Home | History | Annotate | Download | only in verifier
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "method_verifier-inl.h"
     18 
     19 #include <ostream>
     20 
     21 #include "android-base/stringprintf.h"
     22 
     23 #include "art_field-inl.h"
     24 #include "art_method-inl.h"
     25 #include "base/aborting.h"
     26 #include "base/enums.h"
     27 #include "base/leb128.h"
     28 #include "base/indenter.h"
     29 #include "base/logging.h"  // For VLOG.
     30 #include "base/mutex-inl.h"
     31 #include "base/sdk_version.h"
     32 #include "base/stl_util.h"
     33 #include "base/systrace.h"
     34 #include "base/time_utils.h"
     35 #include "base/utils.h"
     36 #include "class_linker.h"
     37 #include "class_root.h"
     38 #include "compiler_callbacks.h"
     39 #include "dex/class_accessor-inl.h"
     40 #include "dex/descriptors_names.h"
     41 #include "dex/dex_file-inl.h"
     42 #include "dex/dex_file_exception_helpers.h"
     43 #include "dex/dex_instruction-inl.h"
     44 #include "dex/dex_instruction_utils.h"
     45 #include "experimental_flags.h"
     46 #include "gc/accounting/card_table-inl.h"
     47 #include "handle_scope-inl.h"
     48 #include "intern_table.h"
     49 #include "mirror/class-inl.h"
     50 #include "mirror/class.h"
     51 #include "mirror/class_loader.h"
     52 #include "mirror/dex_cache-inl.h"
     53 #include "mirror/method_handle_impl.h"
     54 #include "mirror/method_type.h"
     55 #include "mirror/object-inl.h"
     56 #include "mirror/object_array-inl.h"
     57 #include "mirror/var_handle.h"
     58 #include "obj_ptr-inl.h"
     59 #include "reg_type-inl.h"
     60 #include "register_line-inl.h"
     61 #include "runtime.h"
     62 #include "scoped_newline.h"
     63 #include "scoped_thread_state_change-inl.h"
     64 #include "stack.h"
     65 #include "vdex_file.h"
     66 #include "verifier_compiler_binding.h"
     67 #include "verifier_deps.h"
     68 
     69 namespace art {
     70 namespace verifier {
     71 
     72 using android::base::StringPrintf;
     73 
     74 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
     75 
     76 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
     77     : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
     78 
     79 void PcToRegisterLineTable::Init(RegisterTrackingMode mode,
     80                                  InstructionFlags* flags,
     81                                  uint32_t insns_size,
     82                                  uint16_t registers_size,
     83                                  ScopedArenaAllocator& allocator,
     84                                  RegTypeCache* reg_types) {
     85   DCHECK_GT(insns_size, 0U);
     86   register_lines_.resize(insns_size);
     87   for (uint32_t i = 0; i < insns_size; i++) {
     88     bool interesting = false;
     89     switch (mode) {
     90       case kTrackRegsAll:
     91         interesting = flags[i].IsOpcode();
     92         break;
     93       case kTrackCompilerInterestPoints:
     94         interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
     95         break;
     96       case kTrackRegsBranches:
     97         interesting = flags[i].IsBranchTarget();
     98         break;
     99       default:
    100         break;
    101     }
    102     if (interesting) {
    103       register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
    104     }
    105   }
    106 }
    107 
    108 PcToRegisterLineTable::~PcToRegisterLineTable() {}
    109 
    110 namespace impl {
    111 namespace {
    112 
    113 enum class CheckAccess {
    114   kYes,
    115   kNo,
    116 };
    117 
    118 enum class FieldAccessType {
    119   kAccGet,
    120   kAccPut
    121 };
    122 
    123 template <bool kVerifierDebug>
    124 class MethodVerifier final : public ::art::verifier::MethodVerifier {
    125  public:
    126   bool IsInstanceConstructor() const {
    127     return IsConstructor() && !IsStatic();
    128   }
    129 
    130   const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
    131       REQUIRES_SHARED(Locks::mutator_lock_) {
    132     DCHECK(!HasFailures());
    133     const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
    134     DCHECK(!HasFailures());
    135     return result;
    136   }
    137 
    138   void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
    139 
    140  private:
    141   MethodVerifier(Thread* self,
    142                  const DexFile* dex_file,
    143                  Handle<mirror::DexCache> dex_cache,
    144                  Handle<mirror::ClassLoader> class_loader,
    145                  const dex::ClassDef& class_def,
    146                  const dex::CodeItem* code_item,
    147                  uint32_t method_idx,
    148                  ArtMethod* method,
    149                  uint32_t access_flags,
    150                  bool can_load_classes,
    151                  bool allow_soft_failures,
    152                  bool need_precise_constants,
    153                  bool verify_to_dump,
    154                  bool allow_thread_suspension,
    155                  uint32_t api_level)
    156       REQUIRES_SHARED(Locks::mutator_lock_);
    157 
    158   void UninstantiableError(const char* descriptor) {
    159     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
    160                                              << "non-instantiable klass " << descriptor;
    161   }
    162   static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
    163       REQUIRES_SHARED(Locks::mutator_lock_) {
    164     return klass->IsInstantiable() || klass->IsPrimitive();
    165   }
    166 
    167   // Is the method being verified a constructor? See the comment on the field.
    168   bool IsConstructor() const {
    169     return is_constructor_;
    170   }
    171 
    172   // Is the method verified static?
    173   bool IsStatic() const {
    174     return (method_access_flags_ & kAccStatic) != 0;
    175   }
    176 
    177   // Adds the given string to the beginning of the last failure message.
    178   void PrependToLastFailMessage(std::string);
    179 
    180   // Adds the given string to the end of the last failure message.
    181   void AppendToLastFailMessage(const std::string& append);
    182 
    183   /*
    184    * Compute the width of the instruction at each address in the instruction stream, and store it in
    185    * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
    186    * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
    187    *
    188    * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
    189    *
    190    * Performs some static checks, notably:
    191    * - opcode of first instruction begins at index 0
    192    * - only documented instructions may appear
    193    * - each instruction follows the last
    194    * - last byte of last instruction is at (code_length-1)
    195    *
    196    * Logs an error and returns "false" on failure.
    197    */
    198   bool ComputeWidthsAndCountOps();
    199 
    200   /*
    201    * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
    202    * "branch target" flags for exception handlers.
    203    *
    204    * Call this after widths have been set in "insn_flags".
    205    *
    206    * Returns "false" if something in the exception table looks fishy, but we're expecting the
    207    * exception table to be somewhat sane.
    208    */
    209   bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
    210 
    211   /*
    212    * Perform static verification on all instructions in a method.
    213    *
    214    * Walks through instructions in a method calling VerifyInstruction on each.
    215    */
    216   template <bool kAllowRuntimeOnlyInstructions>
    217   bool VerifyInstructions();
    218 
    219   /*
    220    * Perform static verification on an instruction.
    221    *
    222    * As a side effect, this sets the "branch target" flags in InsnFlags.
    223    *
    224    * "(CF)" items are handled during code-flow analysis.
    225    *
    226    * v3 4.10.1
    227    * - target of each jump and branch instruction must be valid
    228    * - targets of switch statements must be valid
    229    * - operands referencing constant pool entries must be valid
    230    * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
    231    * - (CF) operands of method invocation instructions must be valid
    232    * - (CF) only invoke-direct can call a method starting with '<'
    233    * - (CF) <clinit> must never be called explicitly
    234    * - operands of instanceof, checkcast, new (and variants) must be valid
    235    * - new-array[-type] limited to 255 dimensions
    236    * - can't use "new" on an array class
    237    * - (?) limit dimensions in multi-array creation
    238    * - local variable load/store register values must be in valid range
    239    *
    240    * v3 4.11.1.2
    241    * - branches must be within the bounds of the code array
    242    * - targets of all control-flow instructions are the start of an instruction
    243    * - register accesses fall within range of allocated registers
    244    * - (N/A) access to constant pool must be of appropriate type
    245    * - code does not end in the middle of an instruction
    246    * - execution cannot fall off the end of the code
    247    * - (earlier) for each exception handler, the "try" area must begin and
    248    *   end at the start of an instruction (end can be at the end of the code)
    249    * - (earlier) for each exception handler, the handler must start at a valid
    250    *   instruction
    251    */
    252   template <bool kAllowRuntimeOnlyInstructions>
    253   bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
    254 
    255   /* Ensure that the register index is valid for this code item. */
    256   bool CheckRegisterIndex(uint32_t idx);
    257 
    258   /* Ensure that the wide register index is valid for this code item. */
    259   bool CheckWideRegisterIndex(uint32_t idx);
    260 
    261   // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
    262   // the call site index is in the valid range.
    263   bool CheckCallSiteIndex(uint32_t idx);
    264 
    265   // Perform static checks on a field Get or set instruction. All we do here is ensure that the
    266   // field index is in the valid range.
    267   bool CheckFieldIndex(uint32_t idx);
    268 
    269   // Perform static checks on a method invocation instruction. All we do here is ensure that the
    270   // method index is in the valid range.
    271   bool CheckMethodIndex(uint32_t idx);
    272 
    273   // Perform static checks on an instruction referencing a constant method handle. All we do here
    274   // is ensure that the method index is in the valid range.
    275   bool CheckMethodHandleIndex(uint32_t idx);
    276 
    277   // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
    278   // reference isn't for an array class.
    279   bool CheckNewInstance(dex::TypeIndex idx);
    280 
    281   // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
    282   // prototype index is in the valid range.
    283   bool CheckPrototypeIndex(uint32_t idx);
    284 
    285   /* Ensure that the string index is in the valid range. */
    286   bool CheckStringIndex(uint32_t idx);
    287 
    288   // Perform static checks on an instruction that takes a class constant. Ensure that the class
    289   // index is in the valid range.
    290   bool CheckTypeIndex(dex::TypeIndex idx);
    291 
    292   // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
    293   // creating an array of arrays that causes the number of dimensions to exceed 255.
    294   bool CheckNewArray(dex::TypeIndex idx);
    295 
    296   // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
    297   bool CheckArrayData(uint32_t cur_offset);
    298 
    299   // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
    300   // into an exception handler, but it's valid to do so as long as the target isn't a
    301   // "move-exception" instruction. We verify that in a later stage.
    302   // The dex format forbids certain instructions from branching to themselves.
    303   // Updates "insn_flags_", setting the "branch target" flag.
    304   bool CheckBranchTarget(uint32_t cur_offset);
    305 
    306   // Verify a switch table. "cur_offset" is the offset of the switch instruction.
    307   // Updates "insn_flags_", setting the "branch target" flag.
    308   bool CheckSwitchTargets(uint32_t cur_offset);
    309 
    310   // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
    311   // filled-new-array.
    312   // - vA holds word count (0-5), args[] have values.
    313   // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
    314   // takes a double is done with consecutive registers. This requires parsing the target method
    315   // signature, which we will be doing later on during the code flow analysis.
    316   bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]);
    317 
    318   // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
    319   // or filled-new-array/range.
    320   // - vA holds word count, vC holds index of first reg.
    321   bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC);
    322 
    323   // Checks the method matches the expectations required to be signature polymorphic.
    324   bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
    325 
    326   // Checks the invoked receiver matches the expectations for signature polymorphic methods.
    327   bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
    328 
    329   // Extract the relative offset from a branch instruction.
    330   // Returns "false" on failure (e.g. this isn't a branch instruction).
    331   bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
    332                        bool* selfOkay);
    333 
    334   /* Perform detailed code-flow analysis on a single method. */
    335   bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
    336 
    337   // Set the register types for the first instruction in the method based on the method signature.
    338   // This has the side-effect of validating the signature.
    339   bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
    340 
    341   /*
    342    * Perform code flow on a method.
    343    *
    344    * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
    345    * instruction, process it (setting additional "changed" bits), and repeat until there are no
    346    * more.
    347    *
    348    * v3 4.11.1.1
    349    * - (N/A) operand stack is always the same size
    350    * - operand stack [registers] contain the correct types of values
    351    * - local variables [registers] contain the correct types of values
    352    * - methods are invoked with the appropriate arguments
    353    * - fields are assigned using values of appropriate types
    354    * - opcodes have the correct type values in operand registers
    355    * - there is never an uninitialized class instance in a local variable in code protected by an
    356    *   exception handler (operand stack is okay, because the operand stack is discarded when an
    357    *   exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
    358    *   register typing]
    359    *
    360    * v3 4.11.1.2
    361    * - execution cannot fall off the end of the code
    362    *
    363    * (We also do many of the items described in the "static checks" sections, because it's easier to
    364    * do them here.)
    365    *
    366    * We need an array of RegType values, one per register, for every instruction. If the method uses
    367    * monitor-enter, we need extra data for every register, and a stack for every "interesting"
    368    * instruction. In theory this could become quite large -- up to several megabytes for a monster
    369    * function.
    370    *
    371    * NOTE:
    372    * The spec forbids backward branches when there's an uninitialized reference in a register. The
    373    * idea is to prevent something like this:
    374    *   loop:
    375    *     move r1, r0
    376    *     new-instance r0, MyClass
    377    *     ...
    378    *     if-eq rN, loop  // once
    379    *   initialize r0
    380    *
    381    * This leaves us with two different instances, both allocated by the same instruction, but only
    382    * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
    383    * it by preventing backward branches. We achieve identical results without restricting code
    384    * reordering by specifying that you can't execute the new-instance instruction if a register
    385    * contains an uninitialized instance created by that same instruction.
    386    */
    387   bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
    388 
    389   /*
    390    * Perform verification for a single instruction.
    391    *
    392    * This requires fully decoding the instruction to determine the effect it has on registers.
    393    *
    394    * Finds zero or more following instructions and sets the "changed" flag if execution at that
    395    * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
    396    * addresses. Does not set or clear any other flags in "insn_flags_".
    397    */
    398   bool CodeFlowVerifyInstruction(uint32_t* start_guess)
    399       REQUIRES_SHARED(Locks::mutator_lock_);
    400 
    401   // Perform verification of a new array instruction
    402   void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
    403       REQUIRES_SHARED(Locks::mutator_lock_);
    404 
    405   // Helper to perform verification on puts of primitive type.
    406   void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
    407                           const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
    408 
    409   // Perform verification of an aget instruction. The destination register's type will be set to
    410   // be that of component type of the array unless the array type is unknown, in which case a
    411   // bottom type inferred from the type of instruction is used. is_primitive is false for an
    412   // aget-object.
    413   void VerifyAGet(const Instruction* inst, const RegType& insn_type,
    414                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
    415 
    416   // Perform verification of an aput instruction.
    417   void VerifyAPut(const Instruction* inst, const RegType& insn_type,
    418                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
    419 
    420   // Lookup instance field and fail for resolution violations
    421   ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
    422       REQUIRES_SHARED(Locks::mutator_lock_);
    423 
    424   // Lookup static field and fail for resolution violations
    425   ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
    426 
    427   // Perform verification of an iget/sget/iput/sput instruction.
    428   template <FieldAccessType kAccType>
    429   void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
    430                            bool is_primitive, bool is_static)
    431       REQUIRES_SHARED(Locks::mutator_lock_);
    432 
    433   // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
    434   // the referrer can access the resolved class.
    435   template <CheckAccess C>
    436   const RegType& ResolveClass(dex::TypeIndex class_idx)
    437       REQUIRES_SHARED(Locks::mutator_lock_);
    438 
    439   /*
    440    * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
    441    * address, determine the Join of all exceptions that can land here. Fails if no matching
    442    * exception handler can be found or if the Join of exception types fails.
    443    */
    444   const RegType& GetCaughtExceptionType()
    445       REQUIRES_SHARED(Locks::mutator_lock_);
    446 
    447   /*
    448    * Resolves a method based on an index and performs access checks to ensure
    449    * the referrer can access the resolved method.
    450    * Does not throw exceptions.
    451    */
    452   ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
    453       REQUIRES_SHARED(Locks::mutator_lock_);
    454 
    455   /*
    456    * Verify the arguments to a method. We're executing in "method", making
    457    * a call to the method reference in vB.
    458    *
    459    * If this is a "direct" invoke, we allow calls to <init>. For calls to
    460    * <init>, the first argument may be an uninitialized reference. Otherwise,
    461    * calls to anything starting with '<' will be rejected, as will any
    462    * uninitialized reference arguments.
    463    *
    464    * For non-static method calls, this will verify that the method call is
    465    * appropriate for the "this" argument.
    466    *
    467    * The method reference is in vBBBB. The "is_range" parameter determines
    468    * whether we use 0-4 "args" values or a range of registers defined by
    469    * vAA and vCCCC.
    470    *
    471    * Widening conversions on integers and references are allowed, but
    472    * narrowing conversions are not.
    473    *
    474    * Returns the resolved method on success, null on failure (with *failure
    475    * set appropriately).
    476    */
    477   ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
    478       REQUIRES_SHARED(Locks::mutator_lock_);
    479 
    480   // Similar checks to the above, but on the proto. Will be used when the method cannot be
    481   // resolved.
    482   void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
    483                                             bool is_range)
    484       REQUIRES_SHARED(Locks::mutator_lock_);
    485 
    486   template <class T>
    487   ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
    488                                                       MethodType method_type, bool is_range,
    489                                                       ArtMethod* res_method)
    490       REQUIRES_SHARED(Locks::mutator_lock_);
    491 
    492   /*
    493    * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
    494    */
    495   bool CheckCallSite(uint32_t call_site_idx);
    496 
    497   /*
    498    * Verify that the target instruction is not "move-exception". It's important that the only way
    499    * to execute a move-exception is as the first instruction of an exception handler.
    500    * Returns "true" if all is well, "false" if the target instruction is move-exception.
    501    */
    502   bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
    503     if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
    504       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
    505       return false;
    506     }
    507     return true;
    508   }
    509 
    510   /*
    511    * Verify that the target instruction is not "move-result". It is important that we cannot
    512    * branch to move-result instructions, but we have to make this a distinct check instead of
    513    * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
    514    * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
    515    */
    516   bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
    517     if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
    518         ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
    519       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
    520       return false;
    521     }
    522     return true;
    523   }
    524 
    525   /*
    526    * Verify that the target instruction is not "move-result" or "move-exception". This is to
    527    * be used when checking branch and switch instructions, but not instructions that can
    528    * continue.
    529    */
    530   bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
    531     return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
    532   }
    533 
    534   /*
    535   * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
    536   * next_insn, and set the changed flag on the target address if any of the registers were changed.
    537   * In the case of fall-through, update the merge line on a change as its the working line for the
    538   * next instruction.
    539   * Returns "false" if an error is encountered.
    540   */
    541   bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
    542       REQUIRES_SHARED(Locks::mutator_lock_);
    543 
    544   // Return the register type for the method.
    545   const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
    546 
    547   // Get a type representing the declaring class of the method.
    548   const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_);
    549 
    550   InstructionFlags* CurrentInsnFlags() {
    551     return &GetModifiableInstructionFlags(work_insn_idx_);
    552   }
    553 
    554   const RegType& DetermineCat1Constant(int32_t value, bool precise)
    555       REQUIRES_SHARED(Locks::mutator_lock_);
    556 
    557   // Try to create a register type from the given class. In case a precise type is requested, but
    558   // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
    559   // non-precise reference will be returned.
    560   // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
    561   //       actually touched.
    562   const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
    563       REQUIRES_SHARED(Locks::mutator_lock_);
    564 
    565   ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
    566 
    567   ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
    568     return insn_flags_[index];
    569   }
    570 
    571   // Returns the method index of an invoke instruction.
    572   uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
    573       REQUIRES_SHARED(Locks::mutator_lock_);
    574   // Returns the field index of a field access instruction.
    575   uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
    576       REQUIRES_SHARED(Locks::mutator_lock_);
    577 
    578   // Run verification on the method. Returns true if verification completes and false if the input
    579   // has an irrecoverable corruption.
    580   bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
    581 
    582   // Dump the failures encountered by the verifier.
    583   std::ostream& DumpFailures(std::ostream& os);
    584 
    585   // Dump the state of the verifier, namely each instruction, what flags are set on it, register
    586   // information
    587   void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
    588     VariableIndentationOutputStream vios(&os);
    589     Dump(&vios);
    590   }
    591   void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
    592 
    593   ArtMethod* method_being_verified_;  // Its ArtMethod representation if known.
    594   const uint32_t method_access_flags_;  // Method's access flags.
    595   const RegType* return_type_;  // Lazily computed return type of the method.
    596   // The dex_cache for the declaring class of the method.
    597   Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
    598   // The class loader for the declaring class of the method.
    599   Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
    600   const dex::ClassDef& class_def_;  // The class def of the declaring class of the method.
    601   const RegType* declaring_class_;  // Lazily computed reg type of the method's declaring class.
    602 
    603   // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
    604   uint32_t interesting_dex_pc_;
    605   // The container into which FindLocksAtDexPc should write the registers containing held locks,
    606   // null if we're not doing FindLocksAtDexPc.
    607   std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
    608 
    609 
    610   // An optimization where instead of generating unique RegTypes for constants we use imprecise
    611   // constants that cover a range of constants. This isn't good enough for deoptimization that
    612   // avoids loading from registers in the case of a constant as the dex instruction set lost the
    613   // notion of whether a value should be in a floating point or general purpose register file.
    614   const bool need_precise_constants_;
    615 
    616   // Indicates whether we verify to dump the info. In that case we accept quickened instructions
    617   // even though we might detect to be a compiler. Should only be set when running
    618   // VerifyMethodAndDump.
    619   const bool verify_to_dump_;
    620 
    621   // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
    622   // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
    623   // FindLocksAtDexPC, resulting in deadlocks.
    624   const bool allow_thread_suspension_;
    625 
    626   // Whether the method seems to be a constructor. Note that this field exists as we can't trust
    627   // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
    628   // correctly.
    629   //
    630   // Note: this flag is only valid once Verify() has started.
    631   bool is_constructor_;
    632 
    633   // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
    634   // Instead, unset level should correspond to max().
    635   const uint32_t api_level_;
    636 
    637   friend class ::art::verifier::MethodVerifier;
    638 
    639   DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
    640 };
    641 
    642 // Note: returns true on failure.
    643 template <bool kVerifierDebug>
    644 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
    645                                                         const char* error_msg,
    646                                                         uint32_t work_insn_idx) {
    647   if (kIsDebugBuild) {
    648     // In a debug build, abort if the error condition is wrong. Only warn if
    649     // we are already aborting (as this verification is likely run to print
    650     // lock information).
    651     if (LIKELY(gAborting == 0)) {
    652       DCHECK(condition) << error_msg << work_insn_idx << " "
    653                         << dex_file_->PrettyMethod(dex_method_idx_);
    654     } else {
    655       if (!condition) {
    656         LOG(ERROR) << error_msg << work_insn_idx;
    657         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
    658         return true;
    659       }
    660     }
    661   } else {
    662     // In a non-debug build, just fail the class.
    663     if (!condition) {
    664       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
    665       return true;
    666     }
    667   }
    668 
    669   return false;
    670 }
    671 
    672 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
    673   if (!accessor.HasCodeItem()) {
    674     return false;
    675   }
    676 
    677   uint16_t registers_size = accessor.RegistersSize();
    678   uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
    679 
    680   return registers_size * insns_size > 4*1024*1024;
    681 }
    682 
    683 template <bool kVerifierDebug>
    684 MethodVerifier<kVerifierDebug>::MethodVerifier(Thread* self,
    685                                                const DexFile* dex_file,
    686                                                Handle<mirror::DexCache> dex_cache,
    687                                                Handle<mirror::ClassLoader> class_loader,
    688                                                const dex::ClassDef& class_def,
    689                                                const dex::CodeItem* code_item,
    690                                                uint32_t dex_method_idx,
    691                                                ArtMethod* method,
    692                                                uint32_t method_access_flags,
    693                                                bool can_load_classes,
    694                                                bool allow_soft_failures,
    695                                                bool need_precise_constants,
    696                                                bool verify_to_dump,
    697                                                bool allow_thread_suspension,
    698                                                uint32_t api_level)
    699     : art::verifier::MethodVerifier(self,
    700                                     dex_file,
    701                                     code_item,
    702                                     dex_method_idx,
    703                                     can_load_classes,
    704                                     allow_thread_suspension,
    705                                     allow_soft_failures),
    706       method_being_verified_(method),
    707       method_access_flags_(method_access_flags),
    708       return_type_(nullptr),
    709       dex_cache_(dex_cache),
    710       class_loader_(class_loader),
    711       class_def_(class_def),
    712       declaring_class_(nullptr),
    713       interesting_dex_pc_(-1),
    714       monitor_enter_dex_pcs_(nullptr),
    715       need_precise_constants_(need_precise_constants),
    716       verify_to_dump_(verify_to_dump),
    717       allow_thread_suspension_(allow_thread_suspension),
    718       is_constructor_(false),
    719       api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
    720 }
    721 
    722 template <bool kVerifierDebug>
    723 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
    724   CHECK(monitor_enter_dex_pcs_ != nullptr);
    725   CHECK(code_item_accessor_.HasCodeItem());  // This only makes sense for methods with code.
    726 
    727   // Quick check whether there are any monitor_enter instructions before verifying.
