Home | History | Annotate | Download | only in src
      1 /* -----------------------------------------------------------------------------
      2 Software License for The Fraunhofer FDK AAC Codec Library for Android
      3 
      4  Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten
      5 Forschung e.V. All rights reserved.
      6 
      7  1.    INTRODUCTION
      8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
      9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
     10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
     11 a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
     14 general perceptual audio codecs. AAC-ELD is considered the best-performing
     15 full-bandwidth communications codec by independent studies and is widely
     16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
     17 specifications.
     18 
     19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
     20 those of Fraunhofer) may be obtained through Via Licensing
     21 (www.vialicensing.com) or through the respective patent owners individually for
     22 the purpose of encoding or decoding bit streams in products that are compliant
     23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
     24 Android devices already license these patent claims through Via Licensing or
     25 directly from the patent owners, and therefore FDK AAC Codec software may
     26 already be covered under those patent licenses when it is used for those
     27 licensed purposes only.
     28 
     29 Commercially-licensed AAC software libraries, including floating-point versions
     30 with enhanced sound quality, are also available from Fraunhofer. Users are
     31 encouraged to check the Fraunhofer website for additional applications
     32 information and documentation.
     33 
     34 2.    COPYRIGHT LICENSE
     35 
     36 Redistribution and use in source and binary forms, with or without modification,
     37 are permitted without payment of copyright license fees provided that you
     38 satisfy the following conditions:
     39 
     40 You must retain the complete text of this software license in redistributions of
     41 the FDK AAC Codec or your modifications thereto in source code form.
     42 
     43 You must retain the complete text of this software license in the documentation
     44 and/or other materials provided with redistributions of the FDK AAC Codec or
     45 your modifications thereto in binary form. You must make available free of
     46 charge copies of the complete source code of the FDK AAC Codec and your
     47 modifications thereto to recipients of copies in binary form.
     48 
     49 The name of Fraunhofer may not be used to endorse or promote products derived
     50 from this library without prior written permission.
     51 
     52 You may not charge copyright license fees for anyone to use, copy or distribute
     53 the FDK AAC Codec software or your modifications thereto.
     54 
     55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
     56 that you changed the software and the date of any change. For modified versions
     57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
     58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
     59 AAC Codec Library for Android."
     60 
     61 3.    NO PATENT LICENSE
     62 
     63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
     64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
     65 Fraunhofer provides no warranty of patent non-infringement with respect to this
     66 software.
     67 
     68 You may use this FDK AAC Codec software or modifications thereto only for
     69 purposes that are authorized by appropriate patent licenses.
     70 
     71 4.    DISCLAIMER
     72 
     73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
     74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
     75 including but not limited to the implied warranties of merchantability and
     76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
     78 or consequential damages, including but not limited to procurement of substitute
     79 goods or services; loss of use, data, or profits, or business interruption,
     80 however caused and on any theory of liability, whether in contract, strict
     81 liability, or tort (including negligence), arising in any way out of the use of
     82 this software, even if advised of the possibility of such damage.
