Home | History | Annotate | Download | only in dwarf
      1 // -*- mode: C++ -*-
      2 
      3 // Copyright (c) 2010 Google Inc. All Rights Reserved.
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // CFI reader author: Jim Blandy <jimb (at) mozilla.com> <jimb (at) red-bean.com>
     32 
     33 // This file contains definitions related to the DWARF2/3 reader and
     34 // it's handler interfaces.
     35 // The DWARF2/3 specification can be found at
     36 // http://dwarf.freestandards.org and should be considered required
     37 // reading if you wish to modify the implementation.
     38 // Only a cursory attempt is made to explain terminology that is
     39 // used here, as it is much better explained in the standard documents
     40 #ifndef COMMON_DWARF_DWARF2READER_H__
     41 #define COMMON_DWARF_DWARF2READER_H__
     42 
     43 #include <list>
     44 #include <map>
     45 #include <string>
     46 #include <utility>
     47 #include <vector>
     48 
     49 #include "common/dwarf/bytereader.h"
     50 #include "common/dwarf/dwarf2enums.h"
     51 #include "common/dwarf/types.h"
     52 #include "common/using_std_string.h"
     53 
     54 namespace dwarf2reader {
     55 struct LineStateMachine;
     56 class Dwarf2Handler;
     57 class LineInfoHandler;
     58 
     59 // This maps from a string naming a section to a pair containing a
     60 // the data for the section, and the size of the section.
     61 typedef std::map<string, std::pair<const char*, uint64> > SectionMap;
     62 typedef std::list<std::pair<enum DwarfAttribute, enum DwarfForm> >
     63     AttributeList;
     64 typedef AttributeList::iterator AttributeIterator;
     65 typedef AttributeList::const_iterator ConstAttributeIterator;
     66 
     67 struct LineInfoHeader {
     68   uint64 total_length;
     69   uint16 version;
     70   uint64 prologue_length;
     71   uint8 min_insn_length; // insn stands for instructin
     72   bool default_is_stmt; // stmt stands for statement
     73   int8 line_base;
     74   uint8 line_range;
     75   uint8 opcode_base;
     76   // Use a pointer so that signalsafe_addr2line is able to use this structure
     77   // without heap allocation problem.
     78   std::vector<unsigned char> *std_opcode_lengths;
     79 };
     80 
     81 class LineInfo {
     82  public:
     83 
     84   // Initializes a .debug_line reader. Buffer and buffer length point
     85   // to the beginning and length of the line information to read.
     86   // Reader is a ByteReader class that has the endianness set
     87   // properly.
     88   LineInfo(const char* buffer_, uint64 buffer_length,
     89            ByteReader* reader, LineInfoHandler* handler);
     90 
     91   virtual ~LineInfo() {
     92     if (header_.std_opcode_lengths) {
     93       delete header_.std_opcode_lengths;
     94     }
     95   }
     96 
     97   // Start processing line info, and calling callbacks in the handler.
     98   // Consumes the line number information for a single compilation unit.
     99   // Returns the number of bytes processed.
    100   uint64 Start();
    101 
    102   // Process a single line info opcode at START using the state
    103   // machine at LSM.  Return true if we should define a line using the
    104   // current state of the line state machine.  Place the length of the
    105   // opcode in LEN.
    106   // If LSM_PASSES_PC is non-NULL, this function also checks if the lsm
    107   // passes the address of PC. In other words, LSM_PASSES_PC will be
    108   // set to true, if the following condition is met.
    109   //
    110   // lsm's old address < PC <= lsm's new address
    111   static bool ProcessOneOpcode(ByteReader* reader,
    112                                LineInfoHandler* handler,
    113                                const struct LineInfoHeader &header,
    114                                const char* start,
    115                                struct LineStateMachine* lsm,
    116                                size_t* len,
    117                                uintptr pc,
    118                                bool *lsm_passes_pc);
    119 
    120  private:
    121   // Reads the DWARF2/3 header for this line info.
    122   void ReadHeader();
    123 
    124   // Reads the DWARF2/3 line information
    125   void ReadLines();
    126 
    127   // The associated handler to call processing functions in
    128   LineInfoHandler* handler_;
    129 
    130   // The associated ByteReader that handles endianness issues for us
    131   ByteReader* reader_;
    132 
    133   // A DWARF2/3 line info header.  This is not the same size as
    134   // in the actual file, as the one in the file may have a 32 bit or
    135   // 64 bit lengths
    136 
    137   struct LineInfoHeader header_;
    138 
    139   // buffer is the buffer for our line info, starting at exactly where
    140   // the line info to read is.  after_header is the place right after
    141   // the end of the line information header.
    142   const char* buffer_;
    143   uint64 buffer_length_;
    144   const char* after_header_;
    145 };
    146 
    147 // This class is the main interface between the line info reader and
    148 // the client.  The virtual functions inside this get called for
    149 // interesting events that happen during line info reading.  The
    150 // default implementation does nothing
    151 
    152 class LineInfoHandler {
    153  public:
    154   LineInfoHandler() { }
    155 
    156   virtual ~LineInfoHandler() { }
    157 
    158   // Called when we define a directory.  NAME is the directory name,
    159   // DIR_NUM is the directory number
    160   virtual void DefineDir(const string& name, uint32 dir_num) { }
    161 
    162   // Called when we define a filename. NAME is the filename, FILE_NUM
    163   // is the file number which is -1 if the file index is the next
    164   // index after the last numbered index (this happens when files are
    165   // dynamically defined by the line program), DIR_NUM is the
    166   // directory index for the directory name of this file, MOD_TIME is
    167   // the modification time of the file, and LENGTH is the length of
    168   // the file
    169   virtual void DefineFile(const string& name, int32 file_num,
    170                           uint32 dir_num, uint64 mod_time,
    171                           uint64 length) { }
    172 
    173   // Called when the line info reader has a new line, address pair
    174   // ready for us. ADDRESS is the address of the code, LENGTH is the
    175   // length of its machine code in bytes, FILE_NUM is the file number
    176   // containing the code, LINE_NUM is the line number in that file for
    177   // the code, and COLUMN_NUM is the column number the code starts at,
    178   // if we know it (0 otherwise).
