Home | History | Annotate | Download | only in encoder
      1 /*
      2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 #include <memory.h>
     12 #include <math.h>
     13 #include <time.h>
     14 #include <stdio.h>
     15 #include <stdlib.h>
     16 #include <assert.h>
     17 
     18 #include "av1/encoder/ransac.h"
     19 #include "av1/encoder/mathutils.h"
     20 #include "av1/encoder/random.h"
     21 
     22 #define MAX_MINPTS 4
     23 #define MAX_DEGENERATE_ITER 10
     24 #define MINPTS_MULTIPLIER 5
     25 
     26 #define INLIER_THRESHOLD 1.25
     27 #define MIN_TRIALS 20
     28 
     29 ////////////////////////////////////////////////////////////////////////////////
     30 // ransac
     31 typedef int (*IsDegenerateFunc)(double *p);
     32 typedef void (*NormalizeFunc)(double *p, int np, double *T);
     33 typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2);
     34 typedef int (*FindTransformationFunc)(int points, double *points1,
     35                                       double *points2, double *params);
     36 typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points,
     37                                         double *proj, const int n,
     38                                         const int stride_points,
     39                                         const int stride_proj);
     40 
     41 static void project_points_double_translation(double *mat, double *points,
     42                                               double *proj, const int n,
     43                                               const int stride_points,
     44                                               const int stride_proj) {
     45   int i;
     46   for (i = 0; i < n; ++i) {
     47     const double x = *(points++), y = *(points++);
     48     *(proj++) = x + mat[0];
     49     *(proj++) = y + mat[1];
     50     points += stride_points - 2;
     51     proj += stride_proj - 2;
     52   }
     53 }
     54 
     55 static void project_points_double_rotzoom(double *mat, double *points,
     56                                           double *proj, const int n,
     57                                           const int stride_points,
     58                                           const int stride_proj) {
     59   int i;
     60   for (i = 0; i < n; ++i) {
     61     const double x = *(points++), y = *(points++);
     62     *(proj++) = mat[2] * x + mat[3] * y + mat[0];
     63     *(proj++) = -mat[3] * x + mat[2] * y + mat[1];
     64     points += stride_points - 2;
     65     proj += stride_proj - 2;
     66   }
     67 }
     68 
     69 static void project_points_double_affine(double *mat, double *points,
     70                                          double *proj, const int n,
     71                                          const int stride_points,
     72                                          const int stride_proj) {
     73   int i;
     74   for (i = 0; i < n; ++i) {
     75     const double x = *(points++), y = *(points++);
     76     *(proj++) = mat[2] * x + mat[3] * y + mat[0];
     77     *(proj++) = mat[4] * x + mat[5] * y + mat[1];
     78     points += stride_points - 2;
     79     proj += stride_proj - 2;
     80   }
     81 }
     82 
     83 static void normalize_homography(double *pts, int n, double *T) {
     84   double *p = pts;
     85   double mean[2] = { 0, 0 };
     86   double msqe = 0;
     87   double scale;
     88   int i;
     89 
     90   assert(n > 0);
     91   for (i = 0; i < n; ++i, p += 2) {
     92     mean[0] += p[0];
     93     mean[1] += p[1];
     94   }
     95   mean[0] /= n;
     96   mean[1] /= n;
     97   for (p = pts, i = 0; i < n; ++i, p += 2) {
     98     p[0] -= mean[0];
     99     p[1] -= mean[1];
    100     msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
    101   }
    102   msqe /= n;