    728   for (const DexInstructionPcPair& inst : code_item_accessor_) {
    729     if (inst->Opcode() == Instruction::MONITOR_ENTER) {
    730       // Strictly speaking, we ought to be able to get away with doing a subset of the full method
    731       // verification. In practice, the phase we want relies on data structures set up by all the
    732       // earlier passes, so we just run the full method verification and bail out early when we've
    733       // got what we wanted.
    734       Verify();
    735       return;
    736     }
    737   }
    738 }
    739 
    740 template <bool kVerifierDebug>
    741 bool MethodVerifier<kVerifierDebug>::Verify() {
    742   // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
    743   // the name.
    744   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
    745   const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
    746   bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
    747   bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
    748   bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
    749   // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
    750   if ((method_access_flags_ & kAccConstructor) != 0) {
    751     if (!constructor_by_name) {
    752       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    753             << "method is marked as constructor, but not named accordingly";
    754       return false;
    755     }
    756     is_constructor_ = true;
    757   } else if (constructor_by_name) {
    758     LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
    759                  << " not marked as constructor.";
    760     is_constructor_ = true;
    761   }
    762   // If it's a constructor, check whether IsStatic() matches the name.
    763   // This should have been rejected by the dex file verifier. Only do in debug build.
    764   if (kIsDebugBuild) {
    765     if (IsConstructor()) {
    766       if (IsStatic() ^ static_constructor_by_name) {
    767         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    768               << "constructor name doesn't match static flag";
    769         return false;
    770       }
    771     }
    772   }
    773 
    774   // Methods may only have one of public/protected/private.
    775   // This should have been rejected by the dex file verifier. Only do in debug build.
    776   if (kIsDebugBuild) {
    777     size_t access_mod_count =
    778         (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
    779         (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
    780         (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
    781     if (access_mod_count > 1) {
    782       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
    783       return false;
    784     }
    785   }
    786 
    787   // If there aren't any instructions, make sure that's expected, then exit successfully.
    788   if (!code_item_accessor_.HasCodeItem()) {
    789     // Only native or abstract methods may not have code.
    790     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
    791       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
    792       return false;
    793     }
    794 
    795     // This should have been rejected by the dex file verifier. Only do in debug build.
    796     // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
    797     if (kIsDebugBuild) {
    798       if ((method_access_flags_ & kAccAbstract) != 0) {
    799         // Abstract methods are not allowed to have the following flags.
    800         static constexpr uint32_t kForbidden =
    801             kAccPrivate |
    802             kAccStatic |
    803             kAccFinal |
    804             kAccNative |
    805             kAccStrict |
    806             kAccSynchronized;
    807         if ((method_access_flags_ & kForbidden) != 0) {
    808           Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    809                 << "method can't be abstract and private/static/final/native/strict/synchronized";
    810           return false;
    811         }
    812       }
    813       if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
    814         // Interface methods must be public and abstract (if default methods are disabled).
    815         uint32_t kRequired = kAccPublic;
    816         if ((method_access_flags_ & kRequired) != kRequired) {
    817           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
    818           return false;
    819         }
    820         // In addition to the above, interface methods must not be protected.
    821         static constexpr uint32_t kForbidden = kAccProtected;
    822         if ((method_access_flags_ & kForbidden) != 0) {
    823           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
    824           return false;
    825         }
    826       }
    827       // We also don't allow constructors to be abstract or native.
    828       if (IsConstructor()) {
    829         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
    830         return false;
    831       }
    832     }
    833     return true;
    834   }
    835 
    836   // This should have been rejected by the dex file verifier. Only do in debug build.
    837   if (kIsDebugBuild) {
    838     // When there's code, the method must not be native or abstract.
    839     if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
    840       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
    841       return false;
    842     }
    843 
    844     if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
    845       // Interfaces may always have static initializers for their fields. If we are running with
    846       // default methods enabled we also allow other public, static, non-final methods to have code.
    847       // Otherwise that is the only type of method allowed.
    848       if (!(IsConstructor() && IsStatic())) {
    849         if (IsInstanceConstructor()) {
    850           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
    851           return false;
    852         } else if (method_access_flags_ & kAccFinal) {
    853           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
    854           return false;
    855         } else {
    856           uint32_t access_flag_options = kAccPublic;
    857           if (dex_file_->SupportsDefaultMethods()) {
    858             access_flag_options |= kAccPrivate;
    859           }
    860           if (!(method_access_flags_ & access_flag_options)) {
    861             Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    862                 << "interfaces may not have protected or package-private members";
    863             return false;
    864           }
    865         }
    866       }
    867     }
    868 
    869     // Instance constructors must not be synchronized.
    870     if (IsInstanceConstructor()) {
    871       static constexpr uint32_t kForbidden = kAccSynchronized;
    872       if ((method_access_flags_ & kForbidden) != 0) {
    873         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
    874         return false;
    875       }
    876     }
    877   }
    878 
    879   // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
    880   if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
    881     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
    882                                       << code_item_accessor_.InsSize()
    883                                       << " regs=" << code_item_accessor_.RegistersSize();
    884     return false;
    885   }
    886 
    887   // Allocate and initialize an array to hold instruction data.
    888   insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
    889       code_item_accessor_.InsnsSizeInCodeUnits()));
    890   DCHECK(insn_flags_ != nullptr);
    891   std::uninitialized_fill_n(insn_flags_.get(),
    892                             code_item_accessor_.InsnsSizeInCodeUnits(),
    893                             InstructionFlags());
    894   // Run through the instructions and see if the width checks out.
    895   bool result = ComputeWidthsAndCountOps();
    896   bool allow_runtime_only_instructions = !Runtime::Current()->IsAotCompiler() || verify_to_dump_;
    897   // Flag instructions guarded by a "try" block and check exception handlers.
    898   result = result && ScanTryCatchBlocks();
    899   // Perform static instruction verification.
    900   result = result && (allow_runtime_only_instructions
    901                           ? VerifyInstructions<true>()
    902                           : VerifyInstructions<false>());
    903   // Perform code-flow analysis and return.
    904   result = result && VerifyCodeFlow();
    905 
    906   return result;
    907 }
    908 
    909 template <bool kVerifierDebug>
    910 void MethodVerifier<kVerifierDebug>::PrependToLastFailMessage(std::string prepend) {
    911   size_t failure_num = failure_messages_.size();
    912   DCHECK_NE(failure_num, 0U);
    913   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
    914   prepend += last_fail_message->str();
    915   failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
    916   delete last_fail_message;
    917 }
    918 
    919 template <bool kVerifierDebug>
    920 void MethodVerifier<kVerifierDebug>::AppendToLastFailMessage(const std::string& append) {
    921   size_t failure_num = failure_messages_.size();
    922   DCHECK_NE(failure_num, 0U);
    923   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
    924   (*last_fail_message) << append;
    925 }
    926 
    927 template <bool kVerifierDebug>
    928 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
    929   // We can't assume the instruction is well formed, handle the case where calculating the size
    930   // goes past the end of the code item.
    931   SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
    932   for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
    933     // In case the instruction goes past the end of the code item, make sure to not process it.
    934     SafeDexInstructionIterator next = it;
    935     ++next;
    936     if (next.IsErrorState()) {
    937       break;
    938     }
    939     Instruction::Code opcode = it->Opcode();
    940     switch (opcode) {
    941       case Instruction::APUT_OBJECT:
    942       case Instruction::CHECK_CAST:
    943         has_check_casts_ = true;
    944         break;
    945       default:
    946         break;
    947     }
    948     GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
    949   }
    950 
    951   if (it != code_item_accessor_.end()) {
    952     const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
    953     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
    954                                       << it.DexPc() << " vs. " << insns_size << ")";
    955     return false;
    956   }
    957 
    958   return true;
    959 }
    960 
    961 template <bool kVerifierDebug>
    962 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
    963   const uint32_t tries_size = code_item_accessor_.TriesSize();
    964   if (tries_size == 0) {
    965     return true;
    966   }
    967   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
    968   for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
    969     const uint32_t start = try_item.start_addr_;
    970     const uint32_t end = start + try_item.insn_count_;
    971     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
    972       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
    973                                         << " endAddr=" << end << " (size=" << insns_size << ")";
    974       return false;
    975     }
    976     if (!GetInstructionFlags(start).IsOpcode()) {
    977       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    978           << "'try' block starts inside an instruction (" << start << ")";
    979       return false;
    980     }
    981     DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
    982     for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
    983       GetModifiableInstructionFlags(it.DexPc()).SetInTry();
    984     }
    985   }
    986   // Iterate over each of the handlers to verify target addresses.
    987   const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
    988   const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    989   ClassLinker* linker = Runtime::Current()->GetClassLinker();
    990   for (uint32_t idx = 0; idx < handlers_size; idx++) {
    991     CatchHandlerIterator iterator(handlers_ptr);
    992     for (; iterator.HasNext(); iterator.Next()) {
    993       uint32_t dex_pc = iterator.GetHandlerAddress();
    994       if (!GetInstructionFlags(dex_pc).IsOpcode()) {
    995         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    996             << "exception handler starts at bad address (" << dex_pc << ")";
    997         return false;
    998       }
    999       if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
   1000         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1001             << "exception handler begins with move-result* (" << dex_pc << ")";
   1002         return false;
   1003       }
   1004       GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
   1005       // Ensure exception types are resolved so that they don't need resolution to be delivered,
   1006       // unresolved exception types will be ignored by exception delivery
   1007       if (iterator.GetHandlerTypeIndex().IsValid()) {
   1008         ObjPtr<mirror::Class> exception_type =
   1009             linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
   1010         if (exception_type == nullptr) {
   1011           DCHECK(self_->IsExceptionPending());
   1012           self_->ClearException();
   1013         }
   1014       }
   1015     }
   1016     handlers_ptr = iterator.EndDataPointer();
   1017   }
   1018   return true;
   1019 }
   1020 
   1021 template <bool kVerifierDebug>
   1022 template <bool kAllowRuntimeOnlyInstructions>
   1023 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
   1024   /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
   1025   GetModifiableInstructionFlags(0).SetBranchTarget();
   1026   GetModifiableInstructionFlags(0).SetCompileTimeInfoPoint();
   1027   for (const DexInstructionPcPair& inst : code_item_accessor_) {
   1028     const uint32_t dex_pc = inst.DexPc();
   1029     if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
   1030       DCHECK_NE(failures_.size(), 0U);
   1031       return false;
   1032     }
   1033     /* Flag instructions that are garbage collection points */
   1034     // All invoke points are marked as "Throw" points already.
   1035     // We are relying on this to also count all the invokes as interesting.
   1036     if (inst->IsBranch()) {
   1037       GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
   1038       // The compiler also needs safepoints for fall-through to loop heads.
   1039       // Such a loop head must be a target of a branch.
   1040       int32_t offset = 0;
   1041       bool cond, self_ok;
   1042       bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
   1043       DCHECK(target_ok);
   1044       GetModifiableInstructionFlags(dex_pc + offset).SetCompileTimeInfoPoint();
   1045     } else if (inst->IsSwitch() || inst->IsThrow()) {
   1046       GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
   1047     } else if (inst->IsReturn()) {
   1048       GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPointAndReturn();
   1049     }
   1050   }
   1051   return true;
   1052 }
   1053 
   1054 template <bool kVerifierDebug>
   1055 template <bool kAllowRuntimeOnlyInstructions>
   1056 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
   1057                                                        uint32_t code_offset) {
   1058   if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) {
   1059     // Experimental instructions don't yet have verifier support implementation.
   1060     // While it is possible to use them by themselves, when we try to use stable instructions
   1061     // with a virtual register that was created by an experimental instruction,
   1062     // the data flow analysis will fail.
   1063     Fail(VERIFY_ERROR_FORCE_INTERPRETER)
   1064         << "experimental instruction is not supported by verifier; skipping verification";
   1065     have_pending_experimental_failure_ = true;
   1066     return false;
   1067   }
   1068 
   1069   bool result = true;
   1070   switch (inst->GetVerifyTypeArgumentA()) {
   1071     case Instruction::kVerifyRegA:
   1072       result = result && CheckRegisterIndex(inst->VRegA());
   1073       break;
   1074     case Instruction::kVerifyRegAWide:
   1075       result = result && CheckWideRegisterIndex(inst->VRegA());
   1076       break;
   1077   }
   1078   switch (inst->GetVerifyTypeArgumentB()) {
   1079     case Instruction::kVerifyRegB:
   1080       result = result && CheckRegisterIndex(inst->VRegB());
   1081       break;
   1082     case Instruction::kVerifyRegBField:
   1083       result = result && CheckFieldIndex(inst->VRegB());
   1084       break;
   1085     case Instruction::kVerifyRegBMethod:
   1086       result = result && CheckMethodIndex(inst->VRegB());
   1087       break;
   1088     case Instruction::kVerifyRegBNewInstance:
   1089       result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
   1090       break;
   1091     case Instruction::kVerifyRegBString:
   1092       result = result && CheckStringIndex(inst->VRegB());
   1093       break;
   1094     case Instruction::kVerifyRegBType:
   1095       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
   1096       break;
   1097     case Instruction::kVerifyRegBWide:
   1098       result = result && CheckWideRegisterIndex(inst->VRegB());
   1099       break;
   1100     case Instruction::kVerifyRegBCallSite:
   1101       result = result && CheckCallSiteIndex(inst->VRegB());
   1102       break;
   1103     case Instruction::kVerifyRegBMethodHandle:
   1104       result = result && CheckMethodHandleIndex(inst->VRegB());
   1105       break;
   1106     case Instruction::kVerifyRegBPrototype:
   1107       result = result && CheckPrototypeIndex(inst->VRegB());
   1108       break;
   1109   }
   1110   switch (inst->GetVerifyTypeArgumentC()) {
   1111     case Instruction::kVerifyRegC:
   1112       result = result && CheckRegisterIndex(inst->VRegC());
   1113       break;
   1114     case Instruction::kVerifyRegCField:
   1115       result = result && CheckFieldIndex(inst->VRegC());
   1116       break;
   1117     case Instruction::kVerifyRegCNewArray:
   1118       result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
   1119       break;
   1120     case Instruction::kVerifyRegCType:
   1121       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
   1122       break;
   1123     case Instruction::kVerifyRegCWide:
   1124       result = result && CheckWideRegisterIndex(inst->VRegC());
   1125       break;
   1126   }
   1127   switch (inst->GetVerifyTypeArgumentH()) {
   1128     case Instruction::kVerifyRegHPrototype:
   1129       result = result && CheckPrototypeIndex(inst->VRegH());
   1130       break;
   1131   }
   1132   switch (inst->GetVerifyExtraFlags()) {
   1133     case Instruction::kVerifyArrayData:
   1134       result = result && CheckArrayData(code_offset);
   1135       break;
   1136     case Instruction::kVerifyBranchTarget:
   1137       result = result && CheckBranchTarget(code_offset);
   1138       break;
   1139     case Instruction::kVerifySwitchTargets:
   1140       result = result && CheckSwitchTargets(code_offset);
   1141       break;
   1142     case Instruction::kVerifyVarArgNonZero:
   1143       // Fall-through.
   1144     case Instruction::kVerifyVarArg: {
   1145       // Instructions that can actually return a negative value shouldn't have this flag.
   1146       uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
   1147       if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
   1148           v_a > Instruction::kMaxVarArgRegs) {
   1149         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
   1150                                              "non-range invoke";
   1151         return false;
   1152       }
   1153 
   1154       uint32_t args[Instruction::kMaxVarArgRegs];
   1155       inst->GetVarArgs(args);
   1156       result = result && CheckVarArgRegs(v_a, args);
   1157       break;
   1158     }
   1159     case Instruction::kVerifyVarArgRangeNonZero:
   1160       // Fall-through.
   1161     case Instruction::kVerifyVarArgRange:
   1162       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
   1163           inst->VRegA() <= 0) {
   1164         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
   1165                                              "range invoke";
   1166         return false;
   1167       }
   1168       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
   1169       break;
   1170     case Instruction::kVerifyError:
   1171       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
   1172       result = false;
   1173       break;
   1174   }
   1175   if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
   1176     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
   1177     result = false;
   1178   }
   1179   return result;
   1180 }
   1181 
   1182 template <bool kVerifierDebug>
   1183 inline bool MethodVerifier<kVerifierDebug>::CheckRegisterIndex(uint32_t idx) {
   1184   if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
   1185     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
   1186                                       << code_item_accessor_.RegistersSize() << ")";
   1187     return false;
   1188   }
   1189   return true;
   1190 }
   1191 
   1192 template <bool kVerifierDebug>
   1193 inline bool MethodVerifier<kVerifierDebug>::CheckWideRegisterIndex(uint32_t idx) {
   1194   if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
   1195     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
   1196                                       << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
   1197     return false;
   1198   }
   1199   return true;
   1200 }
   1201 
   1202 template <bool kVerifierDebug>
   1203 inline bool MethodVerifier<kVerifierDebug>::CheckCallSiteIndex(uint32_t idx) {
   1204   uint32_t limit = dex_file_->NumCallSiteIds();
   1205   if (UNLIKELY(idx >= limit)) {
   1206     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
   1207                                       << limit << ")";
   1208     return false;
   1209   }
   1210   return true;
   1211 }
   1212 
   1213 template <bool kVerifierDebug>
   1214 inline bool MethodVerifier<kVerifierDebug>::CheckFieldIndex(uint32_t idx) {
   1215   if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
   1216     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
   1217                                       << dex_file_->GetHeader().field_ids_size_ << ")";
   1218     return false;
   1219   }
   1220   return true;
   1221 }
   1222 
   1223 template <bool kVerifierDebug>
   1224 inline bool MethodVerifier<kVerifierDebug>::CheckMethodIndex(uint32_t idx) {
   1225   if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
   1226     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
   1227                                       << dex_file_->GetHeader().method_ids_size_ << ")";
   1228     return false;
   1229   }
   1230   return true;
   1231 }
   1232 
   1233 template <bool kVerifierDebug>
   1234 inline bool MethodVerifier<kVerifierDebug>::CheckMethodHandleIndex(uint32_t idx) {
   1235   uint32_t limit = dex_file_->NumMethodHandles();
   1236   if (UNLIKELY(idx >= limit)) {
   1237     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
   1238                                       << limit << ")";
   1239     return false;
   1240   }
   1241   return true;
   1242 }
   1243 
   1244 template <bool kVerifierDebug>
   1245 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
   1246   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
   1247     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
   1248                                       << dex_file_->GetHeader().type_ids_size_ << ")";
   1249     return false;
   1250   }
   1251   // We don't need the actual class, just a pointer to the class name.
   1252   const char* descriptor = dex_file_->StringByTypeIdx(idx);
   1253   if (UNLIKELY(descriptor[0] != 'L')) {
   1254     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
   1255     return false;
   1256   } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
   1257     // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
   1258     // exception is thrown when this statement is executed (compiled code would not do that).
   1259     Fail(VERIFY_ERROR_INSTANTIATION);
   1260   }
   1261   return true;
   1262 }
   1263 
   1264 template <bool kVerifierDebug>
   1265 inline bool MethodVerifier<kVerifierDebug>::CheckPrototypeIndex(uint32_t idx) {
   1266   if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
   1267     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
   1268                                       << dex_file_->GetHeader().proto_ids_size_ << ")";
   1269     return false;
   1270   }
   1271   return true;
   1272 }
   1273 
   1274 template <bool kVerifierDebug>
   1275 inline bool MethodVerifier<kVerifierDebug>::CheckStringIndex(uint32_t idx) {
   1276   if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
   1277     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
   1278                                       << dex_file_->GetHeader().string_ids_size_ << ")";
   1279     return false;
   1280   }
   1281   return true;
   1282 }
   1283 
   1284 template <bool kVerifierDebug>
   1285 inline bool MethodVerifier<kVerifierDebug>::CheckTypeIndex(dex::TypeIndex idx) {
   1286   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
   1287     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
   1288                                       << dex_file_->GetHeader().type_ids_size_ << ")";
   1289     return false;
   1290   }
   1291   return true;
   1292 }
   1293 
   1294 template <bool kVerifierDebug>
   1295 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
   1296   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
   1297     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
   1298                                       << dex_file_->GetHeader().type_ids_size_ << ")";
   1299     return false;
   1300   }
   1301   int bracket_count = 0;
   1302   const char* descriptor = dex_file_->StringByTypeIdx(idx);
   1303   const char* cp = descriptor;
   1304   while (*cp++ == '[') {
   1305     bracket_count++;
   1306   }
   1307   if (UNLIKELY(bracket_count == 0)) {
   1308     /* The given class must be an array type. */
   1309     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1310         << "can't new-array class '" << descriptor << "' (not an array)";
   1311     return false;
   1312   } else if (UNLIKELY(bracket_count > 255)) {
   1313     /* It is illegal to create an array of more than 255 dimensions. */
   1314     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1315         << "can't new-array class '" << descriptor << "' (exceeds limit)";
   1316     return false;
   1317   }
   1318   return true;
   1319 }
   1320 
   1321 template <bool kVerifierDebug>
   1322 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
   1323   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
   1324   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
   1325   const uint16_t* array_data;
   1326   int32_t array_data_offset;
   1327 
   1328   DCHECK_LT(cur_offset, insn_count);
   1329   /* make sure the start of the array data table is in range */
   1330   array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
   1331   if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
   1332                cur_offset + array_data_offset + 2 >= insn_count)) {
   1333     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
   1334                                       << ", data offset " << array_data_offset
   1335                                       << ", count " << insn_count;
   1336     return false;
   1337   }
   1338   /* offset to array data table is a relative branch-style offset */
   1339   array_data = insns + array_data_offset;
   1340   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
   1341   if (UNLIKELY(!IsAligned<4>(array_data))) {
   1342     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
   1343                                       << ", data offset " << array_data_offset;
   1344     return false;
   1345   }
   1346   // Make sure the array-data is marked as an opcode. This ensures that it was reached when
   1347   // traversing the code item linearly. It is an approximation for a by-spec padding value.