    179   virtual void AddLine(uint64 address, uint64 length,
    180                        uint32 file_num, uint32 line_num, uint32 column_num) { }
    181 };
    182 
    183 // The base of DWARF2/3 debug info is a DIE (Debugging Information
    184 // Entry.
    185 // DWARF groups DIE's into a tree and calls the root of this tree a
    186 // "compilation unit".  Most of the time, there is one compilation
    187 // unit in the .debug_info section for each file that had debug info
    188 // generated.
    189 // Each DIE consists of
    190 
    191 // 1. a tag specifying a thing that is being described (ie
    192 // DW_TAG_subprogram for functions, DW_TAG_variable for variables, etc
    193 // 2. attributes (such as DW_AT_location for location in memory,
    194 // DW_AT_name for name), and data for each attribute.
    195 // 3. A flag saying whether the DIE has children or not
    196 
    197 // In order to gain some amount of compression, the format of
    198 // each DIE (tag name, attributes and data forms for the attributes)
    199 // are stored in a separate table called the "abbreviation table".
    200 // This is done because a large number of DIEs have the exact same tag
    201 // and list of attributes, but different data for those attributes.
    202 // As a result, the .debug_info section is just a stream of data, and
    203 // requires reading of the .debug_abbrev section to say what the data
    204 // means.
    205 
    206 // As a warning to the user, it should be noted that the reason for
    207 // using absolute offsets from the beginning of .debug_info is that
    208 // DWARF2/3 supports referencing DIE's from other DIE's by their offset
    209 // from either the current compilation unit start, *or* the beginning
    210 // of the .debug_info section.  This means it is possible to reference
    211 // a DIE in one compilation unit from a DIE in another compilation
    212 // unit.  This style of reference is usually used to eliminate
    213 // duplicated information that occurs across compilation
    214 // units, such as base types, etc.  GCC 3.4+ support this with
    215 // -feliminate-dwarf2-dups.  Other toolchains will sometimes do
    216 // duplicate elimination in the linker.
    217 
    218 class CompilationUnit {
    219  public:
    220 
    221   // Initialize a compilation unit.  This requires a map of sections,
    222   // the offset of this compilation unit in the .debug_info section, a
    223   // ByteReader, and a Dwarf2Handler class to call callbacks in.
    224   CompilationUnit(const SectionMap& sections, uint64 offset,
    225                   ByteReader* reader, Dwarf2Handler* handler);
    226   virtual ~CompilationUnit() {
    227     if (abbrevs_) delete abbrevs_;
    228   }
    229 
    230   // Begin reading a Dwarf2 compilation unit, and calling the
    231   // callbacks in the Dwarf2Handler
    232 
    233   // Return the full length of the compilation unit, including
    234   // headers. This plus the starting offset passed to the constructor
    235   // is the offset of the end of the compilation unit --- and the
    236   // start of the next compilation unit, if there is one.
    237   uint64 Start();
    238 
    239  private:
    240 
    241   // This struct represents a single DWARF2/3 abbreviation
    242   // The abbreviation tells how to read a DWARF2/3 DIE, and consist of a
    243   // tag and a list of attributes, as well as the data form of each attribute.
    244   struct Abbrev {
    245     uint64 number;
    246     enum DwarfTag tag;
    247     bool has_children;
    248     AttributeList attributes;
    249   };
    250 
    251   // A DWARF2/3 compilation unit header.  This is not the same size as
    252   // in the actual file, as the one in the file may have a 32 bit or
    253   // 64 bit length.
    254   struct CompilationUnitHeader {
    255     uint64 length;
    256     uint16 version;
    257     uint64 abbrev_offset;
    258     uint8 address_size;
    259   } header_;
    260 
    261   // Reads the DWARF2/3 header for this compilation unit.
    262   void ReadHeader();
    263 
    264   // Reads the DWARF2/3 abbreviations for this compilation unit
    265   void ReadAbbrevs();
    266 
    267   // Processes a single DIE for this compilation unit and return a new
    268   // pointer just past the end of it
    269   const char* ProcessDIE(uint64 dieoffset,
    270                                   const char* start,
    271                                   const Abbrev& abbrev);
    272 
    273   // Processes a single attribute and return a new pointer just past the
    274   // end of it
    275   const char* ProcessAttribute(uint64 dieoffset,
    276                                         const char* start,
    277                                         enum DwarfAttribute attr,
    278                                         enum DwarfForm form);
    279 
    280   // Processes all DIEs for this compilation unit
    281   void ProcessDIEs();
    282 
    283   // Skips the die with attributes specified in ABBREV starting at
    284   // START, and return the new place to position the stream to.
    285   const char* SkipDIE(const char* start,
    286                                const Abbrev& abbrev);
    287 
    288   // Skips the attribute starting at START, with FORM, and return the
    289   // new place to position the stream to.
    290   const char* SkipAttribute(const char* start,
    291                                      enum DwarfForm form);
    292 
    293   // Offset from section start is the offset of this compilation unit
    294   // from the beginning of the .debug_info section.
    295   uint64 offset_from_section_start_;
    296 
    297   // buffer is the buffer for our CU, starting at .debug_info + offset
    298   // passed in from constructor.
    299   // after_header points to right after the compilation unit header.
