1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines ExprEngine's support for calls and returns. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 15 #include "PrettyStackTraceLocationContext.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Analysis/Analyses/LiveVariables.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/SaveAndRestore.h" 25 26 using namespace clang; 27 using namespace ento; 28 29 #define DEBUG_TYPE "ExprEngine" 30 31 STATISTIC(NumOfDynamicDispatchPathSplits, 32 "The # of times we split the path due to imprecise dynamic dispatch info"); 33 34 STATISTIC(NumInlinedCalls, 35 "The # of times we inlined a call"); 36 37 STATISTIC(NumReachedInlineCountMax, 38 "The # of times we reached inline count maximum"); 39 40 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE, 41 ExplodedNode *Pred) { 42 // Get the entry block in the CFG of the callee. 43 const StackFrameContext *calleeCtx = CE.getCalleeContext(); 44 PrettyStackTraceLocationContext CrashInfo(calleeCtx); 45 const CFGBlock *Entry = CE.getEntry(); 46 47 // Validate the CFG. 48 assert(Entry->empty()); 49 assert(Entry->succ_size() == 1); 50 51 // Get the solitary successor. 52 const CFGBlock *Succ = *(Entry->succ_begin()); 53 54 // Construct an edge representing the starting location in the callee. 55 BlockEdge Loc(Entry, Succ, calleeCtx); 56 57 ProgramStateRef state = Pred->getState(); 58 59 // Construct a new node, notify checkers that analysis of the function has 60 // begun, and add the resultant nodes to the worklist. 61 bool isNew; 62 ExplodedNode *Node = G.getNode(Loc, state, false, &isNew); 63 Node->addPredecessor(Pred, G); 64 if (isNew) { 65 ExplodedNodeSet DstBegin; 66 processBeginOfFunction(BC, Node, DstBegin, Loc); 67 Engine.enqueue(DstBegin); 68 } 69 } 70 71 // Find the last statement on the path to the exploded node and the 72 // corresponding Block. 73 static std::pair<const Stmt*, 74 const CFGBlock*> getLastStmt(const ExplodedNode *Node) { 75 const Stmt *S = nullptr; 76 const CFGBlock *Blk = nullptr; 77 const StackFrameContext *SF = 78 Node->getLocation().getLocationContext()->getCurrentStackFrame(); 79 80 // Back up through the ExplodedGraph until we reach a statement node in this 81 // stack frame. 82 while (Node) { 83 const ProgramPoint &PP = Node->getLocation(); 84 85 if (PP.getLocationContext()->getCurrentStackFrame() == SF) { 86 if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) { 87 S = SP->getStmt(); 88 break; 89 } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) { 90 S = CEE->getCalleeContext()->getCallSite(); 91 if (S) 92 break; 93 94 // If there is no statement, this is an implicitly-generated call. 95 // We'll walk backwards over it and then continue the loop to find 96 // an actual statement. 97 Optional<CallEnter> CE; 98 do { 99 Node = Node->getFirstPred(); 100 CE = Node->getLocationAs<CallEnter>(); 101 } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext()); 102 103 // Continue searching the graph. 104 } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) { 105 Blk = BE->getSrc(); 106 } 107 } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) { 108 // If we reached the CallEnter for this function, it has no statements. 109 if (CE->getCalleeContext() == SF) 110 break; 111 } 112 113 if (Node->pred_empty()) 114 return std::make_pair(nullptr, nullptr); 115 116 Node = *Node->pred_begin(); 117 } 118 119 return std::make_pair(S, Blk); 120 } 121 122 /// Adjusts a return value when the called function's return type does not 123 /// match the caller's expression type. This can happen when a dynamic call 124 /// is devirtualized, and the overridding method has a covariant (more specific) 125 /// return type than the parent's method. For C++ objects, this means we need 126 /// to add base casts. 127 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy, 128 StoreManager &StoreMgr) { 129 // For now, the only adjustments we handle apply only to locations. 130 if (!V.getAs<Loc>()) 131 return V; 132 133 // If the types already match, don't do any unnecessary work. 134 ExpectedTy = ExpectedTy.getCanonicalType(); 135 ActualTy = ActualTy.getCanonicalType(); 136 if (ExpectedTy == ActualTy) 137 return V; 138 139 // No adjustment is needed between Objective-C pointer types. 140 if (ExpectedTy->isObjCObjectPointerType() && 141 ActualTy->isObjCObjectPointerType()) 142 return V; 143 144 // C++ object pointers may need "derived-to-base" casts. 