   1348   if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
   1349     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
   1350                                       << ", data offset " << array_data_offset
   1351                                       << " not correctly visited, probably bad padding.";
   1352     return false;
   1353   }
   1354 
   1355   uint32_t value_width = array_data[1];
   1356   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
   1357   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
   1358   /* make sure the end of the switch is in range */
   1359   if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
   1360     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
   1361                                       << ", data offset " << array_data_offset << ", end "
   1362                                       << cur_offset + array_data_offset + table_size
   1363                                       << ", count " << insn_count;
   1364     return false;
   1365   }
   1366   return true;
   1367 }
   1368 
   1369 template <bool kVerifierDebug>
   1370 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
   1371   int32_t offset;
   1372   bool isConditional, selfOkay;
   1373   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
   1374     return false;
   1375   }
   1376   if (UNLIKELY(!selfOkay && offset == 0)) {
   1377     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
   1378                                       << reinterpret_cast<void*>(cur_offset);
   1379     return false;
   1380   }
   1381   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
   1382   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
   1383   if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
   1384     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
   1385                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
   1386     return false;
   1387   }
   1388   int32_t abs_offset = cur_offset + offset;
   1389   if (UNLIKELY(abs_offset < 0 ||
   1390                (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits()  ||
   1391                !GetInstructionFlags(abs_offset).IsOpcode())) {
   1392     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
   1393                                       << reinterpret_cast<void*>(abs_offset) << ") at "
   1394                                       << reinterpret_cast<void*>(cur_offset);
   1395     return false;
   1396   }
   1397   GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
   1398   return true;
   1399 }
   1400 
   1401 template <bool kVerifierDebug>
   1402 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
   1403                                                      int32_t* pOffset,
   1404                                                      bool* pConditional,
   1405                                                      bool* selfOkay) {
   1406   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
   1407   *pConditional = false;
   1408   *selfOkay = false;
   1409   switch (*insns & 0xff) {
   1410     case Instruction::GOTO:
   1411       *pOffset = ((int16_t) *insns) >> 8;
   1412       break;
   1413     case Instruction::GOTO_32:
   1414       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
   1415       *selfOkay = true;
   1416       break;
   1417     case Instruction::GOTO_16:
   1418       *pOffset = (int16_t) insns[1];
   1419       break;
   1420     case Instruction::IF_EQ:
   1421     case Instruction::IF_NE:
   1422     case Instruction::IF_LT:
   1423     case Instruction::IF_GE:
   1424     case Instruction::IF_GT:
   1425     case Instruction::IF_LE:
   1426     case Instruction::IF_EQZ:
   1427     case Instruction::IF_NEZ:
   1428     case Instruction::IF_LTZ:
   1429     case Instruction::IF_GEZ:
   1430     case Instruction::IF_GTZ:
   1431     case Instruction::IF_LEZ:
   1432       *pOffset = (int16_t) insns[1];
   1433       *pConditional = true;
   1434       break;
   1435     default:
   1436       return false;
   1437   }
   1438   return true;
   1439 }
   1440 
   1441 template <bool kVerifierDebug>
   1442 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
   1443   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
   1444   DCHECK_LT(cur_offset, insn_count);
   1445   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
   1446   /* make sure the start of the switch is in range */
   1447   int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
   1448   if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
   1449                cur_offset + switch_offset + 2 > insn_count)) {
   1450     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
   1451                                       << ", switch offset " << switch_offset
   1452                                       << ", count " << insn_count;
   1453     return false;
   1454   }
   1455   /* offset to switch table is a relative branch-style offset */
   1456   const uint16_t* switch_insns = insns + switch_offset;
   1457   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
   1458   if (UNLIKELY(!IsAligned<4>(switch_insns))) {
   1459     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
   1460                                       << ", switch offset " << switch_offset;
   1461     return false;
   1462   }
   1463   // Make sure the switch data is marked as an opcode. This ensures that it was reached when
   1464   // traversing the code item linearly. It is an approximation for a by-spec padding value.
   1465   if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
   1466     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
   1467                                       << ", switch offset " << switch_offset
   1468                                       << " not correctly visited, probably bad padding.";
   1469     return false;
   1470   }
   1471 
   1472   bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
   1473 
   1474   uint32_t switch_count = switch_insns[1];
   1475   int32_t targets_offset;
   1476   uint16_t expected_signature;
   1477   if (is_packed_switch) {
   1478     /* 0=sig, 1=count, 2/3=firstKey */
   1479     targets_offset = 4;
   1480     expected_signature = Instruction::kPackedSwitchSignature;
   1481   } else {
   1482     /* 0=sig, 1=count, 2..count*2 = keys */
   1483     targets_offset = 2 + 2 * switch_count;
   1484     expected_signature = Instruction::kSparseSwitchSignature;
   1485   }
   1486   uint32_t table_size = targets_offset + switch_count * 2;
   1487   if (UNLIKELY(switch_insns[0] != expected_signature)) {
   1488     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1489         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
   1490                         switch_insns[0], expected_signature);
   1491     return false;
   1492   }
   1493   /* make sure the end of the switch is in range */
   1494   if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
   1495     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
   1496                                       << ", switch offset " << switch_offset
   1497                                       << ", end " << (cur_offset + switch_offset + table_size)
   1498                                       << ", count " << insn_count;
   1499     return false;
   1500   }
   1501 
   1502   constexpr int32_t keys_offset = 2;
   1503   if (switch_count > 1) {
   1504     if (is_packed_switch) {
   1505       /* for a packed switch, verify that keys do not overflow int32 */
   1506       int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
   1507       int32_t max_first_key =
   1508           std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
   1509       if (UNLIKELY(first_key > max_first_key)) {
   1510         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
   1511                                           << ", switch_count=" << switch_count;
   1512         return false;
   1513       }
   1514     } else {
   1515       /* for a sparse switch, verify the keys are in ascending order */
   1516       int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
   1517       for (uint32_t targ = 1; targ < switch_count; targ++) {
   1518         int32_t key =
   1519             static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
   1520             static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
   1521         if (UNLIKELY(key <= last_key)) {
   1522           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
   1523                                             << ", this=" << key;
   1524           return false;
   1525         }
   1526         last_key = key;
   1527       }
   1528     }
   1529   }
   1530   /* verify each switch target */
   1531   for (uint32_t targ = 0; targ < switch_count; targ++) {
   1532     int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
   1533                      static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
   1534     int32_t abs_offset = cur_offset + offset;
   1535     if (UNLIKELY(abs_offset < 0 ||
   1536                  abs_offset >= static_cast<int32_t>(insn_count) ||
   1537                  !GetInstructionFlags(abs_offset).IsOpcode())) {
   1538       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
   1539                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
   1540                                         << reinterpret_cast<void*>(cur_offset)
   1541                                         << "[" << targ << "]";
   1542       return false;
   1543     }
   1544     GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
   1545   }
   1546   return true;
   1547 }
   1548 
   1549 template <bool kVerifierDebug>
   1550 bool MethodVerifier<kVerifierDebug>::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
   1551   uint16_t registers_size = code_item_accessor_.RegistersSize();
   1552   for (uint32_t idx = 0; idx < vA; idx++) {
   1553     if (UNLIKELY(arg[idx] >= registers_size)) {
   1554       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
   1555                                         << ") in non-range invoke (>= " << registers_size << ")";
   1556       return false;
   1557     }
   1558   }
   1559 
   1560   return true;
   1561 }
   1562 
   1563 template <bool kVerifierDebug>
   1564 bool MethodVerifier<kVerifierDebug>::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
   1565   uint16_t registers_size = code_item_accessor_.RegistersSize();
   1566   // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
   1567   // integer overflow when adding them here.
   1568   if (UNLIKELY(vA + vC > registers_size)) {
   1569     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
   1570                                       << " in range invoke (> " << registers_size << ")";
   1571     return false;
   1572   }
   1573   return true;
   1574 }
   1575 
   1576 template <bool kVerifierDebug>
   1577 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
   1578   const uint16_t registers_size = code_item_accessor_.RegistersSize();
   1579 
   1580   /* Create and initialize table holding register status */
   1581   reg_table_.Init(kTrackCompilerInterestPoints,
   1582                   insn_flags_.get(),
   1583                   code_item_accessor_.InsnsSizeInCodeUnits(),
   1584                   registers_size,
   1585                   allocator_,
   1586                   GetRegTypeCache());
   1587 
   1588   work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
   1589   saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
   1590 
   1591   /* Initialize register types of method arguments. */
   1592   if (!SetTypesFromSignature()) {
   1593     DCHECK_NE(failures_.size(), 0U);
   1594     std::string prepend("Bad signature in ");
   1595     prepend += dex_file_->PrettyMethod(dex_method_idx_);
   1596     PrependToLastFailMessage(prepend);
   1597     return false;
   1598   }
   1599   // We may have a runtime failure here, clear.
   1600   have_pending_runtime_throw_failure_ = false;
   1601 
   1602   /* Perform code flow verification. */
   1603   if (!CodeFlowVerifyMethod()) {
   1604     DCHECK_NE(failures_.size(), 0U);
   1605     return false;
   1606   }
   1607   return true;
   1608 }
   1609 
   1610 template <bool kVerifierDebug>
   1611 std::ostream& MethodVerifier<kVerifierDebug>::DumpFailures(std::ostream& os) {
   1612   DCHECK_EQ(failures_.size(), failure_messages_.size());
   1613   for (size_t i = 0; i < failures_.size(); ++i) {
   1614       os << failure_messages_[i]->str() << "\n";
   1615   }
   1616   return os;
   1617 }
   1618 
   1619 template <bool kVerifierDebug>
   1620 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
   1621   if (!code_item_accessor_.HasCodeItem()) {
   1622     vios->Stream() << "Native method\n";
   1623     return;
   1624   }
   1625   {
   1626     vios->Stream() << "Register Types:\n";
   1627     ScopedIndentation indent1(vios);
   1628     reg_types_.Dump(vios->Stream());
   1629   }
   1630   vios->Stream() << "Dumping instructions and register lines:\n";
   1631   ScopedIndentation indent1(vios);
   1632 
   1633   for (const DexInstructionPcPair& inst : code_item_accessor_) {
   1634     const size_t dex_pc = inst.DexPc();
   1635 
   1636     // Might be asked to dump before the table is initialized.
   1637     if (reg_table_.IsInitialized()) {
   1638       RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
   1639       if (reg_line != nullptr) {
   1640         vios->Stream() << reg_line->Dump(this) << "\n";
   1641       }
   1642     }
   1643 
   1644     vios->Stream()
   1645         << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
   1646     const bool kDumpHexOfInstruction = false;
   1647     if (kDumpHexOfInstruction) {
   1648       vios->Stream() << inst->DumpHex(5) << " ";
   1649     }
   1650     vios->Stream() << inst->DumpString(dex_file_) << "\n";
   1651   }
   1652 }
   1653 
   1654 static bool IsPrimitiveDescriptor(char descriptor) {
   1655   switch (descriptor) {
   1656     case 'I':
   1657     case 'C':
   1658     case 'S':
   1659     case 'B':
   1660     case 'Z':
   1661     case 'F':
   1662     case 'D':
   1663     case 'J':
   1664       return true;
   1665     default:
   1666       return false;
   1667   }
   1668 }
   1669 
   1670 template <bool kVerifierDebug>
   1671 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
   1672   RegisterLine* reg_line = reg_table_.GetLine(0);
   1673 
   1674   // Should have been verified earlier.
   1675   DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
   1676 
   1677   uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
   1678   size_t expected_args = code_item_accessor_.InsSize();   /* long/double count as two */
   1679 
   1680   // Include the "this" pointer.
   1681   size_t cur_arg = 0;
   1682   if (!IsStatic()) {
   1683     if (expected_args == 0) {
   1684       // Expect at least a receiver.
   1685       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
   1686       return false;
   1687     }
   1688 
   1689     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
   1690     // argument as uninitialized. This restricts field access until the superclass constructor is
   1691     // called.
   1692     const RegType& declaring_class = GetDeclaringClass();
   1693     if (IsConstructor()) {
   1694       if (declaring_class.IsJavaLangObject()) {
   1695         // "this" is implicitly initialized.
   1696         reg_line->SetThisInitialized();
   1697         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
   1698       } else {
   1699         reg_line->SetRegisterType<LockOp::kClear>(
   1700             this,
   1701             arg_start + cur_arg,
   1702             reg_types_.UninitializedThisArgument(declaring_class));
   1703       }
   1704     } else {
   1705       reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
   1706     }
   1707     cur_arg++;
   1708   }
   1709 
   1710   const dex::ProtoId& proto_id =
   1711       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
   1712   DexFileParameterIterator iterator(*dex_file_, proto_id);
   1713 
   1714   for (; iterator.HasNext(); iterator.Next()) {
   1715     const char* descriptor = iterator.GetDescriptor();
   1716     if (descriptor == nullptr) {
   1717       LOG(FATAL) << "Null descriptor";
   1718     }
   1719     if (cur_arg >= expected_args) {
   1720       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1721                                         << " args, found more (" << descriptor << ")";
   1722       return false;
   1723     }
   1724     switch (descriptor[0]) {
   1725       case 'L':
   1726       case '[':
   1727         // We assume that reference arguments are initialized. The only way it could be otherwise
   1728         // (assuming the caller was verified) is if the current method is <init>, but in that case
   1729         // it's effectively considered initialized the instant we reach here (in the sense that we
   1730         // can return without doing anything or call virtual methods).
   1731         {
   1732           // Note: don't check access. No error would be thrown for declaring or passing an
   1733           //       inaccessible class. Only actual accesses to fields or methods will.
   1734           const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
   1735           if (!reg_type.IsNonZeroReferenceTypes()) {
   1736             DCHECK(HasFailures());
   1737             return false;
   1738           }
   1739           reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
   1740         }
   1741         break;
   1742       case 'Z':
   1743         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
   1744         break;
   1745       case 'C':
   1746         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
   1747         break;
   1748       case 'B':
   1749         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
   1750         break;
   1751       case 'I':
   1752         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
   1753         break;
   1754       case 'S':
   1755         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
   1756         break;
   1757       case 'F':
   1758         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
   1759         break;
   1760       case 'J':
   1761       case 'D': {
   1762         if (cur_arg + 1 >= expected_args) {
   1763           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1764               << " args, found more (" << descriptor << ")";
   1765           return false;
   1766         }
   1767 
   1768         const RegType* lo_half;
   1769         const RegType* hi_half;
   1770         if (descriptor[0] == 'J') {
   1771           lo_half = &reg_types_.LongLo();
   1772           hi_half = &reg_types_.LongHi();
   1773         } else {
   1774           lo_half = &reg_types_.DoubleLo();
   1775           hi_half = &reg_types_.DoubleHi();
   1776         }
   1777         reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
   1778         cur_arg++;
   1779         break;
   1780       }
   1781       default:
   1782         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
   1783                                           << descriptor << "'";
   1784         return false;
   1785     }
   1786     cur_arg++;
   1787   }
   1788   if (cur_arg != expected_args) {
   1789     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1790                                       << " arguments, found " << cur_arg;
   1791     return false;
   1792   }
   1793   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
   1794   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
   1795   // format. Only major difference from the method argument format is that 'V' is supported.
   1796   bool result;
   1797   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
   1798     result = descriptor[1] == '\0';
   1799   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
   1800     size_t i = 0;
   1801     do {
   1802       i++;
   1803     } while (descriptor[i] == '[');  // process leading [
   1804     if (descriptor[i] == 'L') {  // object array
   1805       do {
   1806         i++;  // find closing ;
   1807       } while (descriptor[i] != ';' && descriptor[i] != '\0');
   1808       result = descriptor[i] == ';';
   1809     } else {  // primitive array
   1810       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
   1811     }
   1812   } else if (descriptor[0] == 'L') {
   1813     // could be more thorough here, but shouldn't be required
   1814     size_t i = 0;
   1815     do {
   1816       i++;
   1817     } while (descriptor[i] != ';' && descriptor[i] != '\0');
   1818     result = descriptor[i] == ';';
   1819   } else {
   1820     result = false;
   1821   }
   1822   if (!result) {
   1823     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
   1824                                       << descriptor << "'";
   1825   }
   1826   return result;
   1827 }
   1828 
   1829 template <bool kVerifierDebug>
   1830 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
   1831   const uint16_t* insns = code_item_accessor_.Insns();
   1832   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
   1833 
   1834   /* Begin by marking the first instruction as "changed". */
   1835   GetModifiableInstructionFlags(0).SetChanged();
   1836   uint32_t start_guess = 0;
   1837 
   1838   /* Continue until no instructions are marked "changed". */
   1839   while (true) {
   1840     if (allow_thread_suspension_) {
   1841       self_->AllowThreadSuspension();
   1842     }
   1843     // Find the first marked one. Use "start_guess" as a way to find one quickly.
   1844     uint32_t insn_idx = start_guess;
   1845     for (; insn_idx < insns_size; insn_idx++) {
   1846       if (GetInstructionFlags(insn_idx).IsChanged())
   1847         break;
   1848     }
   1849     if (insn_idx == insns_size) {
   1850       if (start_guess != 0) {
   1851         /* try again, starting from the top */
   1852         start_guess = 0;
   1853         continue;
   1854       } else {
   1855         /* all flags are clear */
   1856         break;
   1857       }
   1858     }
   1859     // We carry the working set of registers from instruction to instruction. If this address can
   1860     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
   1861     // "changed" flags, we need to load the set of registers from the table.
   1862     // Because we always prefer to continue on to the next instruction, we should never have a
   1863     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
   1864     // target.
   1865     work_insn_idx_ = insn_idx;
   1866     if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
   1867       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
   1868     } else if (kIsDebugBuild) {
   1869       /*
   1870        * Sanity check: retrieve the stored register line (assuming
   1871        * a full table) and make sure it actually matches.
   1872        */
   1873       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
   1874       if (register_line != nullptr) {
   1875         if (work_line_->CompareLine(register_line) != 0) {
   1876           Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   1877           LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
   1878           LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
   1879                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
   1880                      << " work_line=" << work_line_->Dump(this) << "\n"
   1881                      << "  expected=" << register_line->Dump(this);
   1882         }
   1883       }
   1884     }
   1885     if (!CodeFlowVerifyInstruction(&start_guess)) {
   1886       std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
   1887       prepend += " failed to verify: ";
   1888       PrependToLastFailMessage(prepend);
   1889       return false;
   1890     }
   1891     /* Clear "changed" and mark as visited. */
   1892     GetModifiableInstructionFlags(insn_idx).SetVisited();
   1893     GetModifiableInstructionFlags(insn_idx).ClearChanged();
   1894   }
   1895 
   1896   if (kVerifierDebug) {
   1897     /*
   1898      * Scan for dead code. There's nothing "evil" about dead code
   1899      * (besides the wasted space), but it indicates a flaw somewhere
   1900      * down the line, possibly in the verifier.
   1901      *
   1902      * If we've substituted "always throw" instructions into the stream,
   1903      * we are almost certainly going to have some dead code.
   1904      */
   1905     int dead_start = -1;
   1906 
   1907     for (const DexInstructionPcPair& inst : code_item_accessor_) {
   1908       const uint32_t insn_idx = inst.DexPc();
   1909       /*
   1910        * Switch-statement data doesn't get "visited" by scanner. It
   1911        * may or may not be preceded by a padding NOP (for alignment).
   1912        */
   1913       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
   1914           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
   1915           insns[insn_idx] == Instruction::kArrayDataSignature ||
   1916           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
   1917            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
   1918             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
   1919             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
   1920         GetModifiableInstructionFlags(insn_idx).SetVisited();
   1921       }
   1922 
   1923       if (!GetInstructionFlags(insn_idx).IsVisited()) {
   1924         if (dead_start < 0) {
   1925           dead_start = insn_idx;
   1926         }
   1927       } else if (dead_start >= 0) {
   1928         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
   1929                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
   1930         dead_start = -1;
   1931       }
   1932     }
   1933     if (dead_start >= 0) {
   1934       LogVerifyInfo()
   1935           << "dead code " << reinterpret_cast<void*>(dead_start)
   1936           << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
   1937     }
   1938     // To dump the state of the verify after a method, do something like:
   1939     // if (dex_file_->PrettyMethod(dex_method_idx_) ==
   1940     //     "boolean java.lang.String.equals(java.lang.Object)") {
   1941     //   LOG(INFO) << info_messages_.str();
   1942     // }
   1943   }
   1944   return true;
   1945 }
   1946 
   1947 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
   1948 // is no such field.
   1949 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) {
   1950   const dex::ClassDef* class_def = dex_file.FindClassDef(type_idx);
   1951   DCHECK(class_def != nullptr);
   1952   ClassAccessor accessor(dex_file, *class_def);
   1953   for (const ClassAccessor::Field& field : accessor.GetInstanceFields()) {
   1954     if (field.IsFinal()) {
   1955       return field.GetIndex();
   1956     }
   1957   }
   1958   return dex::kDexNoIndex;
   1959 }
   1960 
   1961 // Setup a register line for the given return instruction.
   1962 template <bool kVerifierDebug>
   1963 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
   1964                              const Instruction* ret_inst,
   1965                              RegisterLine* line) {
   1966   Instruction::Code opcode = ret_inst->Opcode();
   1967 
   1968   switch (opcode) {
   1969     case Instruction::RETURN_VOID:
   1970     case Instruction::RETURN_VOID_NO_BARRIER:
   1971       if (verifier->IsInstanceConstructor()) {
   1972         // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
   1973         line->CheckConstructorReturn(verifier);
   1974       }
   1975       line->MarkAllRegistersAsConflicts(verifier);
   1976       break;
   1977 
   1978     case Instruction::RETURN:
   1979     case Instruction::RETURN_OBJECT:
   1980       line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
   1981       break;
   1982 
   1983     case Instruction::RETURN_WIDE:
   1984       line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
   1985       break;
   1986 
   1987     default:
   1988       LOG(FATAL) << "Unknown return opcode " << opcode;
   1989       UNREACHABLE();
   1990   }
   1991 }
   1992 
   1993 template <bool kVerifierDebug>
   1994 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
   1995   // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
   1996   // We want the state _before_ the instruction, for the case where the dex pc we're
   1997   // interested in is itself a monitor-enter instruction (which is a likely place
   1998   // for a thread to be suspended).
   1999   if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
   2000     monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
   2001 
   2002     std::map<uint32_t, DexLockInfo> depth_to_lock_info;
   2003     auto collector = [&](uint32_t dex_reg, uint32_t depth) {
   2004       auto insert_pair = depth_to_lock_info.emplace(depth, DexLockInfo(depth));
   2005       auto it = insert_pair.first;
   2006       auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
   2007       DCHECK(set_insert_pair.second);
   2008     };
   2009     work_line_->IterateRegToLockDepths(collector);
   2010     for (auto& pair : depth_to_lock_info) {
   2011       monitor_enter_dex_pcs_->push_back(pair.second);
   2012       // Map depth to dex PC.
   2013       (*monitor_enter_dex_pcs_)[monitor_enter_dex_pcs_->size() - 1].dex_pc =
   2014           work_line_->GetMonitorEnterDexPc(pair.second.dex_pc);
   2015     }
   2016   }
   2017 
   2018   /*
   2019    * Once we finish decoding the instruction, we need to figure out where
   2020    * we can go from here. There are three possible ways to transfer
   2021    * control to another statement:
   2022    *
   2023    * (1) Continue to the next instruction. Applies to all but
   2024    *     unconditional branches, method returns, and exception throws.
   2025    * (2) Branch to one or more possible locations. Applies to branches
   2026    *     and switch statements.
   2027    * (3) Exception handlers. Applies to any instruction that can
   2028    *     throw an exception that is handled by an encompassing "try"
   2029    *     block.
   2030    *
   2031    * We can also return, in which case there is no successor instruction
   2032    * from this point.
   2033    *
   2034    * The behavior can be determined from the opcode flags.
   2035    */
   2036   const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
   2037   const Instruction* inst = Instruction::At(insns);
   2038   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
   2039 
   2040   int32_t branch_target = 0;
   2041   bool just_set_result = false;
   2042   if (kVerifierDebug) {
   2043     // Generate processing back trace to debug verifier
   2044     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
   2045                     << work_line_->Dump(this);
   2046   }
   2047 
   2048   /*
   2049    * Make a copy of the previous register state. If the instruction
   2050    * can throw an exception, we will copy/merge this into the "catch"
   2051    * address rather than work_line, because we don't want the result
   2052    * from the "successful" code path (e.g. a check-cast that "improves"
   2053    * a type) to be visible to the exception handler.
   2054    */
   2055   if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
   2056     saved_line_->CopyFromLine(work_line_.get());
   2057   } else if (kIsDebugBuild) {
   2058     saved_line_->FillWithGarbage();
   2059   }
   2060   DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
   2061 
   2062 
   2063   // We need to ensure the work line is consistent while performing validation. When we spot a
   2064   // peephole pattern we compute a new line for either the fallthrough instruction or the
   2065   // branch target.
   2066   RegisterLineArenaUniquePtr branch_line;
   2067   RegisterLineArenaUniquePtr fallthrough_line;
   2068 
   2069   switch (inst->Opcode()) {
   2070     case Instruction::NOP:
   2071       /*
   2072        * A "pure" NOP has no effect on anything. Data tables start with
   2073        * a signature that looks like a NOP; if we see one of these in
   2074        * the course of executing code then we have a problem.
   2075        */
   2076       if (inst->VRegA_10x() != 0) {
   2077         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
   2078       }
   2079       break;
   2080 
   2081     case Instruction::MOVE:
   2082       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
   2083       break;
   2084     case Instruction::MOVE_FROM16:
   2085       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
   2086       break;
   2087     case Instruction::MOVE_16:
   2088       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
   2089       break;
   2090     case Instruction::MOVE_WIDE:
   2091       work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
   2092       break;
   2093     case Instruction::MOVE_WIDE_FROM16:
   2094       work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
   2095       break;
   2096     case Instruction::MOVE_WIDE_16:
   2097       work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
   2098       break;
   2099     case Instruction::MOVE_OBJECT:
   2100       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
   2101       break;
   2102     case Instruction::MOVE_OBJECT_FROM16:
   2103       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
   2104       break;
   2105     case Instruction::MOVE_OBJECT_16:
   2106       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
   2107       break;
   2108 
   2109     /*
   2110      * The move-result instructions copy data out of a "pseudo-register"
   2111      * with the results from the last method invocation. In practice we
   2112      * might want to hold the result in an actual CPU register, so the
   2113      * Dalvik spec requires that these only appear immediately after an
   2114      * invoke or filled-new-array.