    103   scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe);
    104   T[0] = scale;
    105   T[1] = 0;
    106   T[2] = -scale * mean[0];
    107   T[3] = 0;
    108   T[4] = scale;
    109   T[5] = -scale * mean[1];
    110   T[6] = 0;
    111   T[7] = 0;
    112   T[8] = 1;
    113   for (p = pts, i = 0; i < n; ++i, p += 2) {
    114     p[0] *= scale;
    115     p[1] *= scale;
    116   }
    117 }
    118 
    119 static void invnormalize_mat(double *T, double *iT) {
    120   double is = 1.0 / T[0];
    121   double m0 = -T[2] * is;
    122   double m1 = -T[5] * is;
    123   iT[0] = is;
    124   iT[1] = 0;
    125   iT[2] = m0;
    126   iT[3] = 0;
    127   iT[4] = is;
    128   iT[5] = m1;
    129   iT[6] = 0;
    130   iT[7] = 0;
    131   iT[8] = 1;
    132 }
    133 
    134 static void denormalize_homography(double *params, double *T1, double *T2) {
    135   double iT2[9];
    136   double params2[9];
    137   invnormalize_mat(T2, iT2);
    138   multiply_mat(params, T1, params2, 3, 3, 3);
    139   multiply_mat(iT2, params2, params, 3, 3, 3);
    140 }
    141 
    142 static void denormalize_affine_reorder(double *params, double *T1, double *T2) {
    143   double params_denorm[MAX_PARAMDIM];
    144   params_denorm[0] = params[0];
    145   params_denorm[1] = params[1];
    146   params_denorm[2] = params[4];
    147   params_denorm[3] = params[2];
    148   params_denorm[4] = params[3];
    149   params_denorm[5] = params[5];
    150   params_denorm[6] = params_denorm[7] = 0;
    151   params_denorm[8] = 1;
    152   denormalize_homography(params_denorm, T1, T2);
    153   params[0] = params_denorm[2];
    154   params[1] = params_denorm[5];
    155   params[2] = params_denorm[0];
    156   params[3] = params_denorm[1];
    157   params[4] = params_denorm[3];
    158   params[5] = params_denorm[4];
    159   params[6] = params[7] = 0;
    160 }
    161 
    162 static void denormalize_rotzoom_reorder(double *params, double *T1,
    163                                         double *T2) {
    164   double params_denorm[MAX_PARAMDIM];
    165   params_denorm[0] = params[0];
    166   params_denorm[1] = params[1];
    167   params_denorm[2] = params[2];
    168   params_denorm[3] = -params[1];
    169   params_denorm[4] = params[0];
    170   params_denorm[5] = params[3];
    171   params_denorm[6] = params_denorm[7] = 0;
    172   params_denorm[8] = 1;
    173   denormalize_homography(params_denorm, T1, T2);
    174   params[0] = params_denorm[2];
    175   params[1] = params_denorm[5];
    176   params[2] = params_denorm[0];
    177   params[3] = params_denorm[1];
    178   params[4] = -params[3];
    179   params[5] = params[2];
    180   params[6] = params[7] = 0;
    181 }
    182 
    183 static void denormalize_translation_reorder(double *params, double *T1,
    184                                             double *T2) {
    185   double params_denorm[MAX_PARAMDIM];
    186   params_denorm[0] = 1;
    187   params_denorm[1] = 0;
    188   params_denorm[2] = params[0];
    189   params_denorm[3] = 0;
    190   params_denorm[4] = 1;
    191   params_denorm[5] = params[1];
    192   params_denorm[6] = params_denorm[7] = 0;
    193   params_denorm[8] = 1;
    194   denormalize_homography(params_denorm, T1, T2);
    195   params[0] = params_denorm[2];
    196   params[1] = params_denorm[5];
    197   params[2] = params[5] = 1;
    198   params[3] = params[4] = 0;
    199   params[6] = params[7] = 0;
    200 }
    201 
    202 static int find_translation(int np, double *pts1, double *pts2, double *mat) {
    203   int i;
    204   double sx, sy, dx, dy;
    205   double sumx, sumy;
    206 
    207   double T1[9], T2[9];
    208   normalize_homography(pts1, np, T1);
    209   normalize_homography(pts2, np, T2);
    210 
    211   sumx = 0;
    212   sumy = 0;
    213   for (i = 0; i < np; ++i) {