145 const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl(); 146 const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl(); 147 if (ExpectedClass && ActualClass) { 148 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 149 /*DetectVirtual=*/false); 150 if (ActualClass->isDerivedFrom(ExpectedClass, Paths) && 151 !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) { 152 return StoreMgr.evalDerivedToBase(V, Paths.front()); 153 } 154 } 155 156 // Unfortunately, Objective-C does not enforce that overridden methods have 157 // covariant return types, so we can't assert that that never happens. 158 // Be safe and return UnknownVal(). 159 return UnknownVal(); 160 } 161 162 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC, 163 ExplodedNode *Pred, 164 ExplodedNodeSet &Dst) { 165 // Find the last statement in the function and the corresponding basic block. 166 const Stmt *LastSt = nullptr; 167 const CFGBlock *Blk = nullptr; 168 std::tie(LastSt, Blk) = getLastStmt(Pred); 169 if (!Blk || !LastSt) { 170 Dst.Add(Pred); 171 return; 172 } 173 174 // Here, we destroy the current location context. We use the current 175 // function's entire body as a diagnostic statement, with which the program 176 // point will be associated. However, we only want to use LastStmt as a 177 // reference for what to clean up if it's a ReturnStmt; otherwise, everything 178 // is dead. 179 SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC); 180 const LocationContext *LCtx = Pred->getLocationContext(); 181 removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx, 182 LCtx->getAnalysisDeclContext()->getBody(), 183 ProgramPoint::PostStmtPurgeDeadSymbolsKind); 184 } 185 186 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call, 187 const StackFrameContext *calleeCtx) { 188 const Decl *RuntimeCallee = calleeCtx->getDecl(); 189 const Decl *StaticDecl = Call->getDecl(); 190 assert(RuntimeCallee); 191 if (!StaticDecl) 192 return true; 193 return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl(); 194 } 195 196 /// Returns true if the CXXConstructExpr \p E was intended to construct a 197 /// prvalue for the region in \p V. 198 /// 199 /// Note that we can't just test for rvalue vs. glvalue because 200 /// CXXConstructExprs embedded in DeclStmts and initializers are considered 201 /// rvalues by the AST, and the analyzer would like to treat them as lvalues. 202 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) { 203 if (E->isGLValue()) 204 return false; 205 206 const MemRegion *MR = V.getAsRegion(); 207 if (!MR) 208 return false; 209 210 return isa<CXXTempObjectRegion>(MR); 211 } 212 213 /// The call exit is simulated with a sequence of nodes, which occur between 214 /// CallExitBegin and CallExitEnd. The following operations occur between the 215 /// two program points: 216 /// 1. CallExitBegin (triggers the start of call exit sequence) 217 /// 2. Bind the return value 218 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee. 219 /// 4. CallExitEnd (switch to the caller context) 220 /// 5. PostStmt<CallExpr> 221 void ExprEngine::processCallExit(ExplodedNode *CEBNode) { 222 // Step 1 CEBNode was generated before the call. 223 PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext()); 224 const StackFrameContext *calleeCtx = 225 CEBNode->getLocationContext()->getCurrentStackFrame(); 226 227 // The parent context might not be a stack frame, so make sure we 228 // look up the first enclosing stack frame. 229 const StackFrameContext *callerCtx = 230 calleeCtx->getParent()->getCurrentStackFrame(); 231 232 const Stmt *CE = calleeCtx->getCallSite(); 233 ProgramStateRef state = CEBNode->getState(); 234 // Find the last statement in the function and the corresponding basic block. 235 const Stmt *LastSt = nullptr; 236 const CFGBlock *Blk = nullptr; 237 std::tie(LastSt, Blk) = getLastStmt(CEBNode); 238 239 // Generate a CallEvent /before/ cleaning the state, so that we can get the 240 // correct value for 'this' (if necessary). 241 CallEventManager &CEMgr = getStateManager().getCallEventManager(); 242 CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state); 243 244 // Step 2: generate node with bound return value: CEBNode -> BindedRetNode. 245 246 // If the callee returns an expression, bind its value to CallExpr. 