   2115      *
   2116      * These calls invalidate the "result" register. (This is now
   2117      * redundant with the reset done below, but it can make the debug info
   2118      * easier to read in some cases.)
   2119      */
   2120     case Instruction::MOVE_RESULT:
   2121       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
   2122       break;
   2123     case Instruction::MOVE_RESULT_WIDE:
   2124       work_line_->CopyResultRegister2(this, inst->VRegA_11x());
   2125       break;
   2126     case Instruction::MOVE_RESULT_OBJECT:
   2127       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
   2128       break;
   2129 
   2130     case Instruction::MOVE_EXCEPTION: {
   2131       // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
   2132       // where one entrypoint to the catch block is not actually an exception path.
   2133       if (work_insn_idx_ == 0) {
   2134         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
   2135         break;
   2136       }
   2137       /*
   2138        * This statement can only appear as the first instruction in an exception handler. We verify
   2139        * that as part of extracting the exception type from the catch block list.
   2140        */
   2141       const RegType& res_type = GetCaughtExceptionType();
   2142       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), res_type);
   2143       break;
   2144     }
   2145     case Instruction::RETURN_VOID:
   2146       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   2147         if (!GetMethodReturnType().IsConflict()) {
   2148           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
   2149         }
   2150       }
   2151       break;
   2152     case Instruction::RETURN:
   2153       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   2154         /* check the method signature */
   2155         const RegType& return_type = GetMethodReturnType();
   2156         if (!return_type.IsCategory1Types()) {
   2157           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
   2158                                             << return_type;
   2159         } else {
   2160           // Compilers may generate synthetic functions that write byte values into boolean fields.
   2161           // Also, it may use integer values for boolean, byte, short, and character return types.
   2162           const uint32_t vregA = inst->VRegA_11x();
   2163           const RegType& src_type = work_line_->GetRegisterType(this, vregA);
   2164           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
   2165                           ((return_type.IsBoolean() || return_type.IsByte() ||
   2166                            return_type.IsShort() || return_type.IsChar()) &&
   2167                            src_type.IsInteger()));
   2168           /* check the register contents */
   2169           bool success =
   2170               work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
   2171           if (!success) {
   2172             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
   2173           }
   2174         }
   2175       }
   2176       break;
   2177     case Instruction::RETURN_WIDE:
   2178       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   2179         /* check the method signature */
   2180         const RegType& return_type = GetMethodReturnType();
   2181         if (!return_type.IsCategory2Types()) {
   2182           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
   2183         } else {
   2184           /* check the register contents */
   2185           const uint32_t vregA = inst->VRegA_11x();
   2186           bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
   2187           if (!success) {
   2188             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
   2189           }
   2190         }
   2191       }
   2192       break;
   2193     case Instruction::RETURN_OBJECT:
   2194       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   2195         const RegType& return_type = GetMethodReturnType();
   2196         if (!return_type.IsReferenceTypes()) {
   2197           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
   2198         } else {
   2199           /* return_type is the *expected* return type, not register value */
   2200           DCHECK(!return_type.IsZeroOrNull());
   2201           DCHECK(!return_type.IsUninitializedReference());
   2202           const uint32_t vregA = inst->VRegA_11x();
   2203           const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
   2204           // Disallow returning undefined, conflict & uninitialized values and verify that the
   2205           // reference in vAA is an instance of the "return_type."
   2206           if (reg_type.IsUndefined()) {
   2207             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
   2208           } else if (reg_type.IsConflict()) {
   2209             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
   2210           } else if (reg_type.IsUninitializedTypes()) {
   2211             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
   2212                                               << reg_type << "'";
   2213           } else if (!reg_type.IsReferenceTypes()) {
   2214             // We really do expect a reference here.
   2215             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
   2216                                               << reg_type;
   2217           } else if (!return_type.IsAssignableFrom(reg_type, this)) {
   2218             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
   2219               Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
   2220                   << "' or '" << reg_type << "'";
   2221             } else {
   2222               bool soft_error = false;
   2223               // Check whether arrays are involved. They will show a valid class status, even
   2224               // if their components are erroneous.
   2225               if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
   2226                 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
   2227                 if (soft_error) {
   2228                   Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
   2229                         << reg_type << " vs " << return_type;
   2230                 }
   2231               }
   2232 
   2233               if (!soft_error) {
   2234                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
   2235                     << "', but expected from declaration '" << return_type << "'";
   2236               }
   2237             }
   2238           }
   2239         }
   2240       }
   2241       break;
   2242 
   2243       /* could be boolean, int, float, or a null reference */
   2244     case Instruction::CONST_4: {
   2245       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
   2246       work_line_->SetRegisterType<LockOp::kClear>(
   2247           this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
   2248       break;
   2249     }
   2250     case Instruction::CONST_16: {
   2251       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
   2252       work_line_->SetRegisterType<LockOp::kClear>(
   2253           this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
   2254       break;
   2255     }
   2256     case Instruction::CONST: {
   2257       int32_t val = inst->VRegB_31i();
   2258       work_line_->SetRegisterType<LockOp::kClear>(
   2259           this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
   2260       break;
   2261     }
   2262     case Instruction::CONST_HIGH16: {
   2263       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
   2264       work_line_->SetRegisterType<LockOp::kClear>(
   2265           this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
   2266       break;
   2267     }
   2268       /* could be long or double; resolved upon use */
   2269     case Instruction::CONST_WIDE_16: {
   2270       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
   2271       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   2272       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   2273       work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
   2274       break;
   2275     }
   2276     case Instruction::CONST_WIDE_32: {
   2277       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
   2278       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   2279       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   2280       work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
   2281       break;
   2282     }
   2283     case Instruction::CONST_WIDE: {
   2284       int64_t val = inst->VRegB_51l();
   2285       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   2286       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   2287       work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
   2288       break;
   2289     }
   2290     case Instruction::CONST_WIDE_HIGH16: {
   2291       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
   2292       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   2293       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   2294       work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
   2295       break;
   2296     }
   2297     case Instruction::CONST_STRING:
   2298       work_line_->SetRegisterType<LockOp::kClear>(
   2299           this, inst->VRegA_21c(), reg_types_.JavaLangString());
   2300       break;
   2301     case Instruction::CONST_STRING_JUMBO:
   2302       work_line_->SetRegisterType<LockOp::kClear>(
   2303           this, inst->VRegA_31c(), reg_types_.JavaLangString());
   2304       break;
   2305     case Instruction::CONST_CLASS: {
   2306       // Get type from instruction if unresolved then we need an access check
   2307       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   2308       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
   2309       // Register holds class, ie its type is class, on error it will hold Conflict.
   2310       work_line_->SetRegisterType<LockOp::kClear>(
   2311           this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
   2312                                                          : reg_types_.JavaLangClass());
   2313       break;
   2314     }
   2315     case Instruction::CONST_METHOD_HANDLE:
   2316       work_line_->SetRegisterType<LockOp::kClear>(
   2317           this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
   2318       break;
   2319     case Instruction::CONST_METHOD_TYPE:
   2320       work_line_->SetRegisterType<LockOp::kClear>(
   2321           this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
   2322       break;
   2323     case Instruction::MONITOR_ENTER:
   2324       work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
   2325       // Check whether the previous instruction is a move-object with vAA as a source, creating
   2326       // untracked lock aliasing.
   2327       if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
   2328         uint32_t prev_idx = work_insn_idx_ - 1;
   2329         while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
   2330           prev_idx--;
   2331         }
   2332         const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
   2333         switch (prev_inst.Opcode()) {
   2334           case Instruction::MOVE_OBJECT:
   2335           case Instruction::MOVE_OBJECT_16:
   2336           case Instruction::MOVE_OBJECT_FROM16:
   2337             if (prev_inst.VRegB() == inst->VRegA_11x()) {
   2338               // Redo the copy. This won't change the register types, but update the lock status
   2339               // for the aliased register.
   2340               work_line_->CopyRegister1(this,
   2341                                         prev_inst.VRegA(),
   2342                                         prev_inst.VRegB(),
   2343                                         kTypeCategoryRef);
   2344             }
   2345             break;
   2346 
   2347           // Catch a case of register aliasing when two registers are linked to the same
   2348           // java.lang.Class object via two consequent const-class instructions immediately
   2349           // preceding monitor-enter called on one of those registers.
   2350           case Instruction::CONST_CLASS: {
   2351             // Get the second previous instruction.
   2352             if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
   2353               break;
   2354             }
   2355             prev_idx--;
   2356             while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
   2357               prev_idx--;
   2358             }
   2359             const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
   2360 
   2361             // Match the pattern "const-class; const-class; monitor-enter;"
   2362             if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
   2363               break;
   2364             }
   2365 
   2366             // Ensure both const-classes are called for the same type_idx.
   2367             if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
   2368               break;
   2369             }
   2370 
   2371             // Update the lock status for the aliased register.
   2372             if (prev_inst.VRegA() == inst->VRegA_11x()) {
   2373               work_line_->CopyRegister1(this,
   2374                                         prev2_inst.VRegA(),
   2375                                         inst->VRegA_11x(),
   2376                                         kTypeCategoryRef);
   2377             } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
   2378               work_line_->CopyRegister1(this,
   2379                                         prev_inst.VRegA(),
   2380                                         inst->VRegA_11x(),
   2381                                         kTypeCategoryRef);
   2382             }
   2383             break;
   2384           }
   2385 
   2386           default:  // Other instruction types ignored.
   2387             break;
   2388         }
   2389       }
   2390       break;
   2391     case Instruction::MONITOR_EXIT:
   2392       /*
   2393        * monitor-exit instructions are odd. They can throw exceptions,
   2394        * but when they do they act as if they succeeded and the PC is
   2395        * pointing to the following instruction. (This behavior goes back
   2396        * to the need to handle asynchronous exceptions, a now-deprecated
   2397        * feature that Dalvik doesn't support.)
   2398        *
   2399        * In practice we don't need to worry about this. The only
   2400        * exceptions that can be thrown from monitor-exit are for a
   2401        * null reference and -exit without a matching -enter. If the
   2402        * structured locking checks are working, the former would have
   2403        * failed on the -enter instruction, and the latter is impossible.
   2404        *
   2405        * This is fortunate, because issue 3221411 prevents us from
   2406        * chasing the "can throw" path when monitor verification is
   2407        * enabled. If we can fully verify the locking we can ignore
   2408        * some catch blocks (which will show up as "dead" code when
   2409        * we skip them here); if we can't, then the code path could be
   2410        * "live" so we still need to check it.
   2411        */
   2412       opcode_flags &= ~Instruction::kThrow;
   2413       work_line_->PopMonitor(this, inst->VRegA_11x());
   2414       break;
   2415     case Instruction::CHECK_CAST:
   2416     case Instruction::INSTANCE_OF: {
   2417       /*
   2418        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
   2419        * could be a "upcast" -- not expected, so we don't try to address it.)
   2420        *
   2421        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
   2422        * dec_insn.vA when branching to a handler.
   2423        */
   2424       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
   2425       const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
   2426       const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
   2427       if (res_type.IsConflict()) {
   2428         // If this is a primitive type, fail HARD.
   2429         ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
   2430             type_idx, dex_cache_.Get(), class_loader_.Get());
   2431         if (klass != nullptr && klass->IsPrimitive()) {
   2432           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
   2433               << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
   2434               << GetDeclaringClass();
   2435           break;
   2436         }
   2437 
   2438         DCHECK_NE(failures_.size(), 0U);
   2439         if (!is_checkcast) {
   2440           work_line_->SetRegisterType<LockOp::kClear>(this,
   2441                                                       inst->VRegA_22c(),
   2442                                                       reg_types_.Boolean());
   2443         }
   2444         break;  // bad class
   2445       }
   2446       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   2447       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
   2448       const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
   2449       if (!res_type.IsNonZeroReferenceTypes()) {
   2450         if (is_checkcast) {
   2451           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
   2452         } else {
   2453           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
   2454         }
   2455       } else if (!orig_type.IsReferenceTypes()) {
   2456         if (is_checkcast) {
   2457           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
   2458         } else {
   2459           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
   2460         }
   2461       } else if (orig_type.IsUninitializedTypes()) {
   2462         if (is_checkcast) {
   2463           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
   2464                                             << orig_type_reg;
   2465         } else {
   2466           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
   2467                                             << orig_type_reg;
   2468         }
   2469       } else {
   2470         if (is_checkcast) {
   2471           work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
   2472         } else {
   2473           work_line_->SetRegisterType<LockOp::kClear>(this,
   2474                                                       inst->VRegA_22c(),
   2475                                                       reg_types_.Boolean());
   2476         }
   2477       }
   2478       break;
   2479     }
   2480     case Instruction::ARRAY_LENGTH: {
   2481       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
   2482       if (res_type.IsReferenceTypes()) {
   2483         if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
   2484           // ie not an array or null
   2485           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
   2486         } else {
   2487           work_line_->SetRegisterType<LockOp::kClear>(this,
   2488                                                       inst->VRegA_12x(),
   2489                                                       reg_types_.Integer());
   2490         }
   2491       } else {
   2492         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
   2493       }
   2494       break;
   2495     }
   2496     case Instruction::NEW_INSTANCE: {
   2497       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
   2498       if (res_type.IsConflict()) {
   2499         DCHECK_NE(failures_.size(), 0U);
   2500         break;  // bad class
   2501       }
   2502       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   2503       // can't create an instance of an interface or abstract class */
   2504       if (!res_type.IsInstantiableTypes()) {
   2505         Fail(VERIFY_ERROR_INSTANTIATION)
   2506             << "new-instance on primitive, interface or abstract class" << res_type;
   2507         // Soft failure so carry on to set register type.
   2508       }
   2509       const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
   2510       // Any registers holding previous allocations from this address that have not yet been
   2511       // initialized must be marked invalid.
   2512       work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
   2513       // add the new uninitialized reference to the register state
   2514       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
   2515       break;
   2516     }
   2517     case Instruction::NEW_ARRAY:
   2518       VerifyNewArray(inst, false, false);
   2519       break;
   2520     case Instruction::FILLED_NEW_ARRAY:
   2521       VerifyNewArray(inst, true, false);
   2522       just_set_result = true;  // Filled new array sets result register
   2523       break;
   2524     case Instruction::FILLED_NEW_ARRAY_RANGE:
   2525       VerifyNewArray(inst, true, true);
   2526       just_set_result = true;  // Filled new array range sets result register
   2527       break;
   2528     case Instruction::CMPL_FLOAT:
   2529     case Instruction::CMPG_FLOAT:
   2530       if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
   2531         break;
   2532       }
   2533       if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
   2534         break;
   2535       }
   2536       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
   2537       break;
   2538     case Instruction::CMPL_DOUBLE:
   2539     case Instruction::CMPG_DOUBLE:
   2540       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
   2541                                               reg_types_.DoubleHi())) {
   2542         break;
   2543       }
   2544       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
   2545                                               reg_types_.DoubleHi())) {
   2546         break;
   2547       }
   2548       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
   2549       break;
   2550     case Instruction::CMP_LONG:
   2551       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
   2552                                               reg_types_.LongHi())) {
   2553         break;
   2554       }
   2555       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
   2556                                               reg_types_.LongHi())) {
   2557         break;
   2558       }
   2559       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
   2560       break;
   2561     case Instruction::THROW: {
   2562       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
   2563       if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
   2564         if (res_type.IsUninitializedTypes()) {
   2565           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
   2566         } else if (!res_type.IsReferenceTypes()) {
   2567           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
   2568         } else {
   2569           Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
   2570                 << "thrown class " << res_type << " not instanceof Throwable";
   2571         }
   2572       }
   2573       break;
   2574     }
   2575     case Instruction::GOTO:
   2576     case Instruction::GOTO_16:
   2577     case Instruction::GOTO_32:
   2578       /* no effect on or use of registers */
   2579       break;
   2580 
   2581     case Instruction::PACKED_SWITCH:
   2582     case Instruction::SPARSE_SWITCH:
   2583       /* verify that vAA is an integer, or can be converted to one */
   2584       work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
   2585       break;
   2586 
   2587     case Instruction::FILL_ARRAY_DATA: {
   2588       /* Similar to the verification done for APUT */
   2589       const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
   2590       /* array_type can be null if the reg type is Zero */
   2591       if (!array_type.IsZeroOrNull()) {
   2592         if (!array_type.IsArrayTypes()) {
   2593           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
   2594                                             << array_type;
   2595         } else if (array_type.IsUnresolvedTypes()) {
   2596           // If it's an unresolved array type, it must be non-primitive.
   2597           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
   2598                                             << array_type;
   2599         } else {
   2600           const RegType& component_type = reg_types_.GetComponentType(array_type,
   2601                                                                       class_loader_.Get());
   2602           DCHECK(!component_type.IsConflict());
   2603           if (component_type.IsNonZeroReferenceTypes()) {
   2604             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
   2605                                               << component_type;
   2606           } else {
   2607             // Now verify if the element width in the table matches the element width declared in
   2608             // the array
   2609             const uint16_t* array_data =
   2610                 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
   2611             if (array_data[0] != Instruction::kArrayDataSignature) {
   2612               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
   2613             } else {
   2614               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
   2615               // Since we don't compress the data in Dex, expect to see equal width of data stored
   2616               // in the table and expected from the array class.
   2617               if (array_data[1] != elem_width) {
   2618                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
   2619                                                   << " vs " << elem_width << ")";
   2620               }
   2621             }
   2622           }
   2623         }
   2624       }
   2625       break;
   2626     }
   2627     case Instruction::IF_EQ:
   2628     case Instruction::IF_NE: {
   2629       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
   2630       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
   2631       bool mismatch = false;
   2632       if (reg_type1.IsZeroOrNull()) {  // zero then integral or reference expected
   2633         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
   2634       } else if (reg_type1.IsReferenceTypes()) {  // both references?
   2635         mismatch = !reg_type2.IsReferenceTypes();
   2636       } else {  // both integral?
   2637         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
   2638       }
   2639       if (mismatch) {
   2640         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
   2641                                           << reg_type2 << ") must both be references or integral";
   2642       }
   2643       break;
   2644     }
   2645     case Instruction::IF_LT:
   2646     case Instruction::IF_GE:
   2647     case Instruction::IF_GT:
   2648     case Instruction::IF_LE: {
   2649       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
   2650       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
   2651       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
   2652         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
   2653                                           << reg_type2 << ") must be integral";
   2654       }
   2655       break;
   2656     }
   2657     case Instruction::IF_EQZ:
   2658     case Instruction::IF_NEZ: {
   2659       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
   2660       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
   2661         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
   2662                                           << " unexpected as arg to if-eqz/if-nez";
   2663       }
   2664 
   2665       // Find previous instruction - its existence is a precondition to peephole optimization.
   2666       uint32_t instance_of_idx = 0;
   2667       if (0 != work_insn_idx_) {
   2668         instance_of_idx = work_insn_idx_ - 1;
   2669         while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
   2670           instance_of_idx--;
   2671         }
   2672         if (FailOrAbort(GetInstructionFlags(instance_of_idx).IsOpcode(),
   2673                         "Unable to get previous instruction of if-eqz/if-nez for work index ",
   2674                         work_insn_idx_)) {
   2675           break;
   2676         }
   2677       } else {
   2678         break;
   2679       }
   2680 
   2681       const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
   2682 
   2683       /* Check for peep-hole pattern of:
   2684        *    ...;
   2685        *    instance-of vX, vY, T;
   2686        *    ifXXX vX, label ;
   2687        *    ...;
   2688        * label:
   2689        *    ...;
   2690        * and sharpen the type of vY to be type T.
   2691        * Note, this pattern can't be if:
   2692        *  - if there are other branches to this branch,
   2693        *  - when vX == vY.
   2694        */
   2695       if (!CurrentInsnFlags()->IsBranchTarget() &&
   2696           (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
   2697           (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
   2698           (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
   2699         // Check the type of the instance-of is different than that of registers type, as if they
   2700         // are the same there is no work to be done here. Check that the conversion is not to or
   2701         // from an unresolved type as type information is imprecise. If the instance-of is to an
   2702         // interface then ignore the type information as interfaces can only be treated as Objects
   2703         // and we don't want to disallow field and other operations on the object. If the value
   2704         // being instance-of checked against is known null (zero) then allow the optimization as
   2705         // we didn't have type information. If the merge of the instance-of type with the original
   2706         // type is assignable to the original then allow optimization. This check is performed to
   2707         // ensure that subsequent merges don't lose type information - such as becoming an
   2708         // interface from a class that would lose information relevant to field checks.
   2709         const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
   2710         const RegType& cast_type = ResolveClass<CheckAccess::kYes>(
   2711             dex::TypeIndex(instance_of_inst.VRegC_22c()));
   2712 
   2713         if (!orig_type.Equals(cast_type) &&
   2714             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
   2715             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
   2716             !cast_type.GetClass()->IsInterface() &&
   2717             (orig_type.IsZeroOrNull() ||
   2718                 orig_type.IsStrictlyAssignableFrom(
   2719                     cast_type.Merge(orig_type, &reg_types_, this), this))) {
   2720           RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
   2721                                                            allocator_,
   2722                                                            GetRegTypeCache());
   2723           if (inst->Opcode() == Instruction::IF_EQZ) {
   2724             fallthrough_line.reset(update_line);
   2725           } else {
   2726             branch_line.reset(update_line);
   2727           }
   2728           update_line->CopyFromLine(work_line_.get());
   2729           update_line->SetRegisterType<LockOp::kKeep>(this,
   2730                                                       instance_of_inst.VRegB_22c(),
   2731                                                       cast_type);
   2732           if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
   2733             // See if instance-of was preceded by a move-object operation, common due to the small
   2734             // register encoding space of instance-of, and propagate type information to the source
   2735             // of the move-object.
   2736             // Note: this is only valid if the move source was not clobbered.