     83 
     84 5.    CONTACT INFORMATION
     85 
     86 Fraunhofer Institute for Integrated Circuits IIS
     87 Attention: Audio and Multimedia Departments - FDK AAC LL
     88 Am Wolfsmantel 33
     89 91058 Erlangen, Germany
     90 
     91 www.iis.fraunhofer.de/amm
     92 amm-info (at) iis.fraunhofer.de
     93 ----------------------------------------------------------------------------- */
     94 
     95 /**************************** AAC encoder library ******************************
     96 
     97    Author(s):   M.Werner
     98 
     99    Description: Quantization
    100 
    101 *******************************************************************************/
    102 
    103 #include "quantize.h"
    104 
    105 #include "aacEnc_rom.h"
    106 
    107 /*****************************************************************************
    108 
    109     functionname: FDKaacEnc_quantizeLines
    110     description: quantizes spectrum lines
    111     returns:
    112     input: global gain, number of lines to process, spectral data
    113     output: quantized spectrum
    114 
    115 *****************************************************************************/
    116 static void FDKaacEnc_quantizeLines(INT gain, INT noOfLines,
    117                                     const FIXP_DBL *mdctSpectrum,
    118                                     SHORT *quaSpectrum, INT dZoneQuantEnable) {
    119   int line;
    120   FIXP_DBL k = FL2FXCONST_DBL(0.0f);
    121   FIXP_QTD quantizer = FDKaacEnc_quantTableQ[(-gain) & 3];
    122   INT quantizershift = ((-gain) >> 2) + 1;
    123   const INT kShift = 16;
    124 
    125   if (dZoneQuantEnable)
    126     k = FL2FXCONST_DBL(0.23f) >> kShift;
    127   else
    128     k = FL2FXCONST_DBL(-0.0946f + 0.5f) >> kShift;
    129 
    130   for (line = 0; line < noOfLines; line++) {
    131     FIXP_DBL accu = fMultDiv2(mdctSpectrum[line], quantizer);
    132 
    133     if (accu < FL2FXCONST_DBL(0.0f)) {
    134       accu = -accu;
    135       /* normalize */
    136       INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not
    137                                                     necessary here since test
    138                                                     value is always > 0 */
    139       accu <<= accuShift;
    140       INT tabIndex =
    141           (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
    142       INT totalShift = quantizershift - accuShift + 1;
    143       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],
    144                        FDKaacEnc_quantTableE[totalShift & 3]);
    145       totalShift = (16 - 4) - (3 * (totalShift >> 2));
    146       FDK_ASSERT(totalShift >= 0); /* MAX_QUANT_VIOLATION */
    147       accu >>= fixMin(totalShift, DFRACT_BITS - 1);
    148       quaSpectrum[line] =
    149           (SHORT)(-((LONG)(k + accu) >> (DFRACT_BITS - 1 - 16)));
    150     } else if (accu > FL2FXCONST_DBL(0.0f)) {
    151       /* normalize */
    152       INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not
    153                                                     necessary here since test
    154                                                     value is always > 0 */
    155       accu <<= accuShift;
    156       INT tabIndex =
    157           (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
    158       INT totalShift = quantizershift - accuShift + 1;
    159       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],
    160                        FDKaacEnc_quantTableE[totalShift & 3]);
    161       totalShift = (16 - 4) - (3 * (totalShift >> 2));
    162       FDK_ASSERT(totalShift >= 0); /* MAX_QUANT_VIOLATION */
    163       accu >>= fixMin(totalShift, DFRACT_BITS - 1);
    164       quaSpectrum[line] = (SHORT)((LONG)(k + accu) >> (DFRACT_BITS - 1 - 16));
    165     } else {
    166       quaSpectrum[line] = 0;
    167     }
    168   }
    169 }
    170 
    171 /*****************************************************************************
    172 
    173     functionname:iFDKaacEnc_quantizeLines
    174     description: iquantizes spectrum lines
    175                  mdctSpectrum = iquaSpectrum^4/3 *2^(0.25*gain)
    176     input: global gain, number of lines to process,quantized spectrum
    177     output: spectral data
    178 
