Home | History | Annotate | Download | only in ssl
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com). */
    108 /* ====================================================================
    109  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    110  * ECC cipher suite support in OpenSSL originally developed by
    111  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
    112 
    113 #include <openssl/ssl.h>
    114 
    115 #include <assert.h>
    116 
    117 #include <utility>
    118 
    119 #include <openssl/rand.h>
    120 
    121 #include "../crypto/internal.h"
    122 #include "internal.h"
    123 
    124 
    125 BSSL_NAMESPACE_BEGIN
    126 
    127 SSL_HANDSHAKE::SSL_HANDSHAKE(SSL *ssl_arg)
    128     : ssl(ssl_arg),
    129       scts_requested(false),
    130       needs_psk_binder(false),
    131       received_hello_retry_request(false),
    132       sent_hello_retry_request(false),
    133       handshake_finalized(false),
    134       accept_psk_mode(false),
    135       cert_request(false),
    136       certificate_status_expected(false),
    137       ocsp_stapling_requested(false),
    138       delegated_credential_requested(false),
    139       should_ack_sni(false),
    140       in_false_start(false),
    141       in_early_data(false),
    142       early_data_offered(false),
    143       can_early_read(false),
    144       can_early_write(false),
    145       next_proto_neg_seen(false),
    146       ticket_expected(false),
    147       extended_master_secret(false),
    148       pending_private_key_op(false),
    149       grease_seeded(false),
    150       handback(false),
    151       cert_compression_negotiated(false),
    152       apply_jdk11_workaround(false) {
    153   assert(ssl);
    154 }
    155 
    156 SSL_HANDSHAKE::~SSL_HANDSHAKE() {
    157   ssl->ctx->x509_method->hs_flush_cached_ca_names(this);
    158 }
    159 
    160 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl) {
    161   UniquePtr<SSL_HANDSHAKE> hs = MakeUnique<SSL_HANDSHAKE>(ssl);
    162   if (!hs || !hs->transcript.Init()) {
    163     return nullptr;
    164   }
    165   hs->config = ssl->config.get();
    166   if (!hs->config) {
    167     assert(hs->config);
    168     return nullptr;
    169   }
    170   return hs;
    171 }
    172 
    173 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type) {
    174   if (msg.type != type) {
    175     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
    176     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
    177     ERR_add_error_dataf("got type %d, wanted type %d", msg.type, type);
    178     return false;
    179   }
    180 
    181   return true;
    182 }
    183 
    184 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb) {
    185   Array<uint8_t> msg;
    186   if (!ssl->method->finish_message(ssl, cbb, &msg) ||
    187       !ssl->method->add_message(ssl, std::move(msg))) {
    188     return false;
    189   }
    190 
    191   return true;
    192 }
    193 
    194 size_t ssl_max_handshake_message_len(const SSL *ssl) {
    195   // kMaxMessageLen is the default maximum message size for handshakes which do
    196   // not accept peer certificate chains.
    197   static const size_t kMaxMessageLen = 16384;
    198 
    199   if (SSL_in_init(ssl)) {
    200     SSL_CONFIG *config = ssl->config.get();  // SSL_in_init() implies not NULL.
    201     if ((!ssl->server || (config->verify_mode & SSL_VERIFY_PEER)) &&
    202         kMaxMessageLen < ssl->max_cert_list) {
    203       return ssl->max_cert_list;
    204     }
    205     return kMaxMessageLen;
    206   }
    207 
    208   if (ssl_protocol_version(ssl) < TLS1_3_VERSION) {
    209     // In TLS 1.2 and below, the largest acceptable post-handshake message is
    210     // a HelloRequest.
    211     return 0;
    212   }
    213 
    214   if (ssl->server) {
    215     // The largest acceptable post-handshake message for a server is a
    216     // KeyUpdate. We will never initiate post-handshake auth.
    217     return 1;
    218   }
    219 
    220   // Clients must accept NewSessionTicket, so allow the default size.
    221   return kMaxMessageLen;
    222 }
    223 
    224 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg) {
    225   // V2ClientHello messages are pre-hashed.
    226   if (msg.is_v2_hello) {
    227     return true;
    228   }
    229 
    230   return hs->transcript.Update(msg.raw);
    231 }
    232 
    233 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
    234                          const SSL_EXTENSION_TYPE *ext_types,
    235                          size_t num_ext_types, int ignore_unknown) {
    236   // Reset everything.
