Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 /** @file register_allocate.c
     29  *
     30  * Graph-coloring register allocator.
     31  *
     32  * The basic idea of graph coloring is to make a node in a graph for
     33  * every thing that needs a register (color) number assigned, and make
     34  * edges in the graph between nodes that interfere (can't be allocated
     35  * to the same register at the same time).
     36  *
     37  * During the "simplify" process, any any node with fewer edges than
     38  * there are registers means that that edge can get assigned a
     39  * register regardless of what its neighbors choose, so that node is
     40  * pushed on a stack and removed (with its edges) from the graph.
     41  * That likely causes other nodes to become trivially colorable as well.
     42  *
     43  * Then during the "select" process, nodes are popped off of that
     44  * stack, their edges restored, and assigned a color different from
     45  * their neighbors.  Because they were pushed on the stack only when
     46  * they were trivially colorable, any color chosen won't interfere
     47  * with the registers to be popped later.
     48  *
     49  * The downside to most graph coloring is that real hardware often has
     50  * limitations, like registers that need to be allocated to a node in
     51  * pairs, or aligned on some boundary.  This implementation follows
     52  * the paper "Retargetable Graph-Coloring Register Allocation for
     53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nystrm.
     54  *
     55  * In this system, there are register classes each containing various
     56  * registers, and registers may interfere with other registers.  For
     57  * example, one might have a class of base registers, and a class of
     58  * aligned register pairs that would each interfere with their pair of
     59  * the base registers.  Each node has a register class it needs to be
     60  * assigned to.  Define p(B) to be the size of register class B, and
     61  * q(B,C) to be the number of registers in B that the worst choice
     62  * register in C could conflict with.  Then, this system replaces the
     63  * basic graph coloring test of "fewer edges from this node than there
     64  * are registers" with "For this node of class B, the sum of q(B,C)
     65  * for each neighbor node of class C is less than pB".
     66  *
     67  * A nice feature of the pq test is that q(B,C) can be computed once
     68  * up front and stored in a 2-dimensional array, so that the cost of
     69  * coloring a node is constant with the number of registers.  We do
     70  * this during ra_set_finalize().
     71  */
     72 
     73 #include <stdbool.h>
     74 
     75 #include "ralloc.h"
     76 #include "main/imports.h"
     77 #include "main/macros.h"
     78 #include "main/mtypes.h"
     79 #include "util/bitset.h"
     80 #include "register_allocate.h"
     81 
     82 #define NO_REG ~0U
     83 
     84 struct ra_reg {
     85    BITSET_WORD *conflicts;
     86    unsigned int *conflict_list;
     87    unsigned int conflict_list_size;
     88    unsigned int num_conflicts;
     89 };
     90 
     91 struct ra_regs {
     92    struct ra_reg *regs;
     93    unsigned int count;
     94 
     95    struct ra_class **classes;
     96    unsigned int class_count;
     97 
     98    bool round_robin;
     99 };
    100 
    101 struct ra_class {
    102    /**
    103     * Bitset indicating which registers belong to this class.
    104     *
    105     * (If bit N is set, then register N belongs to this class.)
    106     */
    107    BITSET_WORD *regs;
    108 
    109    /**
    110     * p(B) in Runeson/Nystrm paper.
    111     *
    112     * This is "how many regs are in the set."
    113     */
    114    unsigned int p;
    115 
    116    /**
    117     * q(B,C) (indexed by C, B is this register class) in
    118     * Runeson/Nystrm paper.  This is "how many registers of B could
    119     * the worst choice register from C conflict with".
    120     */
    121    unsigned int *q;
    122 };
    123 
    124 struct ra_node {
    125    /** @{
    126     *
    127     * List of which nodes this node interferes with.  This should be
    128     * symmetric with the other node.
    129     */
    130    BITSET_WORD *adjacency;
    131    unsigned int *adjacency_list;
    132    unsigned int adjacency_list_size;
    133    unsigned int adjacency_count;
    134    /** @} */
    135 
    136    unsigned int class;
    137 
    138    /* Register, if assigned, or NO_REG. */
    139    unsigned int reg;
    140 
    141    /**
    142     * Set when the node is in the trivially colorable stack.  When
    143     * set, the adjacency to this node is ignored, to implement the
    144     * "remove the edge from the graph" in simplification without
    145     * having to actually modify the adjacency_list.