   2737             uint32_t move_idx = instance_of_idx - 1;
   2738             while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
   2739               move_idx--;
   2740             }
   2741             if (FailOrAbort(GetInstructionFlags(move_idx).IsOpcode(),
   2742                             "Unable to get previous instruction of if-eqz/if-nez for work index ",
   2743                             work_insn_idx_)) {
   2744               break;
   2745             }
   2746             auto maybe_update_fn = [&instance_of_inst, update_line, this, &cast_type](
   2747                 uint16_t move_src,
   2748                 uint16_t move_trg)
   2749                 REQUIRES_SHARED(Locks::mutator_lock_) {
   2750               if (move_trg == instance_of_inst.VRegB_22c() &&
   2751                   move_src != instance_of_inst.VRegA_22c()) {
   2752                 update_line->SetRegisterType<LockOp::kKeep>(this, move_src, cast_type);
   2753               }
   2754             };
   2755             const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
   2756             switch (move_inst.Opcode()) {
   2757               case Instruction::MOVE_OBJECT:
   2758                 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
   2759                 break;
   2760               case Instruction::MOVE_OBJECT_FROM16:
   2761                 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
   2762                 break;
   2763               case Instruction::MOVE_OBJECT_16:
   2764                 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
   2765                 break;
   2766               default:
   2767                 break;
   2768             }
   2769           }
   2770         }
   2771       }
   2772 
   2773       break;
   2774     }
   2775     case Instruction::IF_LTZ:
   2776     case Instruction::IF_GEZ:
   2777     case Instruction::IF_GTZ:
   2778     case Instruction::IF_LEZ: {
   2779       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
   2780       if (!reg_type.IsIntegralTypes()) {
   2781         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
   2782                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
   2783       }
   2784       break;
   2785     }
   2786     case Instruction::AGET_BOOLEAN:
   2787       VerifyAGet(inst, reg_types_.Boolean(), true);
   2788       break;
   2789     case Instruction::AGET_BYTE:
   2790       VerifyAGet(inst, reg_types_.Byte(), true);
   2791       break;
   2792     case Instruction::AGET_CHAR:
   2793       VerifyAGet(inst, reg_types_.Char(), true);
   2794       break;
   2795     case Instruction::AGET_SHORT:
   2796       VerifyAGet(inst, reg_types_.Short(), true);
   2797       break;
   2798     case Instruction::AGET:
   2799       VerifyAGet(inst, reg_types_.Integer(), true);
   2800       break;
   2801     case Instruction::AGET_WIDE:
   2802       VerifyAGet(inst, reg_types_.LongLo(), true);
   2803       break;
   2804     case Instruction::AGET_OBJECT:
   2805       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
   2806       break;
   2807 
   2808     case Instruction::APUT_BOOLEAN:
   2809       VerifyAPut(inst, reg_types_.Boolean(), true);
   2810       break;
   2811     case Instruction::APUT_BYTE:
   2812       VerifyAPut(inst, reg_types_.Byte(), true);
   2813       break;
   2814     case Instruction::APUT_CHAR:
   2815       VerifyAPut(inst, reg_types_.Char(), true);
   2816       break;
   2817     case Instruction::APUT_SHORT:
   2818       VerifyAPut(inst, reg_types_.Short(), true);
   2819       break;
   2820     case Instruction::APUT:
   2821       VerifyAPut(inst, reg_types_.Integer(), true);
   2822       break;
   2823     case Instruction::APUT_WIDE:
   2824       VerifyAPut(inst, reg_types_.LongLo(), true);
   2825       break;
   2826     case Instruction::APUT_OBJECT:
   2827       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
   2828       break;
   2829 
   2830     case Instruction::IGET_BOOLEAN:
   2831     case Instruction::IGET_BOOLEAN_QUICK:
   2832       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
   2833       break;
   2834     case Instruction::IGET_BYTE:
   2835     case Instruction::IGET_BYTE_QUICK:
   2836       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
   2837       break;
   2838     case Instruction::IGET_CHAR:
   2839     case Instruction::IGET_CHAR_QUICK:
   2840       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
   2841       break;
   2842     case Instruction::IGET_SHORT:
   2843     case Instruction::IGET_SHORT_QUICK:
   2844       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
   2845       break;
   2846     case Instruction::IGET:
   2847     case Instruction::IGET_QUICK:
   2848       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
   2849       break;
   2850     case Instruction::IGET_WIDE:
   2851     case Instruction::IGET_WIDE_QUICK:
   2852       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
   2853       break;
   2854     case Instruction::IGET_OBJECT:
   2855     case Instruction::IGET_OBJECT_QUICK:
   2856       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
   2857                                                     false);
   2858       break;
   2859 
   2860     case Instruction::IPUT_BOOLEAN:
   2861     case Instruction::IPUT_BOOLEAN_QUICK:
   2862       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
   2863       break;
   2864     case Instruction::IPUT_BYTE:
   2865     case Instruction::IPUT_BYTE_QUICK:
   2866       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
   2867       break;
   2868     case Instruction::IPUT_CHAR:
   2869     case Instruction::IPUT_CHAR_QUICK:
   2870       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
   2871       break;
   2872     case Instruction::IPUT_SHORT:
   2873     case Instruction::IPUT_SHORT_QUICK:
   2874       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
   2875       break;
   2876     case Instruction::IPUT:
   2877     case Instruction::IPUT_QUICK:
   2878       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
   2879       break;
   2880     case Instruction::IPUT_WIDE:
   2881     case Instruction::IPUT_WIDE_QUICK:
   2882       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
   2883       break;
   2884     case Instruction::IPUT_OBJECT:
   2885     case Instruction::IPUT_OBJECT_QUICK:
   2886       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
   2887                                                     false);
   2888       break;
   2889 
   2890     case Instruction::SGET_BOOLEAN:
   2891       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
   2892       break;
   2893     case Instruction::SGET_BYTE:
   2894       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
   2895       break;
   2896     case Instruction::SGET_CHAR:
   2897       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
   2898       break;
   2899     case Instruction::SGET_SHORT:
   2900       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
   2901       break;
   2902     case Instruction::SGET:
   2903       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
   2904       break;
   2905     case Instruction::SGET_WIDE:
   2906       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
   2907       break;
   2908     case Instruction::SGET_OBJECT:
   2909       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
   2910                                                     true);
   2911       break;
   2912 
   2913     case Instruction::SPUT_BOOLEAN:
   2914       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
   2915       break;
   2916     case Instruction::SPUT_BYTE:
   2917       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
   2918       break;
   2919     case Instruction::SPUT_CHAR:
   2920       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
   2921       break;
   2922     case Instruction::SPUT_SHORT:
   2923       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
   2924       break;
   2925     case Instruction::SPUT:
   2926       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
   2927       break;
   2928     case Instruction::SPUT_WIDE:
   2929       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
   2930       break;
   2931     case Instruction::SPUT_OBJECT:
   2932       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
   2933                                                     true);
   2934       break;
   2935 
   2936     case Instruction::INVOKE_VIRTUAL:
   2937     case Instruction::INVOKE_VIRTUAL_RANGE:
   2938     case Instruction::INVOKE_SUPER:
   2939     case Instruction::INVOKE_SUPER_RANGE:
   2940     case Instruction::INVOKE_VIRTUAL_QUICK:
   2941     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
   2942       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
   2943                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE ||
   2944                        inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
   2945       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
   2946                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
   2947       MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
   2948       ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
   2949       const RegType* return_type = nullptr;
   2950       if (called_method != nullptr) {
   2951         ObjPtr<mirror::Class> return_type_class = can_load_classes_
   2952             ? called_method->ResolveReturnType()
   2953             : called_method->LookupResolvedReturnType();
   2954         if (return_type_class != nullptr) {
   2955           return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
   2956                                    return_type_class,
   2957                                    return_type_class->CannotBeAssignedFromOtherTypes());
   2958         } else {
   2959           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   2960           self_->ClearException();
   2961         }
   2962       }
   2963       if (return_type == nullptr) {
   2964         uint32_t method_idx = GetMethodIdxOfInvoke(inst);
   2965         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2966         dex::TypeIndex return_type_idx =
   2967             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2968         const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
   2969         return_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
   2970       }
   2971       if (!return_type->IsLowHalf()) {
   2972         work_line_->SetResultRegisterType(this, *return_type);
   2973       } else {
   2974         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
   2975       }
   2976       just_set_result = true;
   2977       break;
   2978     }
   2979     case Instruction::INVOKE_DIRECT:
   2980     case Instruction::INVOKE_DIRECT_RANGE: {
   2981       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
   2982       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
   2983       const char* return_type_descriptor;
   2984       bool is_constructor;
   2985       const RegType* return_type = nullptr;
   2986       if (called_method == nullptr) {
   2987         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   2988         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2989         is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
   2990         dex::TypeIndex return_type_idx =
   2991             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2992         return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
   2993       } else {
   2994         is_constructor = called_method->IsConstructor();
   2995         return_type_descriptor = called_method->GetReturnTypeDescriptor();
   2996         ObjPtr<mirror::Class> return_type_class = can_load_classes_
   2997             ? called_method->ResolveReturnType()
   2998             : called_method->LookupResolvedReturnType();
   2999         if (return_type_class != nullptr) {
   3000           return_type = &FromClass(return_type_descriptor,
   3001                                    return_type_class,
   3002                                    return_type_class->CannotBeAssignedFromOtherTypes());
   3003         } else {
   3004           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   3005           self_->ClearException();
   3006         }
   3007       }
   3008       if (is_constructor) {
   3009         /*
   3010          * Some additional checks when calling a constructor. We know from the invocation arg check
   3011          * that the "this" argument is an instance of called_method->klass. Now we further restrict
   3012          * that to require that called_method->klass is the same as this->klass or this->super,
   3013          * allowing the latter only if the "this" argument is the same as the "this" argument to
   3014          * this method (which implies that we're in a constructor ourselves).
   3015          */
   3016         const RegType& this_type = work_line_->GetInvocationThis(this, inst);
   3017         if (this_type.IsConflict())  // failure.
   3018           break;
   3019 
   3020         /* no null refs allowed (?) */
   3021         if (this_type.IsZeroOrNull()) {
   3022           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
   3023           break;
   3024         }
   3025 
   3026         /* must be in same class or in superclass */
   3027         // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
   3028         // TODO: re-enable constructor type verification
   3029         // if (this_super_klass.IsConflict()) {
   3030           // Unknown super class, fail so we re-check at runtime.
   3031           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
   3032           // break;
   3033         // }
   3034 
   3035         /* arg must be an uninitialized reference */
   3036         if (!this_type.IsUninitializedTypes()) {
   3037           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
   3038               << this_type;
   3039           break;
   3040         }
   3041 
   3042         /*
   3043          * Replace the uninitialized reference with an initialized one. We need to do this for all
   3044          * registers that have the same object instance in them, not just the "this" register.
   3045          */
   3046         work_line_->MarkRefsAsInitialized(this, this_type);
   3047       }
   3048       if (return_type == nullptr) {
   3049         return_type = &reg_types_.FromDescriptor(class_loader_.Get(),
   3050                                                  return_type_descriptor,
   3051                                                  false);
   3052       }
   3053       if (!return_type->IsLowHalf()) {
   3054         work_line_->SetResultRegisterType(this, *return_type);
   3055       } else {
   3056         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
   3057       }
   3058       just_set_result = true;
   3059       break;
   3060     }
   3061     case Instruction::INVOKE_STATIC:
   3062     case Instruction::INVOKE_STATIC_RANGE: {
   3063         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
   3064         ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
   3065         const char* descriptor;
   3066         if (called_method == nullptr) {
   3067           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3068           const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   3069           dex::TypeIndex return_type_idx =
   3070               dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   3071           descriptor = dex_file_->StringByTypeIdx(return_type_idx);
   3072         } else {
   3073           descriptor = called_method->GetReturnTypeDescriptor();
   3074         }
   3075         const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
   3076                                                                descriptor,
   3077                                                                false);
   3078         if (!return_type.IsLowHalf()) {
   3079           work_line_->SetResultRegisterType(this, return_type);
   3080         } else {
   3081           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   3082         }
   3083         just_set_result = true;
   3084       }
   3085       break;
   3086     case Instruction::INVOKE_INTERFACE:
   3087     case Instruction::INVOKE_INTERFACE_RANGE: {
   3088       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
   3089       ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
   3090       if (abs_method != nullptr) {
   3091         ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
   3092         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
   3093           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
   3094               << abs_method->PrettyMethod() << "'";
   3095           break;
   3096         }
   3097       }
   3098       /* Get the type of the "this" arg, which should either be a sub-interface of called
   3099        * interface or Object (see comments in RegType::JoinClass).
   3100        */
   3101       const RegType& this_type = work_line_->GetInvocationThis(this, inst);
   3102       if (this_type.IsZeroOrNull()) {
   3103         /* null pointer always passes (and always fails at runtime) */
   3104       } else {
   3105         if (this_type.IsUninitializedTypes()) {
   3106           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
   3107               << this_type;
   3108           break;
   3109         }
   3110         // In the past we have tried to assert that "called_interface" is assignable
   3111         // from "this_type.GetClass()", however, as we do an imprecise Join
   3112         // (RegType::JoinClass) we don't have full information on what interfaces are
   3113         // implemented by "this_type". For example, two classes may implement the same
   3114         // interfaces and have a common parent that doesn't implement the interface. The
   3115         // join will set "this_type" to the parent class and a test that this implements
   3116         // the interface will incorrectly fail.
   3117       }
   3118       /*
   3119        * We don't have an object instance, so we can't find the concrete method. However, all of
   3120        * the type information is in the abstract method, so we're good.
   3121        */
   3122       const char* descriptor;
   3123       if (abs_method == nullptr) {
   3124         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3125         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   3126         dex::TypeIndex return_type_idx =
   3127             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   3128         descriptor = dex_file_->StringByTypeIdx(return_type_idx);
   3129       } else {
   3130         descriptor = abs_method->GetReturnTypeDescriptor();
   3131       }
   3132       const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
   3133                                                              descriptor,
   3134                                                              false);
   3135       if (!return_type.IsLowHalf()) {
   3136         work_line_->SetResultRegisterType(this, return_type);
   3137       } else {
   3138         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   3139       }
   3140       just_set_result = true;
   3141       break;
   3142     }
   3143     case Instruction::INVOKE_POLYMORPHIC:
   3144     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
   3145       bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
   3146       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
   3147       if (called_method == nullptr) {
   3148         // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
   3149         if (failure_messages_.size() > 0) {
   3150           std::string message = failure_messages_.back()->str();
   3151           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
   3152         } else {
   3153           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
   3154         }
   3155         break;
   3156       }
   3157       if (!CheckSignaturePolymorphicMethod(called_method) ||
   3158           !CheckSignaturePolymorphicReceiver(inst)) {
   3159         DCHECK(HasFailures());
   3160         break;
   3161       }
   3162       const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
   3163       const dex::ProtoIndex proto_idx(vRegH);
   3164       const char* return_descriptor =
   3165           dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
   3166       const RegType& return_type =
   3167           reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
   3168       if (!return_type.IsLowHalf()) {
   3169         work_line_->SetResultRegisterType(this, return_type);
   3170       } else {
   3171         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   3172       }
   3173       just_set_result = true;
   3174       break;
   3175     }
   3176     case Instruction::INVOKE_CUSTOM:
   3177     case Instruction::INVOKE_CUSTOM_RANGE: {
   3178       // Verify registers based on method_type in the call site.
   3179       bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
   3180 
   3181       // Step 1. Check the call site that produces the method handle for invocation
   3182       const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
   3183       if (!CheckCallSite(call_site_idx)) {
   3184         DCHECK(HasFailures());
   3185         break;
   3186       }
   3187 
   3188       // Step 2. Check the register arguments correspond to the expected arguments for the
   3189       // method handle produced by step 1. The dex file verifier has checked ranges for
   3190       // the first three arguments and CheckCallSite has checked the method handle type.
   3191       const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
   3192       const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
   3193       DexFileParameterIterator param_it(*dex_file_, proto_id);
   3194       // Treat method as static as it has yet to be determined.
   3195       VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
   3196       const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
   3197 
   3198       // Step 3. Propagate return type information
   3199       const RegType& return_type =
   3200           reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
   3201       if (!return_type.IsLowHalf()) {
   3202         work_line_->SetResultRegisterType(this, return_type);
   3203       } else {
   3204         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   3205       }
   3206       just_set_result = true;
   3207       break;
   3208     }
   3209     case Instruction::NEG_INT:
   3210     case Instruction::NOT_INT:
   3211       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
   3212       break;
   3213     case Instruction::NEG_LONG:
   3214     case Instruction::NOT_LONG:
   3215       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3216                                    reg_types_.LongLo(), reg_types_.LongHi());
   3217       break;
   3218     case Instruction::NEG_FLOAT:
   3219       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
   3220       break;
   3221     case Instruction::NEG_DOUBLE:
   3222       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3223                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3224       break;
   3225     case Instruction::INT_TO_LONG:
   3226       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3227                                      reg_types_.Integer());
   3228       break;
   3229     case Instruction::INT_TO_FLOAT:
   3230       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
   3231       break;
   3232     case Instruction::INT_TO_DOUBLE:
   3233       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3234                                      reg_types_.Integer());
   3235       break;
   3236     case Instruction::LONG_TO_INT:
   3237       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
   3238                                        reg_types_.LongLo(), reg_types_.LongHi());
   3239       break;
   3240     case Instruction::LONG_TO_FLOAT:
   3241       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
   3242                                        reg_types_.LongLo(), reg_types_.LongHi());
   3243       break;
   3244     case Instruction::LONG_TO_DOUBLE:
   3245       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3246                                    reg_types_.LongLo(), reg_types_.LongHi());
   3247       break;
   3248     case Instruction::FLOAT_TO_INT:
   3249       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
   3250       break;
   3251     case Instruction::FLOAT_TO_LONG:
   3252       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3253                                      reg_types_.Float());
   3254       break;
   3255     case Instruction::FLOAT_TO_DOUBLE:
   3256       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3257                                      reg_types_.Float());
   3258       break;
   3259     case Instruction::DOUBLE_TO_INT:
   3260       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
   3261                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3262       break;
   3263     case Instruction::DOUBLE_TO_LONG:
   3264       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3265                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3266       break;
   3267     case Instruction::DOUBLE_TO_FLOAT:
   3268       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
   3269                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3270       break;
   3271     case Instruction::INT_TO_BYTE:
   3272       work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
   3273       break;
   3274     case Instruction::INT_TO_CHAR:
   3275       work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
   3276       break;
   3277     case Instruction::INT_TO_SHORT:
   3278       work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
   3279       break;
   3280 
   3281     case Instruction::ADD_INT:
   3282     case Instruction::SUB_INT:
   3283     case Instruction::MUL_INT:
   3284     case Instruction::REM_INT:
   3285     case Instruction::DIV_INT:
   3286     case Instruction::SHL_INT:
   3287     case Instruction::SHR_INT:
   3288     case Instruction::USHR_INT:
   3289       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   3290                                 reg_types_.Integer(), false);
   3291       break;
   3292     case Instruction::AND_INT:
   3293     case Instruction::OR_INT:
   3294     case Instruction::XOR_INT:
   3295       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   3296                                 reg_types_.Integer(), true);
   3297       break;
   3298     case Instruction::ADD_LONG:
   3299     case Instruction::SUB_LONG:
   3300     case Instruction::MUL_LONG:
   3301     case Instruction::DIV_LONG:
   3302     case Instruction::REM_LONG:
   3303     case Instruction::AND_LONG:
   3304     case Instruction::OR_LONG:
   3305     case Instruction::XOR_LONG:
   3306       work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3307                                     reg_types_.LongLo(), reg_types_.LongHi(),
   3308                                     reg_types_.LongLo(), reg_types_.LongHi());
   3309       break;
   3310     case Instruction::SHL_LONG:
   3311     case Instruction::SHR_LONG:
   3312     case Instruction::USHR_LONG:
   3313       /* shift distance is Int, making these different from other binary operations */
   3314       work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3315                                          reg_types_.Integer());
   3316       break;
   3317     case Instruction::ADD_FLOAT:
   3318     case Instruction::SUB_FLOAT:
   3319     case Instruction::MUL_FLOAT:
   3320     case Instruction::DIV_FLOAT:
   3321     case Instruction::REM_FLOAT:
   3322       work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
   3323                                 reg_types_.Float(), false);
   3324       break;
   3325     case Instruction::ADD_DOUBLE:
   3326     case Instruction::SUB_DOUBLE:
   3327     case Instruction::MUL_DOUBLE:
   3328     case Instruction::DIV_DOUBLE:
   3329     case Instruction::REM_DOUBLE:
   3330       work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3331                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3332                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3333       break;
   3334     case Instruction::ADD_INT_2ADDR:
   3335     case Instruction::SUB_INT_2ADDR:
   3336     case Instruction::MUL_INT_2ADDR:
   3337     case Instruction::REM_INT_2ADDR:
   3338     case Instruction::SHL_INT_2ADDR:
   3339     case Instruction::SHR_INT_2ADDR:
   3340     case Instruction::USHR_INT_2ADDR:
   3341       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   3342                                      reg_types_.Integer(), false);
   3343       break;
   3344     case Instruction::AND_INT_2ADDR:
   3345     case Instruction::OR_INT_2ADDR:
   3346     case Instruction::XOR_INT_2ADDR:
   3347       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   3348                                      reg_types_.Integer(), true);
   3349       break;
   3350     case Instruction::DIV_INT_2ADDR:
   3351       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   3352                                      reg_types_.Integer(), false);
   3353       break;
   3354     case Instruction::ADD_LONG_2ADDR:
   3355     case Instruction::SUB_LONG_2ADDR:
   3356     case Instruction::MUL_LONG_2ADDR:
   3357     case Instruction::DIV_LONG_2ADDR:
   3358     case Instruction::REM_LONG_2ADDR:
   3359     case Instruction::AND_LONG_2ADDR:
   3360     case Instruction::OR_LONG_2ADDR:
   3361     case Instruction::XOR_LONG_2ADDR:
   3362       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3363                                          reg_types_.LongLo(), reg_types_.LongHi(),
   3364                                          reg_types_.LongLo(), reg_types_.LongHi());
   3365       break;
   3366     case Instruction::SHL_LONG_2ADDR:
   3367     case Instruction::SHR_LONG_2ADDR:
   3368     case Instruction::USHR_LONG_2ADDR:
   3369       work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   3370                                               reg_types_.Integer());
   3371       break;
   3372     case Instruction::ADD_FLOAT_2ADDR:
   3373     case Instruction::SUB_FLOAT_2ADDR:
   3374     case Instruction::MUL_FLOAT_2ADDR:
   3375     case Instruction::DIV_FLOAT_2ADDR:
   3376     case Instruction::REM_FLOAT_2ADDR:
   3377       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
   3378                                      reg_types_.Float(), false);
   3379       break;
   3380     case Instruction::ADD_DOUBLE_2ADDR:
   3381     case Instruction::SUB_DOUBLE_2ADDR:
   3382     case Instruction::MUL_DOUBLE_2ADDR:
   3383     case Instruction::DIV_DOUBLE_2ADDR:
   3384     case Instruction::REM_DOUBLE_2ADDR:
   3385       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   3386                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
   3387                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
   3388       break;
   3389     case Instruction::ADD_INT_LIT16:
   3390     case Instruction::RSUB_INT_LIT16:
   3391     case Instruction::MUL_INT_LIT16:
   3392     case Instruction::DIV_INT_LIT16:
   3393     case Instruction::REM_INT_LIT16:
   3394       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
   3395                                  true);
   3396       break;
   3397     case Instruction::AND_INT_LIT16:
   3398     case Instruction::OR_INT_LIT16:
   3399     case Instruction::XOR_INT_LIT16:
   3400       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
   3401                                  true);
   3402       break;
   3403     case Instruction::ADD_INT_LIT8:
   3404     case Instruction::RSUB_INT_LIT8:
   3405     case Instruction::MUL_INT_LIT8:
   3406     case Instruction::DIV_INT_LIT8:
   3407     case Instruction::REM_INT_LIT8:
   3408     case Instruction::SHL_INT_LIT8:
   3409     case Instruction::SHR_INT_LIT8:
   3410     case Instruction::USHR_INT_LIT8:
   3411       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
   3412                                  false);
   3413       break;
   3414     case Instruction::AND_INT_LIT8:
   3415     case Instruction::OR_INT_LIT8:
   3416     case Instruction::XOR_INT_LIT8:
   3417       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
   3418                                  false);
   3419       break;
   3420 
   3421     // Special instructions.
   3422     case Instruction::RETURN_VOID_NO_BARRIER:
   3423       if (IsConstructor() && !IsStatic()) {
   3424         const RegType& declaring_class = GetDeclaringClass();
   3425         if (declaring_class.IsUnresolvedReference()) {
   3426           // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
   3427           // manually over the underlying dex file.
   3428           uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
   3429               dex_file_->GetMethodId(dex_method_idx_).class_idx_);
   3430           if (first_index != dex::kDexNoIndex) {
   3431             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
   3432                               << first_index;
   3433           }
   3434           break;
   3435         }
   3436         ObjPtr<mirror::Class> klass = declaring_class.GetClass();
   3437         for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
   3438           if (klass->GetInstanceField(i)->IsFinal()) {
   3439             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
   3440                 << klass->GetInstanceField(i)->PrettyField();
   3441             break;
   3442           }
   3443         }
   3444       }
   3445       // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
   3446       // quickened opcodes (otherwise this could be a fall-through).
   3447       if (!IsConstructor()) {
   3448         if (!GetMethodReturnType().IsConflict()) {
   3449           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
   3450         }
   3451       }
   3452       break;
   3453 
   3454     /* These should never appear during verification. */
   3455     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
   3456     case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9:
   3457     case Instruction::UNUSED_79:
   3458     case Instruction::UNUSED_7A:
   3459       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
   3460       break;
   3461 
   3462     /*
   3463      * DO NOT add a "default" clause here. Without it the compiler will
   3464      * complain if an instruction is missing (which is desirable).