247 if (CE) { 248 if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) { 249 const LocationContext *LCtx = CEBNode->getLocationContext(); 250 SVal V = state->getSVal(RS, LCtx); 251 252 // Ensure that the return type matches the type of the returned Expr. 253 if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) { 254 QualType ReturnedTy = 255 CallEvent::getDeclaredResultType(calleeCtx->getDecl()); 256 if (!ReturnedTy.isNull()) { 257 if (const Expr *Ex = dyn_cast<Expr>(CE)) { 258 V = adjustReturnValue(V, Ex->getType(), ReturnedTy, 259 getStoreManager()); 260 } 261 } 262 } 263 264 state = state->BindExpr(CE, callerCtx, V); 265 } 266 267 // Bind the constructed object value to CXXConstructExpr. 268 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { 269 loc::MemRegionVal This = 270 svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx); 271 SVal ThisV = state->getSVal(This); 272 273 // If the constructed object is a temporary prvalue, get its bindings. 274 if (isTemporaryPRValue(CCE, ThisV)) 275 ThisV = state->getSVal(ThisV.castAs<Loc>()); 276 277 state = state->BindExpr(CCE, callerCtx, ThisV); 278 } 279 } 280 281 // Step 3: BindedRetNode -> CleanedNodes 282 // If we can find a statement and a block in the inlined function, run remove 283 // dead bindings before returning from the call. This is important to ensure 284 // that we report the issues such as leaks in the stack contexts in which 285 // they occurred. 286 ExplodedNodeSet CleanedNodes; 287 if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) { 288 static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value"); 289 PostStmt Loc(LastSt, calleeCtx, &retValBind); 290 bool isNew; 291 ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew); 292 BindedRetNode->addPredecessor(CEBNode, G); 293 if (!isNew) 294 return; 295 296 NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode); 297 currBldrCtx = &Ctx; 298 // Here, we call the Symbol Reaper with 0 statement and callee location 299 // context, telling it to clean up everything in the callee's context 300 // (and its children). We use the callee's function body as a diagnostic 301 // statement, with which the program point will be associated. 302 removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx, 303 calleeCtx->getAnalysisDeclContext()->getBody(), 304 ProgramPoint::PostStmtPurgeDeadSymbolsKind); 305 currBldrCtx = nullptr; 306 } else { 307 CleanedNodes.Add(CEBNode); 308 } 309 310 for (ExplodedNodeSet::iterator I = CleanedNodes.begin(), 311 E = CleanedNodes.end(); I != E; ++I) { 312 313 // Step 4: Generate the CallExit and leave the callee's context. 314 // CleanedNodes -> CEENode 315 CallExitEnd Loc(calleeCtx, callerCtx); 316 bool isNew; 317 ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState(); 318 ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew); 319 CEENode->addPredecessor(*I, G); 320 if (!isNew) 321 return; 322 323 // Step 5: Perform the post-condition check of the CallExpr and enqueue the 324 // result onto the work list. 325 // CEENode -> Dst -> WorkList 326 NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode); 327 SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx, 328 &Ctx); 329 SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex()); 330 331 CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState); 332 333 ExplodedNodeSet DstPostCall; 334 getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode, 335 *UpdatedCall, *this, 336 /*WasInlined=*/true); 337 338 ExplodedNodeSet Dst; 339 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 340 getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg, 341 *this, 342 /*WasInlined=*/true); 343 } else if (CE) { 344 getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE, 345 *this, /*WasInlined=*/true); 346 } else { 347 Dst.insert(DstPostCall); 348 } 349 350 // Enqueue the next element in the block. 351 for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end(); 352 PSI != PSE; ++PSI) { 353 Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(), 354 calleeCtx->getIndex()+1); 355 } 356 } 357 } 358 359 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx, 360 bool &IsRecursive, unsigned &StackDepth) { 361 IsRecursive = false; 362 StackDepth = 0; 363 364 while (LCtx) { 365 if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) { 366 const Decl *DI = SFC->getDecl(); 367 368 // Mark recursive (and mutually recursive) functions and always count 369 // them when measuring the stack depth. 370 if (DI == D) { 371 IsRecursive = true; 372 ++StackDepth; 373 LCtx = LCtx->getParent(); 374 continue; 375 } 376 377 // Do not count the small functions when determining the stack depth. 