We load plugins first since that can modify the runtime state slightly. 1650 // Load all plugins 1651 { 1652 // The init method of plugins expect the state of the thread to be non runnable. 1653 ScopedThreadSuspension sts(self, ThreadState::kNative); 1654 for (auto& plugin : plugins_) { 1655 std::string err; 1656 if (!plugin.Load(&err)) { 1657 LOG(FATAL) << plugin << " failed to load: " << err; 1658 } 1659 } 1660 } 1661 1662 // Look for a native bridge. 1663 // 1664 // The intended flow here is, in the case of a running system: 1665 // 1666 // Runtime::Init() (zygote): 1667 // LoadNativeBridge -> dlopen from cmd line parameter. 1668 // | 1669 // V 1670 // Runtime::Start() (zygote): 1671 // No-op wrt native bridge. 1672 // | 1673 // | start app 1674 // V 1675 // DidForkFromZygote(action) 1676 // action = kUnload -> dlclose native bridge. 1677 // action = kInitialize -> initialize library 1678 // 1679 // 1680 // The intended flow here is, in the case of a simple dalvikvm call: 1681 // 1682 // Runtime::Init(): 1683 // LoadNativeBridge -> dlopen from cmd line parameter. 1684 // | 1685 // V 1686 // Runtime::Start(): 1687 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given. 1688 // No-op wrt native bridge. 1689 { 1690 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge); 1691 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name); 1692 } 1693 1694 // Startup agents 1695 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more. 1696 for (auto& agent_spec : agent_specs_) { 1697 // TODO Check err 1698 int res = 0; 1699 std::string err = ""; 1700 ti::LoadError error; 1701 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err); 1702 1703 if (agent != nullptr) { 1704 agents_.push_back(std::move(agent)); 1705 continue; 1706 } 1707 1708 switch (error) { 1709 case ti::LoadError::kInitializationError: 1710 LOG(FATAL) << "Unable to initialize agent!"; 1711 UNREACHABLE(); 1712 1713 case ti::LoadError::kLoadingError: 1714 LOG(ERROR) << "Unable to load an agent: " << err; 1715 continue; 1716 1717 case ti::LoadError::kNoError: 1718 break; 1719 } 1720 LOG(FATAL) << "Unreachable"; 1721 UNREACHABLE(); 1722 } 1723 { 1724 ScopedObjectAccess soa(self); 1725 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents); 1726 } 1727 1728 VLOG(startup) << "Runtime::Init exiting"; 1729 1730 // Set OnlyUseSystemOatFiles only after boot classpath has been set up. 1731 if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) { 1732 oat_file_manager_->SetOnlyUseSystemOatFiles(/*enforce=*/ true, 1733 /*assert_no_files_loaded=*/ true); 1734 } 1735 1736 return true; 1737 } 1738 1739 static bool EnsureJvmtiPlugin(Runtime* runtime, 1740 std::vector<Plugin>* plugins, 1741 std::string* error_msg) { 1742 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so"; 1743 1744 // Is the plugin already loaded? 1745 for (const Plugin& p : *plugins) { 1746 if (p.GetLibrary() == plugin_name) { 1747 return true; 1748 } 1749 } 1750 1751 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed. 1752 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable()) 1753 << "Being debuggable requires that jdwp (i.e. debugging) is allowed."; 1754 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are 1755 // specifically allowed. 1756 if (!Dbg::IsJdwpAllowed()) { 1757 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable"; 1758 return false; 1759 } 1760 1761 Plugin new_plugin = Plugin::Create(plugin_name); 1762 1763 if (!new_plugin.Load(error_msg)) { 1764 return false; 1765 } 1766 1767 plugins->push_back(std::move(new_plugin)); 1768 return true; 1769 } 1770 1771 // Attach a new agent and add it to the list of runtime agents 1772 // 1773 // TODO: once we decide on the threading model for agents, 1774 // revisit this and make sure we're doing this on the right thread 1775 // (and we synchronize access to any shared data structures like "agents_") 1776 // 1777 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) { 1778 std::string error_msg; 1779 if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) { 1780 LOG(WARNING) << "Could not load plugin: " << error_msg; 1781 ScopedObjectAccess soa(Thread::Current()); 1782 ThrowIOException("%s", error_msg.c_str()); 1783 return; 1784 } 1785 1786 ti::AgentSpec agent_spec(agent_arg); 1787 1788 int res = 0; 1789 ti::LoadError error; 1790 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg); 1791 1792 if (agent != nullptr) { 1793 agents_.push_back(std::move(agent)); 1794 } else { 1795 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg; 1796 ScopedObjectAccess soa(Thread::Current()); 1797 ThrowIOException("%s", error_msg.c_str()); 1798 } 1799 } 1800 1801 void Runtime::InitNativeMethods() { 1802 VLOG(startup) << "Runtime::InitNativeMethods entering"; 1803 Thread* self = Thread::Current(); 1804 JNIEnv* env = self->GetJniEnv(); 1805 1806 // Must be in the kNative state for calling native methods (JNI_OnLoad code). 1807 CHECK_EQ(self->GetState(), kNative); 1808 1809 // Set up the native methods provided by the runtime itself. 1810 RegisterRuntimeNativeMethods(env); 1811 1812 // Initialize classes used in JNI. The initialization requires runtime native 1813 // methods to be loaded first. 1814 WellKnownClasses::Init(env); 1815 1816 // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with 1817 // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but 1818 // libcore can't because it's the library that implements System.loadLibrary! 