   3465      */
   3466   }  // end - switch (dec_insn.opcode)
   3467 
   3468   if (have_pending_hard_failure_) {
   3469     if (Runtime::Current()->IsAotCompiler()) {
   3470       /* When AOT compiling, check that the last failure is a hard failure */
   3471       if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
   3472         LOG(ERROR) << "Pending failures:";
   3473         for (auto& error : failures_) {
   3474           LOG(ERROR) << error;
   3475         }
   3476         for (auto& error_msg : failure_messages_) {
   3477           LOG(ERROR) << error_msg->str();
   3478         }
   3479         LOG(FATAL) << "Pending hard failure, but last failure not hard.";
   3480       }
   3481     }
   3482     /* immediate failure, reject class */
   3483     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
   3484     return false;
   3485   } else if (have_pending_runtime_throw_failure_) {
   3486     /* checking interpreter will throw, mark following code as unreachable */
   3487     opcode_flags = Instruction::kThrow;
   3488     // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
   3489     //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
   3490     //       very end.
   3491   }
   3492   /*
   3493    * If we didn't just set the result register, clear it out. This ensures that you can only use
   3494    * "move-result" immediately after the result is set. (We could check this statically, but it's
   3495    * not expensive and it makes our debugging output cleaner.)
   3496    */
   3497   if (!just_set_result) {
   3498     work_line_->SetResultTypeToUnknown(GetRegTypeCache());
   3499   }
   3500 
   3501   /*
   3502    * Handle "branch". Tag the branch target.
   3503    *
   3504    * NOTE: instructions like Instruction::EQZ provide information about the
   3505    * state of the register when the branch is taken or not taken. For example,
   3506    * somebody could get a reference field, check it for zero, and if the
   3507    * branch is taken immediately store that register in a boolean field
   3508    * since the value is known to be zero. We do not currently account for
   3509    * that, and will reject the code.
   3510    *
   3511    * TODO: avoid re-fetching the branch target
   3512    */
   3513   if ((opcode_flags & Instruction::kBranch) != 0) {
   3514     bool isConditional, selfOkay;
   3515     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
   3516       /* should never happen after static verification */
   3517       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
   3518       return false;
   3519     }
   3520     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
   3521     if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
   3522                                            work_insn_idx_ + branch_target)) {
   3523       return false;
   3524     }
   3525     /* update branch target, set "changed" if appropriate */
   3526     if (nullptr != branch_line) {
   3527       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
   3528         return false;
   3529       }
   3530     } else {
   3531       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
   3532         return false;
   3533       }
   3534     }
   3535   }
   3536 
   3537   /*
   3538    * Handle "switch". Tag all possible branch targets.
   3539    *
   3540    * We've already verified that the table is structurally sound, so we
   3541    * just need to walk through and tag the targets.
   3542    */
   3543   if ((opcode_flags & Instruction::kSwitch) != 0) {
   3544     int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
   3545     const uint16_t* switch_insns = insns + offset_to_switch;
   3546     int switch_count = switch_insns[1];
   3547     int offset_to_targets, targ;
   3548 
   3549     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
   3550       /* 0 = sig, 1 = count, 2/3 = first key */
   3551       offset_to_targets = 4;
   3552     } else {
   3553       /* 0 = sig, 1 = count, 2..count * 2 = keys */
   3554       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
   3555       offset_to_targets = 2 + 2 * switch_count;
   3556     }
   3557 
   3558     /* verify each switch target */
   3559     for (targ = 0; targ < switch_count; targ++) {
   3560       int offset;
   3561       uint32_t abs_offset;
   3562 
   3563       /* offsets are 32-bit, and only partly endian-swapped */
   3564       offset = switch_insns[offset_to_targets + targ * 2] |
   3565          (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
   3566       abs_offset = work_insn_idx_ + offset;
   3567       DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
   3568       if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
   3569         return false;
   3570       }
   3571       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
   3572         return false;
   3573       }
   3574     }
   3575   }
   3576 
   3577   /*
   3578    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
   3579    * "try" block when they throw, control transfers out of the method.)
   3580    */
   3581   if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
   3582     bool has_catch_all_handler = false;
   3583     const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
   3584     CHECK(try_item != nullptr);
   3585     CatchHandlerIterator iterator(code_item_accessor_, *try_item);
   3586 
   3587     // Need the linker to try and resolve the handled class to check if it's Throwable.
   3588     ClassLinker* linker = Runtime::Current()->GetClassLinker();
   3589 
   3590     for (; iterator.HasNext(); iterator.Next()) {
   3591       dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
   3592       if (!handler_type_idx.IsValid()) {
   3593         has_catch_all_handler = true;
   3594       } else {
   3595         // It is also a catch-all if it is java.lang.Throwable.
   3596         ObjPtr<mirror::Class> klass =
   3597             linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
   3598         if (klass != nullptr) {
   3599           if (klass == GetClassRoot<mirror::Throwable>()) {
   3600             has_catch_all_handler = true;
   3601           }
   3602         } else {
   3603           // Clear exception.
   3604           DCHECK(self_->IsExceptionPending());
   3605           self_->ClearException();
   3606         }
   3607       }
   3608       /*
   3609        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
   3610        * "work_regs", because at runtime the exception will be thrown before the instruction
   3611        * modifies any registers.
   3612        */
   3613       if (kVerifierDebug) {
   3614         LogVerifyInfo() << "Updating exception handler 0x"
   3615                         << std::hex << iterator.GetHandlerAddress();
   3616       }
   3617       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
   3618         return false;
   3619       }
   3620     }
   3621 
   3622     /*
   3623      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
   3624      * instruction. This does apply to monitor-exit because of async exception handling.
   3625      */
   3626     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
   3627       /*
   3628        * The state in work_line reflects the post-execution state. If the current instruction is a
   3629        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
   3630        * it will do so before grabbing the lock).
   3631        */
   3632       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
   3633         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   3634             << "expected to be within a catch-all for an instruction where a monitor is held";
   3635         return false;
   3636       }
   3637     }
   3638   }
   3639 
   3640   /* Handle "continue". Tag the next consecutive instruction.
   3641    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
   3642    *        because it changes work_line_ when performing peephole optimization
   3643    *        and this change should not be used in those cases.
   3644    */
   3645   if ((opcode_flags & Instruction::kContinue) != 0) {
   3646     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
   3647     uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
   3648     if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
   3649       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
   3650       return false;
   3651     }
   3652     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
   3653     // next instruction isn't one.
   3654     if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
   3655       return false;
   3656     }
   3657     if (nullptr != fallthrough_line) {
   3658       // Make workline consistent with fallthrough computed from peephole optimization.
   3659       work_line_->CopyFromLine(fallthrough_line.get());
   3660     }
   3661     if (GetInstructionFlags(next_insn_idx).IsReturn()) {
   3662       // For returns we only care about the operand to the return, all other registers are dead.
   3663       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
   3664       AdjustReturnLine(this, ret_inst, work_line_.get());
   3665     }
   3666     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
   3667     if (next_line != nullptr) {
   3668       // Merge registers into what we have for the next instruction, and set the "changed" flag if
   3669       // needed. If the merge changes the state of the registers then the work line will be
   3670       // updated.
   3671       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
   3672         return false;
   3673       }
   3674     } else {
   3675       /*
   3676        * We're not recording register data for the next instruction, so we don't know what the
   3677        * prior state was. We have to assume that something has changed and re-evaluate it.
   3678        */
   3679       GetModifiableInstructionFlags(next_insn_idx).SetChanged();
   3680     }
   3681   }
   3682 
   3683   /* If we're returning from the method, make sure monitor stack is empty. */
   3684   if ((opcode_flags & Instruction::kReturn) != 0) {
   3685     work_line_->VerifyMonitorStackEmpty(this);
   3686   }
   3687 
   3688   /*
   3689    * Update start_guess. Advance to the next instruction of that's
   3690    * possible, otherwise use the branch target if one was found. If
   3691    * neither of those exists we're in a return or throw; leave start_guess
   3692    * alone and let the caller sort it out.
   3693    */
   3694   if ((opcode_flags & Instruction::kContinue) != 0) {
   3695     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
   3696     *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
   3697   } else if ((opcode_flags & Instruction::kBranch) != 0) {
   3698     /* we're still okay if branch_target is zero */
   3699     *start_guess = work_insn_idx_ + branch_target;
   3700   }
   3701 
   3702   DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
   3703   DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
   3704 
   3705   if (have_pending_runtime_throw_failure_) {
   3706     have_any_pending_runtime_throw_failure_ = true;
   3707     // Reset the pending_runtime_throw flag now.
   3708     have_pending_runtime_throw_failure_ = false;
   3709   }
   3710 
   3711   return true;
   3712 }  // NOLINT(readability/fn_size)
   3713 
   3714 template <bool kVerifierDebug>
   3715 template <CheckAccess C>
   3716 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
   3717   ClassLinker* linker = Runtime::Current()->GetClassLinker();
   3718   ObjPtr<mirror::Class> klass = can_load_classes_
   3719       ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
   3720       : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
   3721   if (can_load_classes_ && klass == nullptr) {
   3722     DCHECK(self_->IsExceptionPending());
   3723     self_->ClearException();
   3724   }
   3725   const RegType* result = nullptr;
   3726   if (klass != nullptr) {
   3727     bool precise = klass->CannotBeAssignedFromOtherTypes();
   3728     if (precise && !IsInstantiableOrPrimitive(klass)) {
   3729       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
   3730       UninstantiableError(descriptor);
   3731       precise = false;
   3732     }
   3733     result = reg_types_.FindClass(klass, precise);
   3734     if (result == nullptr) {
   3735       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
   3736       result = reg_types_.InsertClass(descriptor, klass, precise);
   3737     }
   3738   } else {
   3739     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
   3740     result = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
   3741   }
   3742   DCHECK(result != nullptr);
   3743   if (result->IsConflict()) {
   3744     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
   3745     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
   3746         << "' in " << GetDeclaringClass();
   3747     return *result;
   3748   }
   3749 
   3750   // Record result of class resolution attempt.
   3751   VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass);
   3752 
   3753   // If requested, check if access is allowed. Unresolved types are included in this check, as the
   3754   // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
   3755   // the access-checks interpreter. If result is primitive, skip the access check.
   3756   //
   3757   // Note: we do this for unresolved classes to trigger re-verification at runtime.
   3758   if (C == CheckAccess::kYes &&
   3759       result->IsNonZeroReferenceTypes() &&
   3760       (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !result->IsUnresolvedTypes())) {
   3761     const RegType& referrer = GetDeclaringClass();
   3762     if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
   3763         !referrer.CanAccess(*result)) {
   3764       Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '"
   3765                                       << referrer << "' -> '" << *result << "'";
   3766     }
   3767   }
   3768   return *result;
   3769 }
   3770 
   3771 template <bool kVerifierDebug>
   3772 const RegType& MethodVerifier<kVerifierDebug>::GetCaughtExceptionType() {
   3773   const RegType* common_super = nullptr;
   3774   if (code_item_accessor_.TriesSize() != 0) {
   3775     const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
   3776     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
   3777     for (uint32_t i = 0; i < handlers_size; i++) {
   3778       CatchHandlerIterator iterator(handlers_ptr);
   3779       for (; iterator.HasNext(); iterator.Next()) {
   3780         if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
   3781           if (!iterator.GetHandlerTypeIndex().IsValid()) {
   3782             common_super = &reg_types_.JavaLangThrowable(false);
   3783           } else {
   3784             const RegType& exception =
   3785                 ResolveClass<CheckAccess::kYes>(iterator.GetHandlerTypeIndex());
   3786             if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
   3787               DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
   3788               if (exception.IsUnresolvedTypes()) {
   3789                 // We don't know enough about the type. Fail here and let runtime handle it.
   3790                 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
   3791                 return exception;
   3792               } else {
   3793                 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
   3794                 return reg_types_.Conflict();
   3795               }
   3796             } else if (common_super == nullptr) {
   3797               common_super = &exception;
   3798             } else if (common_super->Equals(exception)) {
   3799               // odd case, but nothing to do
   3800             } else {
   3801               common_super = &common_super->Merge(exception, &reg_types_, this);
   3802               if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
   3803                                   *common_super, this),
   3804                               "java.lang.Throwable is not assignable-from common_super at ",
   3805                               work_insn_idx_)) {
   3806                 break;
   3807               }
   3808             }
   3809           }
   3810         }
   3811       }
   3812       handlers_ptr = iterator.EndDataPointer();
   3813     }
   3814   }
   3815   if (common_super == nullptr) {
   3816     /* no catch blocks, or no catches with classes we can find */
   3817     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
   3818     return reg_types_.Conflict();
   3819   }
   3820   return *common_super;
   3821 }
   3822 
   3823 template <bool kVerifierDebug>
   3824 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
   3825     uint32_t dex_method_idx, MethodType method_type) {
   3826   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
   3827   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
   3828   if (klass_type.IsConflict()) {
   3829     std::string append(" in attempt to access method ");
   3830     append += dex_file_->GetMethodName(method_id);
   3831     AppendToLastFailMessage(append);
   3832     return nullptr;
   3833   }
   3834   if (klass_type.IsUnresolvedTypes()) {
   3835     return nullptr;  // Can't resolve Class so no more to do here
   3836   }
   3837   ObjPtr<mirror::Class> klass = klass_type.GetClass();
   3838   const RegType& referrer = GetDeclaringClass();
   3839   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   3840   PointerSize pointer_size = class_linker->GetImagePointerSize();
   3841 
   3842   ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
   3843   if (res_method == nullptr) {
   3844     res_method = class_linker->FindResolvedMethod(
   3845         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
   3846   }
   3847 
   3848   // Record result of method resolution attempt. The klass resolution has recorded whether
   3849   // the class is an interface or not and therefore the type of the lookup performed above.
   3850   // TODO: Maybe we should not record dependency if the invoke type does not match the lookup type.
   3851   VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_method);
   3852 
   3853   bool must_fail = false;
   3854   // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
   3855   // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
   3856   // hard to see the differences.
   3857   // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
   3858   // DCHECK.
   3859   if (res_method == nullptr) {
   3860     must_fail = true;
   3861     // Try to find the method also with the other type for better error reporting below
   3862     // but do not store such bogus lookup result in the DexCache or VerifierDeps.
   3863     res_method = class_linker->FindIncompatibleMethod(
   3864         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
   3865   }
   3866 
   3867   if (res_method == nullptr) {
   3868     Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
   3869                                  << klass->PrettyDescriptor() << "."
   3870                                  << dex_file_->GetMethodName(method_id) << " "
   3871                                  << dex_file_->GetMethodSignature(method_id);
   3872     return nullptr;
   3873   }
   3874 
   3875   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
   3876   // enforce them here.
   3877   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
   3878     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
   3879                                       << res_method->PrettyMethod();
   3880     return nullptr;
   3881   }
   3882   // Disallow any calls to class initializers.
   3883   if (res_method->IsClassInitializer()) {
   3884     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
   3885                                       << res_method->PrettyMethod();
   3886     return nullptr;
   3887   }
   3888 
   3889   // Check that interface methods are static or match interface classes.
   3890   // We only allow statics if we don't have default methods enabled.
   3891   //
   3892   // Note: this check must be after the initializer check, as those are required to fail a class,
   3893   //       while this check implies an IncompatibleClassChangeError.
   3894   if (klass->IsInterface()) {
   3895     // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
   3896     // default methods are supported for the dex file), or invoke-static.
   3897     if (method_type != METHOD_INTERFACE &&
   3898         method_type != METHOD_STATIC &&
   3899         (!dex_file_->SupportsDefaultMethods() ||
   3900          method_type != METHOD_DIRECT) &&
   3901         method_type != METHOD_SUPER) {
   3902       Fail(VERIFY_ERROR_CLASS_CHANGE)
   3903           << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
   3904           << " is in an interface class " << klass->PrettyClass();
   3905       return nullptr;
   3906     }
   3907   } else {
   3908     if (method_type == METHOD_INTERFACE) {
   3909       Fail(VERIFY_ERROR_CLASS_CHANGE)
   3910           << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
   3911           << " is in a non-interface class " << klass->PrettyClass();
   3912       return nullptr;
   3913     }
   3914   }
   3915 
   3916   // Check specifically for non-public object methods being provided for interface dispatch. This
   3917   // can occur if we failed to find a method with FindInterfaceMethod but later find one with
   3918   // FindClassMethod for error message use.
   3919   if (method_type == METHOD_INTERFACE &&
   3920       res_method->GetDeclaringClass()->IsObjectClass() &&
   3921       !res_method->IsPublic()) {
   3922     Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
   3923                                  << dex_file_->GetMethodName(method_id) << " "
   3924                                  << dex_file_->GetMethodSignature(method_id) << " resolved to "
   3925                                  << "non-public object method " << res_method->PrettyMethod() << " "
   3926                                  << "but non-public Object methods are excluded from interface "
   3927                                  << "method resolution.";
   3928     return nullptr;
   3929   }
   3930   // Check if access is allowed.
   3931   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
   3932     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
   3933                                      << res_method->PrettyMethod()
   3934                                      << " from " << referrer << ")";
   3935     return res_method;
   3936   }
   3937   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
   3938   if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
   3939     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
   3940                                       << res_method->PrettyMethod();
   3941     return nullptr;
   3942   }
   3943   // See if the method type implied by the invoke instruction matches the access flags for the
   3944   // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
   3945   // signature polymorphic methods supported by the run-time which are native methods with variable
   3946   // arguments.
   3947   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
   3948       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
   3949       ((method_type == METHOD_SUPER ||
   3950         method_type == METHOD_VIRTUAL ||
   3951         method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
   3952       ((method_type == METHOD_POLYMORPHIC) &&
   3953        (!res_method->IsNative() || !res_method->IsVarargs()))) {
   3954     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
   3955                                        "type of " << res_method->PrettyMethod();
   3956     return nullptr;
   3957   }
   3958   // Make sure we weren't expecting to fail.
   3959   DCHECK(!must_fail) << "invoke type (" << method_type << ")"
   3960                      << klass->PrettyDescriptor() << "."
   3961                      << dex_file_->GetMethodName(method_id) << " "
   3962                      << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
   3963                      << res_method->PrettyMethod() << " without error. Initially this method was "
   3964                      << "not found so we were expecting to fail for some reason.";
   3965   return res_method;
   3966 }
   3967 
   3968 template <bool kVerifierDebug>
   3969 template <class T>
   3970 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
   3971     T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
   3972   DCHECK_EQ(!is_range, inst->HasVarArgs());
   3973 
   3974   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
   3975   // match the call to the signature. Also, we might be calling through an abstract method
   3976   // definition (which doesn't have register count values).
   3977   const size_t expected_args = inst->VRegA();
   3978   /* caught by static verifier */
   3979   DCHECK(is_range || expected_args <= 5);
   3980 
   3981   if (expected_args > code_item_accessor_.OutsSize()) {
   3982     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
   3983                                       << ") exceeds outsSize ("
   3984                                       << code_item_accessor_.OutsSize() << ")";
   3985     return nullptr;
   3986   }
   3987 
   3988   /*
   3989    * Check the "this" argument, which must be an instance of the class that declared the method.
   3990    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   3991    * rigorous check here (which is okay since we have to do it at runtime).
   3992    */
   3993   if (method_type != METHOD_STATIC) {
   3994     const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
   3995     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
   3996       CHECK(have_pending_hard_failure_);
   3997       return nullptr;
   3998     }
   3999     bool is_init = false;
   4000     if (actual_arg_type.IsUninitializedTypes()) {
   4001       if (res_method) {
   4002         if (!res_method->IsConstructor()) {
   4003           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
   4004           return nullptr;
   4005         }
   4006       } else {
   4007         // Check whether the name of the called method is "<init>"
   4008         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
   4009         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
   4010           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
   4011           return nullptr;
   4012         }
   4013       }
   4014       is_init = true;
   4015     }
   4016     const RegType& adjusted_type = is_init
   4017                                        ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
   4018                                        : actual_arg_type;
   4019     if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
   4020       const RegType* res_method_class;
   4021       // Miranda methods have the declaring interface as their declaring class, not the abstract
   4022       // class. It would be wrong to use this for the type check (interface type checks are
   4023       // postponed to runtime).
   4024       if (res_method != nullptr && !res_method->IsMiranda()) {
   4025         ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
   4026         std::string temp;
   4027         res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
   4028                                       klass->CannotBeAssignedFromOtherTypes());
   4029       } else {
   4030         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
   4031         const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
   4032         res_method_class = &reg_types_.FromDescriptor(
   4033             class_loader_.Get(),
   4034             dex_file_->StringByTypeIdx(class_idx),
   4035             false);
   4036       }
   4037       if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
   4038         Fail(adjusted_type.IsUnresolvedTypes()
   4039                  ? VERIFY_ERROR_NO_CLASS
   4040                  : VERIFY_ERROR_BAD_CLASS_SOFT)
   4041             << "'this' argument '" << actual_arg_type << "' not instance of '"
   4042             << *res_method_class << "'";
   4043         // Continue on soft failures. We need to find possible hard failures to avoid problems in
   4044         // the compiler.
   4045         if (have_pending_hard_failure_) {
   4046           return nullptr;
   4047         }
   4048       }
   4049     }
   4050   }
   4051 
   4052   uint32_t arg[5];
   4053   if (!is_range) {
   4054     inst->GetVarArgs(arg);
   4055   }
   4056   uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
   4057   for ( ; it->HasNext(); it->Next()) {
   4058     if (sig_registers >= expected_args) {
   4059       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
   4060           " argument registers, method signature has " << sig_registers + 1 << " or more";
   4061       return nullptr;
   4062     }
   4063 
   4064     const char* param_descriptor = it->GetDescriptor();
   4065 
   4066     if (param_descriptor == nullptr) {
   4067       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
   4068           "component";
   4069       return nullptr;
   4070     }
   4071 
   4072     const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
   4073                                                         param_descriptor,
   4074                                                         false);
   4075     uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
   4076         arg[sig_registers];
   4077     if (reg_type.IsIntegralTypes()) {
   4078       const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
   4079       if (!src_type.IsIntegralTypes()) {
   4080         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
   4081             << " but expected " << reg_type;
   4082         return nullptr;
   4083       }
   4084     } else {
   4085       if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
   4086         // Continue on soft failures. We need to find possible hard failures to avoid problems in
   4087         // the compiler.
   4088         if (have_pending_hard_failure_) {
   4089           return nullptr;
   4090         }
   4091       } else if (reg_type.IsLongOrDoubleTypes()) {
   4092         // Check that registers are consecutive (for non-range invokes). Invokes are the only
   4093         // instructions not specifying register pairs by the first component, but require them
   4094         // nonetheless. Only check when there's an actual register in the parameters. If there's
   4095         // none, this will fail below.
   4096         if (!is_range && sig_registers + 1 < expected_args) {
   4097           uint32_t second_reg = arg[sig_registers + 1];
   4098           if (second_reg != get_reg + 1) {
   4099             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
   4100                 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
   4101                 << second_reg << ".";
   4102             return nullptr;
   4103           }
   4104         }
   4105       }
   4106     }
   4107     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
   4108   }
   4109   if (expected_args != sig_registers) {
   4110     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
   4111         " argument registers, method signature has " << sig_registers;
   4112     return nullptr;
   4113   }
   4114   return res_method;
   4115 }
   4116 
   4117 template <bool kVerifierDebug>
   4118 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
   4119                                                                           MethodType method_type,
   4120                                                                           bool is_range) {
   4121   // As the method may not have been resolved, make this static check against what we expect.
   4122   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
   4123   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
   4124   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
   4125   DexFileParameterIterator it(*dex_file_,
   4126                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
   4127   VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
   4128 }
   4129 
   4130 template <bool kVerifierDebug>
   4131 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
   4132   if (call_site_idx >= dex_file_->NumCallSiteIds()) {
   4133     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
   4134                                       << " >= " << dex_file_->NumCallSiteIds();
   4135     return false;
   4136   }
   4137 
   4138   CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
   4139   // Check essential arguments are provided. The dex file verifier has verified indicies of the
   4140   // main values (method handle, name, method_type).
   4141   static const size_t kRequiredArguments = 3;
   4142   if (it.Size() < kRequiredArguments) {
   4143     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
   4144                                       << " has too few arguments: "
   4145                                       << it.Size() << " < " << kRequiredArguments;
   4146     return false;
   4147   }
   4148 
   4149   std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
   4150       { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
   4151         { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
   4152         { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
   4153       };
   4154   uint32_t index[kRequiredArguments];
   4155 
   4156   // Check arguments have expected types and are within permitted ranges.