378 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI); 379 const CFG *CalleeCFG = CalleeADC->getCFG(); 380 if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize()) 381 ++StackDepth; 382 } 383 LCtx = LCtx->getParent(); 384 } 385 } 386 387 // The GDM component containing the dynamic dispatch bifurcation info. When 388 // the exact type of the receiver is not known, we want to explore both paths - 389 // one on which we do inline it and the other one on which we don't. This is 390 // done to ensure we do not drop coverage. 391 // This is the map from the receiver region to a bool, specifying either we 392 // consider this region's information precise or not along the given path. 393 namespace { 394 enum DynamicDispatchMode { 395 DynamicDispatchModeInlined = 1, 396 DynamicDispatchModeConservative 397 }; 398 } // end anonymous namespace 399 400 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap, 401 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *, 402 unsigned)) 403 404 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D, 405 NodeBuilder &Bldr, ExplodedNode *Pred, 406 ProgramStateRef State) { 407 assert(D); 408 409 const LocationContext *CurLC = Pred->getLocationContext(); 410 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame(); 411 const LocationContext *ParentOfCallee = CallerSFC; 412 if (Call.getKind() == CE_Block && 413 !cast<BlockCall>(Call).isConversionFromLambda()) { 414 const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion(); 415 assert(BR && "If we have the block definition we should have its region"); 416 AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D); 417 ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC, 418 cast<BlockDecl>(D), 419 BR); 420 } 421 422 // This may be NULL, but that's fine. 423 const Expr *CallE = Call.getOriginExpr(); 424 425 // Construct a new stack frame for the callee. 426 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D); 427 const StackFrameContext *CalleeSFC = 428 CalleeADC->getStackFrame(ParentOfCallee, CallE, 429 currBldrCtx->getBlock(), 430 currStmtIdx); 431 432 CallEnter Loc(CallE, CalleeSFC, CurLC); 433 434 // Construct a new state which contains the mapping from actual to 435 // formal arguments. 436 State = State->enterStackFrame(Call, CalleeSFC); 437 438 bool isNew; 439 if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) { 440 N->addPredecessor(Pred, G); 441 if (isNew) 442 Engine.getWorkList()->enqueue(N); 443 } 444 445 // If we decided to inline the call, the successor has been manually 446 // added onto the work list so remove it from the node builder. 447 Bldr.takeNodes(Pred); 448 449 NumInlinedCalls++; 450 451 // Mark the decl as visited. 452 if (VisitedCallees) 453 VisitedCallees->insert(D); 454 455 return true; 456 } 457 458 static ProgramStateRef getInlineFailedState(ProgramStateRef State, 459 const Stmt *CallE) { 460 const void *ReplayState = State->get<ReplayWithoutInlining>(); 461 if (!ReplayState) 462 return nullptr; 463 464 assert(ReplayState == CallE && "Backtracked to the wrong call."); 465 (void)CallE; 466 467 return State->remove<ReplayWithoutInlining>(); 468 } 469 470 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred, 471 ExplodedNodeSet &dst) { 472 // Perform the previsit of the CallExpr. 473 ExplodedNodeSet dstPreVisit; 474 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this); 475 476 // Get the call in its initial state. We use this as a template to perform 477 // all the checks. 478 CallEventManager &CEMgr = getStateManager().getCallEventManager(); 479 CallEventRef<> CallTemplate 480 = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext()); 481 482 // Evaluate the function call. We try each of the checkers 483 // to see if the can evaluate the function call. 484 ExplodedNodeSet dstCallEvaluated; 485 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 486 I != E; ++I) { 487 evalCall(dstCallEvaluated, *I, *CallTemplate); 488 } 489 490 // Finally, perform the post-condition check of the CallExpr and store 491 // the created nodes in 'Dst'. 492 // Note that if the call was inlined, dstCallEvaluated will be empty. 493 // The post-CallExpr check will occur in processCallExit. 