    214     dx = *(pts2++);
    215     dy = *(pts2++);
    216     sx = *(pts1++);
    217     sy = *(pts1++);
    218 
    219     sumx += dx - sx;
    220     sumy += dy - sy;
    221   }
    222   mat[0] = sumx / np;
    223   mat[1] = sumy / np;
    224   denormalize_translation_reorder(mat, T1, T2);
    225   return 0;
    226 }
    227 
    228 static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) {
    229   const int np2 = np * 2;
    230   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20));
    231   double *b = a + np2 * 4;
    232   double *temp = b + np2;
    233   int i;
    234   double sx, sy, dx, dy;
    235 
    236   double T1[9], T2[9];
    237   normalize_homography(pts1, np, T1);
    238   normalize_homography(pts2, np, T2);
    239 
    240   for (i = 0; i < np; ++i) {
    241     dx = *(pts2++);
    242     dy = *(pts2++);
    243     sx = *(pts1++);
    244     sy = *(pts1++);
    245 
    246     a[i * 2 * 4 + 0] = sx;
    247     a[i * 2 * 4 + 1] = sy;
    248     a[i * 2 * 4 + 2] = 1;
    249     a[i * 2 * 4 + 3] = 0;
    250     a[(i * 2 + 1) * 4 + 0] = sy;
    251     a[(i * 2 + 1) * 4 + 1] = -sx;
    252     a[(i * 2 + 1) * 4 + 2] = 0;
    253     a[(i * 2 + 1) * 4 + 3] = 1;
    254 
    255     b[2 * i] = dx;
    256     b[2 * i + 1] = dy;
    257   }
    258   if (!least_squares(4, a, np2, 4, b, temp, mat)) {
    259     aom_free(a);
    260     return 1;
    261   }
    262   denormalize_rotzoom_reorder(mat, T1, T2);
    263   aom_free(a);
    264   return 0;
    265 }
    266 
    267 static int find_affine(int np, double *pts1, double *pts2, double *mat) {
    268   const int np2 = np * 2;
    269   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42));
    270   double *b = a + np2 * 6;
    271   double *temp = b + np2;
    272   int i;
    273   double sx, sy, dx, dy;
    274 
    275   double T1[9], T2[9];
    276   normalize_homography(pts1, np, T1);
    277   normalize_homography(pts2, np, T2);
    278 
    279   for (i = 0; i < np; ++i) {
    280     dx = *(pts2++);
    281     dy = *(pts2++);
    282     sx = *(pts1++);
    283     sy = *(pts1++);
    284 
    285     a[i * 2 * 6 + 0] = sx;
    286     a[i * 2 * 6 + 1] = sy;
    287     a[i * 2 * 6 + 2] = 0;
    288     a[i * 2 * 6 + 3] = 0;
    289     a[i * 2 * 6 + 4] = 1;
    290     a[i * 2 * 6 + 5] = 0;
    291     a[(i * 2 + 1) * 6 + 0] = 0;
    292     a[(i * 2 + 1) * 6 + 1] = 0;
    293     a[(i * 2 + 1) * 6 + 2] = sx;
    294     a[(i * 2 + 1) * 6 + 3] = sy;
    295     a[(i * 2 + 1) * 6 + 4] = 0;
    296     a[(i * 2 + 1) * 6 + 5] = 1;
    297 
    298     b[2 * i] = dx;
    299     b[2 * i + 1] = dy;
    300   }
    301   if (!least_squares(6, a, np2, 6, b, temp, mat)) {
    302     aom_free(a);
    303     return 1;
    304   }
    305   denormalize_affine_reorder(mat, T1, T2);
    306   aom_free(a);
    307   return 0;
    308 }
    309 
    310 static int get_rand_indices(int npoints, int minpts, int *indices,
    311                             unsigned int *seed) {
    312   int i, j;
    313   int ptr = lcg_rand16(seed) % npoints;
    314   if (minpts > npoints) return 0;
    315   indices[0] = ptr;
    316   ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
    317   i = 1;
    318   while (i < minpts) {
    319     int index = lcg_rand16(seed) % npoints;
    320     while (index) {
    321       ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
    322       for (j = 0; j < i; ++j) {
    323         if (indices[j] == ptr) break;
    324       }
    325       if (j == i) index--;
    326     }
    327     indices[i++] = ptr;
    328   }
    329   return 1;
    330 }
    331 
    332 typedef struct {
    333   int num_inliers;
    334   double variance;
    335   int *inlier_indices;
    336 } RANSAC_MOTION;
    337 
    338 // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise.