   4157   for (size_t i = 0; i < kRequiredArguments; ++i) {
   4158     if (it.GetValueType() != type_and_max[i].first) {
   4159       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
   4160                                         << " argument " << i << " has wrong type "
   4161                                         << it.GetValueType() << "!=" << type_and_max[i].first;
   4162       return false;
   4163     }
   4164     index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
   4165     if (index[i] >= type_and_max[i].second) {
   4166       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
   4167                                         << " argument " << i << " bad index "
   4168                                         << index[i] << " >= " << type_and_max[i].second;
   4169       return false;
   4170     }
   4171     it.Next();
   4172   }
   4173 
   4174   // Check method handle kind is valid.
   4175   const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
   4176   if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
   4177     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
   4178                                       << " argument 0 method handle type is not InvokeStatic: "
   4179                                       << mh.method_handle_type_;
   4180     return false;
   4181   }
   4182   return true;
   4183 }
   4184 
   4185 class MethodParamListDescriptorIterator {
   4186  public:
   4187   explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
   4188       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
   4189       params_size_(params_ == nullptr ? 0 : params_->Size()) {
   4190   }
   4191 
   4192   bool HasNext() {
   4193     return pos_ < params_size_;
   4194   }
   4195 
   4196   void Next() {
   4197     ++pos_;
   4198   }
   4199 
   4200   const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
   4201     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
   4202   }
   4203 
   4204  private:
   4205   ArtMethod* res_method_;
   4206   size_t pos_;
   4207   const dex::TypeList* params_;
   4208   const size_t params_size_;
   4209 };
   4210 
   4211 template <bool kVerifierDebug>
   4212 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
   4213     const Instruction* inst, MethodType method_type, bool is_range) {
   4214   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
   4215   // we're making.
   4216   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
   4217   ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
   4218   if (res_method == nullptr) {  // error or class is unresolved
   4219     // Check what we can statically.
   4220     if (!have_pending_hard_failure_) {
   4221       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
   4222     }
   4223     return nullptr;
   4224   }
   4225 
   4226   // If we're using invoke-super(method), make sure that the executing method's class' superclass
   4227   // has a vtable entry for the target method. Or the target is on a interface.
   4228   if (method_type == METHOD_SUPER) {
   4229     dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
   4230     const RegType& reference_type = reg_types_.FromDescriptor(
   4231         class_loader_.Get(),
   4232         dex_file_->StringByTypeIdx(class_idx),
   4233         false);
   4234     if (reference_type.IsUnresolvedTypes()) {
   4235       Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
   4236       return nullptr;
   4237     }
   4238     if (reference_type.GetClass()->IsInterface()) {
   4239       // TODO Can we verify anything else.
   4240       if (class_idx == class_def_.class_idx_) {
   4241         Fail(VERIFY_ERROR_CLASS_CHANGE) << "Cannot invoke-super on self as interface";
   4242         return nullptr;
   4243       }
   4244       // TODO Revisit whether we want to allow invoke-super on direct interfaces only like the JLS
   4245       // does.
   4246       if (!GetDeclaringClass().HasClass()) {
   4247         Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
   4248                                     << "interface invoke-super";
   4249         return nullptr;
   4250       } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
   4251         Fail(VERIFY_ERROR_CLASS_CHANGE)
   4252             << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
   4253             << " in method "
   4254             << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
   4255             << dex_file_->PrettyMethod(method_idx) << " references "
   4256             << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
   4257         return nullptr;
   4258       }
   4259     } else {
   4260       const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
   4261       if (super.IsUnresolvedTypes()) {
   4262         Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
   4263                                     << dex_file_->PrettyMethod(dex_method_idx_)
   4264                                     << " to super " << res_method->PrettyMethod();
   4265         return nullptr;
   4266       }
   4267       if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
   4268           (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
   4269         Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
   4270                                     << dex_file_->PrettyMethod(dex_method_idx_)
   4271                                     << " to super " << super
   4272                                     << "." << res_method->GetName()
   4273                                     << res_method->GetSignature();
   4274         return nullptr;
   4275       }
   4276     }
   4277   }
   4278 
   4279   if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
   4280     // Process the signature of the calling site that is invoking the method handle.
   4281     dex::ProtoIndex proto_idx(inst->VRegH());
   4282     DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
   4283     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
   4284   } else {
   4285     // Process the target method's signature.
   4286     MethodParamListDescriptorIterator it(res_method);
   4287     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
   4288   }
   4289 }
   4290 
   4291 template <bool kVerifierDebug>
   4292 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
   4293   ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
   4294   const char* method_name = method->GetName();
   4295 
   4296   const char* expected_return_descriptor;
   4297   ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
   4298       Runtime::Current()->GetClassLinker()->GetClassRoots();
   4299   if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
   4300     expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
   4301   } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
   4302     expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
   4303   } else {
   4304     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4305         << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
   4306     return false;
   4307   }
   4308 
   4309   if (expected_return_descriptor == nullptr) {
   4310     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4311         << "Signature polymorphic method name invalid: " << method_name;
   4312     return false;
   4313   }
   4314 
   4315   const dex::TypeList* types = method->GetParameterTypeList();
   4316   if (types->Size() != 1) {
   4317     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4318         << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
   4319     return false;
   4320   }
   4321 
   4322   const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
   4323   const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
   4324   if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
   4325     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4326         << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
   4327     return false;
   4328   }
   4329 
   4330   const char* return_descriptor = method->GetReturnTypeDescriptor();
   4331   if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
   4332     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4333         << "Signature polymorphic method has unexpected return type: " << return_descriptor
   4334         << " != " << expected_return_descriptor;
   4335     return false;
   4336   }
   4337 
   4338   return true;
   4339 }
   4340 
   4341 template <bool kVerifierDebug>
   4342 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
   4343   const RegType& this_type = work_line_->GetInvocationThis(this, inst);
   4344   if (this_type.IsZeroOrNull()) {
   4345     /* null pointer always passes (and always fails at run time) */
   4346     return true;
   4347   } else if (!this_type.IsNonZeroReferenceTypes()) {
   4348     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4349         << "invoke-polymorphic receiver is not a reference: "
   4350         << this_type;
   4351     return false;
   4352   } else if (this_type.IsUninitializedReference()) {
   4353     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4354         << "invoke-polymorphic receiver is uninitialized: "
   4355         << this_type;
   4356     return false;
   4357   } else if (!this_type.HasClass()) {
   4358     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4359         << "invoke-polymorphic receiver has no class: "
   4360         << this_type;
   4361     return false;
   4362   } else {
   4363     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
   4364         Runtime::Current()->GetClassLinker()->GetClassRoots();
   4365     if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
   4366         !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
   4367       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   4368           << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
   4369           << this_type;
   4370       return false;
   4371     }
   4372   }
   4373   return true;
   4374 }
   4375 
   4376 template <bool kVerifierDebug>
   4377 uint16_t MethodVerifier<kVerifierDebug>::GetMethodIdxOfInvoke(const Instruction* inst) {
   4378   switch (inst->Opcode()) {
   4379     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
   4380     case Instruction::INVOKE_VIRTUAL_QUICK: {
   4381       DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
   4382           << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_;
   4383       DCHECK(method_being_verified_ != nullptr);
   4384       uint16_t method_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
   4385       CHECK_NE(method_idx, DexFile::kDexNoIndex16);
   4386       return method_idx;
   4387     }
   4388     default: {
   4389       return inst->VRegB();
   4390     }
   4391   }
   4392 }
   4393 
   4394 template <bool kVerifierDebug>
   4395 uint16_t MethodVerifier<kVerifierDebug>::GetFieldIdxOfFieldAccess(const Instruction* inst,
   4396                                                                   bool is_static) {
   4397   if (is_static) {
   4398     return inst->VRegB_21c();
   4399   } else if (inst->IsQuickened()) {
   4400     DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
   4401     DCHECK(method_being_verified_ != nullptr);
   4402     uint16_t field_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
   4403     CHECK_NE(field_idx, DexFile::kDexNoIndex16);
   4404     return field_idx;
   4405   } else {
   4406     return inst->VRegC_22c();
   4407   }
   4408 }
   4409 
   4410 template <bool kVerifierDebug>
   4411 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
   4412                                                     bool is_filled,
   4413                                                     bool is_range) {
   4414   dex::TypeIndex type_idx;
   4415   if (!is_filled) {
   4416     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
   4417     type_idx = dex::TypeIndex(inst->VRegC_22c());
   4418   } else if (!is_range) {
   4419     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
   4420     type_idx = dex::TypeIndex(inst->VRegB_35c());
   4421   } else {
   4422     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
   4423     type_idx = dex::TypeIndex(inst->VRegB_3rc());
   4424   }
   4425   const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
   4426   if (res_type.IsConflict()) {  // bad class
   4427     DCHECK_NE(failures_.size(), 0U);
   4428   } else {
   4429     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   4430     if (!res_type.IsArrayTypes()) {
   4431       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
   4432     } else if (!is_filled) {
   4433       /* make sure "size" register is valid type */
   4434       work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
   4435       /* set register type to array class */
   4436       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
   4437       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
   4438     } else {
   4439       DCHECK(!res_type.IsUnresolvedMergedReference());
   4440       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
   4441       // the list and fail. It's legal, if silly, for arg_count to be zero.
   4442       const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
   4443       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
   4444       uint32_t arg[5];
   4445       if (!is_range) {
   4446         inst->GetVarArgs(arg);
   4447       }
   4448       for (size_t ui = 0; ui < arg_count; ui++) {
   4449         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
   4450         if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
   4451           work_line_->SetResultRegisterType(this, reg_types_.Conflict());
   4452           return;
   4453         }
   4454       }
   4455       // filled-array result goes into "result" register
   4456       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
   4457       work_line_->SetResultRegisterType(this, precise_type);
   4458     }
   4459   }
   4460 }
   4461 
   4462 template <bool kVerifierDebug>
   4463 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
   4464                                                 const RegType& insn_type,
   4465                                                 bool is_primitive) {
   4466   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
   4467   if (!index_type.IsArrayIndexTypes()) {
   4468     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
   4469   } else {
   4470     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
   4471     if (array_type.IsZeroOrNull()) {
   4472       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
   4473       // instruction type.
   4474       if (!is_primitive) {
   4475         work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null());
   4476       } else if (insn_type.IsInteger()) {
   4477         // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
   4478         // We cannot use 'insn_type' as it could be a float array or an int array.
   4479         work_line_->SetRegisterType<LockOp::kClear>(
   4480             this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_));
   4481       } else if (insn_type.IsCategory1Types()) {
   4482         // Category 1
   4483         // The 'insn_type' is exactly the type we need.
   4484         work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type);
   4485       } else {
   4486         // Category 2
   4487         work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
   4488                                         reg_types_.FromCat2ConstLo(0, false),
   4489                                         reg_types_.FromCat2ConstHi(0, false));
   4490       }
   4491     } else if (!array_type.IsArrayTypes()) {
   4492       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
   4493     } else if (array_type.IsUnresolvedMergedReference()) {
   4494       // Unresolved array types must be reference array types.
   4495       if (is_primitive) {
   4496         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
   4497                     << " source for category 1 aget";
   4498       } else {
   4499         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
   4500             << " because of missing class";
   4501         // Approximate with java.lang.Object[].
   4502         work_line_->SetRegisterType<LockOp::kClear>(this,
   4503                                                     inst->VRegA_23x(),
   4504                                                     reg_types_.JavaLangObject(false));
   4505       }
   4506     } else {
   4507       /* verify the class */
   4508       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
   4509       if (!component_type.IsReferenceTypes() && !is_primitive) {
   4510         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
   4511             << " source for aget-object";
   4512       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
   4513         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
   4514             << " source for category 1 aget";
   4515       } else if (is_primitive && !insn_type.Equals(component_type) &&
   4516                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
   4517                  (insn_type.IsLong() && component_type.IsDouble()))) {
   4518         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
   4519             << " incompatible with aget of type " << insn_type;
   4520       } else {
   4521         // Use knowledge of the field type which is stronger than the type inferred from the
   4522         // instruction, which can't differentiate object types and ints from floats, longs from
   4523         // doubles.
   4524         if (!component_type.IsLowHalf()) {
   4525           work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
   4526         } else {
   4527           work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
   4528                                           component_type.HighHalf(&reg_types_));
   4529         }
   4530       }
   4531     }
   4532   }
   4533 }
   4534 
   4535 template <bool kVerifierDebug>
   4536 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
   4537                                                         const RegType& insn_type,
   4538                                                         const uint32_t vregA) {
   4539   // Primitive assignability rules are weaker than regular assignability rules.
   4540   bool instruction_compatible;
   4541   bool value_compatible;
   4542   const RegType& value_type = work_line_->GetRegisterType(this, vregA);
   4543   if (target_type.IsIntegralTypes()) {
   4544     instruction_compatible = target_type.Equals(insn_type);
   4545     value_compatible = value_type.IsIntegralTypes();
   4546   } else if (target_type.IsFloat()) {
   4547     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
   4548     value_compatible = value_type.IsFloatTypes();
   4549   } else if (target_type.IsLong()) {
   4550     instruction_compatible = insn_type.IsLong();
   4551     // Additional register check: this is not checked statically (as part of VerifyInstructions),
   4552     // as target_type depends on the resolved type of the field.
   4553     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
   4554       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
   4555       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
   4556     } else {
   4557       value_compatible = false;
   4558     }
   4559   } else if (target_type.IsDouble()) {
   4560     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
   4561     // Additional register check: this is not checked statically (as part of VerifyInstructions),
   4562     // as target_type depends on the resolved type of the field.
   4563     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
   4564       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
   4565       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
   4566     } else {
   4567       value_compatible = false;
   4568     }
   4569   } else {
   4570     instruction_compatible = false;  // reference with primitive store
   4571     value_compatible = false;  // unused
   4572   }
   4573   if (!instruction_compatible) {
   4574     // This is a global failure rather than a class change failure as the instructions and
   4575     // the descriptors for the type should have been consistent within the same file at
   4576     // compile time.
   4577     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
   4578         << "' but expected type '" << target_type << "'";
   4579     return;
   4580   }
   4581   if (!value_compatible) {
   4582     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
   4583         << " of type " << value_type << " but expected " << target_type << " for put";
   4584     return;
   4585   }
   4586 }
   4587 
   4588 template <bool kVerifierDebug>
   4589 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
   4590                                                 const RegType& insn_type,
   4591                                                 bool is_primitive) {
   4592   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
   4593   if (!index_type.IsArrayIndexTypes()) {
   4594     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
   4595   } else {
   4596     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
   4597     if (array_type.IsZeroOrNull()) {
   4598       // Null array type; this code path will fail at runtime.
   4599       // Still check that the given value matches the instruction's type.
   4600       // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
   4601       //       and fits multiple register types.
   4602       const RegType* modified_reg_type = &insn_type;
   4603       if ((modified_reg_type == &reg_types_.Integer()) ||
   4604           (modified_reg_type == &reg_types_.LongLo())) {
   4605         // May be integer or float | long or double. Overwrite insn_type accordingly.
   4606         const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
   4607         if (modified_reg_type == &reg_types_.Integer()) {
   4608           if (&value_type == &reg_types_.Float()) {
   4609             modified_reg_type = &value_type;
   4610           }
   4611         } else {
   4612           if (&value_type == &reg_types_.DoubleLo()) {
   4613             modified_reg_type = &value_type;
   4614           }
   4615         }
   4616       }
   4617       work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
   4618     } else if (!array_type.IsArrayTypes()) {
   4619       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
   4620     } else if (array_type.IsUnresolvedMergedReference()) {
   4621       // Unresolved array types must be reference array types.
   4622       if (is_primitive) {
   4623         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
   4624                                           << "' but unresolved type '" << array_type << "'";
   4625       } else {
   4626         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
   4627                                     << " because of missing class";
   4628       }
   4629     } else {
   4630       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
   4631       const uint32_t vregA = inst->VRegA_23x();
   4632       if (is_primitive) {
   4633         VerifyPrimitivePut(component_type, insn_type, vregA);
   4634       } else {
   4635         if (!component_type.IsReferenceTypes()) {
   4636           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
   4637               << " source for aput-object";
   4638         } else {
   4639           // The instruction agrees with the type of array, confirm the value to be stored does too
   4640           // Note: we use the instruction type (rather than the component type) for aput-object as
   4641           // incompatible classes will be caught at runtime as an array store exception
   4642           work_line_->VerifyRegisterType(this, vregA, insn_type);
   4643         }
   4644       }
   4645     }
   4646   }
   4647 }
   4648 
   4649 template <bool kVerifierDebug>
   4650 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
   4651   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   4652   // Check access to class
   4653   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
   4654   if (klass_type.IsConflict()) {  // bad class
   4655     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
   4656                                          field_idx, dex_file_->GetFieldName(field_id),
   4657                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
   4658     return nullptr;
   4659   }
   4660   if (klass_type.IsUnresolvedTypes()) {
   4661     // Accessibility checks depend on resolved fields.
   4662     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
   4663            !failures_.empty() ||
   4664            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
   4665 
   4666     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
   4667   }
   4668   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   4669   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
   4670 
   4671   // Record result of the field resolution attempt.
   4672   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
   4673 
   4674   if (field == nullptr) {
   4675     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
   4676               << dex_file_->GetFieldName(field_id) << ") in "
   4677               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
   4678     DCHECK(self_->IsExceptionPending());
   4679     self_->ClearException();
   4680     return nullptr;
   4681   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
   4682                                                   field->GetAccessFlags())) {
   4683     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
   4684                                     << " from " << GetDeclaringClass();
   4685     return nullptr;
   4686   } else if (!field->IsStatic()) {
   4687     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
   4688     return nullptr;
   4689   }
   4690   return field;
   4691 }
   4692 
   4693 template <bool kVerifierDebug>
   4694 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
   4695   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   4696   // Check access to class.
   4697   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
   4698   if (klass_type.IsConflict()) {
   4699     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
   4700                                          field_idx, dex_file_->GetFieldName(field_id),
   4701                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
   4702     return nullptr;
   4703   }
   4704   if (klass_type.IsUnresolvedTypes()) {
   4705     // Accessibility checks depend on resolved fields.
   4706     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
   4707            !failures_.empty() ||
   4708            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
   4709 
   4710     return nullptr;  // Can't resolve Class so no more to do here
   4711   }
   4712   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   4713   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
   4714 
   4715   // Record result of the field resolution attempt.
   4716   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
   4717 
   4718   if (field == nullptr) {
   4719     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
   4720               << dex_file_->GetFieldName(field_id) << ") in "
   4721               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
   4722     DCHECK(self_->IsExceptionPending());
   4723     self_->ClearException();
   4724     return nullptr;
   4725   } else if (obj_type.IsZeroOrNull()) {
   4726     // Cannot infer and check type, however, access will cause null pointer exception.
   4727     // Fall through into a few last soft failure checks below.
   4728   } else if (!obj_type.IsReferenceTypes()) {
   4729     // Trying to read a field from something that isn't a reference.
   4730     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
   4731                                       << "non-reference type " << obj_type;
   4732     return nullptr;
   4733   } else {
   4734     std::string temp;
   4735     ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
   4736     const RegType& field_klass =
   4737         FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
   4738     if (obj_type.IsUninitializedTypes()) {
   4739       // Field accesses through uninitialized references are only allowable for constructors where
   4740       // the field is declared in this class.
   4741       // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
   4742       //       appear in constructors.
   4743       if (!obj_type.IsUninitializedThisReference() ||
   4744           !IsConstructor() ||
   4745           !field_klass.Equals(GetDeclaringClass())) {
   4746         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
   4747                                           << " of a not fully initialized object within the context"
   4748                                           << " of " << dex_file_->PrettyMethod(dex_method_idx_);
   4749         return nullptr;
   4750       }
   4751     } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
   4752       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
   4753       // of C1. For resolution to occur the declared class of the field must be compatible with
   4754       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
   4755       VerifyError type;
   4756       bool is_aot = Runtime::Current()->IsAotCompiler();
   4757       if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
   4758         // Compiler & unresolved types involved, retry at runtime.
   4759         type = VerifyError::VERIFY_ERROR_NO_CLASS;
   4760       } else {
   4761         // Classes known (resolved; and thus assignability check is precise), or we are at runtime
   4762         // and still missing classes. This is a hard failure.
   4763         type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
   4764       }
   4765       Fail(type) << "cannot access instance field " << field->PrettyField()
   4766                  << " from object of type " << obj_type;
   4767       return nullptr;
   4768     }
   4769   }
   4770 
   4771   // Few last soft failure checks.
   4772   if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
   4773                                            field->GetAccessFlags())) {
   4774     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
   4775                                     << " from " << GetDeclaringClass();
   4776     return nullptr;
   4777   } else if (field->IsStatic()) {
   4778     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
   4779                                     << " to not be static";
   4780     return nullptr;
   4781   }
   4782 
   4783   return field;
   4784 }
   4785 
   4786 template <bool kVerifierDebug>
   4787 template <FieldAccessType kAccType>
   4788 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
   4789                                                          const RegType& insn_type,
   4790                                                          bool is_primitive,
   4791                                                          bool is_static) {
   4792   uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
   4793   ArtField* field;
   4794   if (is_static) {
   4795     field = GetStaticField(field_idx);
   4796   } else {
   4797     const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
   4798 
   4799     // One is not allowed to access fields on uninitialized references, except to write to
   4800     // fields in the constructor (before calling another constructor).
   4801     // GetInstanceField does an assignability check which will fail for uninitialized types.
   4802     // We thus modify the type if the uninitialized reference is a "this" reference (this also
   4803     // checks at the same time that we're verifying a constructor).
   4804     bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
   4805                          object_type.IsUninitializedThisReference();
   4806     const RegType& adjusted_type = should_adjust
   4807                                        ? GetRegTypeCache()->FromUninitialized(object_type)
   4808                                        : object_type;
   4809     field = GetInstanceField(adjusted_type, field_idx);
   4810     if (UNLIKELY(have_pending_hard_failure_)) {
   4811       return;
   4812     }
   4813     if (should_adjust) {
   4814       if (field == nullptr) {
   4815         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
   4816                                           << "to the superclass being initialized in "
   4817                                           << dex_file_->PrettyMethod(dex_method_idx_);
   4818       } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
   4819         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
   4820                                           << field->PrettyField() << " of a not fully initialized "
   4821                                           << "object within the context of "
   4822                                           << dex_file_->PrettyMethod(dex_method_idx_);
   4823         return;
   4824       }
   4825     }
   4826   }
   4827   const RegType* field_type = nullptr;
   4828   if (field != nullptr) {
   4829     if (kAccType == FieldAccessType::kAccPut) {
   4830       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
   4831         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
   4832                                         << " from other class " << GetDeclaringClass();
   4833         // Keep hunting for possible hard fails.
   4834       }
   4835     }
   4836 
   4837     ObjPtr<mirror::Class> field_type_class =
   4838         can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
   4839     if (field_type_class != nullptr) {
   4840       field_type = &FromClass(field->GetTypeDescriptor(),
   4841                               field_type_class,
   4842                               field_type_class->CannotBeAssignedFromOtherTypes());
   4843     } else {
   4844       DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   4845       self_->ClearException();
   4846     }
   4847   } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
   4848     // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
   4849     // redo verification at runtime as the field may be final, unless the field id shows it's in
   4850     // the same class.
   4851     //
   4852     // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
   4853     // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
   4854     // to the access-checks interpreter.
   4855     //
   4856     // Note: see b/34966607. This and above may be changed in the future.
   4857     if (kAccType == FieldAccessType::kAccPut) {
   4858       const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   4859       const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
   4860       const RegType* field_class_type = &reg_types_.FromDescriptor(class_loader_.Get(),
   4861                                                                    field_class_descriptor,
   4862                                                                    false);
   4863       if (!field_class_type->Equals(GetDeclaringClass())) {
   4864         Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
   4865                                         << field_class_descriptor
   4866                                         << "."
   4867                                         << dex_file_->GetFieldName(field_id)
   4868                                         << " from other class "
   4869                                         << GetDeclaringClass();
   4870       }
   4871     }
   4872   }
   4873   if (field_type == nullptr) {
   4874     const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   4875     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
   4876     field_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
   4877   }
   4878   DCHECK(field_type != nullptr);
   4879   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
   4880   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
   4881                 "Unexpected third access type");
   4882   if (kAccType == FieldAccessType::kAccPut) {
   4883     // sput or iput.
   4884     if (is_primitive) {
   4885       VerifyPrimitivePut(*field_type, insn_type, vregA);
   4886     } else {
   4887       if (!insn_type.IsAssignableFrom(*field_type, this)) {
   4888         // If the field type is not a reference, this is a global failure rather than
   4889         // a class change failure as the instructions and the descriptors for the type
   4890         // should have been consistent within the same file at compile time.