494 getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, 495 *this); 496 } 497 498 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred, 499 const CallEvent &Call) { 500 // WARNING: At this time, the state attached to 'Call' may be older than the 501 // state in 'Pred'. This is a minor optimization since CheckerManager will 502 // use an updated CallEvent instance when calling checkers, but if 'Call' is 503 // ever used directly in this function all callers should be updated to pass 504 // the most recent state. (It is probably not worth doing the work here since 505 // for some callers this will not be necessary.) 506 507 // Run any pre-call checks using the generic call interface. 508 ExplodedNodeSet dstPreVisit; 509 getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this); 510 511 // Actually evaluate the function call. We try each of the checkers 512 // to see if the can evaluate the function call, and get a callback at 513 // defaultEvalCall if all of them fail. 514 ExplodedNodeSet dstCallEvaluated; 515 getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit, 516 Call, *this); 517 518 // Finally, run any post-call checks. 519 getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated, 520 Call, *this); 521 } 522 523 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call, 524 const LocationContext *LCtx, 525 ProgramStateRef State) { 526 const Expr *E = Call.getOriginExpr(); 527 if (!E) 528 return State; 529 530 // Some method families have known return values. 531 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) { 532 switch (Msg->getMethodFamily()) { 533 default: 534 break; 535 case OMF_autorelease: 536 case OMF_retain: 537 case OMF_self: { 538 // These methods return their receivers. 539 return State->BindExpr(E, LCtx, Msg->getReceiverSVal()); 540 } 541 } 542 } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){ 543 SVal ThisV = C->getCXXThisVal(); 544 545 // If the constructed object is a temporary prvalue, get its bindings. 546 if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV)) 547 ThisV = State->getSVal(ThisV.castAs<Loc>()); 548 549 return State->BindExpr(E, LCtx, ThisV); 550 } 551 552 // Conjure a symbol if the return value is unknown. 553 QualType ResultTy = Call.getResultType(); 554 SValBuilder &SVB = getSValBuilder(); 555 unsigned Count = currBldrCtx->blockCount(); 556 SVal R = SVB.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count); 557 return State->BindExpr(E, LCtx, R); 558 } 559 560 // Conservatively evaluate call by invalidating regions and binding 561 // a conjured return value. 562 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr, 563 ExplodedNode *Pred, 564 ProgramStateRef State) { 565 State = Call.invalidateRegions(currBldrCtx->blockCount(), State); 566 State = bindReturnValue(Call, Pred->getLocationContext(), State); 567 568 // And make the result node. 569 Bldr.generateNode(Call.getProgramPoint(), State, Pred); 570 } 571 572 enum CallInlinePolicy { 573 CIP_Allowed, 574 CIP_DisallowedOnce, 575 CIP_DisallowedAlways 576 }; 577 578 static CallInlinePolicy mayInlineCallKind(const CallEvent &Call, 579 const ExplodedNode *Pred, 580 AnalyzerOptions &Opts) { 581 const LocationContext *CurLC = Pred->getLocationContext(); 582 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame(); 583 switch (Call.getKind()) { 584 case CE_Function: 585 case CE_Block: 586 break; 587 case CE_CXXMember: 588 case CE_CXXMemberOperator: 589 if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions)) 590 return CIP_DisallowedAlways; 591 break; 592 case CE_CXXConstructor: { 593 if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors)) 594 return CIP_DisallowedAlways; 595 596 const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call); 597 598 // FIXME: We don't handle constructors or destructors for arrays properly. 599 // Even once we do, we still need to be careful about implicitly-generated 600 // initializers for array fields in default move/copy constructors. 601 const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion(); 602 if (Target && isa<ElementRegion>(Target)) 603 return CIP_DisallowedOnce; 604 605 // FIXME: This is a hack. We don't use the correct region for a new 606 // expression, so if we inline the constructor its result will just be 607 // thrown away. This short-term hack is tracked in <rdar://problem/12180598> 608 // and the longer-term possible fix is discussed in PR12014. 