    300   const char* buffer_;
    301   uint64 buffer_length_;
    302   const char* after_header_;
    303 
    304   // The associated ByteReader that handles endianness issues for us
    305   ByteReader* reader_;
    306 
    307   // The map of sections in our file to buffers containing their data
    308   const SectionMap& sections_;
    309 
    310   // The associated handler to call processing functions in
    311   Dwarf2Handler* handler_;
    312 
    313   // Set of DWARF2/3 abbreviations for this compilation unit.  Indexed
    314   // by abbreviation number, which means that abbrevs_[0] is not
    315   // valid.
    316   std::vector<Abbrev>* abbrevs_;
    317 
    318   // String section buffer and length, if we have a string section.
    319   // This is here to avoid doing a section lookup for strings in
    320   // ProcessAttribute, which is in the hot path for DWARF2 reading.
    321   const char* string_buffer_;
    322   uint64 string_buffer_length_;
    323 };
    324 
    325 // This class is the main interface between the reader and the
    326 // client.  The virtual functions inside this get called for
    327 // interesting events that happen during DWARF2 reading.
    328 // The default implementation skips everything.
    329 
    330 class Dwarf2Handler {
    331  public:
    332   Dwarf2Handler() { }
    333 
    334   virtual ~Dwarf2Handler() { }
    335 
    336   // Start to process a compilation unit at OFFSET from the beginning of the
    337   // .debug_info section. Return false if you would like to skip this
    338   // compilation unit.
    339   virtual bool StartCompilationUnit(uint64 offset, uint8 address_size,
    340                                     uint8 offset_size, uint64 cu_length,
    341                                     uint8 dwarf_version) { return false; }
    342 
    343   // Start to process a DIE at OFFSET from the beginning of the .debug_info
    344   // section. Return false if you would like to skip this DIE.
    345   virtual bool StartDIE(uint64 offset, enum DwarfTag tag) { return false; }
    346 
    347   // Called when we have an attribute with unsigned data to give to our
    348   // handler. The attribute is for the DIE at OFFSET from the beginning of the
    349   // .debug_info section. Its name is ATTR, its form is FORM, and its value is
    350   // DATA.
    351   virtual void ProcessAttributeUnsigned(uint64 offset,
    352                                         enum DwarfAttribute attr,
    353                                         enum DwarfForm form,
    354                                         uint64 data) { }
    355 
    356   // Called when we have an attribute with signed data to give to our handler.
    357   // The attribute is for the DIE at OFFSET from the beginning of the
    358   // .debug_info section. Its name is ATTR, its form is FORM, and its value is
    359   // DATA.
    360   virtual void ProcessAttributeSigned(uint64 offset,
    361                                       enum DwarfAttribute attr,
    362                                       enum DwarfForm form,
    363                                       int64 data) { }
    364 
    365   // Called when we have an attribute whose value is a reference to
    366   // another DIE. The attribute belongs to the DIE at OFFSET from the
    367   // beginning of the .debug_info section. Its name is ATTR, its form
    368   // is FORM, and the offset of the DIE being referred to from the
    369   // beginning of the .debug_info section is DATA.
    370   virtual void ProcessAttributeReference(uint64 offset,
    371                                          enum DwarfAttribute attr,
    372                                          enum DwarfForm form,
    373                                          uint64 data) { }
    374 
    375   // Called when we have an attribute with a buffer of data to give to our
    376   // handler. The attribute is for the DIE at OFFSET from the beginning of the
    377   // .debug_info section. Its name is ATTR, its form is FORM, DATA points to
    378   // the buffer's contents, and its length in bytes is LENGTH. The buffer is
    379   // owned by the caller, not the callee, and may not persist for very long.
    380   // If you want the data to be available later, it needs to be copied.
    381   virtual void ProcessAttributeBuffer(uint64 offset,
    382                                       enum DwarfAttribute attr,
    383                                       enum DwarfForm form,
    384                                       const char* data,
    385                                       uint64 len) { }
    386 
    387   // Called when we have an attribute with string data to give to our handler.
    388   // The attribute is for the DIE at OFFSET from the beginning of the
    389   // .debug_info section. Its name is ATTR, its form is FORM, and its value is
    390   // DATA.
    391   virtual void ProcessAttributeString(uint64 offset,
    392                                       enum DwarfAttribute attr,
    393                                       enum DwarfForm form,
    394                                       const string& data) { }
    395 
    396   // Called when we have an attribute whose value is the 64-bit signature
    397   // of a type unit in the .debug_types section. OFFSET is the offset of
    398   // the DIE whose attribute we're reporting. ATTR and FORM are the
    399   // attribute's name and form. SIGNATURE is the type unit's signature.
    400   virtual void ProcessAttributeSignature(uint64 offset,
    401                                          enum DwarfAttribute attr,
    402                                          enum DwarfForm form,
    403                                          uint64 signature) { }
    404 
    405   // Called when finished processing the DIE at OFFSET.
    406   // Because DWARF2/3 specifies a tree of DIEs, you may get starts
    407   // before ends of the previous DIE, as we process children before
    408   // ending the parent.
    409   virtual void EndDIE(uint64 offset) { }
    410 
    411 };
    412 
    413 // This class is a reader for DWARF's Call Frame Information.  CFI
    414 // describes how to unwind stack frames --- even for functions that do
    415 // not follow fixed conventions for saving registers, whose frame size
    416 // varies as they execute, etc.
    417 //
    418 // CFI describes, at each machine instruction, how to compute the
    419 // stack frame's base address, how to find the return address, and
    420 // where to find the saved values of the caller's registers (if the
    421 // callee has stashed them somewhere to free up the registers for its
    422 // own use).