    339 static int compare_motions(const void *arg_a, const void *arg_b) {
    340   const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a;
    341   const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b;
    342 
    343   if (motion_a->num_inliers > motion_b->num_inliers) return -1;
    344   if (motion_a->num_inliers < motion_b->num_inliers) return 1;
    345   if (motion_a->variance < motion_b->variance) return -1;
    346   if (motion_a->variance > motion_b->variance) return 1;
    347   return 0;
    348 }
    349 
    350 static int is_better_motion(const RANSAC_MOTION *motion_a,
    351                             const RANSAC_MOTION *motion_b) {
    352   return compare_motions(motion_a, motion_b) < 0;
    353 }
    354 
    355 static void copy_points_at_indices(double *dest, const double *src,
    356                                    const int *indices, int num_points) {
    357   for (int i = 0; i < num_points; ++i) {
    358     const int index = indices[i];
    359     dest[i * 2] = src[index * 2];
    360     dest[i * 2 + 1] = src[index * 2 + 1];
    361   }
    362 }
    363 
    364 static const double kInfiniteVariance = 1e12;
    365 
    366 static void clear_motion(RANSAC_MOTION *motion, int num_points) {
    367   motion->num_inliers = 0;
    368   motion->variance = kInfiniteVariance;
    369   memset(motion->inlier_indices, 0,
    370          sizeof(*motion->inlier_indices * num_points));
    371 }
    372 
    373 static int ransac(const int *matched_points, int npoints,
    374                   int *num_inliers_by_motion, double *params_by_motion,
    375                   int num_desired_motions, const int minpts,
    376                   IsDegenerateFunc is_degenerate,
    377                   FindTransformationFunc find_transformation,
    378                   ProjectPointsDoubleFunc projectpoints) {
    379   int trial_count = 0;
    380   int i = 0;
    381   int ret_val = 0;
    382 
    383   unsigned int seed = (unsigned int)npoints;
    384 
    385   int indices[MAX_MINPTS] = { 0 };
    386 
    387   double *points1, *points2;
    388   double *corners1, *corners2;
    389   double *image1_coord;
    390 
    391   // Store information for the num_desired_motions best transformations found
    392   // and the worst motion among them, as well as the motion currently under
    393   // consideration.
    394   RANSAC_MOTION *motions, *worst_kept_motion = NULL;
    395   RANSAC_MOTION current_motion;
    396 
    397   // Store the parameters and the indices of the inlier points for the motion
    398   // currently under consideration.
    399   double params_this_motion[MAX_PARAMDIM];
    400 
    401   double *cnp1, *cnp2;
    402 
    403   for (i = 0; i < num_desired_motions; ++i) {
    404     num_inliers_by_motion[i] = 0;
    405   }
    406   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
    407     return 1;
    408   }
    409 
    410   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2);
    411   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2);
    412   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
    413   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
    414   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);
    415 
    416   motions =
    417       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions);
    418   for (i = 0; i < num_desired_motions; ++i) {
    419     motions[i].inlier_indices =
    420         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints);
    421     clear_motion(motions + i, npoints);
    422   }
    423   current_motion.inlier_indices =
    424       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints);
    425   clear_motion(&current_motion, npoints);
    426 
    427   worst_kept_motion = motions;
    428 
    429   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions &&
    430         current_motion.inlier_indices)) {
    431     ret_val = 1;
    432     goto finish_ransac;
    433   }
    434 
    435   cnp1 = corners1;
    436   cnp2 = corners2;
    437   for (i = 0; i < npoints; ++i) {
    438     *(cnp1++) = *(matched_points++);
    439     *(cnp1++) = *(matched_points++);
    440     *(cnp2++) = *(matched_points++);
    441     *(cnp2++) = *(matched_points++);
    442   }
    443 
    444   while (MIN_TRIALS > trial_count) {
    445     double sum_distance = 0.0;
    446     double sum_distance_squared = 0.0;
    447 
    448     clear_motion(&current_motion, npoints);
    449 
    450     int degenerate = 1;
    451     int num_degenerate_iter = 0;
    452 
    453     while (degenerate) {
    454       num_degenerate_iter++;
    455       if (!get_rand_indices(npoints, minpts, indices, &seed)) {
    456         ret_val = 1;
    457         goto finish_ransac;
    458       }
    459 
    460       copy_points_at_indices(points1, corners1, indices, minpts);