609 const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr(); 610 if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr)) 611 if (isa<CXXNewExpr>(Parent)) 612 return CIP_DisallowedOnce; 613 614 // Inlining constructors requires including initializers in the CFG. 615 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); 616 assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers"); 617 (void)ADC; 618 619 // If the destructor is trivial, it's always safe to inline the constructor. 620 if (Ctor.getDecl()->getParent()->hasTrivialDestructor()) 621 break; 622 623 // For other types, only inline constructors if destructor inlining is 624 // also enabled. 625 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors)) 626 return CIP_DisallowedAlways; 627 628 // FIXME: This is a hack. We don't handle temporary destructors 629 // right now, so we shouldn't inline their constructors. 630 if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) 631 if (!Target || !isa<DeclRegion>(Target)) 632 return CIP_DisallowedOnce; 633 634 break; 635 } 636 case CE_CXXDestructor: { 637 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors)) 638 return CIP_DisallowedAlways; 639 640 // Inlining destructors requires building the CFG correctly. 641 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); 642 assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors"); 643 (void)ADC; 644 645 const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call); 646 647 // FIXME: We don't handle constructors or destructors for arrays properly. 648 const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion(); 649 if (Target && isa<ElementRegion>(Target)) 650 return CIP_DisallowedOnce; 651 652 break; 653 } 654 case CE_CXXAllocator: 655 if (Opts.mayInlineCXXAllocator()) 656 break; 657 // Do not inline allocators until we model deallocators. 658 // This is unfortunate, but basically necessary for smart pointers and such. 659 return CIP_DisallowedAlways; 660 case CE_ObjCMessage: 661 if (!Opts.mayInlineObjCMethod()) 662 return CIP_DisallowedAlways; 663 if (!(Opts.getIPAMode() == IPAK_DynamicDispatch || 664 Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate)) 665 return CIP_DisallowedAlways; 666 break; 667 } 668 669 return CIP_Allowed; 670 } 671 672 /// Returns true if the given C++ class contains a member with the given name. 673 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD, 674 StringRef Name) { 675 const IdentifierInfo &II = Ctx.Idents.get(Name); 676 DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II); 677 if (!RD->lookup(DeclName).empty()) 678 return true; 679 680 CXXBasePaths Paths(false, false, false); 681 if (RD->lookupInBases( 682 [DeclName](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 683 return CXXRecordDecl::FindOrdinaryMember(Specifier, Path, DeclName); 684 }, 685 Paths)) 686 return true; 687 688 return false; 689 } 690 691 /// Returns true if the given C++ class is a container or iterator. 692 /// 693 /// Our heuristic for this is whether it contains a method named 'begin()' or a 694 /// nested type named 'iterator' or 'iterator_category'. 695 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) { 696 return hasMember(Ctx, RD, "begin") || 697 hasMember(Ctx, RD, "iterator") || 698 hasMember(Ctx, RD, "iterator_category"); 699 } 700 701 /// Returns true if the given function refers to a method of a C++ container 702 /// or iterator. 703 /// 704 /// We generally do a poor job modeling most containers right now, and might 705 /// prefer not to inline their methods. 706 static bool isContainerMethod(const ASTContext &Ctx, 707 const FunctionDecl *FD) { 708 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 709 return isContainerClass(Ctx, MD->getParent()); 710 return false; 711 } 712 713 /// Returns true if the given function is the destructor of a class named 714 /// "shared_ptr". 715 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) { 716 const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD); 717 if (!Dtor) 718 return false; 719 720 const CXXRecordDecl *RD = Dtor->getParent(); 721 if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo()) 722 if (II->isStr("shared_ptr")) 723 return true; 724 725 return false; 726 } 727 728 /// Returns true if the function in \p CalleeADC may be inlined in general. 729 /// 730 /// This checks static properties of the function, such as its signature and 731 /// CFG, to determine whether the analyzer should ever consider inlining it, 732 /// in any context. 733 static bool mayInlineDecl(AnalysisDeclContext *CalleeADC, 734 AnalyzerOptions &Opts) { 735 // FIXME: Do not inline variadic calls. 