    179 *****************************************************************************/
    180 static void FDKaacEnc_invQuantizeLines(INT gain, INT noOfLines,
    181                                        SHORT *quantSpectrum,
    182                                        FIXP_DBL *mdctSpectrum)
    183 
    184 {
    185   INT iquantizermod;
    186   INT iquantizershift;
    187   INT line;
    188 
    189   iquantizermod = gain & 3;
    190   iquantizershift = gain >> 2;
    191 
    192   for (line = 0; line < noOfLines; line++) {
    193     if (quantSpectrum[line] < 0) {
    194       FIXP_DBL accu;
    195       INT ex, specExp, tabIndex;
    196       FIXP_DBL s, t;
    197 
    198       accu = (FIXP_DBL)-quantSpectrum[line];
    199 
    200       ex = CountLeadingBits(accu);
    201       accu <<= ex;
    202       specExp = (DFRACT_BITS - 1) - ex;
    203 
    204       FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */
    205 
    206       tabIndex = (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
    207 
    208       /* calculate "mantissa" ^4/3 */
    209       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
    210 
    211       /* get approperiate exponent multiplier for specExp^3/4 combined with
    212        * scfMod */
    213       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
    214 
    215       /* multiply "mantissa" ^4/3 with exponent multiplier */
    216       accu = fMult(s, t);
    217 
    218       /* get approperiate exponent shifter */
    219       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp] -
    220                 1; /* -1 to avoid overflows in accu */
    221 
    222       if ((-iquantizershift - specExp) < 0)
    223         accu <<= -(-iquantizershift - specExp);
    224       else
    225         accu >>= -iquantizershift - specExp;
    226 
    227       mdctSpectrum[line] = -accu;
    228     } else if (quantSpectrum[line] > 0) {
    229       FIXP_DBL accu;
    230       INT ex, specExp, tabIndex;
    231       FIXP_DBL s, t;
    232 
    233       accu = (FIXP_DBL)(INT)quantSpectrum[line];
    234 
    235       ex = CountLeadingBits(accu);
    236       accu <<= ex;
    237       specExp = (DFRACT_BITS - 1) - ex;
    238 
    239       FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */
    240 
    241       tabIndex = (INT)(accu >> (DFRACT_BITS - 2 - MANT_DIGITS)) & (~MANT_SIZE);
    242 
    243       /* calculate "mantissa" ^4/3 */
    244       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
    245 
    246       /* get approperiate exponent multiplier for specExp^3/4 combined with
    247        * scfMod */
    248       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
    249 
    250       /* multiply "mantissa" ^4/3 with exponent multiplier */
    251       accu = fMult(s, t);
    252 
    253       /* get approperiate exponent shifter */
    254       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp] -
    255                 1; /* -1 to avoid overflows in accu */
    256 
    257       if ((-iquantizershift - specExp) < 0)
    258         accu <<= -(-iquantizershift - specExp);
    259       else
    260         accu >>= -iquantizershift - specExp;
    261 
    262       mdctSpectrum[line] = accu;
    263     } else {
    264       mdctSpectrum[line] = FL2FXCONST_DBL(0.0f);
    265     }
    266   }
    267 }
    268 
    269 /*****************************************************************************
    270 
    271     functionname: FDKaacEnc_QuantizeSpectrum
    272     description: quantizes the entire spectrum
    273     returns:
    274     input: number of scalefactor bands to be quantized, ...
    275     output: quantized spectrum
    276 
    277 *****************************************************************************/
    278 void FDKaacEnc_QuantizeSpectrum(INT sfbCnt, INT maxSfbPerGroup, INT sfbPerGroup,
    279                                 const INT *sfbOffset,
    280                                 const FIXP_DBL *mdctSpectrum, INT globalGain,
    281                                 const INT *scalefactors,
    282                                 SHORT *quantizedSpectrum,
    283                                 INT dZoneQuantEnable) {
    284   INT sfbOffs, sfb;
    285 
    286   /* in FDKaacEnc_quantizeLines quaSpectrum is calculated with:
    287         spec^(3/4) * 2^(-3/16*QSS) * 2^(3/4*scale) + k