1819 { 1820 std::string error_msg; 1821 if (!java_vm_->LoadNativeLibrary( 1822 env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) { 1823 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg; 1824 } 1825 } 1826 { 1827 constexpr const char* kOpenJdkLibrary = kIsDebugBuild 1828 ? "libopenjdkd.so" 1829 : "libopenjdk.so"; 1830 std::string error_msg; 1831 if (!java_vm_->LoadNativeLibrary( 1832 env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) { 1833 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg; 1834 } 1835 } 1836 1837 // Initialize well known classes that may invoke runtime native methods. 1838 WellKnownClasses::LateInit(env); 1839 1840 // Having loaded native libraries for Managed Core library, enable field and 1841 // method resolution checks via JNI from native code. 1842 JniInitializeNativeCallerCheck(); 1843 1844 VLOG(startup) << "Runtime::InitNativeMethods exiting"; 1845 } 1846 1847 void Runtime::ReclaimArenaPoolMemory() { 1848 arena_pool_->LockReclaimMemory(); 1849 } 1850 1851 void Runtime::InitThreadGroups(Thread* self) { 1852 JNIEnvExt* env = self->GetJniEnv(); 1853 ScopedJniEnvLocalRefState env_state(env); 1854 main_thread_group_ = 1855 env->NewGlobalRef(env->GetStaticObjectField( 1856 WellKnownClasses::java_lang_ThreadGroup, 1857 WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup)); 1858 CHECK(main_thread_group_ != nullptr || IsAotCompiler()); 1859 system_thread_group_ = 1860 env->NewGlobalRef(env->GetStaticObjectField( 1861 WellKnownClasses::java_lang_ThreadGroup, 1862 WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup)); 1863 CHECK(system_thread_group_ != nullptr || IsAotCompiler()); 1864 } 1865 1866 jobject Runtime::GetMainThreadGroup() const { 1867 CHECK(main_thread_group_ != nullptr || IsAotCompiler()); 1868 return main_thread_group_; 1869 } 1870 1871 jobject Runtime::GetSystemThreadGroup() const { 1872 CHECK(system_thread_group_ != nullptr || IsAotCompiler()); 1873 return system_thread_group_; 1874 } 1875 1876 jobject Runtime::GetSystemClassLoader() const { 1877 CHECK(system_class_loader_ != nullptr || IsAotCompiler()); 1878 return system_class_loader_; 1879 } 1880 1881 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { 1882 register_dalvik_system_DexFile(env); 1883 register_dalvik_system_VMDebug(env); 1884 register_dalvik_system_VMRuntime(env); 1885 register_dalvik_system_VMStack(env); 1886 register_dalvik_system_ZygoteHooks(env); 1887 register_java_lang_Class(env); 1888 register_java_lang_Object(env); 1889 register_java_lang_invoke_MethodHandleImpl(env); 1890 register_java_lang_ref_FinalizerReference(env); 1891 register_java_lang_reflect_Array(env); 1892 register_java_lang_reflect_Constructor(env); 1893 register_java_lang_reflect_Executable(env); 1894 register_java_lang_reflect_Field(env); 1895 register_java_lang_reflect_Method(env); 1896 register_java_lang_reflect_Parameter(env); 1897 register_java_lang_reflect_Proxy(env); 1898 register_java_lang_ref_Reference(env); 1899 register_java_lang_String(env); 1900 register_java_lang_StringFactory(env); 1901 register_java_lang_System(env); 1902 register_java_lang_Thread(env); 1903 register_java_lang_Throwable(env); 1904 register_java_lang_VMClassLoader(env); 1905 register_java_util_concurrent_atomic_AtomicLong(env); 1906 register_libcore_util_CharsetUtils(env); 1907 register_org_apache_harmony_dalvik_ddmc_DdmServer(env); 1908 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env); 1909 register_sun_misc_Unsafe(env); 1910 } 1911 1912 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) { 1913 os << GetDeoptimizationKindName(kind); 1914 return os; 1915 } 1916 1917 void Runtime::DumpDeoptimizations(std::ostream& os) { 1918 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) { 1919 if (deoptimization_counts_[i] != 0) { 1920 os << "Number of " 1921 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i)) 1922 << " deoptimizations: " 1923 << deoptimization_counts_[i] 1924 << "\n"; 1925 } 1926 } 1927 } 1928 1929 void Runtime::DumpForSigQuit(std::ostream& os) { 1930 GetClassLinker()->DumpForSigQuit(os); 1931 GetInternTable()->DumpForSigQuit(os); 1932 GetJavaVM()->DumpForSigQuit(os); 1933 GetHeap()->DumpForSigQuit(os); 1934 oat_file_manager_->DumpForSigQuit(os); 1935 if (GetJit() != nullptr) { 1936 GetJit()->DumpForSigQuit(os); 1937 } else { 1938 os << "Running non JIT\n"; 1939 } 1940 DumpDeoptimizations(os); 1941 TrackedAllocators::Dump(os); 1942 os << "\n"; 1943 1944 thread_list_->DumpForSigQuit(os); 1945 BaseMutex::DumpAll(os); 1946 1947 // Inform anyone else who is interested in SigQuit. 1948 { 1949 ScopedObjectAccess soa(Thread::Current()); 1950 callbacks_->SigQuit(); 1951 } 1952 } 1953 1954 void Runtime::DumpLockHolders(std::ostream& os) { 1955 uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); 1956 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); 1957 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); 1958 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); 1959 if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { 1960 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" 1961 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" 1962 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" 1963 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; 1964 } 1965 } 1966 1967 void Runtime::SetStatsEnabled(bool new_state) { 1968 Thread* self = Thread::Current(); 1969 MutexLock mu(self, *Locks::instrument_entrypoints_lock_); 1970 if (new_state == true) { 1971 GetStats()->Clear(~0); 1972 // TODO: wouldn't it make more sense to clear _all_ threads' stats? 