736 if (CallEvent::isVariadic(CalleeADC->getDecl())) 737 return false; 738 739 // Check certain C++-related inlining policies. 740 ASTContext &Ctx = CalleeADC->getASTContext(); 741 if (Ctx.getLangOpts().CPlusPlus) { 742 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) { 743 // Conditionally control the inlining of template functions. 744 if (!Opts.mayInlineTemplateFunctions()) 745 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate) 746 return false; 747 748 // Conditionally control the inlining of C++ standard library functions. 749 if (!Opts.mayInlineCXXStandardLibrary()) 750 if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation())) 751 if (AnalysisDeclContext::isInStdNamespace(FD)) 752 return false; 753 754 // Conditionally control the inlining of methods on objects that look 755 // like C++ containers. 756 if (!Opts.mayInlineCXXContainerMethods()) 757 if (!Ctx.getSourceManager().isInMainFile(FD->getLocation())) 758 if (isContainerMethod(Ctx, FD)) 759 return false; 760 761 // Conditionally control the inlining of the destructor of C++ shared_ptr. 762 // We don't currently do a good job modeling shared_ptr because we can't 763 // see the reference count, so treating as opaque is probably the best 764 // idea. 765 if (!Opts.mayInlineCXXSharedPtrDtor()) 766 if (isCXXSharedPtrDtor(FD)) 767 return false; 768 } 769 } 770 771 // It is possible that the CFG cannot be constructed. 772 // Be safe, and check if the CalleeCFG is valid. 773 const CFG *CalleeCFG = CalleeADC->getCFG(); 774 if (!CalleeCFG) 775 return false; 776 777 // Do not inline large functions. 778 if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize()) 779 return false; 780 781 // It is possible that the live variables analysis cannot be 782 // run. If so, bail out. 783 if (!CalleeADC->getAnalysis<RelaxedLiveVariables>()) 784 return false; 785 786 return true; 787 } 788 789 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D, 790 const ExplodedNode *Pred) { 791 if (!D) 792 return false; 793 794 AnalysisManager &AMgr = getAnalysisManager(); 795 AnalyzerOptions &Opts = AMgr.options; 796 AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager(); 797 AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D); 798 799 // Temporary object destructor processing is currently broken, so we never 800 // inline them. 801 // FIXME: Remove this once temp destructors are working. 802 if (isa<CXXDestructorCall>(Call)) { 803 if ((*currBldrCtx->getBlock())[currStmtIdx].getAs<CFGTemporaryDtor>()) 804 return false; 805 } 806 807 // The auto-synthesized bodies are essential to inline as they are 808 // usually small and commonly used. Note: we should do this check early on to 809 // ensure we always inline these calls. 810 if (CalleeADC->isBodyAutosynthesized()) 811 return true; 812 813 if (!AMgr.shouldInlineCall()) 814 return false; 815 816 // Check if this function has been marked as non-inlinable. 817 Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D); 818 if (MayInline.hasValue()) { 819 if (!MayInline.getValue()) 820 return false; 821 822 } else { 823 // We haven't actually checked the static properties of this function yet. 824 // Do that now, and record our decision in the function summaries. 825 if (mayInlineDecl(CalleeADC, Opts)) { 826 Engine.FunctionSummaries->markMayInline(D); 827 } else { 828 Engine.FunctionSummaries->markShouldNotInline(D); 829 return false; 830 } 831 } 832 833 // Check if we should inline a call based on its kind. 834 // FIXME: this checks both static and dynamic properties of the call, which 835 // means we're redoing a bit of work that could be cached in the function 836 // summary. 837 CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts); 838 if (CIP != CIP_Allowed) { 839 if (CIP == CIP_DisallowedAlways) { 840 assert(!MayInline.hasValue() || MayInline.getValue()); 841 Engine.FunctionSummaries->markShouldNotInline(D); 842 } 843 return false; 844 } 845 846 const CFG *CalleeCFG = CalleeADC->getCFG(); 847 848 // Do not inline if recursive or we've reached max stack frame count. 849 bool IsRecursive = false; 850 unsigned StackDepth = 0; 851 examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth); 852 if ((StackDepth >= Opts.InlineMaxStackDepth) && 853 ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize()) 854 || IsRecursive)) 855 return false; 856 857 // Do not inline large functions too many times. 