    461       copy_points_at_indices(points2, corners2, indices, minpts);
    462 
    463       degenerate = is_degenerate(points1);
    464       if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
    465         ret_val = 1;
    466         goto finish_ransac;
    467       }
    468     }
    469 
    470     if (find_transformation(minpts, points1, points2, params_this_motion)) {
    471       trial_count++;
    472       continue;
    473     }
    474 
    475     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2);
    476 
    477     for (i = 0; i < npoints; ++i) {
    478       double dx = image1_coord[i * 2] - corners2[i * 2];
    479       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
    480       double distance = sqrt(dx * dx + dy * dy);
    481 
    482       if (distance < INLIER_THRESHOLD) {
    483         current_motion.inlier_indices[current_motion.num_inliers++] = i;
    484         sum_distance += distance;
    485         sum_distance_squared += distance * distance;
    486       }
    487     }
    488 
    489     if (current_motion.num_inliers >= worst_kept_motion->num_inliers &&
    490         current_motion.num_inliers > 1) {
    491       double mean_distance;
    492       mean_distance = sum_distance / ((double)current_motion.num_inliers);
    493       current_motion.variance =
    494           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) -
    495           mean_distance * mean_distance * ((double)current_motion.num_inliers) /
    496               ((double)current_motion.num_inliers - 1.0);
    497       if (is_better_motion(&current_motion, worst_kept_motion)) {
    498         // This motion is better than the worst currently kept motion. Remember
    499         // the inlier points and variance. The parameters for each kept motion
    500         // will be recomputed later using only the inliers.
    501         worst_kept_motion->num_inliers = current_motion.num_inliers;
    502         worst_kept_motion->variance = current_motion.variance;
    503         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices,
    504                sizeof(*current_motion.inlier_indices) * npoints);
    505         assert(npoints > 0);
    506         // Determine the new worst kept motion and its num_inliers and variance.
    507         for (i = 0; i < num_desired_motions; ++i) {
    508           if (is_better_motion(worst_kept_motion, &motions[i])) {
    509             worst_kept_motion = &motions[i];
    510           }
    511         }
    512       }
    513     }
    514     trial_count++;
    515   }
    516 
    517   // Sort the motions, best first.
    518   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);
    519 
    520   // Recompute the motions using only the inliers.
    521   for (i = 0; i < num_desired_motions; ++i) {
    522     if (motions[i].num_inliers >= minpts) {
    523       copy_points_at_indices(points1, corners1, motions[i].inlier_indices,
    524                              motions[i].num_inliers);
    525       copy_points_at_indices(points2, corners2, motions[i].inlier_indices,
    526                              motions[i].num_inliers);
    527 
    528       find_transformation(motions[i].num_inliers, points1, points2,
    529                           params_by_motion + (MAX_PARAMDIM - 1) * i);
    530     }
    531     num_inliers_by_motion[i] = motions[i].num_inliers;
    532   }
    533 
    534 finish_ransac:
    535   aom_free(points1);
    536   aom_free(points2);
    537   aom_free(corners1);
    538   aom_free(corners2);
    539   aom_free(image1_coord);
    540   aom_free(current_motion.inlier_indices);
    541   for (i = 0; i < num_desired_motions; ++i) {
    542     aom_free(motions[i].inlier_indices);
    543   }
    544   aom_free(motions);
    545 
    546   return ret_val;
    547 }
    548 
    549 static int ransac_double_prec(const double *matched_points, int npoints,
    550                               int *num_inliers_by_motion,
    551                               double *params_by_motion, int num_desired_motions,
    552                               const int minpts, IsDegenerateFunc is_degenerate,
    553                               FindTransformationFunc find_transformation,
    554                               ProjectPointsDoubleFunc projectpoints) {
    555   int trial_count = 0;
    556   int i = 0;
    557   int ret_val = 0;
    558 
    559   unsigned int seed = (unsigned int)npoints;
    560 
    561   int indices[MAX_MINPTS] = { 0 };
    562 
    563   double *points1, *points2;
    564   double *corners1, *corners2;
    565   double *image1_coord;
    566 
    567   // Store information for the num_desired_motions best transformations found
    568   // and the worst motion among them, as well as the motion currently under
    569   // consideration.