    288      simplify scaling calculation and reduce QSS before:
    289         spec^(3/4) * 2^(-3/16*(QSS - 4*scale)) */
    290 
    291   for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup)
    292     for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
    293       INT scalefactor = scalefactors[sfbOffs + sfb];
    294 
    295       FDKaacEnc_quantizeLines(
    296           globalGain - scalefactor, /* QSS */
    297           sfbOffset[sfbOffs + sfb + 1] - sfbOffset[sfbOffs + sfb],
    298           mdctSpectrum + sfbOffset[sfbOffs + sfb],
    299           quantizedSpectrum + sfbOffset[sfbOffs + sfb], dZoneQuantEnable);
    300     }
    301 }
    302 
    303 /*****************************************************************************
    304 
    305     functionname: FDKaacEnc_calcSfbDist
    306     description: calculates distortion of quantized values
    307     returns: distortion
    308     input: gain, number of lines to process, spectral data
    309     output:
    310 
    311 *****************************************************************************/
    312 FIXP_DBL FDKaacEnc_calcSfbDist(const FIXP_DBL *mdctSpectrum,
    313                                SHORT *quantSpectrum, INT noOfLines, INT gain,
    314                                INT dZoneQuantEnable) {
    315   INT i, scale;
    316   FIXP_DBL xfsf;
    317   FIXP_DBL diff;
    318   FIXP_DBL invQuantSpec;
    319 
    320   xfsf = FL2FXCONST_DBL(0.0f);
    321 
    322   for (i = 0; i < noOfLines; i++) {
    323     /* quantization */
    324     FDKaacEnc_quantizeLines(gain, 1, &mdctSpectrum[i], &quantSpectrum[i],
    325                             dZoneQuantEnable);
    326 
    327     if (fAbs(quantSpectrum[i]) > MAX_QUANT) {
    328       return FL2FXCONST_DBL(0.0f);
    329     }
    330     /* inverse quantization */
    331     FDKaacEnc_invQuantizeLines(gain, 1, &quantSpectrum[i], &invQuantSpec);
    332 
    333     /* dist */
    334     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i] >> 1));
    335 
    336     scale = CountLeadingBits(diff);
    337     diff = scaleValue(diff, scale);
    338     diff = fPow2(diff);
    339     scale = fixMin(2 * (scale - 1), DFRACT_BITS - 1);
    340 
    341     diff = scaleValue(diff, -scale);
    342 
    343     xfsf = xfsf + diff;
    344   }
    345 
    346   xfsf = CalcLdData(xfsf);
    347 
    348   return xfsf;
    349 }
    350 
    351 /*****************************************************************************
    352 
    353     functionname: FDKaacEnc_calcSfbQuantEnergyAndDist
    354     description: calculates energy and distortion of quantized values
    355     returns:
    356     input: gain, number of lines to process, quantized spectral data,
    357            spectral data
    358     output: energy, distortion
    359 
    360 *****************************************************************************/
    361 void FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL *mdctSpectrum,
    362                                          SHORT *quantSpectrum, INT noOfLines,
    363                                          INT gain, FIXP_DBL *en,
    364                                          FIXP_DBL *dist) {
    365   INT i, scale;
    366   FIXP_DBL invQuantSpec;
    367   FIXP_DBL diff;
    368 
    369   FIXP_DBL energy = FL2FXCONST_DBL(0.0f);
    370   FIXP_DBL distortion = FL2FXCONST_DBL(0.0f);
    371 
    372   for (i = 0; i < noOfLines; i++) {
    373     if (fAbs(quantSpectrum[i]) > MAX_QUANT) {
    374       *en = FL2FXCONST_DBL(0.0f);
    375       *dist = FL2FXCONST_DBL(0.0f);
    376       return;
    377     }
    378 
    379     /* inverse quantization */
    380     FDKaacEnc_invQuantizeLines(gain, 1, &quantSpectrum[i], &invQuantSpec);
    381 
    382     /* energy */
    383     energy += fPow2(invQuantSpec);
    384 
    385     /* dist */
    386     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i] >> 1));
    387 
    388     scale = CountLeadingBits(diff);
    389     diff = scaleValue(diff, scale);
    390     diff = fPow2(diff);
    391 
    392     scale = fixMin(2 * (scale - 1), DFRACT_BITS - 1);
    393 
    394     diff = scaleValue(diff, -scale);
    395 
    396     distortion += diff;
    397   }
    398 
    399   *en = CalcLdData(energy) + FL2FXCONST_DBL(0.03125f);
    400   *dist = CalcLdData(distortion);
    401 }
    402