    237   for (size_t i = 0; i < num_ext_types; i++) {
    238     *ext_types[i].out_present = 0;
    239     CBS_init(ext_types[i].out_data, NULL, 0);
    240   }
    241 
    242   CBS copy = *cbs;
    243   while (CBS_len(&copy) != 0) {
    244     uint16_t type;
    245     CBS data;
    246     if (!CBS_get_u16(&copy, &type) ||
    247         !CBS_get_u16_length_prefixed(&copy, &data)) {
    248       OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
    249       *out_alert = SSL_AD_DECODE_ERROR;
    250       return 0;
    251     }
    252 
    253     const SSL_EXTENSION_TYPE *ext_type = NULL;
    254     for (size_t i = 0; i < num_ext_types; i++) {
    255       if (type == ext_types[i].type) {
    256         ext_type = &ext_types[i];
    257         break;
    258       }
    259     }
    260 
    261     if (ext_type == NULL) {
    262       if (ignore_unknown) {
    263         continue;
    264       }
    265       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
    266       *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
    267       return 0;
    268     }
    269 
    270     // Duplicate ext_types are forbidden.
    271     if (*ext_type->out_present) {
    272       OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_EXTENSION);
    273       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
    274       return 0;
    275     }
    276 
    277     *ext_type->out_present = 1;
    278     *ext_type->out_data = data;
    279   }
    280 
    281   return 1;
    282 }
    283 
    284 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs) {
    285   SSL *const ssl = hs->ssl;
    286   const SSL_SESSION *prev_session = ssl->s3->established_session.get();
    287   if (prev_session != NULL) {
    288     // If renegotiating, the server must not change the server certificate. See
    289     // https://mitls.org/pages/attacks/3SHAKE. We never resume on renegotiation,
    290     // so this check is sufficient to ensure the reported peer certificate never
    291     // changes on renegotiation.
    292     assert(!ssl->server);
    293     if (sk_CRYPTO_BUFFER_num(prev_session->certs.get()) !=
    294         sk_CRYPTO_BUFFER_num(hs->new_session->certs.get())) {
    295       OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
    296       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
    297       return ssl_verify_invalid;
    298     }
    299 
    300     for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(hs->new_session->certs.get());
    301          i++) {
    302       const CRYPTO_BUFFER *old_cert =
    303           sk_CRYPTO_BUFFER_value(prev_session->certs.get(), i);
    304       const CRYPTO_BUFFER *new_cert =
    305           sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), i);
    306       if (CRYPTO_BUFFER_len(old_cert) != CRYPTO_BUFFER_len(new_cert) ||
    307           OPENSSL_memcmp(CRYPTO_BUFFER_data(old_cert),
    308                          CRYPTO_BUFFER_data(new_cert),
    309                          CRYPTO_BUFFER_len(old_cert)) != 0) {
    310         OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
    311         ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
    312         return ssl_verify_invalid;
    313       }
    314     }
    315 
    316     // The certificate is identical, so we may skip re-verifying the
    317     // certificate. Since we only authenticated the previous one, copy other
    318     // authentication from the established session and ignore what was newly
    319     // received.
    320     hs->new_session->ocsp_response = UpRef(prev_session->ocsp_response);
    321     hs->new_session->signed_cert_timestamp_list =
    322         UpRef(prev_session->signed_cert_timestamp_list);
    323     hs->new_session->verify_result = prev_session->verify_result;
    324     return ssl_verify_ok;
    325   }
    326 
    327   uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN;
    328   enum ssl_verify_result_t ret;
    329   if (hs->config->custom_verify_callback != nullptr) {
    330     ret = hs->config->custom_verify_callback(ssl, &alert);
    331     switch (ret) {
    332       case ssl_verify_ok:
    333         hs->new_session->verify_result = X509_V_OK;
    334         break;
    335       case ssl_verify_invalid:
    336         // If |SSL_VERIFY_NONE|, the error is non-fatal, but we keep the result.