    570   RANSAC_MOTION *motions, *worst_kept_motion = NULL;
    571   RANSAC_MOTION current_motion;
    572 
    573   // Store the parameters and the indices of the inlier points for the motion
    574   // currently under consideration.
    575   double params_this_motion[MAX_PARAMDIM];
    576 
    577   double *cnp1, *cnp2;
    578 
    579   for (i = 0; i < num_desired_motions; ++i) {
    580     num_inliers_by_motion[i] = 0;
    581   }
    582   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
    583     return 1;
    584   }
    585 
    586   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2);
    587   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2);
    588   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2);
    589   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2);
    590   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2);
    591 
    592   motions =
    593       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions);
    594   for (i = 0; i < num_desired_motions; ++i) {
    595     motions[i].inlier_indices =
    596         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints);
    597     clear_motion(motions + i, npoints);
    598   }
    599   current_motion.inlier_indices =
    600       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints);
    601   clear_motion(&current_motion, npoints);
    602 
    603   worst_kept_motion = motions;
    604 
    605   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions &&
    606         current_motion.inlier_indices)) {
    607     ret_val = 1;
    608     goto finish_ransac;
    609   }
    610 
    611   cnp1 = corners1;
    612   cnp2 = corners2;
    613   for (i = 0; i < npoints; ++i) {
    614     *(cnp1++) = *(matched_points++);
    615     *(cnp1++) = *(matched_points++);
    616     *(cnp2++) = *(matched_points++);
    617     *(cnp2++) = *(matched_points++);
    618   }
    619 
    620   while (MIN_TRIALS > trial_count) {
    621     double sum_distance = 0.0;
    622     double sum_distance_squared = 0.0;
    623 
    624     clear_motion(&current_motion, npoints);
    625 
    626     int degenerate = 1;
    627     int num_degenerate_iter = 0;
    628 
    629     while (degenerate) {
    630       num_degenerate_iter++;
    631       if (!get_rand_indices(npoints, minpts, indices, &seed)) {
    632         ret_val = 1;
    633         goto finish_ransac;
    634       }
    635 
    636       copy_points_at_indices(points1, corners1, indices, minpts);
    637       copy_points_at_indices(points2, corners2, indices, minpts);
    638 
    639       degenerate = is_degenerate(points1);
    640       if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
    641         ret_val = 1;
    642         goto finish_ransac;
    643       }
    644     }
    645 
    646     if (find_transformation(minpts, points1, points2, params_this_motion)) {
    647       trial_count++;
    648       continue;
    649     }
    650 
    651     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2);
    652 
    653     for (i = 0; i < npoints; ++i) {
    654       double dx = image1_coord[i * 2] - corners2[i * 2];
    655       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1];
    656       double distance = sqrt(dx * dx + dy * dy);
    657 
    658       if (distance < INLIER_THRESHOLD) {
    659         current_motion.inlier_indices[current_motion.num_inliers++] = i;
    660         sum_distance += distance;
    661         sum_distance_squared += distance * distance;
    662       }
    663     }
    664 
    665     if (current_motion.num_inliers >= worst_kept_motion->num_inliers &&
    666         current_motion.num_inliers > 1) {
    667       double mean_distance;
    668       mean_distance = sum_distance / ((double)current_motion.num_inliers);
    669       current_motion.variance =
    670           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) -
    671           mean_distance * mean_distance * ((double)current_motion.num_inliers) /
    672               ((double)current_motion.num_inliers - 1.0);
    673       if (is_better_motion(&current_motion, worst_kept_motion)) {
    674         // This motion is better than the worst currently kept motion. Remember
    675         // the inlier points and variance. The parameters for each kept motion
    676         // will be recomputed later using only the inliers.
    677         worst_kept_motion->num_inliers = current_motion.num_inliers;
    678         worst_kept_motion->variance = current_motion.variance;
    679         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices,
    680                sizeof(*current_motion.inlier_indices) * npoints);
    681         assert(npoints > 0);
    682         // Determine the new worst kept motion and its num_inliers and variance.