1973 self->GetStats()->Clear(~0); 1974 if (stats_enabled_ != new_state) { 1975 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked(); 1976 } 1977 } else if (stats_enabled_ != new_state) { 1978 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked(); 1979 } 1980 stats_enabled_ = new_state; 1981 } 1982 1983 void Runtime::ResetStats(int kinds) { 1984 GetStats()->Clear(kinds & 0xffff); 1985 // TODO: wouldn't it make more sense to clear _all_ threads' stats? 1986 Thread::Current()->GetStats()->Clear(kinds >> 16); 1987 } 1988 1989 int32_t Runtime::GetStat(int kind) { 1990 RuntimeStats* stats; 1991 if (kind < (1<<16)) { 1992 stats = GetStats(); 1993 } else { 1994 stats = Thread::Current()->GetStats(); 1995 kind >>= 16; 1996 } 1997 switch (kind) { 1998 case KIND_ALLOCATED_OBJECTS: 1999 return stats->allocated_objects; 2000 case KIND_ALLOCATED_BYTES: 2001 return stats->allocated_bytes; 2002 case KIND_FREED_OBJECTS: 2003 return stats->freed_objects; 2004 case KIND_FREED_BYTES: 2005 return stats->freed_bytes; 2006 case KIND_GC_INVOCATIONS: 2007 return stats->gc_for_alloc_count; 2008 case KIND_CLASS_INIT_COUNT: 2009 return stats->class_init_count; 2010 case KIND_CLASS_INIT_TIME: 2011 // Convert ns to us, reduce to 32 bits. 2012 return static_cast<int>(stats->class_init_time_ns / 1000); 2013 case KIND_EXT_ALLOCATED_OBJECTS: 2014 case KIND_EXT_ALLOCATED_BYTES: 2015 case KIND_EXT_FREED_OBJECTS: 2016 case KIND_EXT_FREED_BYTES: 2017 return 0; // backward compatibility 2018 default: 2019 LOG(FATAL) << "Unknown statistic " << kind; 2020 UNREACHABLE(); 2021 } 2022 } 2023 2024 void Runtime::BlockSignals() { 2025 SignalSet signals; 2026 signals.Add(SIGPIPE); 2027 // SIGQUIT is used to dump the runtime's state (including stack traces). 2028 signals.Add(SIGQUIT); 2029 // SIGUSR1 is used to initiate a GC. 2030 signals.Add(SIGUSR1); 2031 signals.Block(); 2032 } 2033 2034 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, 2035 bool create_peer) { 2036 ScopedTrace trace(__FUNCTION__); 2037 Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer); 2038 // Run ThreadGroup.add to notify the group that this thread is now started. 2039 if (self != nullptr && create_peer && !IsAotCompiler()) { 2040 ScopedObjectAccess soa(self); 2041 self->NotifyThreadGroup(soa, thread_group); 2042 } 2043 return self != nullptr; 2044 } 2045 2046 void Runtime::DetachCurrentThread() { 2047 ScopedTrace trace(__FUNCTION__); 2048 Thread* self = Thread::Current(); 2049 if (self == nullptr) { 2050 LOG(FATAL) << "attempting to detach thread that is not attached"; 2051 } 2052 if (self->HasManagedStack()) { 2053 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; 2054 } 2055 thread_list_->Unregister(self); 2056 } 2057 2058 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() { 2059 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read(); 2060 if (oome == nullptr) { 2061 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception"; 2062 } 2063 return oome; 2064 } 2065 2066 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() { 2067 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read(); 2068 if (oome == nullptr) { 2069 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME"; 2070 } 2071 return oome; 2072 } 2073 2074 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() { 2075 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read(); 2076 if (oome == nullptr) { 2077 LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow"; 2078 } 2079 return oome; 2080 } 2081 2082 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() { 2083 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read(); 2084 if (ncdfe == nullptr) { 2085 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError"; 2086 } 2087 return ncdfe; 2088 } 2089 2090 void Runtime::VisitConstantRoots(RootVisitor* visitor) { 2091 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are 2092 // null. 2093 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal)); 2094 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); 2095 if (HasResolutionMethod()) { 2096 resolution_method_->VisitRoots(buffered_visitor, pointer_size); 2097 } 2098 if (HasImtConflictMethod()) { 2099 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size); 2100 } 2101 if (imt_unimplemented_method_ != nullptr) { 2102 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size); 2103 } 2104 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) { 2105 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]); 2106 if (m != nullptr) { 2107 m->VisitRoots(buffered_visitor, pointer_size); 2108 } 2109 } 2110 } 2111 2112 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { 2113 intern_table_->VisitRoots(visitor, flags); 2114 class_linker_->VisitRoots(visitor, flags); 2115 heap_->VisitAllocationRecords(visitor); 2116 if ((flags & kVisitRootFlagNewRoots) == 0) { 2117 // Guaranteed to have no new roots in the constant roots. 