    423 //
    424 // For example, suppose we have a function whose machine code looks
    425 // like this (imagine an assembly language that looks like C, for a
    426 // machine with 32-bit registers, and a stack that grows towards lower
    427 // addresses):
    428 //
    429 // func:                                ; entry point; return address at sp
    430 // func+0:      sp = sp - 16            ; allocate space for stack frame
    431 // func+1:      sp[12] = r0             ; save r0 at sp+12
    432 // ...                                  ; other code, not frame-related
    433 // func+10:     sp -= 4; *sp = x        ; push some x on the stack
    434 // ...                                  ; other code, not frame-related
    435 // func+20:     r0 = sp[16]             ; restore saved r0
    436 // func+21:     sp += 20                ; pop whole stack frame
    437 // func+22:     pc = *sp; sp += 4       ; pop return address and jump to it
    438 //
    439 // DWARF CFI is (a very compressed representation of) a table with a
    440 // row for each machine instruction address and a column for each
    441 // register showing how to restore it, if possible.
    442 //
    443 // A special column named "CFA", for "Canonical Frame Address", tells how
    444 // to compute the base address of the frame; registers' entries may
    445 // refer to the CFA in describing where the registers are saved.
    446 //
    447 // Another special column, named "RA", represents the return address.
    448 //
    449 // For example, here is a complete (uncompressed) table describing the
    450 // function above:
    451 //
    452 //     insn      cfa    r0      r1 ...  ra
    453 //     =======================================
    454 //     func+0:   sp                     cfa[0]
    455 //     func+1:   sp+16                  cfa[0]
    456 //     func+2:   sp+16  cfa[-4]         cfa[0]
    457 //     func+11:  sp+20  cfa[-4]         cfa[0]
    458 //     func+21:  sp+20                  cfa[0]
    459 //     func+22:  sp                     cfa[0]
    460 //
    461 // Some things to note here:
    462 //
    463 // - Each row describes the state of affairs *before* executing the
    464 //   instruction at the given address.  Thus, the row for func+0
    465 //   describes the state before we allocate the stack frame.  In the
    466 //   next row, the formula for computing the CFA has changed,
    467 //   reflecting that allocation.
    468 //
    469 // - The other entries are written in terms of the CFA; this allows
    470 //   them to remain unchanged as the stack pointer gets bumped around.
    471 //   For example, the rule for recovering the return address (the "ra"
    472 //   column) remains unchanged throughout the function, even as the
    473 //   stack pointer takes on three different offsets from the return
    474 //   address.
    475 //
    476 // - Although we haven't shown it, most calling conventions designate
    477 //   "callee-saves" and "caller-saves" registers. The callee must
    478 //   preserve the values of callee-saves registers; if it uses them,
    479 //   it must save their original values somewhere, and restore them
    480 //   before it returns. In contrast, the callee is free to trash
    481 //   caller-saves registers; if the callee uses these, it will
    482 //   probably not bother to save them anywhere, and the CFI will
    483 //   probably mark their values as "unrecoverable".
    484 //
    485 //   (However, since the caller cannot assume the callee was going to
    486 //   save them, caller-saves registers are probably dead in the caller
    487 //   anyway, so compilers usually don't generate CFA for caller-saves
    488 //   registers.)
    489 //
    490 // - Exactly where the CFA points is a matter of convention that
    491 //   depends on the architecture and ABI in use. In the example, the
    492 //   CFA is the value the stack pointer had upon entry to the
    493 //   function, pointing at the saved return address. But on the x86,
    494 //   the call frame information generated by GCC follows the
    495 //   convention that the CFA is the address *after* the saved return
    496 //   address.
    497 //
    498 //   But by definition, the CFA remains constant throughout the
    499 //   lifetime of the frame. This makes it a useful value for other
    500 //   columns to refer to. It is also gives debuggers a useful handle
    501 //   for identifying a frame.
    502 //
    503 // If you look at the table above, you'll notice that a given entry is
    504 // often the same as the one immediately above it: most instructions
    505 // change only one or two aspects of the stack frame, if they affect
    506 // it at all. The DWARF format takes advantage of this fact, and
    507 // reduces the size of the data by mentioning only the addresses and
    508 // columns at which changes take place. So for the above, DWARF CFI
    509 // data would only actually mention the following:
    510 //
    511 //     insn      cfa    r0      r1 ...  ra
    512 //     =======================================
    513 //     func+0:   sp                     cfa[0]
    514 //     func+1:   sp+16
    515 //     func+2:          cfa[-4]
    516 //     func+11:  sp+20
    517 //     func+21:         r0
    518 //     func+22:  sp
    519 //
    520 // In fact, this is the way the parser reports CFI to the consumer: as
    521 // a series of statements of the form, "At address X, column Y changed
    522 // to Z," and related conventions for describing the initial state.
    523 //
    524 // Naturally, it would be impractical to have to scan the entire
    525 // program's CFI, noting changes as we go, just to recover the
    526 // unwinding rules in effect at one particular instruction. To avoid
    527 // this, CFI data is grouped into "entries", each of which covers a
    528 // specified range of addresses and begins with a complete statement
    529 // of the rules for all recoverable registers at that starting
    530 // address. Each entry typically covers a single function.
    531 //
    532 // Thus, to compute the contents of a given row of the table --- that
    533 // is, rules for recovering the CFA, RA, and registers at a given
    534 // instruction --- the consumer should find the entry that covers that
    535 // instruction's address, start with the initial state supplied at the
    536 // beginning of the entry, and work forward until it has processed all
    537 // the changes up to and including those for the present instruction.
    538 //
    539 // There are seven kinds of rules that can appear in an entry of the
    540 // table:
    541 //
    542 // - "undefined": The given register is not preserved by the callee;
    543 //   its value cannot be recovered.
    544 //
    545 // - "same value": This register has the same value it did in the callee.