   4891         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
   4892                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
   4893         Fail(error) << "expected field " << ArtField::PrettyField(field)
   4894                     << " to be compatible with type '" << insn_type
   4895                     << "' but found type '" << *field_type
   4896                     << "' in put-object";
   4897         return;
   4898       }
   4899       work_line_->VerifyRegisterType(this, vregA, *field_type);
   4900     }
   4901   } else if (kAccType == FieldAccessType::kAccGet) {
   4902     // sget or iget.
   4903     if (is_primitive) {
   4904       if (field_type->Equals(insn_type) ||
   4905           (field_type->IsFloat() && insn_type.IsInteger()) ||
   4906           (field_type->IsDouble() && insn_type.IsLong())) {
   4907         // expected that read is of the correct primitive type or that int reads are reading
   4908         // floats or long reads are reading doubles
   4909       } else {
   4910         // This is a global failure rather than a class change failure as the instructions and
   4911         // the descriptors for the type should have been consistent within the same file at
   4912         // compile time
   4913         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
   4914                                           << " to be of type '" << insn_type
   4915                                           << "' but found type '" << *field_type << "' in get";
   4916         return;
   4917       }
   4918     } else {
   4919       if (!insn_type.IsAssignableFrom(*field_type, this)) {
   4920         // If the field type is not a reference, this is a global failure rather than
   4921         // a class change failure as the instructions and the descriptors for the type
   4922         // should have been consistent within the same file at compile time.
   4923         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
   4924                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
   4925         Fail(error) << "expected field " << ArtField::PrettyField(field)
   4926                     << " to be compatible with type '" << insn_type
   4927                     << "' but found type '" << *field_type
   4928                     << "' in get-object";
   4929         if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
   4930           work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
   4931         }
   4932         return;
   4933       }
   4934     }
   4935     if (!field_type->IsLowHalf()) {
   4936       work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
   4937     } else {
   4938       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
   4939     }
   4940   } else {
   4941     LOG(FATAL) << "Unexpected case.";
   4942   }
   4943 }
   4944 
   4945 template <bool kVerifierDebug>
   4946 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
   4947                                                      RegisterLine* merge_line,
   4948                                                      bool update_merge_line) {
   4949   bool changed = true;
   4950   RegisterLine* target_line = reg_table_.GetLine(next_insn);
   4951   if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
   4952     /*
   4953      * We haven't processed this instruction before, and we haven't touched the registers here, so
   4954      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
   4955      * only way a register can transition out of "unknown", so this is not just an optimization.)
   4956      */
   4957     target_line->CopyFromLine(merge_line);
   4958     if (GetInstructionFlags(next_insn).IsReturn()) {
   4959       // Verify that the monitor stack is empty on return.
   4960       merge_line->VerifyMonitorStackEmpty(this);
   4961 
   4962       // For returns we only care about the operand to the return, all other registers are dead.
   4963       // Initialize them as conflicts so they don't add to GC and deoptimization information.
   4964       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
   4965       AdjustReturnLine(this, ret_inst, target_line);
   4966       // Directly bail if a hard failure was found.
   4967       if (have_pending_hard_failure_) {
   4968         return false;
   4969       }
   4970     }
   4971   } else {
   4972     RegisterLineArenaUniquePtr copy;
   4973     if (kVerifierDebug) {
   4974       copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
   4975       copy->CopyFromLine(target_line);
   4976     }
   4977     changed = target_line->MergeRegisters(this, merge_line);
   4978     if (have_pending_hard_failure_) {
   4979       return false;
   4980     }
   4981     if (kVerifierDebug && changed) {
   4982       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
   4983                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
   4984                       << copy->Dump(this) << "  MERGE\n"
   4985                       << merge_line->Dump(this) << "  ==\n"
   4986                       << target_line->Dump(this);
   4987     }
   4988     if (update_merge_line && changed) {
   4989       merge_line->CopyFromLine(target_line);
   4990     }
   4991   }
   4992   if (changed) {
   4993     GetModifiableInstructionFlags(next_insn).SetChanged();
   4994   }
   4995   return true;
   4996 }
   4997 
   4998 template <bool kVerifierDebug>
   4999 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
   5000   if (return_type_ == nullptr) {
   5001     if (method_being_verified_ != nullptr) {
   5002       ObjPtr<mirror::Class> return_type_class = can_load_classes_
   5003           ? method_being_verified_->ResolveReturnType()
   5004           : method_being_verified_->LookupResolvedReturnType();
   5005       if (return_type_class != nullptr) {
   5006         return_type_ = &FromClass(method_being_verified_->GetReturnTypeDescriptor(),
   5007                                   return_type_class,
   5008                                   return_type_class->CannotBeAssignedFromOtherTypes());
   5009       } else {
   5010         DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   5011         self_->ClearException();
   5012       }
   5013     }
   5014     if (return_type_ == nullptr) {
   5015       const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
   5016       const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
   5017       dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
   5018       const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
   5019       return_type_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
   5020     }
   5021   }
   5022   return *return_type_;
   5023 }
   5024 
   5025 template <bool kVerifierDebug>
   5026 const RegType& MethodVerifier<kVerifierDebug>::GetDeclaringClass() {
   5027   if (declaring_class_ == nullptr) {
   5028     const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
   5029     const char* descriptor
   5030         = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
   5031     if (method_being_verified_ != nullptr) {
   5032       ObjPtr<mirror::Class> klass = method_being_verified_->GetDeclaringClass();
   5033       declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
   5034     } else {
   5035       declaring_class_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
   5036     }
   5037   }
   5038   return *declaring_class_;
   5039 }
   5040 
   5041 template <bool kVerifierDebug>
   5042 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value, bool precise) {
   5043   if (precise) {
   5044     // Precise constant type.
   5045     return reg_types_.FromCat1Const(value, true);
   5046   } else {
   5047     // Imprecise constant type.
   5048     if (value < -32768) {
   5049       return reg_types_.IntConstant();
   5050     } else if (value < -128) {
   5051       return reg_types_.ShortConstant();
   5052     } else if (value < 0) {
   5053       return reg_types_.ByteConstant();
   5054     } else if (value == 0) {
   5055       return reg_types_.Zero();
   5056     } else if (value == 1) {
   5057       return reg_types_.One();
   5058     } else if (value < 128) {
   5059       return reg_types_.PosByteConstant();
   5060     } else if (value < 32768) {
   5061       return reg_types_.PosShortConstant();
   5062     } else if (value < 65536) {
   5063       return reg_types_.CharConstant();
   5064     } else {
   5065       return reg_types_.IntConstant();
   5066     }
   5067   }
   5068 }
   5069 
   5070 template <bool kVerifierDebug>
   5071 const RegType& MethodVerifier<kVerifierDebug>::FromClass(const char* descriptor,
   5072                                                          ObjPtr<mirror::Class> klass,
   5073                                                          bool precise) {
   5074   DCHECK(klass != nullptr);
   5075   if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
   5076     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
   5077         << "non-instantiable klass " << descriptor;
   5078     precise = false;
   5079   }
   5080   return reg_types_.FromClass(descriptor, klass, precise);
   5081 }
   5082 
   5083 }  // namespace
   5084 }  // namespace impl
   5085 
   5086 MethodVerifier::MethodVerifier(Thread* self,
   5087                                const DexFile* dex_file,
   5088                                const dex::CodeItem* code_item,
   5089                                uint32_t dex_method_idx,
   5090                                bool can_load_classes,
   5091                                bool allow_thread_suspension,
   5092                                bool allow_soft_failures)
   5093     : self_(self),
   5094       arena_stack_(Runtime::Current()->GetArenaPool()),
   5095       allocator_(&arena_stack_),
   5096       reg_types_(can_load_classes, allocator_, allow_thread_suspension),
   5097       reg_table_(allocator_),
   5098       work_insn_idx_(dex::kDexNoIndex),
   5099       dex_method_idx_(dex_method_idx),
   5100       dex_file_(dex_file),
   5101       code_item_accessor_(*dex_file, code_item),
   5102       have_pending_hard_failure_(false),
   5103       have_pending_runtime_throw_failure_(false),
   5104       have_pending_experimental_failure_(false),
   5105       have_any_pending_runtime_throw_failure_(false),
   5106       encountered_failure_types_(0),
   5107       can_load_classes_(can_load_classes),
   5108       allow_soft_failures_(allow_soft_failures),
   5109       has_check_casts_(false),
   5110       link_(nullptr) {
   5111   self->PushVerifier(this);
   5112 }
   5113 
   5114 MethodVerifier::~MethodVerifier() {
   5115   Thread::Current()->PopVerifier(this);
   5116   STLDeleteElements(&failure_messages_);
   5117 }
   5118 
   5119 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
   5120                                                          uint32_t method_idx,
   5121                                                          const DexFile* dex_file,
   5122                                                          Handle<mirror::DexCache> dex_cache,
   5123                                                          Handle<mirror::ClassLoader> class_loader,
   5124                                                          const dex::ClassDef& class_def,
   5125                                                          const dex::CodeItem* code_item,
   5126                                                          ArtMethod* method,
   5127                                                          uint32_t method_access_flags,
   5128                                                          CompilerCallbacks* callbacks,
   5129                                                          bool allow_soft_failures,
   5130                                                          HardFailLogMode log_level,
   5131                                                          bool need_precise_constants,
   5132                                                          uint32_t api_level,
   5133                                                          std::string* hard_failure_msg) {
   5134   if (VLOG_IS_ON(verifier_debug)) {
   5135     return VerifyMethod<true>(self,
   5136                               method_idx,
   5137                               dex_file,
   5138                               dex_cache,
   5139                               class_loader,
   5140                               class_def,
   5141                               code_item,
   5142                               method,
   5143                               method_access_flags,
   5144                               callbacks,
   5145                               allow_soft_failures,
   5146                               log_level,
   5147                               need_precise_constants,
   5148                               api_level,
   5149                               hard_failure_msg);
   5150   } else {
   5151     return VerifyMethod<false>(self,
   5152                                method_idx,
   5153                                dex_file,
   5154                                dex_cache,
   5155                                class_loader,
   5156                                class_def,
   5157                                code_item,
   5158                                method,
   5159                                method_access_flags,
   5160                                callbacks,
   5161                                allow_soft_failures,
   5162                                log_level,
   5163                                need_precise_constants,
   5164                                api_level,
   5165                                hard_failure_msg);
   5166   }
   5167 }
   5168 
   5169 template <bool kVerifierDebug>
   5170 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
   5171                                                          uint32_t method_idx,
   5172                                                          const DexFile* dex_file,
   5173                                                          Handle<mirror::DexCache> dex_cache,
   5174                                                          Handle<mirror::ClassLoader> class_loader,
   5175                                                          const dex::ClassDef& class_def,
   5176                                                          const dex::CodeItem* code_item,
   5177                                                          ArtMethod* method,
   5178                                                          uint32_t method_access_flags,
   5179                                                          CompilerCallbacks* callbacks,
   5180                                                          bool allow_soft_failures,
   5181                                                          HardFailLogMode log_level,
   5182                                                          bool need_precise_constants,
   5183                                                          uint32_t api_level,
   5184                                                          std::string* hard_failure_msg) {
   5185   MethodVerifier::FailureData result;
   5186   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
   5187 
   5188   impl::MethodVerifier<kVerifierDebug> verifier(self,
   5189                                                 dex_file,
   5190                                                 dex_cache,
   5191                                                 class_loader,
   5192                                                 class_def,
   5193                                                 code_item,
   5194                                                 method_idx,
   5195                                                 method,
   5196                                                 method_access_flags,
   5197                                                 /* can_load_classes= */ true,
   5198                                                 allow_soft_failures,
   5199                                                 need_precise_constants,
   5200                                                 /* verify to dump */ false,
   5201                                                 /* allow_thread_suspension= */ true,
   5202                                                 api_level);
   5203   if (verifier.Verify()) {
   5204     // Verification completed, however failures may be pending that didn't cause the verification
   5205     // to hard fail.
   5206     CHECK(!verifier.have_pending_hard_failure_);
   5207 
   5208     if (code_item != nullptr && callbacks != nullptr) {
   5209       // Let the interested party know that the method was verified.
   5210       callbacks->MethodVerified(&verifier);
   5211     }
   5212 
   5213     if (verifier.failures_.size() != 0) {
   5214       if (VLOG_IS_ON(verifier)) {
   5215         verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
   5216                                                     << dex_file->PrettyMethod(method_idx) << "\n");
   5217       }
   5218       if (kVerifierDebug) {
   5219         LOG(INFO) << verifier.info_messages_.str();
   5220         verifier.Dump(LOG_STREAM(INFO));
   5221       }
   5222       result.kind = FailureKind::kSoftFailure;
   5223       if (method != nullptr &&
   5224           !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
   5225         method->SetDontCompile();
   5226       }
   5227     }
   5228     if (method != nullptr) {
   5229       if (verifier.HasInstructionThatWillThrow()) {
   5230         method->SetDontCompile();
   5231         if (Runtime::Current()->IsAotCompiler() &&
   5232             (callbacks != nullptr) && !callbacks->IsBootImage()) {
   5233           // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger
   5234           // re-verification at runtime.
   5235           // The dead code after the throw is not verified and might be invalid. This may cause
   5236           // the JIT compiler to crash since it assumes that all the code is valid.
   5237           //
   5238           // There's a strong assumption that the entire boot image is verified and all its dex
   5239           // code is valid (even the dead and unverified one). As such this is done only for apps.
   5240           // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are
   5241           // fully verified).
   5242           result.kind = FailureKind::kSoftFailure;
   5243         }
   5244       }
   5245       if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
   5246         method->SetMustCountLocks();
   5247       }
   5248     }
   5249   } else {
   5250     // Bad method data.
   5251     CHECK_NE(verifier.failures_.size(), 0U);
   5252 
   5253     if (UNLIKELY(verifier.have_pending_experimental_failure_)) {
   5254       // Failed due to being forced into interpreter. This is ok because
   5255       // we just want to skip verification.
   5256       result.kind = FailureKind::kSoftFailure;
   5257     } else {
   5258       CHECK(verifier.have_pending_hard_failure_);
   5259       if (VLOG_IS_ON(verifier)) {
   5260         log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
   5261       }
   5262       if (log_level >= HardFailLogMode::kLogVerbose) {
   5263         LogSeverity severity;
   5264         switch (log_level) {
   5265           case HardFailLogMode::kLogVerbose:
   5266             severity = LogSeverity::VERBOSE;
   5267             break;
   5268           case HardFailLogMode::kLogWarning:
   5269             severity = LogSeverity::WARNING;
   5270             break;
   5271           case HardFailLogMode::kLogInternalFatal:
   5272             severity = LogSeverity::FATAL_WITHOUT_ABORT;
   5273             break;
   5274           default:
   5275             LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
   5276             UNREACHABLE();
   5277         }
   5278         verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
   5279                                                    << dex_file->PrettyMethod(method_idx)
   5280                                                    << "\n");
   5281       }
   5282       if (hard_failure_msg != nullptr) {
   5283         CHECK(!verifier.failure_messages_.empty());
   5284         *hard_failure_msg =
   5285             verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
   5286       }
   5287       result.kind = FailureKind::kHardFailure;
   5288 
   5289       if (callbacks != nullptr) {
   5290         // Let the interested party know that we failed the class.
   5291         ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
   5292         callbacks->ClassRejected(ref);
   5293       }
   5294     }
   5295     if (kVerifierDebug || VLOG_IS_ON(verifier)) {
   5296       LOG(ERROR) << verifier.info_messages_.str();
   5297       verifier.Dump(LOG_STREAM(ERROR));
   5298     }
   5299     // Under verifier-debug, dump the complete log into the error message.
   5300     if (kVerifierDebug && hard_failure_msg != nullptr) {
   5301       hard_failure_msg->append("\n");
   5302       hard_failure_msg->append(verifier.info_messages_.str());
   5303       hard_failure_msg->append("\n");
   5304       std::ostringstream oss;
   5305       verifier.Dump(oss);
   5306       hard_failure_msg->append(oss.str());
   5307     }
   5308   }
   5309   if (kTimeVerifyMethod) {
   5310     uint64_t duration_ns = NanoTime() - start_ns;
   5311     if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
   5312       LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
   5313                    << " took " << PrettyDuration(duration_ns)
   5314                    << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "");
   5315     }
   5316   }
   5317   result.types = verifier.encountered_failure_types_;
   5318   return result;
   5319 }
   5320 
   5321 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
   5322                                                     VariableIndentationOutputStream* vios,
   5323                                                     uint32_t dex_method_idx,
   5324                                                     const DexFile* dex_file,
   5325                                                     Handle<mirror::DexCache> dex_cache,
   5326                                                     Handle<mirror::ClassLoader> class_loader,
   5327                                                     const dex::ClassDef& class_def,
   5328                                                     const dex::CodeItem* code_item,
   5329                                                     ArtMethod* method,
   5330                                                     uint32_t method_access_flags,
   5331                                                     uint32_t api_level) {
   5332   impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
   5333       self,
   5334       dex_file,
   5335       dex_cache,
   5336       class_loader,
   5337       class_def,
   5338       code_item,
   5339       dex_method_idx,
   5340       method,
   5341       method_access_flags,
   5342       /* can_load_classes= */ true,
   5343       /* allow_soft_failures= */ true,
   5344       /* need_precise_constants= */ true,
   5345       /* verify_to_dump= */ true,
   5346       /* allow_thread_suspension= */ true,
   5347       api_level);
   5348   verifier->Verify();
   5349   verifier->DumpFailures(vios->Stream());
   5350   vios->Stream() << verifier->info_messages_.str();
   5351   // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
   5352   // and querying any info is dangerous/can abort.
   5353   if (verifier->have_pending_hard_failure_) {
   5354     delete verifier;
   5355     return nullptr;
   5356   } else {
   5357     verifier->Dump(vios);
   5358     return verifier;
   5359   }
   5360 }
   5361 
   5362 void MethodVerifier::FindLocksAtDexPc(
   5363     ArtMethod* m,
   5364     uint32_t dex_pc,
   5365     std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
   5366     uint32_t api_level) {
   5367   StackHandleScope<2> hs(Thread::Current());
   5368   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
   5369   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
   5370   impl::MethodVerifier<false> verifier(hs.Self(),
   5371                                        m->GetDexFile(),
   5372                                        dex_cache,
   5373                                        class_loader,
   5374                                        m->GetClassDef(),
   5375                                        m->GetCodeItem(),
   5376                                        m->GetDexMethodIndex(),
   5377                                        m,
   5378                                        m->GetAccessFlags(),
   5379                                        /* can_load_classes= */ false,
   5380                                        /* allow_soft_failures= */ true,
   5381                                        /* need_precise_constants= */ false,
   5382                                        /* verify_to_dump= */ false,
   5383                                        /* allow_thread_suspension= */ false,
   5384                                        api_level);
   5385   verifier.interesting_dex_pc_ = dex_pc;
   5386   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
   5387   verifier.FindLocksAtDexPc();
   5388 }
   5389 
   5390 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
   5391                                                const DexFile* dex_file,
   5392                                                Handle<mirror::DexCache> dex_cache,
   5393                                                Handle<mirror::ClassLoader> class_loader,
   5394                                                const dex::ClassDef& class_def,
   5395                                                const dex::CodeItem* code_item,
   5396                                                uint32_t method_idx,
   5397                                                ArtMethod* method,
   5398                                                uint32_t access_flags,
   5399                                                bool can_load_classes,
   5400                                                bool allow_soft_failures,
   5401                                                bool need_precise_constants,
   5402                                                bool verify_to_dump,
   5403                                                bool allow_thread_suspension,
   5404                                                uint32_t api_level) {
   5405   return new impl::MethodVerifier<false>(self,
   5406                                          dex_file,
   5407                                          dex_cache,
   5408                                          class_loader,
   5409                                          class_def,
   5410                                          code_item,
   5411                                          method_idx,
   5412                                          method,
   5413                                          access_flags,
   5414                                          can_load_classes,
   5415                                          allow_soft_failures,
   5416                                          need_precise_constants,
   5417                                          verify_to_dump,
   5418                                          allow_thread_suspension,
   5419                                          api_level);
   5420 }
   5421 
   5422 void MethodVerifier::Init() {
   5423   art::verifier::RegTypeCache::Init();
   5424 }
   5425 
   5426 void MethodVerifier::Shutdown() {
   5427   verifier::RegTypeCache::ShutDown();
   5428 }
   5429 
   5430 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
   5431   RegTypeCache::VisitStaticRoots(visitor);
   5432 }
   5433 
   5434 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
   5435   reg_types_.VisitRoots(visitor, root_info);
   5436 }
   5437 
   5438 std::ostream& MethodVerifier::Fail(VerifyError error) {
   5439   // Mark the error type as encountered.
   5440   encountered_failure_types_ |= static_cast<uint32_t>(error);
   5441 
   5442   switch (error) {
   5443     case VERIFY_ERROR_NO_CLASS:
   5444     case VERIFY_ERROR_NO_FIELD:
   5445     case VERIFY_ERROR_NO_METHOD:
   5446     case VERIFY_ERROR_ACCESS_CLASS:
   5447     case VERIFY_ERROR_ACCESS_FIELD:
   5448     case VERIFY_ERROR_ACCESS_METHOD:
   5449     case VERIFY_ERROR_INSTANTIATION:
   5450     case VERIFY_ERROR_CLASS_CHANGE:
   5451     case VERIFY_ERROR_FORCE_INTERPRETER:
   5452     case VERIFY_ERROR_LOCKING:
   5453       if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
   5454         // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
   5455         // class change and instantiation errors into soft verification errors so that we re-verify
   5456         // at runtime. We may fail to find or to agree on access because of not yet available class
   5457         // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
   5458         // affect the soundness of the code being compiled. Instead, the generated code runs "slow
   5459         // paths" that dynamically perform the verification and cause the behavior to be that akin
   5460         // to an interpreter.
   5461         error = VERIFY_ERROR_BAD_CLASS_SOFT;
   5462       } else {
   5463         // If we fail again at runtime, mark that this instruction would throw and force this
   5464         // method to be executed using the interpreter with checks.
   5465         have_pending_runtime_throw_failure_ = true;
   5466 
   5467         // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
   5468         // try to merge garbage.
   5469         // Note: this assumes that Fail is called before we do any work_line modifications.
   5470         // Note: this can fail before we touch any instruction, for the signature of a method. So
   5471         //       add a check.
   5472         if (work_insn_idx_ < dex::kDexNoIndex) {
   5473           const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
   5474           int opcode_flags = Instruction::FlagsOf(inst.Opcode());
   5475 
   5476           if ((opcode_flags & Instruction::kThrow) == 0 &&
   5477               GetInstructionFlags(work_insn_idx_).IsInTry()) {
   5478             saved_line_->CopyFromLine(work_line_.get());
   5479           }
   5480         }
   5481       }
   5482       break;
   5483 
   5484       // Indication that verification should be retried at runtime.
   5485     case VERIFY_ERROR_BAD_CLASS_SOFT:
   5486       if (!allow_soft_failures_) {
   5487         have_pending_hard_failure_ = true;
   5488       }
   5489       break;
   5490 
   5491       // Hard verification failures at compile time will still fail at runtime, so the class is
   5492       // marked as rejected to prevent it from being compiled.
   5493     case VERIFY_ERROR_BAD_CLASS_HARD: {
   5494       have_pending_hard_failure_ = true;
   5495       break;
   5496     }
   5497   }
   5498   failures_.push_back(error);
   5499   std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
   5500                                     work_insn_idx_));
   5501   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
   5502   failure_messages_.push_back(failure_message);
   5503   return *failure_message;
   5504 }
   5505 
   5506 ScopedNewLine MethodVerifier::LogVerifyInfo() {
   5507   ScopedNewLine ret{info_messages_};
   5508   ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
   5509       << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
   5510   return ret;
   5511 }
   5512 
   5513 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
   5514   static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
   5515                     && FailureKind::kSoftFailure < FailureKind::kHardFailure,
   5516                 "Unexpected FailureKind order");
   5517   return std::max(fk1, fk2);
   5518 }
   5519 
   5520 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
   5521   kind = FailureKindMax(kind, fd.kind);
   5522   types |= fd.types;
   5523 }
   5524 
   5525 }  // namespace verifier
   5526 }  // namespace art
   5527