2118 VisitConstantRoots(visitor); 2119 } 2120 Dbg::VisitRoots(visitor); 2121 } 2122 2123 void Runtime::VisitTransactionRoots(RootVisitor* visitor) { 2124 for (auto& transaction : preinitialization_transactions_) { 2125 transaction->VisitRoots(visitor); 2126 } 2127 } 2128 2129 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) { 2130 java_vm_->VisitRoots(visitor); 2131 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2132 pre_allocated_OutOfMemoryError_when_throwing_exception_ 2133 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2134 pre_allocated_OutOfMemoryError_when_throwing_oome_ 2135 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2136 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ 2137 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2138 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2139 VisitImageRoots(visitor); 2140 verifier::ClassVerifier::VisitStaticRoots(visitor); 2141 VisitTransactionRoots(visitor); 2142 } 2143 2144 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { 2145 VisitThreadRoots(visitor, flags); 2146 VisitNonThreadRoots(visitor); 2147 } 2148 2149 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) { 2150 thread_list_->VisitRoots(visitor, flags); 2151 } 2152 2153 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { 2154 VisitNonConcurrentRoots(visitor, flags); 2155 VisitConcurrentRoots(visitor, flags); 2156 } 2157 2158 void Runtime::VisitImageRoots(RootVisitor* visitor) { 2159 for (auto* space : GetHeap()->GetContinuousSpaces()) { 2160 if (space->IsImageSpace()) { 2161 auto* image_space = space->AsImageSpace(); 2162 const auto& image_header = image_space->GetImageHeader(); 2163 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) { 2164 mirror::Object* obj = 2165 image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr(); 2166 if (obj != nullptr) { 2167 mirror::Object* after_obj = obj; 2168 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass)); 2169 CHECK_EQ(after_obj, obj); 2170 } 2171 } 2172 } 2173 } 2174 } 2175 2176 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) { 2177 const PointerSize image_pointer_size = class_linker->GetImagePointerSize(); 2178 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size); 2179 const size_t method_size = ArtMethod::Size(image_pointer_size); 2180 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray( 2181 Thread::Current(), 2182 linear_alloc, 2183 1); 2184 ArtMethod* method = &method_array->At(0, method_size, method_alignment); 2185 CHECK(method != nullptr); 2186 method->SetDexMethodIndex(dex::kDexNoIndex); 2187 CHECK(method->IsRuntimeMethod()); 2188 return method; 2189 } 2190 2191 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) { 2192 ClassLinker* const class_linker = GetClassLinker(); 2193 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc); 2194 // When compiling, the code pointer will get set later when the image is loaded. 2195 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); 2196 if (IsAotCompiler()) { 2197 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); 2198 } else { 2199 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub()); 2200 } 2201 // Create empty conflict table. 2202 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc), 2203 pointer_size); 2204 return method; 2205 } 2206 2207 void Runtime::SetImtConflictMethod(ArtMethod* method) { 2208 CHECK(method != nullptr); 2209 CHECK(method->IsRuntimeMethod()); 2210 imt_conflict_method_ = method; 2211 } 2212 2213 ArtMethod* Runtime::CreateResolutionMethod() { 2214 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); 2215 // When compiling, the code pointer will get set later when the image is loaded. 2216 if (IsAotCompiler()) { 2217 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); 2218 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); 2219 } else { 2220 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); 2221 } 2222 return method; 2223 } 2224 2225 ArtMethod* Runtime::CreateCalleeSaveMethod() { 2226 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); 2227 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); 2228 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); 2229 DCHECK_NE(instruction_set_, InstructionSet::kNone); 2230 DCHECK(method->IsRuntimeMethod()); 2231 return method; 2232 } 2233 2234 void Runtime::DisallowNewSystemWeaks() { 2235 CHECK(!kUseReadBarrier); 2236 monitor_list_->DisallowNewMonitors(); 2237 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites); 2238 java_vm_->DisallowNewWeakGlobals(); 2239 heap_->DisallowNewAllocationRecords(); 2240 if (GetJit() != nullptr) { 2241 GetJit()->GetCodeCache()->DisallowInlineCacheAccess(); 2242 } 2243 2244 // All other generic system-weak holders. 2245 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { 2246 holder->Disallow(); 2247 } 2248 } 2249 2250 void Runtime::AllowNewSystemWeaks() { 2251 CHECK(!kUseReadBarrier); 2252 monitor_list_->AllowNewMonitors(); 2253 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping. 2254 java_vm_->AllowNewWeakGlobals(); 2255 heap_->AllowNewAllocationRecords(); 2256 if (GetJit() != nullptr) { 2257 GetJit()->GetCodeCache()->AllowInlineCacheAccess(); 2258 } 2259 2260 // All other generic system-weak holders. 2261 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { 2262 holder->Allow(); 2263 } 2264 } 2265 2266 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) { 2267 // This is used for the read barrier case that uses the thread-local 2268 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled 2269 // (see ThreadList::RunCheckpoint). 