    146     */
    147    bool in_stack;
    148 
    149    /**
    150     * The q total, as defined in the Runeson/Nystrm paper, for all the
    151     * interfering nodes not in the stack.
    152     */
    153    unsigned int q_total;
    154 
    155    /* For an implementation that needs register spilling, this is the
    156     * approximate cost of spilling this node.
    157     */
    158    float spill_cost;
    159 };
    160 
    161 struct ra_graph {
    162    struct ra_regs *regs;
    163    /**
    164     * the variables that need register allocation.
    165     */
    166    struct ra_node *nodes;
    167    unsigned int count; /**< count of nodes. */
    168 
    169    unsigned int *stack;
    170    unsigned int stack_count;
    171 
    172    /**
    173     * Tracks the start of the set of optimistically-colored registers in the
    174     * stack.
    175     */
    176    unsigned int stack_optimistic_start;
    177 
    178    unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
    179                                        void *data);
    180    void *select_reg_callback_data;
    181 };
    182 
    183 /**
    184  * Creates a set of registers for the allocator.
    185  *
    186  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
    187  * using ralloc_free().
    188  */
    189 struct ra_regs *
    190 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
    191 {
    192    unsigned int i;
    193    struct ra_regs *regs;
    194 
    195    regs = rzalloc(mem_ctx, struct ra_regs);
    196    regs->count = count;
    197    regs->regs = rzalloc_array(regs, struct ra_reg, count);
    198 
    199    for (i = 0; i < count; i++) {
    200       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
    201                                               BITSET_WORDS(count));
    202       BITSET_SET(regs->regs[i].conflicts, i);
    203 
    204       if (need_conflict_lists) {
    205          regs->regs[i].conflict_list = ralloc_array(regs->regs,
    206                                                     unsigned int, 4);
    207          regs->regs[i].conflict_list_size = 4;
    208          regs->regs[i].conflict_list[0] = i;
    209       } else {
    210          regs->regs[i].conflict_list = NULL;
    211          regs->regs[i].conflict_list_size = 0;
    212       }
    213       regs->regs[i].num_conflicts = 1;
    214    }
    215 
    216    return regs;
    217 }
    218 
    219 /**
    220  * The register allocator by default prefers to allocate low register numbers,
    221  * since it was written for hardware (gen4/5 Intel) that is limited in its
    222  * multithreadedness by the number of registers used in a given shader.
    223  *
    224  * However, for hardware without that restriction, densely packed register
    225  * allocation can put serious constraints on instruction scheduling.  This
    226  * function tells the allocator to rotate around the registers if possible as
    227  * it allocates the nodes.
    228  */
    229 void
    230 ra_set_allocate_round_robin(struct ra_regs *regs)
    231 {
    232    regs->round_robin = true;
    233 }
    234 
    235 static void
    236 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
    237 {
    238    struct ra_reg *reg1 = &regs->regs[r1];
    239 
    240    if (reg1->conflict_list) {
    241       if (reg1->conflict_list_size == reg1->num_conflicts) {
    242          reg1->conflict_list_size *= 2;
    243          reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
    244                                         unsigned int, reg1->conflict_list_size);
    245       }
    246       reg1->conflict_list[reg1->num_conflicts++] = r2;
    247    }
    248    BITSET_SET(reg1->conflicts, r2);
    249 }
    250 
    251 void
    252 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
    253 {
    254    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
    255       ra_add_conflict_list(regs, r1, r2);
    256       ra_add_conflict_list(regs, r2, r1);
    257    }
    258 }
    259 
    260 /**
    261  * Adds a conflict between base_reg and reg, and also between reg and
    262  * anything that base_reg conflicts with.
    263  *
    264  * This can simplify code for setting up multiple register classes
    265  * which are aggregates of some base hardware registers, compared to
    266  * explicitly using ra_add_reg_conflict.