    683         for (i = 0; i < num_desired_motions; ++i) {
    684           if (is_better_motion(worst_kept_motion, &motions[i])) {
    685             worst_kept_motion = &motions[i];
    686           }
    687         }
    688       }
    689     }
    690     trial_count++;
    691   }
    692 
    693   // Sort the motions, best first.
    694   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);
    695 
    696   // Recompute the motions using only the inliers.
    697   for (i = 0; i < num_desired_motions; ++i) {
    698     if (motions[i].num_inliers >= minpts) {
    699       copy_points_at_indices(points1, corners1, motions[i].inlier_indices,
    700                              motions[i].num_inliers);
    701       copy_points_at_indices(points2, corners2, motions[i].inlier_indices,
    702                              motions[i].num_inliers);
    703 
    704       find_transformation(motions[i].num_inliers, points1, points2,
    705                           params_by_motion + (MAX_PARAMDIM - 1) * i);
    706     }
    707     num_inliers_by_motion[i] = motions[i].num_inliers;
    708   }
    709 
    710 finish_ransac:
    711   aom_free(points1);
    712   aom_free(points2);
    713   aom_free(corners1);
    714   aom_free(corners2);
    715   aom_free(image1_coord);
    716   aom_free(current_motion.inlier_indices);
    717   for (i = 0; i < num_desired_motions; ++i) {
    718     aom_free(motions[i].inlier_indices);
    719   }
    720   aom_free(motions);
    721 
    722   return ret_val;
    723 }
    724 
    725 static int is_collinear3(double *p1, double *p2, double *p3) {
    726   static const double collinear_eps = 1e-3;
    727   const double v =
    728       (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
    729   return fabs(v) < collinear_eps;
    730 }
    731 
    732 static int is_degenerate_translation(double *p) {
    733   return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
    734 }
    735 
    736 static int is_degenerate_affine(double *p) {
    737   return is_collinear3(p, p + 2, p + 4);
    738 }
    739 
    740 int ransac_translation(int *matched_points, int npoints,
    741                        int *num_inliers_by_motion, double *params_by_motion,
    742                        int num_desired_motions) {
    743   return ransac(matched_points, npoints, num_inliers_by_motion,
    744                 params_by_motion, num_desired_motions, 3,
    745                 is_degenerate_translation, find_translation,
    746                 project_points_double_translation);
    747 }
    748 
    749 int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion,
    750                    double *params_by_motion, int num_desired_motions) {
    751   return ransac(matched_points, npoints, num_inliers_by_motion,
    752                 params_by_motion, num_desired_motions, 3, is_degenerate_affine,
    753                 find_rotzoom, project_points_double_rotzoom);
    754 }
    755 
    756 int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion,
    757                   double *params_by_motion, int num_desired_motions) {
    758   return ransac(matched_points, npoints, num_inliers_by_motion,
    759                 params_by_motion, num_desired_motions, 3, is_degenerate_affine,
    760                 find_affine, project_points_double_affine);
    761 }
    762 
    763 int ransac_translation_double_prec(double *matched_points, int npoints,
    764                                    int *num_inliers_by_motion,
    765                                    double *params_by_motion,
    766                                    int num_desired_motions) {
    767   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
    768                             params_by_motion, num_desired_motions, 3,
    769                             is_degenerate_translation, find_translation,
    770                             project_points_double_translation);
    771 }
    772 
    773 int ransac_rotzoom_double_prec(double *matched_points, int npoints,
    774                                int *num_inliers_by_motion,
    775                                double *params_by_motion,
    776                                int num_desired_motions) {
    777   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
    778                             params_by_motion, num_desired_motions, 3,
    779                             is_degenerate_affine, find_rotzoom,
    780                             project_points_double_rotzoom);
    781 }
    782 
    783 int ransac_affine_double_prec(double *matched_points, int npoints,
    784                               int *num_inliers_by_motion,
    785                               double *params_by_motion,
    786                               int num_desired_motions) {
    787   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion,
    788                             params_by_motion, num_desired_motions, 3,
    789                             is_degenerate_affine, find_affine,
    790                             project_points_double_affine);
    791 }
    792