    546 //
    547 // - offset(N): The register is saved at offset N from the CFA.
    548 //
    549 // - val_offset(N): The value the register had in the caller is the
    550 //   CFA plus offset N. (This is usually only useful for describing
    551 //   the stack pointer.)
    552 //
    553 // - register(R): The register's value was saved in another register R.
    554 //
    555 // - expression(E): Evaluating the DWARF expression E using the
    556 //   current frame's registers' values yields the address at which the
    557 //   register was saved.
    558 //
    559 // - val_expression(E): Evaluating the DWARF expression E using the
    560 //   current frame's registers' values yields the value the register
    561 //   had in the caller.
    562 
    563 class CallFrameInfo {
    564  public:
    565   // The different kinds of entries one finds in CFI. Used internally,
    566   // and for error reporting.
    567   enum EntryKind { kUnknown, kCIE, kFDE, kTerminator };
    568 
    569   // The handler class to which the parser hands the parsed call frame
    570   // information.  Defined below.
    571   class Handler;
    572 
    573   // A reporter class, which CallFrameInfo uses to report errors
    574   // encountered while parsing call frame information.  Defined below.
    575   class Reporter;
    576 
    577   // Create a DWARF CFI parser. BUFFER points to the contents of the
    578   // .debug_frame section to parse; BUFFER_LENGTH is its length in bytes.
    579   // REPORTER is an error reporter the parser should use to report
    580   // problems. READER is a ByteReader instance that has the endianness and
    581   // address size set properly. Report the data we find to HANDLER.
    582   //
    583   // This class can also parse Linux C++ exception handling data, as found
    584   // in '.eh_frame' sections. This data is a variant of DWARF CFI that is
    585   // placed in loadable segments so that it is present in the program's
    586   // address space, and is interpreted by the C++ runtime to search the
    587   // call stack for a handler interested in the exception being thrown,
    588   // actually pop the frames, and find cleanup code to run.
    589   //
    590   // There are two differences between the call frame information described
    591   // in the DWARF standard and the exception handling data Linux places in
    592   // the .eh_frame section:
    593   //
    594   // - Exception handling data uses uses a different format for call frame
    595   //   information entry headers. The distinguished CIE id, the way FDEs
    596   //   refer to their CIEs, and the way the end of the series of entries is
    597   //   determined are all slightly different.
    598   //
    599   //   If the constructor's EH_FRAME argument is true, then the
    600   //   CallFrameInfo parses the entry headers as Linux C++ exception
    601   //   handling data. If EH_FRAME is false or omitted, the CallFrameInfo
    602   //   parses standard DWARF call frame information.
    603   //
    604   // - Linux C++ exception handling data uses CIE augmentation strings
    605   //   beginning with 'z' to specify the presence of additional data after
    606   //   the CIE and FDE headers and special encodings used for addresses in
    607   //   frame description entries.
    608   //
    609   //   CallFrameInfo can handle 'z' augmentations in either DWARF CFI or
    610   //   exception handling data if you have supplied READER with the base
    611   //   addresses needed to interpret the pointer encodings that 'z'
    612   //   augmentations can specify. See the ByteReader interface for details
    613   //   about the base addresses. See the CallFrameInfo::Handler interface
    614   //   for details about the additional information one might find in
    615   //   'z'-augmented data.
    616   //
    617   // Thus:
    618   //
    619   // - If you are parsing standard DWARF CFI, as found in a .debug_frame
    620   //   section, you should pass false for the EH_FRAME argument, or omit
    621   //   it, and you need not worry about providing READER with the
    622   //   additional base addresses.
    623   //
    624   // - If you want to parse Linux C++ exception handling data from a
    625   //   .eh_frame section, you should pass EH_FRAME as true, and call
    626   //   READER's Set*Base member functions before calling our Start method.
    627   //
    628   // - If you want to parse DWARF CFI that uses the 'z' augmentations
    629   //   (although I don't think any toolchain ever emits such data), you
    630   //   could pass false for EH_FRAME, but call READER's Set*Base members.
    631   //
    632   // The extensions the Linux C++ ABI makes to DWARF for exception
    633   // handling are described here, rather poorly:
    634   // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
    635   // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
    636   //
    637   // The mechanics of C++ exception handling, personality routines,
    638   // and language-specific data areas are described here, rather nicely:
    639   // http://www.codesourcery.com/public/cxx-abi/abi-eh.html
    640   CallFrameInfo(const char *buffer, size_t buffer_length,
    641                 ByteReader *reader, Handler *handler, Reporter *reporter,
    642                 bool eh_frame = false)
    643       : buffer_(buffer), buffer_length_(buffer_length),
    644         reader_(reader), handler_(handler), reporter_(reporter),
    645         eh_frame_(eh_frame) { }
    646 
    647   ~CallFrameInfo() { }
    648 
    649   // Parse the entries in BUFFER, reporting what we find to HANDLER.
    650   // Return true if we reach the end of the section successfully, or
    651   // false if we encounter an error.
    652   bool Start();
    653 
    654   // Return the textual name of KIND. For error reporting.
    655   static const char *KindName(EntryKind kind);
    656 
    657  private:
    658 
    659   struct CIE;
    660 
    661   // A CFI entry, either an FDE or a CIE.
    662   struct Entry {
    663     // The starting offset of the entry in the section, for error
    664     // reporting.
    665     size_t offset;
    666 
    667     // The start of this entry in the buffer.
    668     const char *start;
    669 
    670     // Which kind of entry this is.
    671     //
    672     // We want to be able to use this for error reporting even while we're
    673     // in the midst of parsing. Error reporting code may assume that kind,
    674     // offset, and start fields are valid, although kind may be kUnknown.