    337         if (hs->config->verify_mode == SSL_VERIFY_NONE) {
    338           ERR_clear_error();
    339           ret = ssl_verify_ok;
    340         }
    341         hs->new_session->verify_result = X509_V_ERR_APPLICATION_VERIFICATION;
    342         break;
    343       case ssl_verify_retry:
    344         break;
    345     }
    346   } else {
    347     ret = ssl->ctx->x509_method->session_verify_cert_chain(
    348               hs->new_session.get(), hs, &alert)
    349               ? ssl_verify_ok
    350               : ssl_verify_invalid;
    351   }
    352 
    353   if (ret == ssl_verify_invalid) {
    354     OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
    355     ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
    356   }
    357 
    358   // Emulate OpenSSL's client OCSP callback. OpenSSL verifies certificates
    359   // before it receives the OCSP, so it needs a second callback for OCSP.
    360   if (ret == ssl_verify_ok && !ssl->server &&
    361       hs->config->ocsp_stapling_enabled &&
    362       ssl->ctx->legacy_ocsp_callback != nullptr) {
    363     int cb_ret =
    364         ssl->ctx->legacy_ocsp_callback(ssl, ssl->ctx->legacy_ocsp_callback_arg);
    365     if (cb_ret <= 0) {
    366       OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR);
    367       ssl_send_alert(ssl, SSL3_AL_FATAL,
    368                      cb_ret == 0 ? SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE
    369                                  : SSL_AD_INTERNAL_ERROR);
    370       ret = ssl_verify_invalid;
    371     }
    372   }
    373 
    374   return ret;
    375 }
    376 
    377 // Verifies a stored certificate when resuming a session. A few things are
    378 // different from verify_peer_cert:
    379 // 1. We can't be renegotiating if we're resuming a session.
    380 // 2. The session is immutable, so we don't support verify_mode ==
    381 // SSL_VERIFY_NONE
    382 // 3. We don't call the OCSP callback.
    383 // 4. We only support custom verify callbacks.
    384 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs) {
    385   SSL *const ssl = hs->ssl;
    386   assert(ssl->s3->established_session == nullptr);
    387   assert(hs->config->verify_mode != SSL_VERIFY_NONE);
    388 
    389   uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN;
    390   enum ssl_verify_result_t ret = ssl_verify_invalid;
    391   if (hs->config->custom_verify_callback != nullptr) {
    392     ret = hs->config->custom_verify_callback(ssl, &alert);
    393   }
    394 
    395   if (ret == ssl_verify_invalid) {
    396     OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
    397     ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
    398   }
    399 
    400   return ret;
    401 }
    402 
    403 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs,
    404                               enum ssl_grease_index_t index) {
    405   // Draw entropy for all GREASE values at once. This avoids calling
    406   // |RAND_bytes| repeatedly and makes the values consistent within a
    407   // connection. The latter is so the second ClientHello matches after
    408   // HelloRetryRequest and so supported_groups and key_shares are consistent.
    409   if (!hs->grease_seeded) {
    410     RAND_bytes(hs->grease_seed, sizeof(hs->grease_seed));
    411     hs->grease_seeded = true;
    412   }
    413 
    414   // This generates a random value of the form 0xaa, for all 0   < 16.
    415   uint16_t ret = hs->grease_seed[index];
    416   ret = (ret & 0xf0) | 0x0a;
    417   ret |= ret << 8;
    418   return ret;
    419 }
    420 
    421 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs) {
    422   SSL *const ssl = hs->ssl;
    423   SSLMessage msg;
    424   if (!ssl->method->get_message(ssl, &msg)) {
    425     return ssl_hs_read_message;
    426   }
    427 
    428   if (!ssl_check_message_type(ssl, msg, SSL3_MT_FINISHED)) {
    429     return ssl_hs_error;
    430   }
    431 
    432   // Snapshot the finished hash before incorporating the new message.
    433   uint8_t finished[EVP_MAX_MD_SIZE];
    434   size_t finished_len;
    435   if (!hs->transcript.GetFinishedMAC(finished, &finished_len,
    436                                      SSL_get_session(ssl), !ssl->server) ||
    437       !ssl_hash_message(hs, msg)) {
    438     return ssl_hs_error;
    439   }
    440 
    441   int finished_ok = CBS_mem_equal(&msg.body, finished, finished_len);
    442 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
    443   finished_ok = 1;
    444 #endif
    445   if (!finished_ok) {
    446     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
    447     OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
    448     return ssl_hs_error;
    449   }
    450 
    451   // Copy the Finished so we can use it for renegotiation checks.