    267  */
    268 void
    269 ra_add_transitive_reg_conflict(struct ra_regs *regs,
    270                                unsigned int base_reg, unsigned int reg)
    271 {
    272    unsigned int i;
    273 
    274    ra_add_reg_conflict(regs, reg, base_reg);
    275 
    276    for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
    277       ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
    278    }
    279 }
    280 
    281 /**
    282  * Makes every conflict on the given register transitive.  In other words,
    283  * every register that conflicts with r will now conflict with every other
    284  * register conflicting with r.
    285  *
    286  * This can simplify code for setting up multiple register classes
    287  * which are aggregates of some base hardware registers, compared to
    288  * explicitly using ra_add_reg_conflict.
    289  */
    290 void
    291 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
    292 {
    293    struct ra_reg *reg = &regs->regs[r];
    294    BITSET_WORD tmp;
    295    int c;
    296 
    297    BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
    298       struct ra_reg *other = &regs->regs[c];
    299       unsigned i;
    300       for (i = 0; i < BITSET_WORDS(regs->count); i++)
    301          other->conflicts[i] |= reg->conflicts[i];
    302    }
    303 }
    304 
    305 unsigned int
    306 ra_alloc_reg_class(struct ra_regs *regs)
    307 {
    308    struct ra_class *class;
    309 
    310    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
    311                             regs->class_count + 1);
    312 
    313    class = rzalloc(regs, struct ra_class);
    314    regs->classes[regs->class_count] = class;
    315 
    316    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
    317 
    318    return regs->class_count++;
    319 }
    320 
    321 void
    322 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
    323 {
    324    struct ra_class *class = regs->classes[c];
    325 
    326    BITSET_SET(class->regs, r);
    327    class->p++;
    328 }
    329 
    330 /**
    331  * Returns true if the register belongs to the given class.
    332  */
    333 static bool
    334 reg_belongs_to_class(unsigned int r, struct ra_class *c)
    335 {
    336    return BITSET_TEST(c->regs, r);
    337 }
    338 
    339 /**
    340  * Must be called after all conflicts and register classes have been
    341  * set up and before the register set is used for allocation.
    342  * To avoid costly q value computation, use the q_values paramater
    343  * to pass precomputed q values to this function.
    344  */
    345 void
    346 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
    347 {
    348    unsigned int b, c;
    349 
    350    for (b = 0; b < regs->class_count; b++) {
    351       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
    352    }
    353 
    354    if (q_values) {
    355       for (b = 0; b < regs->class_count; b++) {
    356          for (c = 0; c < regs->class_count; c++) {
    357             regs->classes[b]->q[c] = q_values[b][c];
    358          }
    359       }
    360    } else {
    361       /* Compute, for each class B and C, how many regs of B an
    362        * allocation to C could conflict with.