2270 monitor_list_->BroadcastForNewMonitors(); 2271 intern_table_->BroadcastForNewInterns(); 2272 java_vm_->BroadcastForNewWeakGlobals(); 2273 heap_->BroadcastForNewAllocationRecords(); 2274 if (GetJit() != nullptr) { 2275 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess(); 2276 } 2277 2278 // All other generic system-weak holders. 2279 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { 2280 holder->Broadcast(broadcast_for_checkpoint); 2281 } 2282 } 2283 2284 void Runtime::SetInstructionSet(InstructionSet instruction_set) { 2285 instruction_set_ = instruction_set; 2286 switch (instruction_set) { 2287 case InstructionSet::kThumb2: 2288 // kThumb2 is the same as kArm, use the canonical value. 2289 instruction_set_ = InstructionSet::kArm; 2290 break; 2291 case InstructionSet::kArm: 2292 case InstructionSet::kArm64: 2293 case InstructionSet::kMips: 2294 case InstructionSet::kMips64: 2295 case InstructionSet::kX86: 2296 case InstructionSet::kX86_64: 2297 break; 2298 default: 2299 UNIMPLEMENTED(FATAL) << instruction_set_; 2300 UNREACHABLE(); 2301 } 2302 } 2303 2304 void Runtime::ClearInstructionSet() { 2305 instruction_set_ = InstructionSet::kNone; 2306 } 2307 2308 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) { 2309 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize); 2310 CHECK(method != nullptr); 2311 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method); 2312 } 2313 2314 void Runtime::ClearCalleeSaveMethods() { 2315 for (size_t i = 0; i < kCalleeSaveSize; ++i) { 2316 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr); 2317 } 2318 } 2319 2320 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths, 2321 const std::string& profile_output_filename) { 2322 if (jit_.get() == nullptr) { 2323 // We are not JITing. Nothing to do. 2324 return; 2325 } 2326 2327 VLOG(profiler) << "Register app with " << profile_output_filename 2328 << " " << android::base::Join(code_paths, ':'); 2329 2330 if (profile_output_filename.empty()) { 2331 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty."; 2332 return; 2333 } 2334 if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) { 2335 LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits."; 2336 return; 2337 } 2338 if (code_paths.empty()) { 2339 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty."; 2340 return; 2341 } 2342 2343 jit_->StartProfileSaver(profile_output_filename, code_paths); 2344 } 2345 2346 // Transaction support. 2347 bool Runtime::IsActiveTransaction() const { 2348 return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack(); 2349 } 2350 2351 void Runtime::EnterTransactionMode() { 2352 DCHECK(IsAotCompiler()); 2353 DCHECK(!IsActiveTransaction()); 2354 preinitialization_transactions_.push_back(std::make_unique<Transaction>()); 2355 } 2356 2357 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) { 2358 DCHECK(IsAotCompiler()); 2359 preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root)); 2360 } 2361 2362 void Runtime::ExitTransactionMode() { 2363 DCHECK(IsAotCompiler()); 2364 DCHECK(IsActiveTransaction()); 2365 preinitialization_transactions_.pop_back(); 2366 } 2367 2368 void Runtime::RollbackAndExitTransactionMode() { 2369 DCHECK(IsAotCompiler()); 2370 DCHECK(IsActiveTransaction()); 2371 preinitialization_transactions_.back()->Rollback(); 2372 preinitialization_transactions_.pop_back(); 2373 } 2374 2375 bool Runtime::IsTransactionAborted() const { 2376 if (!IsActiveTransaction()) { 2377 return false; 2378 } else { 2379 DCHECK(IsAotCompiler()); 2380 return GetTransaction()->IsAborted(); 2381 } 2382 } 2383 2384 void Runtime::RollbackAllTransactions() { 2385 // If transaction is aborted, all transactions will be kept in the list. 2386 // Rollback and exit all of them. 2387 while (IsActiveTransaction()) { 2388 RollbackAndExitTransactionMode(); 2389 } 2390 } 2391 2392 bool Runtime::IsActiveStrictTransactionMode() const { 2393 return IsActiveTransaction() && GetTransaction()->IsStrict(); 2394 } 2395 2396 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const { 2397 DCHECK(!preinitialization_transactions_.empty()); 2398 return preinitialization_transactions_.back(); 2399 } 2400 2401 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) { 2402 DCHECK(IsAotCompiler()); 2403 DCHECK(IsActiveTransaction()); 2404 // Throwing an exception may cause its class initialization. If we mark the transaction 2405 // aborted before that, we may warn with a false alarm. Throwing the exception before 2406 // marking the transaction aborted avoids that. 2407 // But now the transaction can be nested, and abort the transaction will relax the constraints 2408 // for constructing stack trace. 2409 GetTransaction()->Abort(abort_message); 2410 GetTransaction()->ThrowAbortError(self, &abort_message); 2411 } 2412 2413 void Runtime::ThrowTransactionAbortError(Thread* self) { 2414 DCHECK(IsAotCompiler()); 2415 DCHECK(IsActiveTransaction()); 2416 // Passing nullptr means we rethrow an exception with the earlier transaction abort message. 