    452   if (finished_len > sizeof(ssl->s3->previous_client_finished) ||
    453       finished_len > sizeof(ssl->s3->previous_server_finished)) {
    454     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    455     return ssl_hs_error;
    456   }
    457 
    458   if (ssl->server) {
    459     OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len);
    460     ssl->s3->previous_client_finished_len = finished_len;
    461   } else {
    462     OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len);
    463     ssl->s3->previous_server_finished_len = finished_len;
    464   }
    465 
    466   ssl->method->next_message(ssl);
    467   return ssl_hs_ok;
    468 }
    469 
    470 bool ssl_send_finished(SSL_HANDSHAKE *hs) {
    471   SSL *const ssl = hs->ssl;
    472   const SSL_SESSION *session = SSL_get_session(ssl);
    473 
    474   uint8_t finished[EVP_MAX_MD_SIZE];
    475   size_t finished_len;
    476   if (!hs->transcript.GetFinishedMAC(finished, &finished_len, session,
    477                                      ssl->server)) {
    478     return 0;
    479   }
    480 
    481   // Log the master secret, if logging is enabled.
    482   if (!ssl_log_secret(ssl, "CLIENT_RANDOM", session->master_key,
    483                       session->master_key_length)) {
    484     return 0;
    485   }
    486 
    487   // Copy the Finished so we can use it for renegotiation checks.
    488   if (finished_len > sizeof(ssl->s3->previous_client_finished) ||
    489       finished_len > sizeof(ssl->s3->previous_server_finished)) {
    490     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    491     return 0;
    492   }
    493 
    494   if (ssl->server) {
    495     OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len);
    496     ssl->s3->previous_server_finished_len = finished_len;
    497   } else {
    498     OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len);
    499     ssl->s3->previous_client_finished_len = finished_len;
    500   }
    501 
    502   ScopedCBB cbb;
    503   CBB body;
    504   if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_FINISHED) ||
    505       !CBB_add_bytes(&body, finished, finished_len) ||
    506       !ssl_add_message_cbb(ssl, cbb.get())) {
    507     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    508     return 0;
    509   }
    510 
    511   return 1;
    512 }
    513 
    514 bool ssl_output_cert_chain(SSL_HANDSHAKE *hs) {
    515   ScopedCBB cbb;
    516   CBB body;
    517   if (!hs->ssl->method->init_message(hs->ssl, cbb.get(), &body,
    518                                      SSL3_MT_CERTIFICATE) ||
    519       !ssl_add_cert_chain(hs, &body) ||
    520       !ssl_add_message_cbb(hs->ssl, cbb.get())) {
    521     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    522     return false;
    523   }
    524 
    525   return true;
    526 }
    527 
    528 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return) {
    529   SSL *const ssl = hs->ssl;
    530   for (;;) {
    531     // Resolve the operation the handshake was waiting on.
    532     switch (hs->wait) {
    533       case ssl_hs_error:
    534         ERR_restore_state(hs->error.get());
    535         return -1;
    536 
    537       case ssl_hs_flush: {
    538         int ret = ssl->method->flush_flight(ssl);
    539         if (ret <= 0) {
    540           return ret;
    541         }
    542         break;
    543       }
    544 
    545       case ssl_hs_read_server_hello:
    546       case ssl_hs_read_message:
    547       case ssl_hs_read_change_cipher_spec: {
    548         if (ssl->quic_method) {
    549           hs->wait = ssl_hs_ok;
    550           // The change cipher spec is omitted in QUIC.
    551           if (hs->wait != ssl_hs_read_change_cipher_spec) {
    552             ssl->s3->rwstate = SSL_READING;
    553             return -1;
    554           }
    555           break;
    556         }
    557 
    558         uint8_t alert = SSL_AD_DECODE_ERROR;
    559         size_t consumed = 0;
    560         ssl_open_record_t ret;
    561         if (hs->wait == ssl_hs_read_change_cipher_spec) {
    562           ret = ssl_open_change_cipher_spec(ssl, &consumed, &alert,
    563                                             ssl->s3->read_buffer.span());
    564         } else {
    565           ret = ssl_open_handshake(ssl, &consumed, &alert,
    566                                    ssl->s3->read_buffer.span());
    567         }
    568         if (ret == ssl_open_record_error &&
    569             hs->wait == ssl_hs_read_server_hello) {
    570           uint32_t err = ERR_peek_error();
    571           if (ERR_GET_LIB(err) == ERR_LIB_SSL &&
    572               ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) {
    573             // Add a dedicated error code to the queue for a handshake_failure
    574             // alert in response to ClientHello. This matches NSS's client
    575             // behavior and gives a better error on a (probable) failure to
    576             // negotiate initial parameters. Note: this error code comes after
    577             // the original one.