    363        */
    364       for (b = 0; b < regs->class_count; b++) {
    365          for (c = 0; c < regs->class_count; c++) {
    366             unsigned int rc;
    367             int max_conflicts = 0;
    368 
    369             for (rc = 0; rc < regs->count; rc++) {
    370                int conflicts = 0;
    371                unsigned int i;
    372 
    373                if (!reg_belongs_to_class(rc, regs->classes[c]))
    374                   continue;
    375 
    376                for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
    377                   unsigned int rb = regs->regs[rc].conflict_list[i];
    378                   if (reg_belongs_to_class(rb, regs->classes[b]))
    379                      conflicts++;
    380                }
    381                max_conflicts = MAX2(max_conflicts, conflicts);
    382             }
    383             regs->classes[b]->q[c] = max_conflicts;
    384          }
    385       }
    386    }
    387 
    388    for (b = 0; b < regs->count; b++) {
    389       ralloc_free(regs->regs[b].conflict_list);
    390       regs->regs[b].conflict_list = NULL;
    391    }
    392 }
    393 
    394 static void
    395 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
    396 {
    397    BITSET_SET(g->nodes[n1].adjacency, n2);
    398 
    399    assert(n1 != n2);
    400 
    401    int n1_class = g->nodes[n1].class;
    402    int n2_class = g->nodes[n2].class;
    403    g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
    404 
    405    if (g->nodes[n1].adjacency_count >=
    406        g->nodes[n1].adjacency_list_size) {
    407       g->nodes[n1].adjacency_list_size *= 2;
    408       g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
    409                                              unsigned int,
    410                                              g->nodes[n1].adjacency_list_size);
    411    }
    412 
    413    g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
    414    g->nodes[n1].adjacency_count++;
    415 }
    416 
    417 struct ra_graph *
    418 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
    419 {
    420    struct ra_graph *g;
    421    unsigned int i;
    422 
    423    g = rzalloc(NULL, struct ra_graph);
    424    g->regs = regs;
    425    g->nodes = rzalloc_array(g, struct ra_node, count);
    426    g->count = count;
    427 
    428    g->stack = rzalloc_array(g, unsigned int, count);
    429 
    430    for (i = 0; i < count; i++) {
    431       int bitset_count = BITSET_WORDS(count);
    432       g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
    433 
    434       g->nodes[i].adjacency_list_size = 4;
    435       g->nodes[i].adjacency_list =
    436          ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
    437       g->nodes[i].adjacency_count = 0;
    438       g->nodes[i].q_total = 0;
    439 
    440       g->nodes[i].reg = NO_REG;
    441    }
    442 
    443    return g;
    444 }
    445 
    446 void ra_set_select_reg_callback(struct ra_graph *g,
    447                                 unsigned int (*callback)(struct ra_graph *g,
    448                                                          BITSET_WORD *regs,
    449                                                          void *data),
    450                                 void *data)
    451 {
    452    g->select_reg_callback = callback;
    453    g->select_reg_callback_data = data;
    454 }
    455 
    456 void
    457 ra_set_node_class(struct ra_graph *g,
    458                   unsigned int n, unsigned int class)
    459 {
    460    g->nodes[n].class = class;
    461 }
    462 
    463 void
    464 ra_add_node_interference(struct ra_graph *g,
    465                          unsigned int n1, unsigned int n2)
    466 {
    467    if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
    468       ra_add_node_adjacency(g, n1, n2);
    469       ra_add_node_adjacency(g, n2, n1);
    470    }
    471 }
    472 
    473 static bool
    474 pq_test(struct ra_graph *g, unsigned int n)
    475 {
    476    int n_class = g->nodes[n].class;
    477 
    478    return g->nodes[n].q_total < g->regs->classes[n_class]->p;
    479 }
    480 
    481 static void
    482 decrement_q(struct ra_graph *g, unsigned int n)
    483 {
    484    unsigned int i;
    485    int n_class = g->nodes[n].class;
    486 
    487    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
    488       unsigned int n2 = g->nodes[n].adjacency_list[i];
    489       unsigned int n2_class = g->nodes[n2].class;
    490 
    491       if (!g->nodes[n2].in_stack) {
    492          assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
    493          g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
    494       }
    495    }
    496 }
    497 
    498 /**
    499  * Simplifies the interference graph by pushing all
    500  * trivially-colorable nodes into a stack of nodes to be colored,
    501  * removing them from the graph, and rinsing and repeating.
    502  *
    503  * If we encounter a case where we can't push any nodes on the stack, then
    504  * we optimistically choose a node and push it on the stack. We heuristically
    505  * push the node with the lowest total q value, since it has the fewest
    506  * neighbors and therefore is most likely to be allocated.