2417 GetTransaction()->ThrowAbortError(self, nullptr); 2418 } 2419 2420 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset, 2421 uint8_t value, bool is_volatile) const { 2422 DCHECK(IsAotCompiler()); 2423 DCHECK(IsActiveTransaction()); 2424 GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile); 2425 } 2426 2427 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset, 2428 int8_t value, bool is_volatile) const { 2429 DCHECK(IsAotCompiler()); 2430 DCHECK(IsActiveTransaction()); 2431 GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile); 2432 } 2433 2434 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset, 2435 uint16_t value, bool is_volatile) const { 2436 DCHECK(IsAotCompiler()); 2437 DCHECK(IsActiveTransaction()); 2438 GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile); 2439 } 2440 2441 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset, 2442 int16_t value, bool is_volatile) const { 2443 DCHECK(IsAotCompiler()); 2444 DCHECK(IsActiveTransaction()); 2445 GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile); 2446 } 2447 2448 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset, 2449 uint32_t value, bool is_volatile) const { 2450 DCHECK(IsAotCompiler()); 2451 DCHECK(IsActiveTransaction()); 2452 GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile); 2453 } 2454 2455 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset, 2456 uint64_t value, bool is_volatile) const { 2457 DCHECK(IsAotCompiler()); 2458 DCHECK(IsActiveTransaction()); 2459 GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile); 2460 } 2461 2462 void Runtime::RecordWriteFieldReference(mirror::Object* obj, 2463 MemberOffset field_offset, 2464 ObjPtr<mirror::Object> value, 2465 bool is_volatile) const { 2466 DCHECK(IsAotCompiler()); 2467 DCHECK(IsActiveTransaction()); 2468 GetTransaction()->RecordWriteFieldReference(obj, 2469 field_offset, 2470 value.Ptr(), 2471 is_volatile); 2472 } 2473 2474 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const { 2475 DCHECK(IsAotCompiler()); 2476 DCHECK(IsActiveTransaction()); 2477 GetTransaction()->RecordWriteArray(array, index, value); 2478 } 2479 2480 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const { 2481 DCHECK(IsAotCompiler()); 2482 DCHECK(IsActiveTransaction()); 2483 GetTransaction()->RecordStrongStringInsertion(s); 2484 } 2485 2486 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const { 2487 DCHECK(IsAotCompiler()); 2488 DCHECK(IsActiveTransaction()); 2489 GetTransaction()->RecordWeakStringInsertion(s); 2490 } 2491 2492 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const { 2493 DCHECK(IsAotCompiler()); 2494 DCHECK(IsActiveTransaction()); 2495 GetTransaction()->RecordStrongStringRemoval(s); 2496 } 2497 2498 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const { 2499 DCHECK(IsAotCompiler()); 2500 DCHECK(IsActiveTransaction()); 2501 GetTransaction()->RecordWeakStringRemoval(s); 2502 } 2503 2504 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache, 2505 dex::StringIndex string_idx) const { 2506 DCHECK(IsAotCompiler()); 2507 DCHECK(IsActiveTransaction()); 2508 GetTransaction()->RecordResolveString(dex_cache, string_idx); 2509 } 2510 2511 void Runtime::SetFaultMessage(const std::string& message) { 2512 std::string* new_msg = new std::string(message); 2513 std::string* cur_msg = fault_message_.exchange(new_msg); 2514 delete cur_msg; 2515 } 2516 2517 std::string Runtime::GetFaultMessage() { 2518 // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete 2519 // the string in parallel. 2520 std::string* cur_msg = fault_message_.exchange(nullptr); 2521 2522 // Make a copy of the string. 2523 std::string ret = cur_msg == nullptr ? "" : *cur_msg; 2524 2525 // Put the message back if it hasn't been updated. 2526 std::string* null_str = nullptr; 2527 if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) { 2528 // Already replaced. 2529 delete cur_msg; 2530 } 2531 2532 return ret; 2533 } 2534 2535 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv) 2536 const { 2537 if (GetInstrumentation()->InterpretOnly()) { 2538 argv->push_back("--compiler-filter=quicken"); 2539 } 2540 2541 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple 2542 // architecture support, dex2oat may be compiled as a different instruction-set than that 2543 // currently being executed. 2544 std::string instruction_set("--instruction-set="); 2545 instruction_set += GetInstructionSetString(kRuntimeISA); 2546 argv->push_back(instruction_set); 2547 2548 if (InstructionSetFeatures::IsRuntimeDetectionSupported()) { 2549 argv->push_back("--instruction-set-features=runtime"); 2550 } else { 2551 std::unique_ptr<const InstructionSetFeatures> features( 2552 InstructionSetFeatures::FromCppDefines()); 2553 std::string feature_string("--instruction-set-features="); 2554 feature_string += features->GetFeatureString(); 2555 argv->push_back(feature_string); 2556 } 2557 } 2558 2559 void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) { 2560 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) { 2561 DCHECK(!jit_options_->UseJitCompilation()); 2562 } 2563 2564 if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) { 2565 return; 2566 } 2567 2568 std::string error_msg; 2569 bool profiling_only = !jit_options_->UseJitCompilation(); 2570 jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only, 2571 rwx_memory_allowed, 2572 IsZygote(), 2573 &error_msg)); 2574 if (jit_code_cache_.get() == nullptr) { 2575 LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg; 2576 } 2577 } 2578 2579 void Runtime::CreateJit() { 2580 DCHECK(jit_ == nullptr); 2581 if (jit_code_cache_.get() == nullptr) { 2582 if (!IsSafeMode()) { 2583 LOG(WARNING) << "Missing code cache, cannot create JIT."; 2584 } 2585 return; 2586 } 2587 if (IsSafeMode()) { 2588 LOG(INFO) << "Not creating JIT because of SafeMode."; 2589 jit_code_cache_.reset(); 2590 return; 2591 } 2592 2593 jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get()); 2594 DoAndMaybeSwitchInterpreter([=](){ jit_.reset(jit); }); 2595 if (jit == nullptr) { 2596 LOG(WARNING) << "Failed to allocate JIT"; 2597 // Release JIT code cache resources (several MB of memory). 