    578             //
    579             // See https://crbug.com/446505.
    580             OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO);
    581           }
    582         }
    583         bool retry;
    584         int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert);
    585         if (bio_ret <= 0) {
    586           return bio_ret;
    587         }
    588         if (retry) {
    589           continue;
    590         }
    591         ssl->s3->read_buffer.DiscardConsumed();
    592         break;
    593       }
    594 
    595       case ssl_hs_read_end_of_early_data: {
    596         if (ssl->s3->hs->can_early_read) {
    597           // While we are processing early data, the handshake returns early.
    598           *out_early_return = true;
    599           return 1;
    600         }
    601         hs->wait = ssl_hs_ok;
    602         break;
    603       }
    604 
    605       case ssl_hs_certificate_selection_pending:
    606         ssl->s3->rwstate = SSL_CERTIFICATE_SELECTION_PENDING;
    607         hs->wait = ssl_hs_ok;
    608         return -1;
    609 
    610       case ssl_hs_handoff:
    611         ssl->s3->rwstate = SSL_HANDOFF;
    612         hs->wait = ssl_hs_ok;
    613         return -1;
    614 
    615       case ssl_hs_handback:
    616         ssl->s3->rwstate = SSL_HANDBACK;
    617         hs->wait = ssl_hs_handback;
    618         return -1;
    619 
    620       case ssl_hs_x509_lookup:
    621         ssl->s3->rwstate = SSL_X509_LOOKUP;
    622         hs->wait = ssl_hs_ok;
    623         return -1;
    624 
    625       case ssl_hs_channel_id_lookup:
    626         ssl->s3->rwstate = SSL_CHANNEL_ID_LOOKUP;
    627         hs->wait = ssl_hs_ok;
    628         return -1;
    629 
    630       case ssl_hs_private_key_operation:
    631         ssl->s3->rwstate = SSL_PRIVATE_KEY_OPERATION;
    632         hs->wait = ssl_hs_ok;
    633         return -1;
    634 
    635       case ssl_hs_pending_session:
    636         ssl->s3->rwstate = SSL_PENDING_SESSION;
    637         hs->wait = ssl_hs_ok;
    638         return -1;
    639 
    640       case ssl_hs_pending_ticket:
    641         ssl->s3->rwstate = SSL_PENDING_TICKET;
    642         hs->wait = ssl_hs_ok;
    643         return -1;
    644 
    645       case ssl_hs_certificate_verify:
    646         ssl->s3->rwstate = SSL_CERTIFICATE_VERIFY;
    647         hs->wait = ssl_hs_ok;
    648         return -1;
    649 
    650       case ssl_hs_early_data_rejected:
    651         ssl->s3->rwstate = SSL_EARLY_DATA_REJECTED;
    652         // Cause |SSL_write| to start failing immediately.
    653         hs->can_early_write = false;
    654         return -1;
    655 
    656       case ssl_hs_early_return:
    657         *out_early_return = true;
    658         hs->wait = ssl_hs_ok;
    659         return 1;
    660 
    661       case ssl_hs_ok:
    662         break;
    663     }
    664 
    665     // Run the state machine again.
    666     hs->wait = ssl->do_handshake(hs);
    667     if (hs->wait == ssl_hs_error) {
    668       hs->error.reset(ERR_save_state());
    669       return -1;
    670     }
    671     if (hs->wait == ssl_hs_ok) {
    672       // The handshake has completed.
    673       *out_early_return = false;
    674       return 1;
    675     }
    676 
    677     // Otherwise, loop to the beginning and resolve what was blocking the
    678     // handshake.
    679   }
    680 }
    681 
    682 BSSL_NAMESPACE_END
    683