    507  */
    508 static void
    509 ra_simplify(struct ra_graph *g)
    510 {
    511    bool progress = true;
    512    unsigned int stack_optimistic_start = UINT_MAX;
    513    int i;
    514 
    515    while (progress) {
    516       unsigned int best_optimistic_node = ~0;
    517       unsigned int lowest_q_total = ~0;
    518 
    519       progress = false;
    520 
    521       for (i = g->count - 1; i >= 0; i--) {
    522 	 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
    523 	    continue;
    524 
    525 	 if (pq_test(g, i)) {
    526 	    decrement_q(g, i);
    527 	    g->stack[g->stack_count] = i;
    528 	    g->stack_count++;
    529 	    g->nodes[i].in_stack = true;
    530 	    progress = true;
    531 	 } else {
    532 	    unsigned int new_q_total = g->nodes[i].q_total;
    533 	    if (new_q_total < lowest_q_total) {
    534 	       best_optimistic_node = i;
    535 	       lowest_q_total = new_q_total;
    536 	    }
    537 	 }
    538       }
    539 
    540       if (!progress && best_optimistic_node != ~0U) {
    541          if (stack_optimistic_start == UINT_MAX)
    542             stack_optimistic_start = g->stack_count;
    543 
    544 	 decrement_q(g, best_optimistic_node);
    545 	 g->stack[g->stack_count] = best_optimistic_node;
    546 	 g->stack_count++;
    547 	 g->nodes[best_optimistic_node].in_stack = true;
    548 	 progress = true;
    549       }
    550    }
    551 
    552    g->stack_optimistic_start = stack_optimistic_start;
    553 }
    554 
    555 static bool
    556 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
    557 {
    558    unsigned int i;
    559 
    560    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
    561       unsigned int n2 = g->nodes[n].adjacency_list[i];
    562 
    563       if (!g->nodes[n2].in_stack &&
    564           BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
    565          return true;
    566       }
    567    }
    568 
    569    return false;
    570 }
    571 
    572 /* Computes a bitfield of what regs are available for a given register
    573  * selection.
    574  *
    575  * This lets drivers implement a more complicated policy than our simple first
    576  * or round robin policies (which don't require knowing the whole bitset)
    577  */
    578 static bool
    579 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
    580 {
    581    struct ra_class *c = g->regs->classes[g->nodes[n].class];
    582 
    583    /* Populate with the set of regs that are in the node's class. */
    584    memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
    585 
    586    /* Remove any regs that conflict with nodes that we're adjacent to and have
    587     * already colored.
    588     */
    589    for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
    590       unsigned int n2 = g->nodes[n].adjacency_list[i];
    591       unsigned int r = g->nodes[n2].reg;
    592 
    593       if (!g->nodes[n2].in_stack) {
    594          for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
    595             regs[j] &= ~g->regs->regs[r].conflicts[j];
    596       }
    597    }
    598 
    599    for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
    600       if (regs[i])
    601          return true;
    602    }
    603 
    604    return false;
    605 }
    606 
    607 /**
    608  * Pops nodes from the stack back into the graph, coloring them with
    609  * registers as they go.
    610  *
    611  * If all nodes were trivially colorable, then this must succeed.  If
    612  * not (optimistic coloring), then it may return false;
    613  */
    614 static bool
    615 ra_select(struct ra_graph *g)
    616 {
    617    int start_search_reg = 0;
    618    BITSET_WORD *select_regs = NULL;
    619 
    620    if (g->select_reg_callback)
    621       select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
    622 
    623    while (g->stack_count != 0) {
    624       unsigned int ri;
    625       unsigned int r = -1;
    626       int n = g->stack[g->stack_count - 1];
    627       struct ra_class *c = g->regs->classes[g->nodes[n].class];
    628 
    629       /* set this to false even if we return here so that
    630        * ra_get_best_spill_node() considers this node later.
    631        */
    632       g->nodes[n].in_stack = false;
    633 
    634       if (g->select_reg_callback) {
    635          if (!ra_compute_available_regs(g, n, select_regs)) {
    636             free(select_regs);
    637             return false;
    638          }
    639 
    640          r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
    641       } else {
    642          /* Find the lowest-numbered reg which is not used by a member
    643           * of the graph adjacent to us.