    675     EntryKind kind;
    676 
    677     // The end of this entry's common prologue (initial length and id), and
    678     // the start of this entry's kind-specific fields.
    679     const char *fields;
    680 
    681     // The start of this entry's instructions.
    682     const char *instructions;
    683 
    684     // The address past the entry's last byte in the buffer. (Note that
    685     // since offset points to the entry's initial length field, and the
    686     // length field is the number of bytes after that field, this is not
    687     // simply buffer_ + offset + length.)
    688     const char *end;
    689 
    690     // For both DWARF CFI and .eh_frame sections, this is the CIE id in a
    691     // CIE, and the offset of the associated CIE in an FDE.
    692     uint64 id;
    693 
    694     // The CIE that applies to this entry, if we've parsed it. If this is a
    695     // CIE, then this field points to this structure.
    696     CIE *cie;
    697   };
    698 
    699   // A common information entry (CIE).
    700   struct CIE: public Entry {
    701     uint8 version;                      // CFI data version number
    702     string augmentation;                // vendor format extension markers
    703     uint64 code_alignment_factor;       // scale for code address adjustments
    704     int data_alignment_factor;          // scale for stack pointer adjustments
    705     unsigned return_address_register;   // which register holds the return addr
    706 
    707     // True if this CIE includes Linux C++ ABI 'z' augmentation data.
    708     bool has_z_augmentation;
    709 
    710     // Parsed 'z' augmentation data. These are meaningful only if
    711     // has_z_augmentation is true.
    712     bool has_z_lsda;                    // The 'z' augmentation included 'L'.
    713     bool has_z_personality;             // The 'z' augmentation included 'P'.
    714     bool has_z_signal_frame;            // The 'z' augmentation included 'S'.
    715 
    716     // If has_z_lsda is true, this is the encoding to be used for language-
    717     // specific data area pointers in FDEs.
    718     DwarfPointerEncoding lsda_encoding;
    719 
    720     // If has_z_personality is true, this is the encoding used for the
    721     // personality routine pointer in the augmentation data.
    722     DwarfPointerEncoding personality_encoding;
    723 
    724     // If has_z_personality is true, this is the address of the personality
    725     // routine --- or, if personality_encoding & DW_EH_PE_indirect, the
    726     // address where the personality routine's address is stored.
    727     uint64 personality_address;
    728 
    729     // This is the encoding used for addresses in the FDE header and
    730     // in DW_CFA_set_loc instructions. This is always valid, whether
    731     // or not we saw a 'z' augmentation string; its default value is
    732     // DW_EH_PE_absptr, which is what normal DWARF CFI uses.
    733     DwarfPointerEncoding pointer_encoding;
    734   };
    735 
    736   // A frame description entry (FDE).
    737   struct FDE: public Entry {
    738     uint64 address;                     // start address of described code
    739     uint64 size;                        // size of described code, in bytes
    740 
    741     // If cie->has_z_lsda is true, then this is the language-specific data
    742     // area's address --- or its address's address, if cie->lsda_encoding
    743     // has the DW_EH_PE_indirect bit set.
    744     uint64 lsda_address;
    745   };
    746 
    747   // Internal use.
    748   class Rule;
    749   class UndefinedRule;
    750   class SameValueRule;
    751   class OffsetRule;
    752   class ValOffsetRule;
    753   class RegisterRule;
    754   class ExpressionRule;
    755   class ValExpressionRule;
    756   class RuleMap;
    757   class State;
    758 
    759   // Parse the initial length and id of a CFI entry, either a CIE, an FDE,
    760   // or a .eh_frame end-of-data mark. CURSOR points to the beginning of the
    761   // data to parse. On success, populate ENTRY as appropriate, and return
    762   // true. On failure, report the problem, and return false. Even if we
    763   // return false, set ENTRY->end to the first byte after the entry if we
    764   // were able to figure that out, or NULL if we weren't.
    765   bool ReadEntryPrologue(const char *cursor, Entry *entry);
    766 
    767   // Parse the fields of a CIE after the entry prologue, including any 'z'
    768   // augmentation data. Assume that the 'Entry' fields of CIE are
    769   // populated; use CIE->fields and CIE->end as the start and limit for
    770   // parsing. On success, populate the rest of *CIE, and return true; on
    771   // failure, report the problem and return false.
    772   bool ReadCIEFields(CIE *cie);
    773 
    774   // Parse the fields of an FDE after the entry prologue, including any 'z'
    775   // augmentation data. Assume that the 'Entry' fields of *FDE are
    776   // initialized; use FDE->fields and FDE->end as the start and limit for
    777   // parsing. Assume that FDE->cie is fully initialized. On success,
    778   // populate the rest of *FDE, and return true; on failure, report the
    779   // problem and return false.
    780   bool ReadFDEFields(FDE *fde);
    781 
    782   // Report that ENTRY is incomplete, and return false. This is just a
    783   // trivial wrapper for invoking reporter_->Incomplete; it provides a
    784   // little brevity.
    785   bool ReportIncomplete(Entry *entry);
    786 
    787   // Return true if ENCODING has the DW_EH_PE_indirect bit set.
    788   static bool IsIndirectEncoding(DwarfPointerEncoding encoding) {
    789     return encoding & DW_EH_PE_indirect;
    790   }
    791 
    792   // The contents of the DWARF .debug_info section we're parsing.
    793   const char *buffer_;
    794   size_t buffer_length_;
    795 
    796   // For reading multi-byte values with the appropriate endianness.
    797   ByteReader *reader_;
    798 
    799   // The handler to which we should report the data we find.
    800   Handler *handler_;
    801 
    802   // For reporting problems in the info we're parsing.
    803   Reporter *reporter_;
    804 
    805   // True if we are processing .eh_frame-format data.