2598 jit_code_cache_.reset(); 2599 } else { 2600 jit->CreateThreadPool(); 2601 } 2602 } 2603 2604 bool Runtime::CanRelocate() const { 2605 return !IsAotCompiler(); 2606 } 2607 2608 bool Runtime::IsCompilingBootImage() const { 2609 return IsCompiler() && compiler_callbacks_->IsBootImage(); 2610 } 2611 2612 void Runtime::SetResolutionMethod(ArtMethod* method) { 2613 CHECK(method != nullptr); 2614 CHECK(method->IsRuntimeMethod()) << method; 2615 resolution_method_ = method; 2616 } 2617 2618 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) { 2619 CHECK(method != nullptr); 2620 CHECK(method->IsRuntimeMethod()); 2621 imt_unimplemented_method_ = method; 2622 } 2623 2624 void Runtime::FixupConflictTables() { 2625 // We can only do this after the class linker is created. 2626 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); 2627 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) { 2628 imt_unimplemented_method_->SetImtConflictTable( 2629 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), 2630 pointer_size); 2631 } 2632 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) { 2633 imt_conflict_method_->SetImtConflictTable( 2634 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), 2635 pointer_size); 2636 } 2637 } 2638 2639 void Runtime::DisableVerifier() { 2640 verify_ = verifier::VerifyMode::kNone; 2641 } 2642 2643 bool Runtime::IsVerificationEnabled() const { 2644 return verify_ == verifier::VerifyMode::kEnable || 2645 verify_ == verifier::VerifyMode::kSoftFail; 2646 } 2647 2648 bool Runtime::IsVerificationSoftFail() const { 2649 return verify_ == verifier::VerifyMode::kSoftFail; 2650 } 2651 2652 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const { 2653 // We only support async deopt (ie the compiled code is not explicitly asking for 2654 // deopt, but something else like the debugger) in debuggable JIT code. 2655 // We could look at the oat file where `code` is being defined, 2656 // and check whether it's been compiled debuggable, but we decided to 2657 // only rely on the JIT for debuggable apps. 2658 return IsJavaDebuggable() && 2659 GetJit() != nullptr && 2660 GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code)); 2661 } 2662 2663 LinearAlloc* Runtime::CreateLinearAlloc() { 2664 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a 2665 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold 2666 // when we have 64 bit ArtMethod pointers. 2667 return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) 2668 ? new LinearAlloc(low_4gb_arena_pool_.get()) 2669 : new LinearAlloc(arena_pool_.get()); 2670 } 2671 2672 double Runtime::GetHashTableMinLoadFactor() const { 2673 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor; 2674 } 2675 2676 double Runtime::GetHashTableMaxLoadFactor() const { 2677 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor; 2678 } 2679 2680 void Runtime::UpdateProcessState(ProcessState process_state) { 2681 ProcessState old_process_state = process_state_; 2682 process_state_ = process_state; 2683 GetHeap()->UpdateProcessState(old_process_state, process_state); 2684 } 2685 2686 void Runtime::RegisterSensitiveThread() const { 2687 Thread::SetJitSensitiveThread(); 2688 } 2689 2690 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case. 2691 bool Runtime::UseJitCompilation() const { 2692 return (jit_ != nullptr) && jit_->UseJitCompilation(); 2693 } 2694 2695 void Runtime::EnvSnapshot::TakeSnapshot() { 2696 char** env = GetEnviron(); 2697 for (size_t i = 0; env[i] != nullptr; ++i) { 2698 name_value_pairs_.emplace_back(new std::string(env[i])); 2699 } 2700 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers 2701 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec. 2702 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]); 2703 for (size_t i = 0; env[i] != nullptr; ++i) { 2704 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str()); 2705 } 2706 c_env_vector_[name_value_pairs_.size()] = nullptr; 2707 } 2708 2709 char** Runtime::EnvSnapshot::GetSnapshot() const { 2710 return c_env_vector_.get(); 2711 } 2712 2713 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { 2714 gc::ScopedGCCriticalSection gcs(Thread::Current(), 2715 gc::kGcCauseAddRemoveSystemWeakHolder, 2716 gc::kCollectorTypeAddRemoveSystemWeakHolder); 2717 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in 2718 // a critical section. 2719 system_weak_holders_.push_back(holder); 2720 } 2721 2722 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { 2723 gc::ScopedGCCriticalSection gcs(Thread::Current(), 2724 gc::kGcCauseAddRemoveSystemWeakHolder, 2725 gc::kCollectorTypeAddRemoveSystemWeakHolder); 2726 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder); 2727 if (it != system_weak_holders_.end()) { 2728 system_weak_holders_.erase(it); 2729 } 2730 } 2731 2732 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() { 2733 return callbacks_.get(); 2734 } 2735 2736 // Used to patch boot image method entry point to interpreter bridge. 