    644           */
    645          for (ri = 0; ri < g->regs->count; ri++) {
    646             r = (start_search_reg + ri) % g->regs->count;
    647             if (!reg_belongs_to_class(r, c))
    648                continue;
    649 
    650             if (!ra_any_neighbors_conflict(g, n, r))
    651                break;
    652          }
    653 
    654          if (ri >= g->regs->count)
    655             return false;
    656       }
    657 
    658       g->nodes[n].reg = r;
    659       g->stack_count--;
    660 
    661       /* Rotate the starting point except for any nodes above the lowest
    662        * optimistically colorable node.  The likelihood that we will succeed
    663        * at allocating optimistically colorable nodes is highly dependent on
    664        * the way that the previous nodes popped off the stack are laid out.
    665        * The round-robin strategy increases the fragmentation of the register
    666        * file and decreases the number of nearby nodes assigned to the same
    667        * color, what increases the likelihood of spilling with respect to the
    668        * dense packing strategy.
    669        */
    670       if (g->regs->round_robin &&
    671           g->stack_count - 1 <= g->stack_optimistic_start)
    672          start_search_reg = r + 1;
    673    }
    674 
    675    free(select_regs);
    676 
    677    return true;
    678 }
    679 
    680 bool
    681 ra_allocate(struct ra_graph *g)
    682 {
    683    ra_simplify(g);
    684    return ra_select(g);
    685 }
    686 
    687 unsigned int
    688 ra_get_node_reg(struct ra_graph *g, unsigned int n)
    689 {
    690    return g->nodes[n].reg;
    691 }
    692 
    693 /**
    694  * Forces a node to a specific register.  This can be used to avoid
    695  * creating a register class containing one node when handling data
    696  * that must live in a fixed location and is known to not conflict
    697  * with other forced register assignment (as is common with shader
    698  * input data).  These nodes do not end up in the stack during
    699  * ra_simplify(), and thus at ra_select() time it is as if they were
    700  * the first popped off the stack and assigned their fixed locations.
    701  * Nodes that use this function do not need to be assigned a register
    702  * class.
    703  *
    704  * Must be called before ra_simplify().
    705  */
    706 void
    707 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
    708 {
    709    g->nodes[n].reg = reg;
    710    g->nodes[n].in_stack = false;
    711 }
    712 
    713 static float
    714 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
    715 {
    716    unsigned int j;
    717    float benefit = 0;
    718    int n_class = g->nodes[n].class;
    719 
    720    /* Define the benefit of eliminating an interference between n, n2
    721     * through spilling as q(C, B) / p(C).  This is similar to the
    722     * "count number of edges" approach of traditional graph coloring,
    723     * but takes classes into account.
    724     */
    725    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
    726       unsigned int n2 = g->nodes[n].adjacency_list[j];
    727       unsigned int n2_class = g->nodes[n2].class;
    728       benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
    729                   g->regs->classes[n_class]->p);
    730    }
    731 
    732    return benefit;
    733 }
    734 
    735 /**
    736  * Returns a node number to be spilled according to the cost/benefit using
    737  * the pq test, or -1 if there are no spillable nodes.
    738  */
    739 int
    740 ra_get_best_spill_node(struct ra_graph *g)
    741 {
    742    unsigned int best_node = -1;
    743    float best_benefit = 0.0;
    744    unsigned int n;
    745 
    746    /* Consider any nodes that we colored successfully or the node we failed to
    747     * color for spilling. When we failed to color a node in ra_select(), we
    748     * only considered these nodes, so spilling any other ones would not result
    749     * in us making progress.
    750     */
    751    for (n = 0; n < g->count; n++) {
    752       float cost = g->nodes[n].spill_cost;
    753       float benefit;
    754 
    755       if (cost <= 0.0f)
    756 	 continue;
    757 
    758       if (g->nodes[n].in_stack)
    759          continue;
    760 
    761       benefit = ra_get_spill_benefit(g, n);
    762 
    763       if (benefit / cost > best_benefit) {
    764 	 best_benefit = benefit / cost;
    765 	 best_node = n;
    766       }
    767    }
    768 
    769    return best_node;
    770 }
    771 
    772 /**
    773  * Only nodes with a spill cost set (cost != 0.0) will be considered
    774  * for register spilling.
    775  */
    776 void
    777 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
    778 {
    779    g->nodes[n].spill_cost = cost;
    780 }
    781