    806   bool eh_frame_;
    807 };
    808 
    809 // The handler class for CallFrameInfo.  The a CFI parser calls the
    810 // member functions of a handler object to report the data it finds.
    811 class CallFrameInfo::Handler {
    812  public:
    813   // The pseudo-register number for the canonical frame address.
    814   enum { kCFARegister = -1 };
    815 
    816   Handler() { }
    817   virtual ~Handler() { }
    818 
    819   // The parser has found CFI for the machine code at ADDRESS,
    820   // extending for LENGTH bytes. OFFSET is the offset of the frame
    821   // description entry in the section, for use in error messages.
    822   // VERSION is the version number of the CFI format. AUGMENTATION is
    823   // a string describing any producer-specific extensions present in
    824   // the data. RETURN_ADDRESS is the number of the register that holds
    825   // the address to which the function should return.
    826   //
    827   // Entry should return true to process this CFI, or false to skip to
    828   // the next entry.
    829   //
    830   // The parser invokes Entry for each Frame Description Entry (FDE)
    831   // it finds.  The parser doesn't report Common Information Entries
    832   // to the handler explicitly; instead, if the handler elects to
    833   // process a given FDE, the parser reiterates the appropriate CIE's
    834   // contents at the beginning of the FDE's rules.
    835   virtual bool Entry(size_t offset, uint64 address, uint64 length,
    836                      uint8 version, const string &augmentation,
    837                      unsigned return_address) = 0;
    838 
    839   // When the Entry function returns true, the parser calls these
    840   // handler functions repeatedly to describe the rules for recovering
    841   // registers at each instruction in the given range of machine code.
    842   // Immediately after a call to Entry, the handler should assume that
    843   // the rule for each callee-saves register is "unchanged" --- that
    844   // is, that the register still has the value it had in the caller.
    845   //
    846   // If a *Rule function returns true, we continue processing this entry's
    847   // instructions. If a *Rule function returns false, we stop evaluating
    848   // instructions, and skip to the next entry. Either way, we call End
    849   // before going on to the next entry.
    850   //
    851   // In all of these functions, if the REG parameter is kCFARegister, then
    852   // the rule describes how to find the canonical frame address.
    853   // kCFARegister may be passed as a BASE_REGISTER argument, meaning that
    854   // the canonical frame address should be used as the base address for the
    855   // computation. All other REG values will be positive.
    856 
    857   // At ADDRESS, register REG's value is not recoverable.
    858   virtual bool UndefinedRule(uint64 address, int reg) = 0;
    859 
    860   // At ADDRESS, register REG's value is the same as that it had in
    861   // the caller.
    862   virtual bool SameValueRule(uint64 address, int reg) = 0;
    863 
    864   // At ADDRESS, register REG has been saved at offset OFFSET from
    865   // BASE_REGISTER.
    866   virtual bool OffsetRule(uint64 address, int reg,
    867                           int base_register, long offset) = 0;
    868 
    869   // At ADDRESS, the caller's value of register REG is the current
    870   // value of BASE_REGISTER plus OFFSET. (This rule doesn't provide an
    871   // address at which the register's value is saved.)
    872   virtual bool ValOffsetRule(uint64 address, int reg,
    873                              int base_register, long offset) = 0;
    874 
    875   // At ADDRESS, register REG has been saved in BASE_REGISTER. This differs
    876   // from ValOffsetRule(ADDRESS, REG, BASE_REGISTER, 0), in that
    877   // BASE_REGISTER is the "home" for REG's saved value: if you want to
    878   // assign to a variable whose home is REG in the calling frame, you
    879   // should put the value in BASE_REGISTER.
    880   virtual bool RegisterRule(uint64 address, int reg, int base_register) = 0;
    881 
    882   // At ADDRESS, the DWARF expression EXPRESSION yields the address at
    883   // which REG was saved.
    884   virtual bool ExpressionRule(uint64 address, int reg,
    885                               const string &expression) = 0;
    886 
    887   // At ADDRESS, the DWARF expression EXPRESSION yields the caller's
    888   // value for REG. (This rule doesn't provide an address at which the
    889   // register's value is saved.)
    890   virtual bool ValExpressionRule(uint64 address, int reg,
    891                                  const string &expression) = 0;
    892 
    893   // Indicate that the rules for the address range reported by the
    894   // last call to Entry are complete.  End should return true if
    895   // everything is okay, or false if an error has occurred and parsing
    896   // should stop.
    897   virtual bool End() = 0;
    898 
    899   // Handler functions for Linux C++ exception handling data. These are
    900   // only called if the data includes 'z' augmentation strings.
    901 
    902   // The Linux C++ ABI uses an extension of the DWARF CFI format to
    903   // walk the stack to propagate exceptions from the throw to the
    904   // appropriate catch, and do the appropriate cleanups along the way.
    905   // CFI entries used for exception handling have two additional data
    906   // associated with them:
    907   //
    908   // - The "language-specific data area" describes which exception
    909   //   types the function has 'catch' clauses for, and indicates how
    910   //   to go about re-entering the function at the appropriate catch
    911   //   clause. If the exception is not caught, it describes the
    912   //   destructors that must run before the frame is popped.
    913   //
    914   // - The "personality routine" is responsible for interpreting the
    915   //   language-specific data area's contents, and deciding whether
    916   //   the exception should continue to propagate down the stack,
    917   //   perhaps after doing some cleanup for this frame, or whether the
    918   //   exception will be caught here.
    919   //
    920   // In principle, the language-specific data area is opaque to
    921   // everybody but the personality routine. In practice, these values
    922   // may be useful or interesting to readers with extra context, and
    923   // we have to at least skip them anyway, so we might as well report
    924   // them to the handler.