2737 class UpdateEntryPointsClassVisitor : public ClassVisitor { 2738 public: 2739 explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation) 2740 : instrumentation_(instrumentation) {} 2741 2742 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) { 2743 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())); 2744 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); 2745 for (auto& m : klass->GetMethods(pointer_size)) { 2746 const void* code = m.GetEntryPointFromQuickCompiledCode(); 2747 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) && 2748 !m.IsNative() && 2749 !m.IsProxyMethod()) { 2750 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge()); 2751 } 2752 } 2753 return true; 2754 } 2755 2756 private: 2757 instrumentation::Instrumentation* const instrumentation_; 2758 }; 2759 2760 void Runtime::SetJavaDebuggable(bool value) { 2761 is_java_debuggable_ = value; 2762 // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up. 2763 } 2764 2765 void Runtime::DeoptimizeBootImage() { 2766 // If we've already started and we are setting this runtime to debuggable, 2767 // we patch entry points of methods in boot image to interpreter bridge, as 2768 // boot image code may be AOT compiled as not debuggable. 2769 if (!GetInstrumentation()->IsForcedInterpretOnly()) { 2770 UpdateEntryPointsClassVisitor visitor(GetInstrumentation()); 2771 GetClassLinker()->VisitClasses(&visitor); 2772 jit::Jit* jit = GetJit(); 2773 if (jit != nullptr) { 2774 // Code JITted by the zygote is not compiled debuggable. 2775 jit->GetCodeCache()->ClearEntryPointsInZygoteExecSpace(); 2776 } 2777 } 2778 } 2779 2780 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage() 2781 : thread_pool_(Runtime::Current()->AcquireThreadPool()) {} 2782 2783 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() { 2784 Runtime::Current()->ReleaseThreadPool(); 2785 } 2786 2787 bool Runtime::DeleteThreadPool() { 2788 // Make sure workers are started to prevent thread shutdown errors. 2789 WaitForThreadPoolWorkersToStart(); 2790 std::unique_ptr<ThreadPool> thread_pool; 2791 { 2792 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); 2793 if (thread_pool_ref_count_ == 0) { 2794 thread_pool = std::move(thread_pool_); 2795 } 2796 } 2797 return thread_pool != nullptr; 2798 } 2799 2800 ThreadPool* Runtime::AcquireThreadPool() { 2801 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); 2802 ++thread_pool_ref_count_; 2803 return thread_pool_.get(); 2804 } 2805 2806 void Runtime::ReleaseThreadPool() { 2807 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); 2808 CHECK_GT(thread_pool_ref_count_, 0u); 2809 --thread_pool_ref_count_; 2810 } 2811 2812 void Runtime::WaitForThreadPoolWorkersToStart() { 2813 // Need to make sure workers are created before deleting the pool. 2814 ScopedThreadPoolUsage stpu; 2815 if (stpu.GetThreadPool() != nullptr) { 2816 stpu.GetThreadPool()->WaitForWorkersToBeCreated(); 2817 } 2818 } 2819 2820 void Runtime::NotifyStartupCompleted() { 2821 bool expected = false; 2822 if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) { 2823 // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to 2824 // once externally. For this reason there are no asserts. 2825 return; 2826 } 2827 VLOG(startup) << "Startup completed notified"; 2828 2829 { 2830 ScopedTrace trace("Releasing app image spaces metadata"); 2831 ScopedObjectAccess soa(Thread::Current()); 2832 for (gc::space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) { 2833 if (space->IsImageSpace()) { 2834 gc::space::ImageSpace* image_space = space->AsImageSpace(); 2835 if (image_space->GetImageHeader().IsAppImage()) { 2836 image_space->DisablePreResolvedStrings(); 2837 } 2838 } 2839 } 2840 // Request empty checkpoint to make sure no threads are accessing the section when we madvise 2841 // it. Avoid using RunEmptyCheckpoint since only one concurrent caller is supported. We could 2842 // add a GC critical section here but that may cause significant jank if the GC is running. 2843 { 2844 class EmptyClosure : public Closure { 2845 public: 2846 explicit EmptyClosure(Barrier* barrier) : barrier_(barrier) {} 2847 void Run(Thread* thread ATTRIBUTE_UNUSED) override { 2848 barrier_->Pass(Thread::Current()); 2849 } 2850 2851 private: 2852 Barrier* const barrier_; 2853 }; 2854 Barrier barrier(0); 2855 EmptyClosure closure(&barrier); 2856 size_t threads_running_checkpoint = GetThreadList()->RunCheckpoint(&closure); 2857 // Now that we have run our checkpoint, move to a suspended state and wait 2858 // for other threads to run the checkpoint. 2859 Thread* self = Thread::Current(); 2860 ScopedThreadSuspension sts(self, kSuspended); 2861 if (threads_running_checkpoint != 0) { 2862 barrier.Increment(self, threads_running_checkpoint); 2863 } 2864 } 2865 for (gc::space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) { 2866 if (space->IsImageSpace()) { 2867 gc::space::ImageSpace* image_space = space->AsImageSpace(); 2868 if (image_space->GetImageHeader().IsAppImage()) { 2869 image_space->ReleaseMetadata(); 2870 } 2871 } 2872 } 2873 } 2874 2875 // Notify the profiler saver that startup is now completed. 2876 ProfileSaver::NotifyStartupCompleted(); 2877 2878 { 2879 // Delete the thread pool used for app image loading startup is completed. 2880 ScopedTrace trace2("Delete thread pool"); 2881 DeleteThreadPool(); 2882 } 2883 } 2884 2885 bool Runtime::GetStartupCompleted() const { 2886 return startup_completed_.load(std::memory_order_seq_cst); 2887 } 2888 2889 } // namespace art 2890