858 if ((Engine.FunctionSummaries->getNumTimesInlined(D) > 859 Opts.getMaxTimesInlineLarge()) && 860 CalleeCFG->getNumBlockIDs() >= 861 Opts.getMinCFGSizeTreatFunctionsAsLarge()) { 862 NumReachedInlineCountMax++; 863 return false; 864 } 865 866 if (HowToInline == Inline_Minimal && 867 (CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize() 868 || IsRecursive)) 869 return false; 870 871 Engine.FunctionSummaries->bumpNumTimesInlined(D); 872 873 return true; 874 } 875 876 static bool isTrivialObjectAssignment(const CallEvent &Call) { 877 const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call); 878 if (!ICall) 879 return false; 880 881 const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl()); 882 if (!MD) 883 return false; 884 if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) 885 return false; 886 887 return MD->isTrivial(); 888 } 889 890 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred, 891 const CallEvent &CallTemplate) { 892 // Make sure we have the most recent state attached to the call. 893 ProgramStateRef State = Pred->getState(); 894 CallEventRef<> Call = CallTemplate.cloneWithState(State); 895 896 // Special-case trivial assignment operators. 897 if (isTrivialObjectAssignment(*Call)) { 898 performTrivialCopy(Bldr, Pred, *Call); 899 return; 900 } 901 902 // Try to inline the call. 903 // The origin expression here is just used as a kind of checksum; 904 // this should still be safe even for CallEvents that don't come from exprs. 905 const Expr *E = Call->getOriginExpr(); 906 907 ProgramStateRef InlinedFailedState = getInlineFailedState(State, E); 908 if (InlinedFailedState) { 909 // If we already tried once and failed, make sure we don't retry later. 910 State = InlinedFailedState; 911 } else { 912 RuntimeDefinition RD = Call->getRuntimeDefinition(); 913 const Decl *D = RD.getDecl(); 914 if (shouldInlineCall(*Call, D, Pred)) { 915 if (RD.mayHaveOtherDefinitions()) { 916 AnalyzerOptions &Options = getAnalysisManager().options; 917 918 // Explore with and without inlining the call. 919 if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) { 920 BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred); 921 return; 922 } 923 924 // Don't inline if we're not in any dynamic dispatch mode. 925 if (Options.getIPAMode() != IPAK_DynamicDispatch) { 926 conservativeEvalCall(*Call, Bldr, Pred, State); 927 return; 928 } 929 } 930 931 // We are not bifurcating and we do have a Decl, so just inline. 932 if (inlineCall(*Call, D, Bldr, Pred, State)) 933 return; 934 } 935 } 936 937 // If we can't inline it, handle the return value and invalidate the regions. 938 conservativeEvalCall(*Call, Bldr, Pred, State); 939 } 940 941 void ExprEngine::BifurcateCall(const MemRegion *BifurReg, 942 const CallEvent &Call, const Decl *D, 943 NodeBuilder &Bldr, ExplodedNode *Pred) { 944 assert(BifurReg); 945 BifurReg = BifurReg->StripCasts(); 946 947 // Check if we've performed the split already - note, we only want 948 // to split the path once per memory region. 949 ProgramStateRef State = Pred->getState(); 950 const unsigned *BState = 951 State->get<DynamicDispatchBifurcationMap>(BifurReg); 952 if (BState) { 953 // If we are on "inline path", keep inlining if possible. 954 if (*BState == DynamicDispatchModeInlined) 955 if (inlineCall(Call, D, Bldr, Pred, State)) 956 return; 957 // If inline failed, or we are on the path where we assume we 958 // don't have enough info about the receiver to inline, conjure the 959 // return value and invalidate the regions. 960 conservativeEvalCall(Call, Bldr, Pred, State); 961 return; 962 } 963 964 // If we got here, this is the first time we process a message to this 965 // region, so split the path. 966 ProgramStateRef IState = 967 State->set<DynamicDispatchBifurcationMap>(BifurReg, 968 DynamicDispatchModeInlined); 969 inlineCall(Call, D, Bldr, Pred, IState); 970 971 ProgramStateRef NoIState = 972 State->set<DynamicDispatchBifurcationMap>(BifurReg, 973 DynamicDispatchModeConservative); 974 conservativeEvalCall(Call, Bldr, Pred, NoIState); 975 976 NumOfDynamicDispatchPathSplits++; 977 } 978 979 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, 980 ExplodedNodeSet &Dst) { 981 ExplodedNodeSet dstPreVisit; 982 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this); 983 984 StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx); 985 986 if (RS->getRetValue()) { 987 for (ExplodedNodeSet::iterator it = dstPreVisit.begin(), 988 ei = dstPreVisit.end(); it != ei; ++it) { 989 B.generateNode(RS, *it, (*it)->getState()); 990 } 991 } 992 } 993