    925 
    926   // This entry's exception handling personality routine's address is
    927   // ADDRESS. If INDIRECT is true, then ADDRESS is the address at
    928   // which the routine's address is stored. The default definition for
    929   // this handler function simply returns true, allowing parsing of
    930   // the entry to continue.
    931   virtual bool PersonalityRoutine(uint64 address, bool indirect) {
    932     return true;
    933   }
    934 
    935   // This entry's language-specific data area (LSDA) is located at
    936   // ADDRESS. If INDIRECT is true, then ADDRESS is the address at
    937   // which the area's address is stored. The default definition for
    938   // this handler function simply returns true, allowing parsing of
    939   // the entry to continue.
    940   virtual bool LanguageSpecificDataArea(uint64 address, bool indirect) {
    941     return true;
    942   }
    943 
    944   // This entry describes a signal trampoline --- this frame is the
    945   // caller of a signal handler. The default definition for this
    946   // handler function simply returns true, allowing parsing of the
    947   // entry to continue.
    948   //
    949   // The best description of the rationale for and meaning of signal
    950   // trampoline CFI entries seems to be in the GCC bug database:
    951   // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26208
    952   virtual bool SignalHandler() { return true; }
    953 };
    954 
    955 // The CallFrameInfo class makes calls on an instance of this class to
    956 // report errors or warn about problems in the data it is parsing. The
    957 // default definitions of these methods print a message to stderr, but
    958 // you can make a derived class that overrides them.
    959 class CallFrameInfo::Reporter {
    960  public:
    961   // Create an error reporter which attributes troubles to the section
    962   // named SECTION in FILENAME.
    963   //
    964   // Normally SECTION would be .debug_frame, but the Mac puts CFI data
    965   // in a Mach-O section named __debug_frame. If we support
    966   // Linux-style exception handling data, we could be reading an
    967   // .eh_frame section.
    968   Reporter(const string &filename,
    969            const string &section = ".debug_frame")
    970       : filename_(filename), section_(section) { }
    971   virtual ~Reporter() { }
    972 
    973   // The CFI entry at OFFSET ends too early to be well-formed. KIND
    974   // indicates what kind of entry it is; KIND can be kUnknown if we
    975   // haven't parsed enough of the entry to tell yet.
    976   virtual void Incomplete(uint64 offset, CallFrameInfo::EntryKind kind);
    977 
    978   // The .eh_frame data has a four-byte zero at OFFSET where the next
    979   // entry's length would be; this is a terminator. However, the buffer
    980   // length as given to the CallFrameInfo constructor says there should be
    981   // more data.
    982   virtual void EarlyEHTerminator(uint64 offset);
    983 
    984   // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the
    985   // section is not that large.
    986   virtual void CIEPointerOutOfRange(uint64 offset, uint64 cie_offset);
    987 
    988   // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the entry
    989   // there is not a CIE.
    990   virtual void BadCIEId(uint64 offset, uint64 cie_offset);
    991 
    992   // The FDE at OFFSET refers to a CIE with version number VERSION,
    993   // which we don't recognize. We cannot parse DWARF CFI if it uses
    994   // a version number we don't recognize.
    995   virtual void UnrecognizedVersion(uint64 offset, int version);
    996 
    997   // The FDE at OFFSET refers to a CIE with augmentation AUGMENTATION,
    998   // which we don't recognize. We cannot parse DWARF CFI if it uses
    999   // augmentations we don't recognize.
   1000   virtual void UnrecognizedAugmentation(uint64 offset,
   1001                                         const string &augmentation);
   1002 
   1003   // The pointer encoding ENCODING, specified by the CIE at OFFSET, is not
   1004   // a valid encoding.
   1005   virtual void InvalidPointerEncoding(uint64 offset, uint8 encoding);
   1006 
   1007   // The pointer encoding ENCODING, specified by the CIE at OFFSET, depends
   1008   // on a base address which has not been supplied.
   1009   virtual void UnusablePointerEncoding(uint64 offset, uint8 encoding);
   1010 
   1011   // The CIE at OFFSET contains a DW_CFA_restore instruction at
   1012   // INSN_OFFSET, which may not appear in a CIE.
   1013   virtual void RestoreInCIE(uint64 offset, uint64 insn_offset);
   1014 
   1015   // The entry at OFFSET, of kind KIND, has an unrecognized
   1016   // instruction at INSN_OFFSET.
   1017   virtual void BadInstruction(uint64 offset, CallFrameInfo::EntryKind kind,
   1018                               uint64 insn_offset);
   1019 
   1020   // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
   1021   // KIND, establishes a rule that cites the CFA, but we have not
   1022   // established a CFA rule yet.
   1023   virtual void NoCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
   1024                          uint64 insn_offset);
   1025 
   1026   // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
   1027   // KIND, is a DW_CFA_restore_state instruction, but the stack of
   1028   // saved states is empty.
   1029   virtual void EmptyStateStack(uint64 offset, CallFrameInfo::EntryKind kind,
   1030                                uint64 insn_offset);
   1031 
   1032   // The DW_CFA_remember_state instruction at INSN_OFFSET in the entry
   1033   // at OFFSET, of kind KIND, would restore a state that has no CFA
   1034   // rule, whereas the current state does have a CFA rule. This is
   1035   // bogus input, which the CallFrameInfo::Handler interface doesn't
   1036   // (and shouldn't) have any way to report.
   1037   virtual void ClearingCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
   1038                                uint64 insn_offset);
   1039 
   1040  protected:
   1041   // The name of the file whose CFI we're reading.
   1042   string filename_;
   1043 
   1044   // The name of the CFI section in that file.
   1045   string section_;
   1046 };
   1047 
   1048 }  // namespace dwarf2reader
   1049 
   1050 #endif  // UTIL_DEBUGINFO_DWARF2READER_H__
   1051